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1 Introduction

An old problem in statistics (Silverman, 1986; Scott, 1992; Simonoff, 1996)
is the estimation of a density function f from a sample of observations
x1, . . . , xM . Ties might be present due to rounding or bootstrapping: let
x1, . . . , xN be the sample with no ties, and let n1, . . . , nN be the number of
ties at the order statistics x(1), . . . , x(N). Nonparametric methods reduce the
possible modeling biases in situations where a parametric model is difficult
to guess. Writing the nonparametric log-likelihood function

l(f ;x1, . . . , xM ) =
N∑

i=1

ni log f(xi), (1)

and maximizing it over all densities f with the constraint of integrating to
unity leads to the degenerate nonparametric maximum likelihood estimate
f̂(x) = 1

M

∑N
i=1 niδxi(x), where δxi(·) is the Dirac measure at xi. It is

degenerate in that its total variation is unbounded.
Many nonparametric estimators are based on regularization (Tikhonov,

1963), by adding a penalty or, equivalently, a constraint to (1), to obtain a
smoother and more useful estimate. For instance, the histogram estimator
is defined as the unique maximum likelihood estimate constrained to be
piecewise constant on bins. In a pioneering paper, Good and Gaskins (1971)
add a roughness penalty functional Φ(f) to (1) to define the functional
nonparametric penalized likelihood estimate f̂λ as the solution to

max
f

l(f ;x1, . . . , xM )− λΦ(f) s.t.
∫

f(x)dx = 1, (2)

(“s.t.” is short for “subject to”), where λ > 0 is the smoothing parameter:
the estimate tends to the degenerate nonparametric estimate when λ → 0,
and to the parametric maximum likelihood estimate in the kernel of the
penalty Φ (i.e., the subspace of densities f such that Φ(f) is minimal) when
λ → ∞. Various penalty functionals, including Φ(f) = 4

∫
{∇

√
f}2 (Good

and Gaskins, 1971) and Φ(f) =
∫
{∇3 log f}2 (Silverman, 1982), have been

proposed. They have three important properties. First, the existing penal-
ties intrinsically assume f is differentiable everywhere or the points of non-
differentiability can be ignored–a mathematical assumption which causes
practical difficulties when the density is nondifferentiable everywhere, for
instance with jumps or peaks. Second, it is often argued that basing the
penalty on derivatives of

√
f or log f has the advantage of avoiding negative

estimates, but we contend that it is redundant to insure positivity. Indeed,

2



the terms log f(xi) in (1) are already natural barriers against negative values
of f(xi) at all observations, and f would be positive everywhere if we make
an additional mild assumption that f is piecewise monotone between xis.
Third, penalizing smoothness on a square root- or log-scale might cause
adverse effects because smoothness at low and high density values is not
penalized equally.

Penalized likelihood served as a framework for smoothing splines esti-
mators (Wahba, 1990). O’Sullivan (1988) developed a spline-based esti-
mate to calculate an approximation to the log-density estimate of Silverman
(1982). Kooperberg and Stone (1991) derived the logspline estimator which
selects spline knots: the location of potential knots are recommended to be
near order statistics and their number is automatically selected based on an
AIC-like criterion. Silverman (1982) and Stone (1990) derived asymptotic
optimal convergence properties under smoothness assumptions.

For the estimation of nonsmooth functions, nonlinear wavelet-based es-
timators pioneered by Waveshrink in regression (Donoho and Johnstone,
1994) have been developed for density estimation as well (see Vidakovic
(1999) for a review). To guarantee positivity of the wavelet estimate, Penev
and Dechevsky (1997) and Pinheiro and Vidakovic (1997) estimated

√
f at

the cost of losing local adaptivity, showing again that the use of a transform
is not innocuous. Wavelet estimators are also sensitive to the choice of the
dyadic grid (Renaud, 2002) as the histogram is sensitive to the choice of
bins. Recently, Willett and Nowak (2003) proposed to adaptively prune a
multiscale partition, Davies and Kovac (2004) proposed taut string, a simple
and yet efficient locally adaptive estimator which measures complexity by
the number of modes, and Koenker and Mizera (2006) proposed a logdensity
estimate regularized by a total variation penalty on the first derivative.

In this article, we propose a density estimator based on a total variation
penalty, a functional that does not even have first-order differentiability.
Consequently, the new estimator defined in Section 2 has the ability to ef-
ficiently estimate nonsmooth densities. To select the smoothing parameter,
Section 3 derives an information criterion based on the Gumbel prior for the
hyperparameter. Section 4 derives and proves convergence of two relaxation
algorithms, based on primal and dual transformations, to calculate the esti-
mate. Section 5 investigates the finite sample properties of the new density
estimator in comparison with existing ones on a Monte Carlo simulation.
We then consider two real data sets in Section 6, and draw some conclusions
in Section 7.
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2 Total variation penalized likelihood

2.1 Univariate case

We propose to regularize the maximum likelihood estimate (1) by penalizing
the log-likelihood function with the total variation of the density. So we
choose Φ(f) = TV(f) in (2) with

TV(f) = sup
∑
j

|f(uj+1)− f(uj)|, (3)

where the sup is taken over all possible partitions of the domain of the
univariate density. If one assumes that f is absolutely continuous, then total
variation matches a more conventional smoothness measure since TV(f) =∫
|f ′(x)|dx. However total variation (3) is not tractable numerically, because

looking at all possible partitions (which includes the histogram bins) is not
computationally feasible, even if restricted to a combinatorial problem on a
fine grid. So, as O’Sullivan (1988) developed an approximation to calculate
the functional estimate of Silverman (1982), we derive an approximation to
total variation under the following assumptions.

