Accelerated Proximal Gradient Methods for Convex Optimization

Optimization Seminar, Univ. Washington
October 7, 2008

Talk Outline

- A Convex Opimization Problem

Talk Outline

- A Convex Opimization Problem
- Proximal Gradient Method

Talk Outline

- A Convex Opimization Problem
- Proximal Gradient Method
- Accelerated Proximal Gradient Method I
- Accelerated Proximal Gradient Method II

Talk Outline

- A Convex Opimization Problem
- Proximal Gradient Method
- Accelerated Proximal Gradient Method I
- Accelerated Proximal Gradient Method II
- Example: Matrix Game

Talk Outline

- A Convex Opimization Problem
- Proximal Gradient Method
- Accelerated Proximal Gradient Method I
- Accelerated Proximal Gradient Method II
- Example: Matrix Game
- Conclusions \& Extensions

A Convex Optimization Problem

\mathcal{E} is a real linear space with norm $\|\cdot\|$.
\mathcal{E}^{*} is the dual space of cont. linear functionals on \mathcal{E}, with dual norm $\left\|x^{*}\right\|_{*}=\sup _{\|x\| \leq 1}\left\langle x^{*}, x\right\rangle$.
$P: \mathcal{E} \rightarrow(-\infty, \infty]$ is proper, convex, Isc (and "simple").
$f: \mathcal{E} \rightarrow \Re$ is convex diff. $\|\nabla f(x)-\nabla f(y)\|_{*} \leq L\|x-y\| \forall x, y \in \operatorname{dom} P(L \geq 0)$.

A Convex Optimization Problem

$$
\min _{x \in \mathcal{E}} f^{P}(x):=f(x)+P(x)
$$

\mathcal{E} is a real linear space with norm $\|\cdot\|$.
\mathcal{E}^{*} is the dual space of cont. linear functionals on \mathcal{E}, with dual norm $\left\|x^{*}\right\|_{*}=\sup _{\|x\| \leq 1}\left\langle x^{*}, x\right\rangle$.
$P: \mathcal{E} \rightarrow(-\infty, \infty]$ is proper, convex, Isc (and "simple").
$f: \mathcal{E} \rightarrow \Re$ is convex diff. $\|\nabla f(x)-\nabla f(y)\|_{*} \leq L\|x-y\| \forall x, y \in \operatorname{dom} P(L \geq 0)$.
Constrained case: $P \equiv \delta_{X}$ with $X \subseteq \mathcal{E}$ nonempty, closed, convex.

$$
\delta_{X}(x)= \begin{cases}0 & \text { if } x \in X \\ \infty & \text { else }\end{cases}
$$

Examples:

- $\mathcal{E}=\Re^{n}, \quad P(x)=\|x\|_{1}, \quad f(x)=\|A x-b\|_{2}^{2}$
- $\mathcal{E}=\Re^{n_{1}} \times \cdots \times \Re^{n_{N}}, P(x)=w_{1}\left\|x_{1}\right\|_{2}+\cdots+w_{N}\left\|x_{N}\right\|_{2}\left(w_{j}>0\right)$, $f(x)=g(A x)$ with $g(y)=\sum_{i=1}^{m} \ln \left(1+e^{y_{i}}\right)-b_{i} y_{i}$
- $\mathcal{E}=\Re^{n}, \quad P \equiv \delta_{X}$ with $X=\left\{x \mid x \geq 0, x_{1}+\cdots+x_{n}=1\right\}, \quad f(x)=g^{*}(A x)$
with $g(y)= \begin{cases}\sum_{i=1}^{m} y_{i} \ln y_{i} & \text { if } y \geq 0, y_{1}+\cdots+y_{m}=1 \\ \infty & \text { else }\end{cases}$
matrix game
- $\mathcal{E}=\mathcal{S}^{n}, \quad P \equiv \delta_{X}$ with $X=\left\{x| | x_{i j} \mid \leq \rho \forall i, j\right\}, \quad f(x)=g^{*}(x+s)$ with $g(y)=\left\{\begin{array}{lll}-\ln \text { det } y & \text { if } \alpha I \preceq y \preceq \beta I & (\rho, \alpha, \beta>0) \quad \text { covariance selection } \\ \infty & \text { else }\end{array}\right.$

How to solve this (nonsmooth) convex optimization problem? In applications, m and n are large ($m, n \geq 1000$), A may be dense.

2nd-order methods (Newton, interior-point)? Few iterations, but each iteration can be too expensive (e.g., $O\left(n^{3}\right) \mathrm{ops}$).

