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Talk Outline

• Problem description & motivation

• SDP relaxation

• Approximation upper and lower bounds

• Proof idea

• Numerical experience

• A related problem

• Conclusions & open questions
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Problem description

υqp := min
z∈H

‖z‖2

s.t.
∑
`∈Ii

|hH
` z|2 ≥ 1, i = 1, ...,m,

• h` 6= 0 ∈ H (H = ICn or IRn), I1 ∪ · · · ∪ Im = {1, ...,M}

• z = x + iy (x, y ∈ IRn), zH = xT − iyT
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Motivation: Transmit beam forming
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SDP Relaxation

• Finding a global minimum of QP is NP-hard (reduction from PARTITION).
. .
6
_

• Approximate QP by an “easy” convex optimization problem, a semidefinite
program (SDP) relaxation (Lovász ’91, Shor ’87).
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SDP Relaxation

Let Z = zzH (⇐⇒ Z � 0, rankZ ≤ 1) Hi =
∑

`∈Ii
h`h

H
`

υqp = min Tr(Z)
s.t. Tr(HiZ) =

∑
`∈Ii

Tr(h`h
H
` Z) ≥ 1, i = 1, ...,m,

Z � 0, rankZ ≤ 1.

υ
sdp

:= min Tr(Z)
s.t. Tr(HiZ) ≥ 1, i = 1, ...,m,

Z � 0.

Then

0 ≤ υ
sdp

≤ υqp

?
≤ Cυ

sdp
(C ≥ 1)
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Approximation upper & lower bounds

Theorem 1 (LSTZ ’05): υqp ≤ Cυ
sdp

where

1
2π2

m2 ≤ C ≤ 27
π

m2 if H = IRn

1
2(3.6π)2

m ≤ C ≤ 8m if H = ICn
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Proof sketch

H = IRn

Let Z∗ be an optimal SDP soln, with rank r ≤
√

2m (such Z∗ exists).

So Z∗ =
∑r

k=1 zkz
H
k (zk ∈ H)

Let ζ :=
∑r

k=1 zkηk, ηk
i.i.d.∼ N(0, 1)

Fact :

• E(ζHHiζ) = Tr(HiZ
∗) ≥ 1 ∀ i

• E(‖ζ‖2) = Tr(Z∗)

• P(ζHHiζ < γ) ≤ √
γ ∀ γ > 0, ∀ i

(
P(|ηk|2 < γ) ≤

√
2γ
π

)

• P(‖ζ‖2 > µTr(Z∗)) ≤ 1
µ ∀ µ > 0 (Markov ineq.)
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P
(
ζHHiζ ≥ γ, i = 1, ...,m & ‖ζ‖2 ≤ µTr(Z∗)

)
≥ 1−

m∑
i=1

P
(
ζHHiζ < γ

)
− P

(
‖ζ‖2 > µTr(Z∗)

)
≥ 1−m

√
γ − 1

µ

> 0 if µ = 3, γ =
π

9m2

so ∃ ζ ∈ <n such

ζHHiζ ≥
π

9m2
, i = 1, ...,m ‖ζ‖2 ≤ 3Tr(Z∗) = 3υ

sdp
.

Then ẑ := ζ√
mini ζHHiζ

is a feas. soln of QP, ‖ẑ‖2 = ‖ζ‖2

mini ζHHiζ
≤

3υ
sdp

π/(9m2)
.

Thus υqp ≤ ‖ẑ‖2 ≤ 27
π

m2υ
sdp

.
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Take

n = 2, |Ii| = 1, hi =
[

cos(2π
m i)

sin(2π
m i)

]
, i = 1, ...,m

• For any QP feas. soln z, ∃ i such |hH
i z| ≤ π

m
‖z‖ ⇒ ‖z‖2 ≥ m2

π2
⇒

υqp ≥
m2

π2

• Z = I is a feas. soln of SDP, so υ
sdp

≤ Tr(I) = 2

Thus
υqp ≥

1
2π2

m2 υ
sdp
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H = ICn

Proof of upper bound is similar to the real case, but with

ηk
i.i.d.∼ Nc(0, 1) (density

e−|ηk|2

π
)