Since our primary goal is the estimation of the density fi = f(x(i)) at the
N unique order statistics and since no information is available in between,
we avoid unnecessary variance by assuming piecewise monotone interpola-
tion between midpoints of order statistics, and monotone extrapolation to
zero outside the range of the observations. This interpolation scheme is
reminiscent of logspline which places knots at order statistics, in the sense
that the modeling of the underlying density depends on the sample. We will
see however that, for total variation, the “knot” selection has the advantage
of being driven by a single smoothing parameter. To avoid any arbitrary
specification of the unknown underlying domain and for reasons linked to
the universal rule (see Section 3.1), we consider the total variation function
on the range [x(1), x(N)] of the data. With these assumptions, the total
variation of f has a simple vector expression in f = (f1, . . . fN ):

TV(f) =
N−1∑
i=1

|f(x(i+1))− f(x(i))| =
N−1∑
i=1

|fi+1 − fi|. (4)

As a byproduct, piecewise monotone interpolation defines a positive estimate
everywhere, provided that all fi’s are positive. We further assume that the
interpolation and the extrapolation schemes allow us to write the functional
integral constraint in a vector linear form

1 =
∫

f(x)dx = a′f , (5)
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where the weights a = ax are function of the order statistics, but not of f .
For instance, we assume in the following that the density is piecewise linear
between the (M − 1) midpoints, and equals zero outside the range of the
observations.

We are now ready to describe our estimator. Given a smoothing param-
eter λ, the total variation penalized likelihood estimate f̂λ of the density f
at the order statistics solves

min
f
−

N∑
i=1

ni log fi + λ‖Bf‖1, s.t. a′f = 1, (6)

where B is the sparse (N−1)×N matrix such that ‖Bf‖1 =
∑N−1

i=1 |fi+1−fi|
(i.e., Bi,i = −Bi,i+1 = −1 for i = 1, . . . , N − 1 and zero otherwise). Thanks
to the log-barrier likelihood and to the monotone interpolation, the estimate
is positive everywhere. Moreover, ties are naturally handled in the likelihood
part (on the contrary, taut string (Davies and Kovac, 2004) seems unstable
when ties are present, as we observe in Section 6). The total variation
estimator also has the following properties.

Property 1. The Karush–Kuhn–Tucker first-order optimality conditions
of (6) are

fi − ni/{(B′w)i + zai} = 0 ∀i, (7)

−1 +
N∑

i=1

aifi = 0, (8)

‖w‖∞ ≤ λ, (9)

So the Uniform density fi = c with c = 1/(x(N)−x(1)) for i = 1, . . . , N (i.e.,
the function f in total variation kernel such that ‖Bf‖1 = 0 on the range of
the data) is the solution to (6) for a finite λx = ‖w‖∞ < ∞, where (w, z)
satisfies (7) to (9), i.e., wi = N

∑i
j=1 aj − ic and z = N .

At the other end, as λ → 0+, the estimate converges to the empirical esti-
mate f̂λ,i = ni

aiM
, since a continuity argument shows that each accumulation

point of f̂λ is a minimum of (6) with λ = 0.

Property 2. By strict convexity of the cost function and by linearity of the
constraint, any local minimizer of (6) is its unique strict global minimizer.
This nice property is similar to the convexity property in O’Sullivan (1988)
and contrasts with the multimodality encountered with logspline (Kooper-
berg and Stone, 1991; Kooperberg and Stone, 2002).
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Property 3. For each 1 ≤ i ≤ N − 1 with ni
ai
≥ ni+1

ai+1
(resp., ni

ai
≤ ni+1

ai+1
),

then f̂λ,i ≥ f̂λ,i+1 (resp., f̂λ,i ≤ f̂λ,i+1) for all λ ≥ 0.
For the proof see Appendix E. This shows that the estimate f̂λ,i is ordered
(relative to the neighboring values) consistently with the ratio ni

ai
for all λ.

Property 4. Under affine transformation of the data Y = α+βX with β >
0, the estimate defined by minimizing (6) satisfies f̂X

λ (x) = βf̂Y
λβ(α + βx).

2.2 Multivariate case

If the sample is large enough to allow efficient estimation, nonparametric
techniques can be useful to estimate densities of two or more variables. In
this section, we sketch a possible extension to higher dimension. Assuming
the multivariate density f ∈ L1(U), where U is an open subset of Rp (p ≥ 1),
the more general multivariate definition of total variation

TV(f) = sup
{∫

U
fdivϕdx | ϕ ∈ C1

c (U ;Rp), |ϕ| ≤ 1
}

becomes numerically tractable, if we further assume the function is piecewise
constant on a partition of the support U of f(·). The Voronoi tessellation
is the natural multivariate extension of univariate midpoint splits used in
Section 2.1. The Voronoi polygon assigned to the point Xi consists of all
the points in U that are closer to Xi than to any other point Xj , j 6= i.
Defining Voronoi polygons for the sample X1, . . . , XN results in the Voronoi
tessellation. Two points Xi and Xj are said to be Voronoi neighbors if
the Voronoi polygons enclosing them share a common edge Ei,j of length
‖Ei,j‖. Let ∂i be the index set of all Voronoi neighbors of Xi. Assuming f is
a piecewise constant function on the Voronoi tessellation, its total variation
becomes

TV(f) =
n∑

i=1

∑
j∈∂i\{1,...,i−1}

|fi − fj | · ‖Ei,j‖.