1st-order methods (gradient)? Each iteration is cheap (by using suitable "prox function"), but often too many iterations. Accelerate convergence by interpolation Nesterov.

Proximal Gradient Method

Let

$$
\begin{aligned}
\ell(x ; y) & :=f(y)+\langle\nabla f(y), x-y\rangle+P(x) \\
D(x, y) & :=h(x)-h(y)-\langle\nabla h(y), x-y\rangle,
\end{aligned}
$$

with $h: \mathcal{E} \rightarrow(-\infty, \infty]$ strictly convex, differentiable on $X_{h} \supseteq \operatorname{int}(\operatorname{dom} P)$, and

$$
D(x, y) \geq \frac{1}{2}\|x-y\|^{2} \quad \forall x \in \operatorname{dom} P, y \in X_{h} .
$$

Proximal Gradient Method

Let

$$
\begin{aligned}
\ell(x ; y) & :=f(y)+\langle\nabla f(y), x-y\rangle+P(x) \\
D(x, y) & :=h(x)-h(y)-\langle\nabla h(y), x-y\rangle,
\end{aligned}
$$

with $h: \mathcal{E} \rightarrow(-\infty, \infty]$ strictly convex, differentiable on $X_{h} \supseteq \operatorname{int}(\operatorname{dom} P)$, and

$$
D(x, y) \geq \frac{1}{2}\|x-y\|^{2} \quad \forall x \in \operatorname{dom} P, y \in X_{h} .
$$

For $k=0,1, \ldots$,

$$
x_{k+1}=\underset{x}{\arg \min }\left\{\ell\left(x ; x_{k}\right)+L D\left(x, x_{k}\right)\right\}
$$

with $x_{0} \in \operatorname{dom} P$. Assume $x_{k} \in X_{h} \forall k$.
Special cases: steepest descent, gradient-projection Goldstein, Levitin, Polyak, ..., mirror-descent Yudin, Nemirovsk, iterative thresholding Daubechies et al, ...

For the earlier examples, x_{k+1} has closed form when h is chosen suitably:

- $\mathcal{E}=\Re^{n}, \quad P(x)=\|x\|_{1}, \quad h(x)=\|x\|_{2}^{2} / 2$.
- $\mathcal{E}=\Re^{n_{1}} \times \cdots \times \Re^{n_{N}}, \quad P(x)=w_{1}\left\|x_{1}\right\|_{2}+\cdots+w_{N}\left\|x_{N}\right\|_{2}\left(w_{j}>0\right)$, $h(x)=\|x\|_{2}^{2} / 2$.
- $\mathcal{E}=\Re^{n}, \quad P \equiv \delta_{X}$ with $X=\left\{x \mid x \geq 0, x_{1}+\cdots+x_{n}=1\right\}$, $h(x)=\sum_{j=1}^{n} x_{j} \ln x_{j}$.
- $\mathcal{E}=\mathcal{S}^{n}, \quad P \equiv \delta_{X}$ with $X=\left\{x| | x_{i j} \mid \leq \rho \forall i, j\right\}, \quad h(x)=\|x\|_{F}^{2} / 2$.

Fact 1: $\quad f^{P}(x) \geq \ell(x ; y) \geq f^{P}(x)-\frac{L}{2}\|x-y\|^{2} \quad \forall x, y \in \operatorname{dom} P$.

Fact 2: For any proper convex Isc $\psi: \mathcal{E} \rightarrow(-\infty, \infty]$ and $z \in X_{h}$, let

$$
z_{+}=\underset{x}{\arg \min }\{\psi(x)+D(x, z)\}
$$

If $z_{+} \in X_{h}$, then

$$
\psi\left(z_{+}\right)+D\left(z_{+}, z\right) \leq \psi(x)+D(x, z)-D\left(x, z_{+}\right) \quad \forall x \in \operatorname{dom} P .
$$

Prop. 1: For any $x \in \operatorname{dom} P$,

$$
\min \left\{e_{1}, \ldots, e_{k}\right\} \leq \frac{L D\left(x, x_{0}\right)}{k}, \quad k=1,2, \ldots
$$

with $e_{k}:=f^{P}\left(x_{k}\right)-f^{P}(x)$.

