Paul Tseng
Mathematics, University of Washington
Seattle

Taiwan Normal University
March 2, 2006
(Joint works with Sylvain Sardy (EPFL), Andrew Bruce (MathSoft), and
Sangwoon Yun (UW))



OPTIMIZATION METHODS WITH SIGNAL DENOISING APPLICATIONS

Talk Outline

e Basic Problem Model

Primal-Dual Interior Point Method
Block Coordinate Minimization Method
Applications

e General Problem Model

Block Coordinate Gradient Descent Method
Convergence
Numerical Testing (ongoing)

e Conclusions & Future Work



OPTIMIZATION METHODS WITH SIGNAL DENOISING APPLICATIONS

Basic Problem Model
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FiInd w sothat Bw—b~0 and w has “few” nonzeros.

Formulate this as an unconstrained convex optimization problem:

Pl mig? |Bw — b||3 + c|lwl|; (¢ > 0) “Basis Pursuit”
we e

Chen, Donoho, Saunders

Difficulty: Typically m > 1000, n > 8000, and B is dense. || - ||; is nonsmooth.
/

/N
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Primal-Dual Interior Point Method for P1

ldea: Reformulate P1 as a convex QP, and apply primal-dual IP method.
QP Reformulation of P1.:

in ||Bw — b||2
P1 ﬁggnl\ w — b3 + c|lwl|

Substitute w=wt —w~ with w™ >0, w™ >0, |w|i=¢e(wr+w):

min || Bwt — Bw™ —b||3 + ce’ (wt +w™)

wT>0
w— >0 y
+
min [yl et |0
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wt>0 r w
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QP Reformulation of P1:

min lyllz + ce’x
x>0 Ax +y =10

KKT Optimality Condition for QP:

Arx+vy =0, x>0
ATy +z = ce, z Z 0 (X = diag[ajl, ...,ZUQn])
Xz =0

Perturbed KKT Optimality Condition:
Ax+y =0b, x >0
Aty + 2z = ce, z>0
Xz = e (n>0)

Primal-Dual IP method: Apply damped Newton method to solve inexactly the
perturbed KKT equations while maintaining = > 0, z > 0. Decrease . after
each iteration. Fiacco-McCormick '68, Karmarkar '84,...
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Method description:

Given i > 0, x > 0, y, z > 0, solve
AAx+ Ay =b— Ax — vy,
ATAy+ Az =ce— Aty — 2, Newton

ZAx+ XAz = pue— Xz Egs.
Update
. =z 996,Az,
y =y +.9904y,
z =z 4 .996,Az,
X — (1 - m1n{99, 61?7 Bd})ua

where = min = min
Bp 1:Ax; <0 { —AZCi } 7 Bd 1:Az;<0 { —LAZ; }
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Implementation & Initialization:

e Newton Egs. reduce to
(I+AZ7'XADAy = r.

Solve by Conjugate Gradient (CG) method.

Multiplication by & AT require O(mlogm) & O(m(logm)?) opers.

L

mX?2n

e Initialization as in Chen-Donoho-Saunders '96

e Theoretical convergence?

CG preconditioning?
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Block Coord. Minimization Method for Pl

Method description:

Given w, choose 7 C {1,...,n} with |Z| = m, {B;};c7 IS orthog.

Update

w

new

= arg

min
U; =Wy V1 QI

HBU— b”%—l—CHUHl closed

<— form soln

e Choose 7 to maximize

min |v]|2-

vE€Qu ([ Bu—bll5+cllull1)ly—u
Requires O(mlogm) opers. by algorithm of Coifman & Wickerhauser.

e Theoretical convergence: w-sequence is bounded & each cluster point
solves P1.
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Convergence of BCM method depends crucially on
o differentiability of || - ||2
e separability of || - ||;

e convexity =- global minimum
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Application 1: Electronic surveillance
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Method efficiency

Real part
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Comparing CPU times of IP and BCM methods (S-Plus, Sun Ultra 1).
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ML Estimation

