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Talk Outline
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• Conclusions & Future Work
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Block-Coordinate Minimization

min
x=(x1,...,xn)

f(x)

f : <n → < is cont. diff.

Given x ∈ <n, choose i ∈ {1, ..., n}. Update

x
new

= arg min
u|uj=xj ∀j 6=i

f(u).

Repeat until “convergence”.

Gauss-Seidel: Choose i cyclically, 1, 2,..., n, 1, 2,...

Gauss-Southwell: Choose i with | ∂f
∂xi

(x)| maximum.
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Example: min
x=(x1,x2)

(x1 + x2)2 +
1
4
(x1 − x2)2
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Properties :

• This method extends to update a block of coordinates at each iteration.

• It is simple, and efficient for large “weakly coupled” problems
(off-block-diagonals of ∇2f(x) not too large).

• If f is convex, then very cluster point of the x-sequence is a minimizer. Zadeh ’70

• If f is nonconvex, then G-Seidel can cycle Powell ’73 but G-Southwell still
converges.

• Can get stuck if f is nondifferentiable.
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Example: min
x=(x1,x2)

(x1 + x2)2 +
1
4
(x1 − x2)2 + |x1 + x2|
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But, if the nondifferentiable part is separable, then convergence is possible.

Example: min
x=(x1,x2)

(x1 + x2)2 +
1
4
(x1 − x2)2 + |x1|+ |x2|
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Application I: Basis Pursuit/Lasso

min
x

Fc(x) := ‖Ax− b‖22 + c‖x‖1

Tibshirani ’96, Fu ’98

Osborne et al. ’98

Chen, Donoho, Saunders ’99

...

A ∈ <m×n, b ∈ <m, c ≥ 0.

• Typically m ≥ 1000, n ≥ 8000, and A is dense. ‖ · ‖1 is nonsmooth.
. .
6
_

• Can reformulate this as a convex QP and solve using an IP method. Chen,

Donoho, Saunders ’99
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Assume the columns of A come from an overcomplete set of basis functions
associated with a fast transform (e.g., wavelet packets).

BCM for BP :

Given x, choose I ⊆ {1, ..., n} with |I| = m and {Ai}i∈I orthog. Update

x
new

= arg min
ui=xi ∀i 6∈I

Fc(u) has closed

← form soln

Repeat until “convergence”.

Gauss-Southwell: Choose I to maximize min
v∈∂xIFc(x)

‖v‖2.

• Finds I in O(n + m log m) opers. by algorithm of Coifman & Wickerhauser.

• x-sequence is bounded & each cluster point minimizes Fc. Sardy, Bruce, T ’00
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Electronic surveillance :
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Method efficiency :
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• IP method requires fewer iterations, but each iteration is expensive (many
CG steps per iteration). No good preconditioner for CG is known.

• BCM method requires more iterations, but each iteration is cheap.

• Convergence of BCM depends crucially on

• differentiability of ‖ · ‖22

• separability of ‖ · ‖1

• convexity of Fc (stationarity ⇒ global minimum)
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Generalization to ML Estimation with `1-Regularization ?

min
x
−`(Ax; b) + c

∑
i∈J

|xi|

` is log likelihood, {Ai}i 6∈J are lin. indep “coarse-scale Wavelets”, c ≥ 0

• −`(y; b) = 1
2‖y − b‖22 Gaussian noise

• −`(y; b) =
m∑

i=1

(yi − bi ln yi) (yi ≥ 0) Poisson noise

Can solve this problem by adapting IP method. But IP method is slow (many
CG steps per IP iteration) Antoniadis, Sardy, T ’04.

. .
6
_

Adapt BCM method?



BLOCK-COORDINATEWISE METHODS FOR SPARSE OPTIMIZATION 13

Optimization with Nonsmooth Regularization

min
x

Fc(x) := f(x) + cP (x)

f : <n → < is cont. diff. c ≥ 0.

P : <n → (−∞,∞] is proper, convex, lsc, and block-separable, i.e.,
P (x) =

∑
I∈C PI(xI) (I ∈ C partition {1, ..., n}).

• P (x) = ‖x‖1 Basis Pursuit/Lasso

• P (x) =
∑

I∈C ‖xI‖2 group Lasso

• P (x) =
{

0 if l ≤ x ≤ u
∞ else

bound constrained NLP

Idea: Do BCM on a quadratic approx. of f .
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Block-Coord. Gradient Descent Method

For x ∈ domP , ∅ 6= I ⊆ {1, ..., n}, and H � 0, let dH(x; I) and qH(x; I) be the
optimal soln and obj. value of

min
d|di=0 ∀i 6∈I

{∇f(x)Td +
1
2
dTHd + cP (x + d)− cP (x)} direc.

subprob

Facts:

• dH(x; {1, ..., n}) = 0 ⇔ F ′
c(x; d) ≥ 0 ∀d ∈ <n. stationarity

• H is diagonal, P is separable ⇒ dH(x; I) =
∑
i∈I

dH(x; i),

qH(x; I) =
∑
i∈I

qH(x; i). separab.