Prop. 1: For any $x \in \operatorname{dom} P$,

$$
\min \left\{e_{1}, \ldots, e_{k}\right\} \leq \frac{L D\left(x, x_{0}\right)}{k}, \quad k=1,2, \ldots
$$

with $e_{k}:=f^{P}\left(x_{k}\right)-f^{P}(x)$.
Proof:

$$
\begin{aligned}
f^{P}\left(x_{k+1}\right) & \leq \ell\left(x_{k+1} ; x_{k}\right)+\frac{L}{2}\left\|x_{k+1}-x_{k}\right\|^{2} \quad \text { Fact } 1 \\
& \leq \ell\left(x_{k+1} ; x_{k}\right)+L D\left(x_{k+1}, x_{k}\right) \\
& \leq \ell\left(x ; x_{k}\right)+L D\left(x, x_{k}\right)-L D\left(x, x_{k+1}\right) \\
& \leq f^{P}(x)+L D\left(x, x_{k}\right)-L D\left(x, x_{k+1}\right), \quad \text { Fact 2 } \\
& \text { Fact 1 }
\end{aligned}
$$

so

$$
\begin{aligned}
0 \leq L D\left(x, x_{k+1}\right) & \leq L D\left(x, x_{k}\right)-e_{k+1} \\
& \leq L D\left(x, x_{0}\right)-\left(e_{1}+\cdots+e_{k+1}\right) \\
& \leq L D\left(x, x_{0}\right)-(k+1) \min \left\{e_{1}, \ldots, e_{k+1}\right\}
\end{aligned}
$$

We will improve the global convergence rate by interpolation.
Idea: At iteration k, use a stepsize of $O(k / L)$ instead of $1 / L$ and backtrack towards x_{k}.

Accelerated Proximal Gradient Method I

For $k=0,1, \ldots$,

$$
\begin{array}{ll}
y_{k} & =\left(1-\theta_{k}\right) x_{k}+\theta_{k} z_{k} \\
z_{k+1} & =\underset{x}{\arg \min }\left\{\ell\left(x ; y_{k}\right)+\theta_{k} L D\left(x, z_{k}\right)\right\} \\
x_{k+1} & =\left(1-\theta_{k}\right) x_{k}+\theta_{k} z_{k+1} \\
\frac{1-\theta_{k+1}}{\theta_{k+1}^{2}} & \leq \frac{1}{\theta_{k}^{2}} \quad\left(0<\theta_{k+1} \leq 1\right)
\end{array}
$$

with $\theta_{0}=1, x_{0}, z_{0} \in \operatorname{dom} P$ Nesterov, Auslender, Teboulle, Lan, Lu, Monteiro, ... Assume $z_{k} \in X_{h} \forall k$.

For example, $\theta_{k}=\frac{2}{k+2} \quad$ or $\quad \theta_{k+1}=\frac{\sqrt{\theta_{k}^{4}+4 \theta_{k}^{2}}-\theta_{k}^{2}}{2}$.

Prop. 2:
 For any $x \in \operatorname{dom} P$,

$$
\min \left\{e_{1}, \ldots, e_{k}\right\} \leq L D\left(x, z_{0}\right) \theta_{k}^{2}, \quad k=1,2, \ldots
$$

with $e_{k}:=f^{P}\left(x_{k}\right)-f^{P}(x)$.

Prop. 2: For any $x \in \operatorname{dom} P$,

$$
\min \left\{e_{1}, \ldots, e_{k}\right\} \leq L D\left(x, z_{0}\right) \theta_{k}^{2}, \quad k=1,2, \ldots
$$

with $e_{k}:=f^{P}\left(x_{k}\right)-f^{P}(x)$.
Proof:

$$
\begin{aligned}
& f^{P}\left(x_{k+1}\right) \\
\leq & \ell\left(x_{k+1} ; y_{k}\right)+\frac{L}{2}\left\|x_{k+1}-y_{k}\right\|^{2} \quad \text { Fact } 1 \\
= & \ell\left(\left(1-\theta_{k}\right) x_{k}+\theta_{k} z_{k+1} ; y_{k}\right)+\frac{L}{2}\left\|\left(1-\theta_{k}\right) x_{k}+\theta_{k} z_{k+1}-y_{k}\right\|^{2} \\
\leq & \left(1-\theta_{k}\right) \ell\left(x_{k} ; y_{k}\right)+\theta_{k} \ell\left(z_{k+1} ; y_{k}\right)+\frac{L}{2} \theta_{k}^{2}\left\|z_{k+1}-z_{k}\right\|^{2} \\
\leq & \left(1-\theta_{k}\right) \ell\left(x_{k} ; y_{k}\right)+\theta_{k}\left(\ell\left(z_{k+1} ; y_{k}\right)+\theta_{k} L D\left(z_{k+1}, z_{k}\right)\right) \\
\leq & \left(1-\theta_{k}\right) \ell\left(x_{k} ; y_{k}\right)+\theta_{k}\left(\ell\left(x ; y_{k}\right)+\theta_{k} L D\left(x, z_{k}\right)-\theta_{k} L D\left(x, z_{k+1}\right)\right) \quad \text { Fact } 2 \\
\leq & \left(1-\theta_{k}\right) f^{P}\left(x_{k}\right)+\theta_{k}\left(f^{P}(x)+\theta_{k} L D\left(x, z_{k}\right)-\theta_{k} L D\left(x, z_{k+1}\right)\right) \quad \text { Fact } 1
\end{aligned}
$$