The corresponding penalized likelihood is similar to (6), where the compo-
nents of a are the areas of the Voronoi polygons and where the `1 differences
are weighted by ‖Ei,j‖. The dual relaxation algorithm of Section 4.2 can
therefore be employed to find the unique optimum of the penalized likelihood
in the multivariate situation as well.
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3 Selection of the smoothing parameter

The smoothing parameter λ ≥ 0 indexes a continuous class of models. Its
selection is crucial to find the model that best fits the data. Model selection
is an old problem, for which key contributions are the AIC, Cp and BIC
criteria (Akaike, 1973; Mallows, 1973; Schwarz, 1978) in the context of vari-
able selection, that is, for the discrete problem equivalent to `0 penalized
likelihood. Candidates for selecting the hyperparameter indexing a con-
tinuous class of `1 penalized likelihood models are cross validation (Stone,
1974), an approximate generalized cross validation (Fu, 1998) derived for the
Lasso (Tibshirani, 1995), BIC borrowed from variable selection (Koenker,
Ng, and Portnoy, 1994), the empirical Bayes approach (Good, 1965) used
for `1 Markov random field smoothing (Sardy and Tseng, 2004), and the
universal rule (Donoho and Johnstone, 1994). However, cross validation
is computationally intensive while generalized cross validation, originally
devised for linear estimators (Craven and Wahba, 1979), requires for our
problem an ill-defined linearization of the `1-based estimator near the solu-
tion. The Bayesian information criterion was intended for variable selection
(`0), not for `1-based penalized likelihood. Finally, empirical Bayes requires
maximizing the marginal likelihood of the data with respect to the prior,
which is rarely available in a closed form and therefore requires numerical
integration tools.

3.1 Sparsity `1 information criterion

The universal penalty λN =
√

2 log N (Donoho and Johnstone, 1994) origi-
nally developed in regression for Gaussian wavelets smoothing (Donoho and
Johnstone, 1994) has the property of being near minimax (Donoho, John-
stone, Kerkyacharian, and Picard, 1995) and of controlling the maximum
amplitude of i.i.d. Gaussian random variables to fit the underlying constant
function with a probability tending to one. Direct extension of the lat-
ter property to total variation density estimation defined by (6) would give
λ?

N =
√

N log(log N)/2 to control the maximum amplitude of a discretized
Brownian bridge (see Appendix A) to fit the underlying Uniform density
with a probability tending to one. This bound oversmooths in most appli-
cations however.

We employ instead the sparsity `1 information criterion (Sardy, 2006)
based on a Bayesian interpretation of total variation and on the universal
prior for λ that we derive below. Borrowing from Markov random field
smoothing (Besag, 1986; Geman and Geman, 1984), the vector of true den-
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sity f at the N samples can be seen as the realization of a first-order pairwise
Laplace Markov random field shifted and rescaled to make it a density. We
moreover consider the regularization parameter as a random variable with
prior πλ(λ; τ) that we derive in Proposition 1 below. Hence using Bayes
theorem, the posterior joint distribution of f and λ leads to the sparsity `1

information criterion for total variation density estimation

SL1IC(f , λ) = −
N∑

i=1

ni log fi + λ
N−1∑
i=1

|fi+1 − fi| − (N − 1) log λ

− log πλ(λ; τ) s.t. a′f = 1. (10)

Minimizing SL1IC over f and λ provides an estimate of the density as well
as a selection of the hyperparameter at once. Derived in Appendix B, the
universal prior πλ(λ; τ) defined in Proposition 1 below is based on asymptotic
considerations linked to Property 1.

Proposition 1 Let G0(x) = exp(− exp(−x)) be the Gumbel distribution
and let

G(λ; τ) = G0[4{λ/τ − (log N)/4}]. (11)

Then the universal prior used to estimate the density f and the hyperparam-
eter λ based on SL1IC (10) is defined as

πλ(λ; τ) = G′(λ; τN ) with τN = log(N log N)/N. (12)

With this prior, SL1IC is both a stable and computationally efficient
method to select the regularization parameter, especially by comparison
with cross validation.

3.2 Kullback-Leibler V -fold cross validation

Another approach, though more computationally intensive, would be to turn
to cross validation. For a given smoothing parameter λ, the Kullback-Leibler
information

KL(f, f̂λ) =
∫

log{f(x)/f̂λ(x)} f(x)dx (13)

measures the quality of the fit between the true but unknown density f and
the estimated density f̂λ. This quantity can be estimated by cross validation
(CV) or by the bootstrap (see Efron and Tibshirani (1993) for a review). We
consider V -fold CV which is computationally feasible as long as V is not too
large: it consists of grouping the data set into V randomly selected disjoint

8



sets xv = {xi, i ∈ Sv}, v = 1, . . . , V , using x−v = {xi, i /∈ Sv} to estimate
f by f̂λ,−v, and using the interpolation scheme to predict {f(xi)}i∈Sv by
{f̂λ,−v(xi)}i∈Sv . Repeating the same operation V times yields the estimate
CV(λ) = −

∑V
v=1

∑
i∈Sv

log f̂λ,−v(xi) of (13). Calculating this criteria for
several λ’s, we select the smoothing parameter λCV which minimizes it.

Van der Laan, Dudoit, and Keles (2004) studied the choice of V and show
asymptotic equivalence with a benchmark selection based on the calibration
set as long as N/V goes to infinity. This condition is satisfied by 2-fold
CV, but rules out leave-one-out CV for which V = N . They moreover show
asymptotic equivalence with a benchmark selection based on the entire N
observations as long as 1/VN converges slowly enough to zero. This rules
out 2-fold CV, but is satisfied for instance by VN = O(log N).