P2 min —¢(Bw; b) + CZ |w;| (c > 0)
eJ

¢ is log likelihood, {B;}iz7 are lin. indep “coarse-scale Wavelets”

o —U(y;b) = 2|y — bl13 Gaussian noise
o —/l(y;b) = Z(yz —b;Iny;) (y; > 0) Poisson noise
i=1

Solve P2 by adapting IP method. BCM?
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Application 2: T ray astronomy

Measurements Anscombe—based estimate

150 150

100 1 100

50 50

350 300 250 200 150 100 50 350 300 250 200 150 100 50

TIPSH estimate Il—penalized likelihood estimate
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m = 720 - 360, c chosen by CV, Symmlets of order 8 (levels 3-8). Spatially inhomogeneous
Poisson noise.
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But IP method is slow (many CG steps).

Adapt BCM method?

;

14
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General Problem Model

P3 min F.(w) := f(w) + cP(w) (c>0)

w

f: RN — R is smooth.

P: RN — (—o0, o0] is proper, convex, Isc, and P(w) = 2?21 Pj(w;)
(w = (w1, ..., wp)).
o P(w) = [Jwlj

(0 fl<w<u
* Plw)= {oo else
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Block Coord. Gradient Descent Method for P3

ldea: Do BCM on a quadratic approx. of f.

For w € domP, 7 C {1,...,n},and H > 0,, let dg(w;7Z) and g (w;Z) be the
optimal soln and obj. value of

1 direc.
: T, LT B
dmiggagz{g d + 2d Hd+ cP(w+d) — cP(w)} subprob
with g = V f(w).
e dy(w;{1,...,n}) =0 & F'(w;d) > 0Vd € ®RV. stationarity

e Hisdiagonal = dy(w;Z) = ZdH w; 1), qg(w; T) ZqH w;1). separab.
1€ €L
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Method description:

Given w € domP, choose 7 C {1,....n}, H > 0,. Letd = dy(w;I).

Update

w

new

= w + ad (> 0)

e o = largest element of {1, 3, 32, ...} satisfying
Fow+ad) — F.(w) <ocagqg(w;Z) 0<pB<1,0<0<]1) Armijo

o T={1},{2},...{n}, {1},{2},..

o |ldp(w;Z)||eo = v|ldp(w;{1,....,n})||lc (O <wv<1,D>0,Iisdiagonal,
e.g., D =1or D = diag(H)).

° gp(w;T) <wvgp(w;{l,...

1}).

Gauss-Seidel

Gauss-Southwell-d

Gauss-Southwell-q
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(a) If

e 0 <A< N(D), Ni(H) < A\ Vi,

e « IS chosen by Armijo rule,

e 7 is chosen by G-Seidel or G-Southwell-d or G-Southwell-g,

then every cluster point of the w-sequence generated by BCGD method is a
stationary point of F..

(b) If in addition P and f satisfy any of the following assumptions, then the
w-sequence converges at R-linear rate (excepting G-Southwell-d).

C1 f is strongly convex, V f is Lipschitz cont. on domP.
C2 fis (nonconvex) quadratic. P is polyhedral.

C3 f(w) = g(Bw) + ¢Fw, where E ¢ >N, g € RV, g is strongly convex, Vg
IS Lipschitz cont. on ™. P is polyhedral.
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C4 f(w) = maxyey{(Fw)'y — g(y)} + ¢’ w, where Y C R™ is polyhedral,
E e RN g e RV, gis strongly convex, Vg is Lipschitz cont. on ®™. P is

polyhedral.

Notes:

e BCGD has stronger global convergence property (and cheaper iteration)
than BCM.

e Proof of (b) uses a local error bound on dist (w, {stat. pts. of F.}).