so, subtracting by $f^{P}(x)$ and then dividing by θ_{k}^{2}, we have

$$
\frac{1}{\theta_{k}^{2}} e_{k+1} \leq \frac{1-\theta_{k}}{\theta_{k}^{2}} e_{k}+L D\left(x ; z_{k}\right)-L D\left(x ; z_{k+1}\right)
$$

etc.

Thus, global convergence rate improves from $O(1 / k)$ to $O\left(1 / k^{2}\right)$ with little extra work per iteration!

Comparing PGM with APGM I:

Assume $P \equiv \delta_{X}$.

PGM

Can also replace $\ell\left(x ; y_{k}\right)$ by a certain weighted sum of $\ell\left(x ; y_{0}\right), \ell\left(x ; y_{1}\right), \ldots, \ell\left(x ; y_{k}\right)$.

Then...

Accelerated Proximal Gradient Method II

For $k=0,1, \ldots$,

$$
\begin{aligned}
y_{k} & =\left(1-\theta_{k}\right) x_{k}+\theta_{k} z_{k} \\
z_{k+1} & =\underset{x}{\arg \min }\left\{\sum_{i=0}^{k} \frac{\ell\left(x ; y_{i}\right)}{\vartheta_{i}}+L h(x)\right\} \\
x_{k+1} & =\left(1-\theta_{k}\right) x_{k}+\theta_{k} z_{k+1} \\
\frac{1-\theta_{k+1}}{\theta_{k+1} \vartheta_{k+1}} & =\frac{1}{\theta_{k} \vartheta_{k}} \quad\left(\vartheta_{k+1} \geq \theta_{k+1}>0\right)
\end{aligned}
$$

with $\vartheta_{0} \geq \theta_{0}=1, x_{0} \in \operatorname{dom} P$, and $z_{0}=\arg \min h(x)$ Nesterov, d'Aspremont et al., Lu, \ldots Assume $z_{k} \in X_{h} \forall k$.

For example, $\quad \vartheta_{k}=\frac{2}{k+1}, \quad \theta_{k}=\frac{2}{k+2} \quad$ or $\quad \vartheta_{k+1}=\theta_{k+1}=\frac{\sqrt{\theta_{k}^{4}+4 \theta_{k}^{2}}-\theta_{k}^{2}}{2}$.

Prop. 3: For any $x \in \operatorname{dom} P$,

$$
\min \left\{e_{1}, \ldots, e_{k}\right\} \leq L\left(h(x)-h\left(z_{0}\right)\right) \theta_{k-1} \vartheta_{k-1}, \quad k=1,2, \ldots
$$

with $e_{k}:=f^{P}\left(x_{k}\right)-f^{P}(x)$.

Prop. 3: For any $x \in \operatorname{dom} P$,

$$
\min \left\{e_{1}, \ldots, e_{k}\right\} \leq L\left(h(x)-h\left(z_{0}\right)\right) \theta_{k-1} \vartheta_{k-1}, \quad k=1,2, \ldots
$$

with $e_{k}:=f^{P}\left(x_{k}\right)-f^{P}(x)$.
Proof replaces Fact 2 with:
Fact 3: For any proper convex Isc $\psi: \mathcal{E} \rightarrow(-\infty, \infty]$, let

$$
z=\underset{x}{\arg \min }\{\psi(x)+h(x)\} .
$$

If $z \in X_{h}$, then

$$
\psi(z)+h(z) \leq \psi(x)+h(x)-D(x, z) \quad \forall x \in \operatorname{dom} P
$$

Advantage? Possibly better performance on compressed sensing and certain conic programs. Lu

Example: Matrix Game

$$
\min _{x \in X} \max _{v \in V}\langle v, A x\rangle
$$

with X and V unit simplices in \Re^{n} and \Re^{m}, and $A \in \Re^{m \times n}$. Generate $A_{i j} \sim U[-1,1]$ with probab. p; otherwise $A_{i j}=0$. Nesterov, Nemirovski