4 Computation of total variation estimate

Calculating the total variation penalized likelihood estimate is not a triv-
ial task owing to the nondifferentiability, high-dimensionality and the con-
straint of (6). Using the constraint a′f = 1, we could express fN = (1 −∑N

i=1 aifi)/aN and rewrite (6) as an unconstrained minimization problem in
f1, . . . , fN−1. However, the resulting objective function remains nondifferen-
tiable, so the Newton-Raphson method cannot be used. The total variation
term is moreover non-separable (e.g., f2 appears in two terms: |f2 − f1|
and |f3− f2|), so a block coordinate relaxation (BCR) method could not be
directly used either (Tseng, 2001). Koenker and Mizera (2006) use interior
point methods. Instead we propose a simple BCR method applied to two
transformations of the penalized likelihood into an unconstrained problem
of the form

min
v=(v1,...,vn)′

h0(v) + h(v),

where h0 a differentiable convex function and h is a separable nondifferen-
tiable convex function (i.e., h(v) =

∑n
i=1 hi(vi)). The BCR method is simple

to implement as it successively solves subproblems of dimension one until
convergence, and is computationally efficient using the dual transformation.
In particular, starting with an initial guess v, it chooses an i ∈ {1, ..., n} and
minimizes h0(v) + h(v) with respect to vi while holding the other compo-
nents of v fixed. This is then repeated with the new v and so on. The rule
for choosing i at each iteration is crucial for convergence. In Appendix C,
we consider two rules for which we prove convergence of BCR.
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4.1 Primal transformation

The obvious transformation detailed in Appendix C is to make a change
of variables such that the nondifferentiable part h(·) in the transformed
problem

min
v

g(Cv) + h(v), (14)

becomes separable. Then Theorem 1 below guarantees convergence of the
BCR method. The C matrix is not sparse however, so there is no closed
form solution to the convex univariate subproblems. Consequently, the line
search required at each iteration slows down the algorithm.

Theorem 1 . For any initial v with Cv > −1/bN , the sequence of iterates
generated by the BCR method, using either the essentially cyclic rule or the
optimal descent rule, converges to the unique global minimum of (14).

For the proof see Appendix C.

4.2 Dual transformation

Instead we can use an extension of the iterated dual mode (IDM) algo-
rithm (Sardy and Tseng, 2004) to handle constraints. The second transfor-
mation uses results from convex programming duality theory (Rockafellar,
1970; Rockafellar, 1984) and has computational advantages over the primal
method. Introducing the Lagrange multipliers w and z, the minimization
(6) is equivalent to

min
f ,u

max
w,z

−
N∑

i=1

ni log fi + λ
N−1∑
i=1

|ui|+ w′(Bf − u) + z(a′f − 1)

= max
w,z

−z + min
f

N∑
i=1

[−ni log fi + fi{(B′w)i + zai}] + min
u

N−1∑
i=1

λ|ui| − wiui

= M −
N∑

i=1

ni log ni + max
‖w‖∞≤λ,z

−z +
N∑

i=1

ni log{(B′w)i + zai},

where the first equality uses a strong duality result for monotropic pro-
gram, i.e., convex program with linear constraints and separable cost func-
tion (Rockafellar, 1984, Sec. 11D). Dropping the constant terms, the above
maximization problem can be rewritten as

min
w,z

z + g(B′w + za) + h(w), (15)
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where g(v1, ..., vN ) = −
∑N

i=1 ni log vi and h(w) = 0 if ‖w‖∞ ≤ λ and +∞
otherwise. The nondifferentiable term h(w) is convex and has a separable
form. Notice that (w, z) needs to satisfy ‖w‖∞ ≤ λ and B′w + za > 0.
Convergence to the dual solution in (w, z) is guaranteed by Theorem 2 below,
and the primal solution is then f̂i = ni/{(B′w)i + zai} for i = 1, . . . , N .

Theorem 2 . For any initial (w, z) with ‖w‖∞ ≤ λ and B′w + za > 0,
the sequence of iterates generated by the BCR method to (15), using the
essentially cyclic rule, converges to the unique global minimum of (14).

For the proof see Appendix D.

Thanks to the sparsity of B′ with at most two nonzero entries per col-
umn, the univariate subproblems in wj have a closed form solution. Conse-
quently the dual relaxation algorithm is efficient, even if programmed in a
high-level language like R. Note that the dual transformation is still appli-
cable for higher derivatives such as Φ(f) =

∫
|f ′′(x)|dx.

5 Simulation

We perform a Monte Carlo simulation to compare the finite sample prop-
erties of four estimators: total variation using SL1IC, taut string (Davies
and Kovac, 2004), logspline (Kooperberg and Stone, 2002) and rectangular
kernel with global bandwidth (Sheather and Jones, 1991) for benchmark.

Table 1: Densities used in the simulation, their domain, the interval Ω on
which the mean integrated squared error is calculated on a fine grid.

Densities Domain Ω
1. Sharp peak † R [0, 12]
2. Claw ‡ R [−3, 3]
3. Weighted Uniform3 [0, 1] [0, 1]
4. Heaviexp4 R [−5, 5]

† Hansen and Kooperberg (2002), ‡ Marron and Wand (1992, #10 p.720)
f3(x) =

∑13

i=1
wiU(ai, bi)/

∑13

i=1
wi

with

{
w = (1, 1, 5, 1, 1, .2, 1, 1, 10, .1, 1, 1, 5)
a = (0, .1, .13, .15, .23, .25, .40, .44, .65, .76, .78, .81, .97)
b = (.1, .13, .15, .23, .25, .40, .44, .65, .76, .78, .81, .97, 1)

f4(x) = 1
4
{2 + Exp(5)} + 1

4
{−Exp(1)} + 1

2
N(0, 1)
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Figure 1: The four test densities used in the Monte Carlo simulation.