19
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(ongoing):

e Implement BCGD method in Matlab.

e Numerical tests with f from Moré-Garbow-Hillstrom set and CUTEr set
(Gould, Orban, Toint ’05), P(w) = ||w||1, and different ¢ (e.g., ¢ = .1, 1, 10).

e Comparison with MINOS 5.5.1 (Murtagh, Saunders '05), a Fortran
Implementation of an active-set method, applied to a reformulation of P3 with
P(w) = |lw|, as

min f(wt —w™) +cel (wt +w).

wt>0
w— >0

e Preliminary results are “promising”.

20
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f(w) n Description
BAL 1000 | Brown almost-linear func, nonconvex, dense Hessian.
BT 1000 | Broyden tridiagonal func, nonconvex, sparse Hessian.
DBV 1000 | Discrete boundary value func, nonconvex, sparse Hessian.
EPS 1000 Extended Powell singular func, convex, 4-block diag. Hessian.
ER 1000 | Extended Rosenbrook func, nonconvex, 2-block diag. Hessian.
2
n
QD1 | 1000 | f(w) = (Z w; — 1> , convex, quad., rank-1 Hessian.
—
’ 2 2
QD2 | 1000 f(w):Z wi———=) wi—1] + n+1zwj+1 ,
1=1 7=1 7=1
strongly convex, quad., dense Hessian.
n 5 n 2 n 4
VD | 1000 | f(w) = (w; — D%+ [ (wj -1 | + D jwj -1 |,
i=1 Jj=1 J=1
strongly convex, dense ill-conditioned Hessian.
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MINOS BCGD- BCGD-
G-Southwell- d G-Southwell- g

f(w) fnz/objec/cpu gnz/objec/cpu fnz/objec/cpu
BAL 1000/1000/43.9 1000/1000/.1 1000/1000/.1
10 1000/9999.9/43.9 1000/9999.9/.1 1000/9999.9/.1
100 1000/99997.5/44.3 1000/99997.5/.1 1000/99997.5/.2
BT A 1000/71.725/134.4 999/71.394/4.5 999/71.394/5.0
1 999/672.41/95.3 21/672.70/292.6 995/991.06/1.3(?)
10 0/1000/77.7 0/1000/.01 0/1000/.01
DBV A1 0/0/52.7 0/4.5E-9/.1 0/4.5E-9/.04
1 0/0/52.9 0/4.5E-9/.1 0/4.5E-9/.04
10 0/0/53.0 0/4.5E-9/.01 0/4.5E-9/.01
EPS 1 1000/351.14/58.5 500/351.14/.3 500/351.14/.3
10 243/1250/45.7 250/1250/.05 250/1250/.05
100 0/1250/50.7 0/1250/.01 0/1250/.02
ER 1 1000/436.25/72.0 1000/436.25/.5 1000/436.25/.4
10 0/500/51.5 0/500/.1 0/500/.01
100 0/500/52.4 0/500/.03 0/500/.01
QD1 A 1000/.0975/29.9 1/.0975/.01 1/.0975/.02
1 1000/.75/37.8 1/.75/.01 1/.75/.01
10 0/1/38.6 0/1/.01 0/1/.01
QD2 A 1000/98.5/74.2 0/98.5/.01 0/98.5/.03
1 1000/751/75.8 0/751/.01 0/751/.02
10 0/1001/53.1 0/1001/.01 0/1001/.01
VD 1 1000/937.59/43.9 1000/937.66/856.3 1000/937.66/869.0
10 413/6726.80/57.1 1000/6746.74/235.7 999/6746.74/246.9
100 136/55043/57.8 1000/55078/12.6 1000/55078/13.3

22
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Conclusions & Future Work

1. For ML estimation, ¢;-penalty imparts parsimony in the coefficients and
avoid oversmoothing the signals.

2. The resulting estimation problem can be solved effectively by IP method or
BCM method, exploiting the problem structure, including nondiffer. of
¢1-norm. Which to use? Depends on problem.

3. Problem reformulation may be needed.

4. For general problem model, we propose BCGD method. Numerical testing
IS ongoing.

5. Applications to denoising, regression, SVM?