Set $P \equiv \delta_{X}$ and $f(x)=g^{*}(A x / \mu)$, with $\mu=\frac{\epsilon}{2 \ln m}(\epsilon>0)$ and
$g(v)= \begin{cases}\sum_{i=1}^{m} v_{i} \ln v_{i} & \text { if } v \in V \\ \infty & \text { else }\end{cases}$

$$
\left(L=\frac{1}{\mu},\|\cdot\|=1 \text {-norm }\right)
$$

Example: Matrix Game

```
\mp@subsup{m}{x\inX}{}\mp@subsup{\operatorname{max}}{v\inV}{}\langlev,Ax\rangle
```

with X and V unit simplices in \Re^{n} and \Re^{m}, and $A \in \Re^{m \times n}$. Generate $A_{i j} \sim U[-1,1]$ with probab. p; otherwise $A_{i j}=0$. Nesterov, Nemirovski
Set $P \equiv \delta_{X}$ and $f(x)=g^{*}(A x / \mu)$, with $\mu=\frac{\epsilon}{2 \ln m}(\epsilon>0)$ and
$g(v)=\left\{\begin{array}{ll}\sum_{i=1}^{m} v_{i} \ln v_{i} & \text { if } v \in V \\ \infty & \text { else }\end{array} \quad\left(L=\frac{1}{\mu},\|\cdot\|=1\right.\right.$-norm $)$

- Implement PGM, APGM I \& II in Matlab, with $h(x)=\sum_{j=1}^{n} x_{j} \ln x_{j}$ and $L^{\text {init }}=\frac{1}{8 \mu}$. Matrix-vector mult. by A, A^{*} per iter.
- Initialize $x_{0}=z_{0}=\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$. Terminate when

$$
\max _{i}\left(A x_{k}\right)_{i}-\min _{j}\left(A^{*} v_{k}\right)_{j} \leq \epsilon
$$

with $v_{k} \in V$ a weighted sum of dual vectors associated with $x_{0}, x_{1}, \ldots, x_{k}$.

		PGM	APGM I	APGM II
$n / m / p$	ϵ	$\mathrm{k} / \mathrm{cpu}(\mathrm{sec})$	$\mathrm{k} / \mathrm{cpu}(\mathrm{sec})$	$\mathrm{k} / \mathrm{cpu}(\mathrm{sec})$
$1000 / 100 / .01$.001	$1082480 / 1500$	$3325 / 5$	$10510 / 9$
	.0001	-	$20635 / 23$	$61865 / 45$
$10000 / 100 / .01$.001	-	$10005 / 142$	$10005 / 128$
$10000 / 100 / .1$.001	-	$10005 / 201$	$10005 / 185$
$10000 / 1000 / .01$.001	-	$10005 / 202$	$10005 / 191$
$10000 / 1000 / .1$.001	-	$10005 / 706$	$10005 / 695$

Performance of PGM, APGM I \& II for different n, m, sparsity p, and soln accuracy

Conclusions \& Extensions

1. Accelerated prox gradient method is promising in theory and practice. Applicable to convex-concave optimization by using smoothing Nesterov. Further extension to add cutting planes.

Conclusions \& Extensions

1. Accelerated prox gradient method is promising in theory and practice. Applicable to convex-concave optimization by using smoothing Nesterov. Further extension to add cutting planes.
2. Application to matrix completion, where $\mathcal{E}=\Re^{m \times n}$ and $P(x)=\|\sigma(x)\|_{1}$? Or to total-variation image restoration (joint work with Steve Wright)?

Conclusions \& Extensions

1. Accelerated prox gradient method is promising in theory and practice. Applicable to convex-concave optimization by using smoothing Nesterov. Further extension to add cutting planes.
2. Application to matrix completion, where $\mathcal{E}=\Re^{m \times n}$ and $P(x)=\|\sigma(x)\|_{1}$? Or to total-variation image restoration (joint work with Steve Wright)?
3. Extending the interpolation technique to incremental gradient methods and coordinate-wise gradient methods?

Conclusions \& Extensions

1. Accelerated prox gradient method is promising in theory and practice. Applicable to convex-concave optimization by using smoothing Nesterov. Further extension to add cutting planes.
2. Application to matrix completion, where $\mathcal{E}=\Re^{m \times n}$ and $P(x)=\|\sigma(x)\|_{1}$? Or to total-variation image restoration (joint work with Steve Wright)?
3. Extending the interpolation technique to incremental gradient methods and coordinate-wise gradient methods?

The END $\check{<}$