Similarly to Donoho and Johnstone (1994), we use four test densities
with heterogeneous features (see Table 1 and Figure 1). As in Kooperberg
and Stone (2002), the criteria we use to compare estimators is the mean in-
tegrated squared error, MISE(f̂ , f) = E

∫
Ω(f̂(x) − f(x))2dx, approximated

by a Riemann sum on a fine grid of 213 points on the interval Ω given in
Table 1. Since the standard error on the estimation of the MISE decreases as
the sample size increases, the expectation is taken over Q ∈ {1000, 500, 100}
samples of respective sizes M ∈ {200, 800, 3200} ranging from small to large
to evaluate the relative empirical rates of convergence. We also consid-
ered the expected Kullback–Leibler information to compare the estimators,
and found correlated results with MISE. Note that for logspline, we had to
increase the default value of the maximum number of knots to fit the com-
plexity of the Weighted Uniform density; this revealed occasional numerical
problems.
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Table 2: Results of the simulation to compare density estimators on the four
test functions (average MISE ×100).

N Kernel Logspline Taut string Total variation
1. Sharp peak
200 4.9 4.1 5.1 3.8
800 1.4 1.2 1.7 1.4

3200 0.41 0.38 0.62 0.56
2. Claw
200 5.8 5.3 5.6 3.4
800 1.5 1.4 2.1 1.3

3200 0.32 0.40 0.70 0.54
3. Weighted Uniform
200 161 89 93 65
800 78 55 36 18

3200 36 43 9.0 5.7
4. Heaviexp
200 7.8 3.8 7.6 4.7
800 4.7 1.8 2.5 2.0

3200 2.7 0.95 0.62 0.63

NOTE: in bold, the best linewise between Taut string and Total variation;
underlined, the best linewise between all four estimators. (standard error of the
order of the precision reported).

We can draw the following conclusions on the finite sample performance
of the estimators considered based on the simulation results of Table 2. First
the sparsity `1 information criterion provides total variation with both a fast
and efficient selection of the regularization parameter. Second total variation
is overall better than taut string in term of mean integrated squared error;
if instead the criterion was the correct number of modes detected, then taut
string would perform better than total variation which tends to detect false
modes. Finally kernel and logspline are competitive estimators only when
the true density does not have sharp features. So total variation is overall
best in term of mean integrated squared error.

6 Application

We consider two data sets with multimodality: the ‘galaxy data’ (Roeder,
1990) consists of the velocities of 82 distant galaxies diverging from our own
galaxy, and the ‘1872 Hidalgo data’ (Izenman and Sommer, 1988) consists
of thickness measurements of 485 stamps printed on different types of paper.
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Figure 2: Four density estimates for each data set. From top to bottom:
total variation, two histograms with different binning, taut string. The thin
lines are bootstrapped pointwise confidence intervals.
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Ties are numerous since the precision of the measurements is 0.001. These
data sets were respectively used to illustrate a Bayesian analysis of mixtures
to test models of varying dimensions using reversible jump McMC, and to
compare the kernel method to parametric likelihood ratio tests for mixtures.

The focus of the analysis is the number of modes. The histograms plotted
in the published analysis (see third line of Figure 2) are based on a subjective
bin width and left point values, and might render the false impression of
too many modes. To illustrate the histogram’s sensitivity, we plotted two
other histograms (with different bin width and left point values) on the
second line of Figure 2. The models of Richardson and Green (1997) and
Izenman and Sommer (1988) lead to the result that a likely number of
modes is k1 ∈ {4, 5, 6, 7} for the ‘galaxy data’, and k2 = 7 and k2 = 3 with
a nonparametric and parametric approaches for the ‘1872 Hidalgo data’.

Comparing these results to k1 = 3 and k2 = 7 obtained with total varia-
tion plotted on the first line of Figure 2, and k1 = 1 and k2 = 3 obtained with
taut string plotted on the fourth line of Figure 2, we see that the estimation
of the number of modes is consistent with previous results. Taut string,
which does not handle ties naturally, gives a significantly smaller number
of modes however. The first and fourth lines of Figure 2 also show a 90%
pointwise confidence intervals based on 100 bootstraped replicates, except
for taut string that experienced numerical problems for the ‘galaxy data’
because of the ties; for the ‘1872 Hidalgo data’, the taut string confidence
interval shows potential additional modes not revealed by its estimate. On
the contrary total variation behaves as well on the bootstrap samples as on
the original one.

7 Conclusions

The total variation estimator shows overall better estimating properties than
its considered competitors. The efficient estimation of both smooth and
nonsmooth densities is especially remarkable considered that only a single
regularization parameter has to be selected to accommodate to regions of
varying smoothness. The downside is a bumpier look than taut string. The
good properties of the total variation estimator are due to the stability of
solving of convex program (6) and to the method of selection of λ using the
sparsity `1 information criterion SL1IC. Furthermore total variation handles
ties naturally (as opposed to taut string) which is particularly useful for
bootstrapping the procedure, or when data have been truncated as in our
two applications. Finally it generalizes to higher dimension as described in
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Section 2.2.
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A Bound λ?
N

For a given sample x1, . . . , xN , Property 1 states the existence of a finite
λx (which depends on the data) such that the estimate f̂λx solution to (6)
equals the Uniform density f0. The standard universal rule is defined as the
smallest smoothing parameter λ?