Then P(ζHHiζ < γ) ≤ 4
3γ ∀ γ > 0, ∀ i

so

P
(
ζHHiζ ≥ γ, i = 1, ...,m & ‖ζ‖2 ≤ µTr(Z∗)

)
≥ 1−

m∑
i=1

P
(
ζHHiζ < γ

)
− P

(
‖ζ‖2 > µTr(Z∗)

)
≥ 1−m

4
3
γ − 1

µ

> 0 if µ = 2, γ =
1

4m
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Proof of lower bound involves a more intricate example.
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Improved approximation bound: bounded phase spread

Theorem 2 (LSTZ ’05): H = ICn. If

•

h` =
p∑

i=1

βi`gi, ` = 1, ...,M,

for some p ≥ 1, βi` ∈ IC, gi ∈ ICn with ‖gi‖ = 1 and gH
i gj = 0 for all i 6= j;

• βi` = |βi`|eiφi` satisfies, for some 0 ≤ φ < π
2 ,

|φi` − φj`| ≤ φ ∀i, j, ∀`,

then
υqp ≤ 1

cos(φ)
υ

sdp
.
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Numerical experience

• For measured VDSL channel data by France Telecom R&D, SDP solution
yields nearly doubling of minimum received signal power relative to no
precoding.
υqp = υ

sdp
in over 50% of instances. (SDL ’05)

• Simulation with randomly generated h` (m = M = 8, n = 4) shows that
both the mean and the maximum of the upper bound

‖x̂‖2

υ
sdp

are lower in the H = ICn case (1.14 and 1.8) than the H = IRn case (1.17 and
6.2). Thus, SDP solution is better in the complex case not only in the worst
case but also on average.
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Maximization QP with convex constraints

υqp := max
z∈H

‖z‖2

s.t.
∑
`∈Ii

|hH
` z|2 ≤ 1, i = 1, ...,m,

υ
sdp

:= max Tr(Z)
s.t. Tr(HiZ) ≤ 1, i = 1, ...,m,

Z � 0.

Then

υ
sdp

≥ υqp

?
≥ Cυ

sdp
(0 < C ≤ 1)
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Approximation upper & lower bounds

Theorem 3 (NRT ’99, LSTZ ’05): υqp ≥ Cυ
sdp

where

O

(
1

ln(m)

)
≥ C ≥ 1

4 ln(m) + 2 ln(2)
if H = IRn

O

(
1

ln(m)

)
≥ C ≥ 1

6 ln(m) + 4 ln(100)
if H = ICn

Proof uses P(ζHHiζ > γ) ≤ rank(Hi) e−γ ∀ γ > 0, ∀ i
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Conclusions & Open Questions

1. For norm minimization on IRn (ICn) with m concave quadratic constraints,
SDP relaxation yields O(m2) (O(m)) approximation.

2. If phase spread of h1, ..., hM are bounded by 0 < φ < π
2 , then SDP

relaxation yields O
(

1
cos(φ)

)
approximation.

3. For norm maximization on IRn or ICn with m convex quadratic constraints,
SDP relaxation yields O

(
1

ln(m)

)
approximation.
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Open Questions :

1. Can the approximation bounds be improved? Adapt SOS relaxation?

2. For nonconcave/convex constraints, SDP relaxation can be arbitrarily bad
(for fixed m,n).

υqp := min
(x,y)∈IR2

x2 + y2

s.t. y2 ≥ 1, x2 −Mxy ≥ 1, x2 + Mxy ≥ 1.

(M > 0). Here υqp = M + 2 while υ
sdp

= 2. Performance of SOS relaxation
also worsens with M ↑. Better approximation?
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3. A nonhomogeneous QP:

min
z∈H

zHH0z + cH
0 z

s.t. zHHiz + cH
i z ≥ 1, i = 1, ...,m,

can be transformed into a homogeneous QP:

min
(z,t)∈H

zHH0z + cH
0 zt

s.t. zHHiz + cH
i zt ≥ 1, i = 1, ...,m, t2 = 1.

In the case of m = 2, H1,H2 � 0, c1 = c2 = 0, the approximation bound
derived from the SDP relaxation of this homogeneous QP is further
improved (from 2 to 1.8) by also using the SDP relaxation of

min
z∈H

zHH0z

s.t. zHHiz ≥ 1, i = 1, ...,m.

Can this idea be extended?


