February 28, 2009

Here are more type A and B problems.

- A8. (Primal-dual interior-point method for SDP). Find explicit formulas for the AHO direction when applied to the SDP relaxation of the MaxCut problem. Estimate the work in computing this direction.
- **A9.** For the MaxCut SDP relaxation, find an $(X,Y,\mu.\epsilon) \in \mathcal{N}_{\text{wide}}(\gamma)$ $(0<\gamma<1)$ with $\epsilon=\frac{\langle X,Y\rangle}{n}$.
- **B6.** (commutative MZ directions). For $X, Y \succ 0$ and $P \in \mathbb{R}^{n \times n}$ invertible, let $\hat{X} = PXP$ and $\hat{Y} = P^{-1}YP^{-1}$.
 - (a) For $P = (X^{-1/2}(X \circ Y)^{1/2}X^{-1/2})^{1/2}$ (NT direction), verify that $\hat{X}\hat{Y}$ is symmetric and that $\operatorname{cond}(G_{\hat{X},\hat{Y}}) = 1$.
 - (b) For $P = X^{-1/2}$ (HRVW/KSH/M direction), verify that $\hat{X}\hat{Y}$ is symmetric and that $\operatorname{cond}(G_{\hat{X},\hat{Y}}) \leq \frac{n}{\gamma}$ when in addition $\frac{\langle X,Y \rangle}{n} = \epsilon$ and $\lambda_{\min}(X \circ Y) \geq \gamma \epsilon$.