N (which depends only on the sample size)
such that the estimate f̂λ?

N
equals the Uniform density f0 with a probability

tending to one when the size N of the Uniform sample goes to infinity. With-
out loss of generality, we can restrict to f0 = U[0, 1] thanks to Property 4.
So, given a sample U1, . . . , UN

i.i.d.∼ U[0, 1], we work on the rescaled variables
Xi = (Ui − U(1))/(U(N) − U(1)), such that X(1) = 0 and X(N) = 1 and the
density to estimate is f = 1; note that the two samples are asymptotically
equivalent. Using the dual formulation of (6) and its KKT first-order op-
timality conditions (7) to (9), the dual vector (w, z) is the unique global
minimizer of the dual problem (15). So the estimate f̂λ fits the Uniform
(i.e., f̂i = 1) provided λ is at least as large as λx = ‖w‖∞, where w satisfies
all the KKT conditions (with ni = 1 with probability one since the Uniform
is continuous). Consequently, we have that:

P
(
f̂λ = 1

)
= P{‖w‖∞ ≤ λ : [B′ a]

(
w
z

)
= 1}

= P{ max
i=1,...,N−1

|N
i∑

j=1

aj − i| ≤ λ}.

Assuming piecewise linear interpolation, the vector a satisfying (5) is a1 =
X(2)/2, ai = (X(i+1) − X(i−1))/2 for i = 2, . . . , N − 1, and aN = (1 −
X(N−1))/2. So

∑i
j=1 aj has a simple expression and

P(f̂λ = 1) = P( max
i=1,...,N−1

|N/2(X(i) + X(i+1))− i| ≤ λ)

N→∞−→ P( max
i=1,...,N

√
N |X(i) − i/N | ≤ λ/

√
N)

16



since cor(X(i), X(i+1))
N→∞−→ 1. Moreover maxi=1,...,N

√
N(X(i) − i/N) is an

asymptotic pivot, since the uniform quantile process converges to a Brownian
bridge W on [0, 1], so

P(f̂λ = 1) N→∞−→ P(‖W‖∞ ≤ λ√
N

) = 1− 2
∞∑

k=1

(−1)k+1 exp(−2k2(
λ√
N

)2).

Using bounds on a Brownian bridge (Shorack and Wellner, 1986), we find
that the bound λ?

N :=
√

N log(log N)/2 controls the convergence to one at
the rate O(1/ log N).

B Universal prior

The idea of a universal penalty comes from wavelet smoothing. The first
level Haar wavelets for instance, defined by 1√

2
(f2k−f2k−1) for k = 1, . . . , N/2

(we assume N is even), are reminiscent of the successive finite differences
fi+1 − fi for i = 1, . . . , N used by the total variation penalty in (6). How-
ever, while the Haar wavelets’ finite differences are separable, the ones used
for total variation are not separable (for instance f2 is used in |f2 − f1| and
|f3−f2|). This causes inflation of the bound that controls the maximum am-
plitude of the Brownian bridge (see Appendix A), and causes oversmoothing.
So instead of considering all finite order differences, we derive the universal
prior by considering problem (6) with the (N/2)×N matrix B̃ corresponding
to every other finite differences in place of B. Following similar derivations
as in Appendix A, the smallest hyperparameter λ that fits a pairwise con-
stant density based on a sample of size N from f0 = U[0, 1] (i.e., to satisfy
the KKT conditions (7) to (9) with f2k−1 = f2k for k = 1, . . . , N/2 and
B = B̃) is λX = ‖W‖∞ with Wk = z/2(a2k−1 − a2k) = z/4(−X(2k−2) +

X(2k−1)+X(2k)−X(2k+1)) and z =
∑N/2

k=1 2/f2k ≈ N since f0 = U[0, 1]. Each
|Wk| converges in distribution to an exponential distribution Exp(4) since
the density function of Wk is given by (Ramallingam, 1989)

fW (w) = 1(−N/4,0](w) 2(1 +
4w

N
)N−1 + 1(0,N/4](w) 2(1− 4w

N
)N−1

N→∞−→ 2 exp(−4|w|).

Neglecting the correlation between Wk’s, results from extreme value theory
guarantee that

4(‖W‖∞ − log N

4
) −→d G0(x),
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where G0(x) = exp(− exp(−x)) is the Gumbel distribution. Finally we cali-
brate the scale parameter τ of the uniform prior (11) such that the universal
penalty λN = log(N log N)/4 is the root to the first order optimality condi-
tion of (10) with respect to λ to fit fi = 1 for all i = 1, . . . , N :
N−1∑
i=1

|fi+1 − fi| −
N − 1

λ
− π′

π
(λ; τ) = 0 with

{ ∑N−1
i=1 |fi+1 − fi| = 0

λ = λN
.

The approximate root is τN = 4λN/N .

C Proof of Theorem 1

Letting un = fn − fn+1 and uN = fN , the minimization (6) becomes

min
u
−

N∑
i=1

ni log(
N∑

j=i

uj) + λ
N−1∑
i=1

|ui|, s.t. b′u = 1, (16)

where b = T ′a and T is the upper triangular matrix of ones. Since bN =∑N
j=1 aj and aj > 0, we have that bN > 0. From the equality constraint,

we also have that uN = (1 −
∑N−1

i=1 biui)/bN , so letting v = (u1, . . . , uN−1)
and Cni = 1(i ≥ n)− bi/bN be the entries of the N × (N − 1) matrix C, the
problem writes as (14) where g(w1, . . . , wN ) = −

∑N
i=1 ni log(1/bN + wi).