• H is diagonal, P is “simple” ⇒ dH(x; I) has “closed form”.
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Given x ∈ domP , choose I ⊆ {1, ..., n}, H � 0.

Update x
new

= x + αdH(x; I) (α > 0)

until “convergence.”

Gauss-Seidel: Choose I ∈ C cyclically.

Gauss-Southwell: Choose I with

qD(x; I) ≤ υ qD(x; {1, ..., n})

(0 < υ ≤ 1, D � 0 is diagonal, e.g., D = I or D = diag(H)).

Inexact Armijo LS: α = largest element of {1, β, β2, ...} satisfying

Fc(x + αd)− Fc(x) ≤ 0.1 α qH(x; I) (0 < β < 1)
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Convergence properties T, Yun ’06:

(a) If λI � D,H � λ̄I (0 < λ ≤ λ̄), then every cluster point of the x-sequence
generated by BCGD method is a stationary point of Fc.

(b) If in addition P and f satisfy any of the following assumptions, then the
x-sequence converges linearly in the root sense.

A1 f is strongly convex, ∇f is Lipschitz cont. on domP .

A2 f is (nonconvex) quadratic. P is polyhedral.

A3 f(x) = g(Ax) + qTx, where A ∈ <m×n, q ∈ <n, g is strongly convex, ∇g is
Lipschitz cont. on <m. P is polyhedral.

Note: BCGD has stronger global convergence property (and cheaper
iteration) than BCM.
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Application II: Group Lasso for Logistic Regression

min
x

f(x) + c
∑
I∈C

ωI‖xI‖2
Yuan, Lin ’06

Kim3 ’06

Meier, van de Geer, Bühlmann ’06

...

c > 0, ωI > 0.

f(x) =
∑N

j=1 log
(
1 + eaT

j x
)
− yja

T
j x (aj ∈ <n, yj ∈ {0, 1})

• f is convex, cont. diff. ‖ · ‖2 is convex, nonsmooth. In prediction of short
DNA motifs, n > 1000, N > 11, 000.

• BCM-GSeidel has been used Yuan, Lin ’06, but each iteration is expensive. Every
cluster point of the x-sequence is a minimizer T ’01.

• BCGD-GSeidel is significantly more efficient Meier et al ’06. Every cluster point of
the x-sequence is a minimizer T, Yun ’06. Linear convergence?
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Application III: Sparse Inverse Covariance Estimation

min
X∈Sn

+

f(X) + c‖X‖1
Meinshausen, Bühlmann ’06

Yuan, Lin ’07

Banerjee, El Ghaoui, d’Aspremont ’07

Friedman, Hastie, Tibshirani ’07

c > 0, ‖X‖1 =
∑

ij |Xij|,
f(X) = − log detX + tr(XS) (S ∈ Sn

+ is empirical covariance matrix)

• f is strictly convex, cont. diff. on its domain, O(n3) ops to evaluate. ‖ · ‖1 is
convex, nonsmooth. In applications, n can exceed 6000.

The Fenchel dual problem Rockafellar ’70 is a bound-constrained convex program:

min
W∈Sn

+,‖W−S‖∞≤c
− log det(W )

‖Y ‖∞ = maxij |Yij|.
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• IP method requires O(n6 log(1/ε)) ops to find ε-optimal soln. Impractical!
Nesterov’s first-order smoothing method requires O(n4.5/ε) ops Banerjee et al ’07.

• Use BCM-GSeidel to solve the dual problem, cycling thru columns
i = 1, ..., n of W . Each iteration reduces (via determinant property & duality) to

min
ξ∈<n−1

1
2
ξTWi¬i¬ξ − ST

i¬iξ + c‖ξ‖1.

Solve this using IP method (O(n3) ops) Banerjee et al ’07 or BCM-GSeidel Friedman et al ’07.

• Can apply BCGD-GSeidel to either primal or dual problem. More efficient?
Applied to the primal, each iteration entails

min
u∈<n

{
tr((−X−1 + S)D) +

1
2
uTHu + c‖X + D‖1

}
D=uT ei+eiuT

.

For diagonal H, the minimizing D has closed form! For each trial α in the
Armijo LS, det(X + αD) can be evaluated from detX and X−1 in O(n2) ops.
Update X−1 in O(n2) ops. Similar application to the dual. Global convergence,
asymptotic linear convergence, complexity analysis... Toh, T, Yun, forthcoming.
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Conclusions & Future Work

1. Nonsmooth regularization induces sparsity in the solution, avoids
oversmoothing signals, and is useful for variable selection.

2. The regularized problem can be solved effectively by BCM or BCGD,
exploiting the problem structure.

3. Extension of BCM, BCGD to handle linear constraints Ax = b is possible,
including Support Vector Machine training T, Yun, ’07, ’08. Some open questions
on efficient implementation and convergence analysis remain.

4. Many other applications, including stochastic volatility models Neto, Sardy, T,

forthcoming.

5. Extension of BCGD to nonconvex nonsmooth regularization is possible
(e.g. `p-regularization, 0 < p < 1) Sardy, T, forthcoming.