Since bN > 0, then 0 ∈ domg = {w|w > 1/bN}. So dom(g ◦ C) is also
nonempty and open. Moreover, g ◦ C is continuously differentiable on its
domain. Thus, g ◦ C satisfies Assumption 1 in Tseng (2001). Also, g and h
are convex functions, so f = g ◦C + h is convex (and hence pseudoconvex).
Since h has bounded level sets, then so does f (since log(·) tends to infinity
sublinearly). Thus, the kth iterate vk (k = 0, 1, ...) generated by the BCR
method is bounded. In fact, they lie in a compact subset of dom(g ◦ C).

The classical cyclic rule chooses i in, for example, increasing order i =
1, . . . , n and then repeats this. The more general essentially cyclic rule
entails that each i ∈ {1, . . . , N} is chosen at least once every T (T ≥ N)
successive iterations to allow different orders. Lemma 3.1 and Theorem
4.1(a) in Tseng (2001) imply that each accumulation point of v0,v1, ... is a
stationary point of f , the unique global minimum of f by strict convexity.

The optimal descent rule (Sardy, Bruce, and Tseng, 2000) chooses an
i for which the minimum-magnitude partial derivative of the cost function
with respect to vi, i.e.,

min
η∈∂hi(vi)

∣∣∣∣∂h0(v)
∂vi

+ η

∣∣∣∣ ,
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is the largest. This yields the highest rate of descent at the current v, and
often considerably improves the efficiency of the algorithm. Since v0,v1, ...
lie in a compact subset of dom(g ◦ C), over which g ◦ C is continuously
differentiable, and g ◦C is strictly convex, the proof of Theorem 2 in Sardy,
Bruce, and Tseng (2000) can be applied with little change to yield that each
accumulation point of v0,v1, ... is a stationary point of f . Since f is strictly
convex, then the accumulation point is the unique global minimum of f .

D Proof of Theorem 2

The dual problem (15) is of the form minw,z f(w, z) = f0(w, z)+h(w), where
f0(w, z) = z + g(B′w + az). Since a > 0, then (0, 1) ∈ domf0 so domf0

is nonempty. Moreover, f0 is continuously differentiable on domf0, which
is an open set. Thus, f0 satisfies Assumption 1 in Tseng (2001). Also, f0

and h are convex functions, so f is convex (and hence pseudoconvex). The
kth iterate (wk, zk) generated by the BCR method satisfies ‖wk‖∞ ≤ λ.
Since f(wk, zk) = f0(wk, zk) is non-increasing with k, this and the fact that
log(·) tends to infinity sublinearly implies zk is bounded. Thus (wk, zk) lies
in a compact subset of domf0. Then Lemma 3.1 and Theorem 4.1(a) in
Tseng (2001) imply that each accumulation point of (w0, z0), (w1, z1), . . . is
a stationary point of f .

E Proof of Property 3

Consider any 1 ≤ i ≤ N − 1 with ni
ai
≥ ni+1

ai+1
. Suppose f̂λ,i < f̂λ,i+1 for some

λ ≥ 0. We will show that, by increasing fi and decreasing fi+1, we can obtain
a lower cost for (6), thus contradicting f̂λ being a global minimum of (6). In
particular, consider moving from f̂λ in the direction d with components

dj =


1 if j = i
−ai/ai+1 if j = i + 1
0 else

.

Then a′d = 0, so that a′(f̂λ + αd) = 1 for all α ∈ <. Moreover f̂λ +
αd > 0 and ‖B(f̂λ + αd)‖1 ≤ ‖Bf̂λ‖1 (where the matrix B in defined in
Section 4.2) for all α > 0 sufficiently small, and the directional derivative
of −

∑N
i=1 ni log fi in the direction of d at f̂λ is − ni

f̂λ,i
+ ni+1

f̂λ,i+1

ai
ai+1

. Since
ni
ai
≥ ni+1

ai+1
> 0 and 0 < f̂λ,i < f̂λ,i+1, this directional derivative is negative.
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Thus f̂λ + αd improves (6) strictly compared to f̂λ for all α > 0 sufficiently
small. This contradicts f̂λ being a global minimum.

References

Akaike, H. (1973). Information Theory and an Extension of the Maximum
Likelihood Principle. In 2nd International Symposium on Information
Theory, pp. 267–281. Budapest: Akademiai Kiado: Eds. B.N. Petrov
and F. Csaki.

Besag, J. (1986). On the statistical analysis of dirty pictures (with discus-
sion). Journal of the Royal Statistical Society, Series B 48, 192–236.

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline func-
tions: estimating the correct degree of smoothing by the method of
generalized cross-validation. Numerische Mathematik 31, 377–403.

Davies, P. L. and Kovac, A. (2004). Densities, spectral densities and
modality. The Annals of Statistics 32, 1093–1136.

Donoho, D., Johnstone, I., Kerkyacharian, G., and Picard, D. (1995).
Wavelet shrinkage: Asymptotia? (with discussion). Journal of the
Royal Statistical Society, Series B 57 (2), 301–369.

Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation via
wavelet shrinkage. Biometrika 81, 425–455.

Efron, B. and Tibshirani, R. (1993). An introduction to the bootstrap.
Chapman & Hall Ltd.

Fu, W. J. (1998). Penalized regressions: The bridge versus the lasso.
Journal of Computational and Graphical Statistics 7, 397–416.

Geman, S. and Geman, D. (1984). Stochastic relaxation. Gibbs distribu-
tions, and the Bayesian restoration of images. IEEE Transactions on
Pattern Analysis and Machine Intelligence 61, 721–741.

Good, I. (1965). The Estimation of Probabilities: An Essay on Modern
Bayesian Methods. Cambridge, MA: M.I.T. Press.

Good, I. J. and Gaskins, R. A. (1971). Nonparametric roughness penalties
for probability densities. Biometrika 58, 255–277.

Hansen, M. H. and Kooperberg, C. (2002). Spline adaptation in extended
linear models (with discussion). Statistical Science 17 (1), 2–20.

20



Izenman, A. J. and Sommer, C. J. (1988). Philatelic mixtures and multi-
modal densities. Journal of the American Statistical Association 83,
941–953.

Koenker, R. and Mizera, I. (2006). Density estimation by total variation
regularization. preprint .

Koenker, R., Ng, P., and Portnoy, S. (1994). Quantile smoothing splines.
Biometrika 81, 673–680.

Kooperberg, C. and Stone, C. J. (1991). A study of logspline density
estimation. Computational Statistics and Data Analysis 12, 327–347.

Kooperberg, C. and Stone, C. J. (2002). Logspline density estimation with
free knots. Computational Statistics and Data Analysis 12, 327–347.

Mallows, C. L. (1973). Some comments on Cp. Technometrics 15, 661–
675.

Marron, J. S. and Wand, M. P. (1992). Exact mean integrated squared
error. The Annals of Statistics 20, 712–736.

O’Sullivan, F. (1988). Fast computation of fully automated log-density
and log-hazard estimators. SIAM Journal on Scientific and Statistical
Computation 9, 363–379.

Penev, S. and Dechevsky, L. (1997). On non-negative wavelet-based den-
sity estimators. Journal of Nonparametric Statistics 7, 365–394.

Pinheiro, A. and Vidakovic, B. (1997). Estimating the square root of a
density via compactly supported wavelets. Computational Statistics
and Data Analysis 25, 399–415.

Ramallingam, T. (1989). Symbolic computing the exact distributions of
L-statistics from a Uniform distribution. Annals of the Institute of
Statistical Mathematics 41, 677–681.

Renaud, O. (2002). Sensitivity and other properties of wavelet regression
and density estimators. Statistica Sinica 12 (4), 1275–1290.

Richardson, S. and Green, P. J. (1997). On Bayesian analysis of mix-
tures with an unknown number of components (Disc: p758-792) (Corr:
1998V60 p661). Journal of the Royal Statistical Society, Series B,
Methodological 59, 731–758.

Rockafellar, R. (1970). Convex Analysis. Princeton: Princeton University
Press.

21



Rockafellar, R. T. (1984). Network Flows and Monotropic Programming.
New-York: Wiley-Interscience; republished by Athena Scientific, Bel-
mont, 1998.

Roeder, K. (1990). Density estimation with confidence sets exemplified
by superclusters and voids in the galaxies. Journal of the American
Statistical Association 85, 617–624.

Sardy, S. (2006). Estimating the dimension of parametric and nonpara-
metric `ν penalized likelihood models for adaptive sparsity. submitted .

Sardy, S., Bruce, A., and Tseng, P. (2000). Block coordinate relaxation
methods for nonparametric wavelet denoising. Journal of Computa-
tional and Graphical Statistics 9, 361–379.

Sardy, S. and Tseng, P. (2004). On the statistical analysis of smoothing by
maximizing dirty markov random field posterior distributions. Journal
of the American Statistical Association 99, 191–204.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of
Statistics 6, 461–464.

Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice,
and Visualization. Wiley.

Sheather, S. J. and Jones, M. C. (1991). A reliable data-based bandwidth
selection method for kernel density estimation. Journal of the Royal
Statistical Society, Series B, Methodological 53, 683–690.

Shorack, G. and Wellner, J. (1986). Empirical Processes with Applications
to Statistics. Wiley.

Silverman, B. W. (1982). On the estimation of a probability density func-
tion by the maximum penalized likelihood method. Annals of Statis-
tics 10, 795–810.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Anal-
ysis. Chapman & Hall.

Simonoff, J. S. (1996). Smoothing Methods in Statistics. New York:
Springer-Verlag.

Stone, C. J. (1990). Large sample inference for logspline model. Annals
of Statistics 18, 717–741.

Stone, M. (1974). Cross-validatory choice and assessment of statistical
predictions (with discussion). Journal of the Royal Statistical Society,
Series B 36, 111–147.

22



Tibshirani, R. (1995). Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society, Series B 57, 267–288.

Tikhonov, A. N. (1963). Solution of incorrectly formulated problems and
the regularization method. Soviet Math. Dokl. 4, 1035–1038.

Tseng, P. (2001). Convergence of block coordinate descent method for
nondifferentiable minimization. Journal of Optimization Theory and
Applications 109, 475–494.

Van der Laan, M. J., Dudoit, S., and Keles, S. (2004). Asymptotic opti-
mality of likelihood based cross-validation. Statistical Applications in
Genetics and Molecular Biology 3, Article 4.

Vidakovic, B. (1999). Statistical Modeling by Wavelets. Wiley.

Wahba, G. (1990). Spline Models for Observational Data. Society for In-
dustrial and Applied Mathematics.

Willett, R. and Nowak, R. D. (2003, August). Multiscale Density Estima-
tion. Technical report, Rice University.

23


