5.2 [/;-regularized logistic regression

Least square may be interpreted as maximum likelihood estimation (MLE) where each b; € R is
Tz and variance 1. Here a! denotes the
ith row of A. For classification problems, each b; takes the value of either 1 or 0 (instead of a
continuum of values). Analogously, logistic regression corresponds to MLE where each b; € {1,0}

is the realization of a random variable §8; with distribution

1 1
T P[ﬂiZO]Zl—P[5i=1]=m-

the realization of a Normal random variable with mean a

P =1] = .

1+e %

The negative log-likelihood function works out to be £(Az), where

U(u) = Z log (1 + €%) — byu;. (83)

To avoid overfitting and for variable/feature selection (each column of A may correspond to an
input variable or a feature), we seek a sparse MLE solution by solving

min/(Az) + 7| z||1. (84)
Zz

5.3 TV-regularized image denoising

Images recorded from distance (by satellites or telescopes) and medical images (X-ray or PET scan
or ultrasound) have significant noise. How to denoise such a noisy image without oversmoothing
the key features (outlines, sharp edges) is a fundamental problem in signal processing. One
such approach, studied by Stan Osher and others, is to use total-variation (TV) regularization.
Specifically, for a given noisy image b: Q — R, with  C R? the image domain, it solves

1
win 5 [ fu(e) o) o+ 7 [ [Vu(a) s,
u 2 Q Q

with 7 > 0 a user-chosen parameter that trades off between edge-preservation (large 7) and
least-square fit (small 7).

To solve the above problem numerically, we discretize the image domain 2. For simplicity,
assume {) is a square and we discretize it with an N x N grid of width A > 0. Letting u;; to
denote the u-value at the (i, 7)th grid point, we use forward finite-difference to evaluate Vu(x)

there:
{%+'IL_% if j <N

0 else
Vu(z);; = o
(=) Yitld Ui < N
0 else

We use Rieman sum to evaluate the integrals, resulting in the discretized problem:

. 1 AWy

min_ 3 E luij — bij\Zh + 7 E —
N

uek 1<i,j<N 1<i,j<N

bl

2
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where v = (u11,u12,-..,uny)’ and we let

{ui,j+1 —uy ifj<N

. 0 1
Ay = o (85)
{ui+1,j — Uiy ifi< N

0 else

Dividing the objective function by h and letting 7/ = 7> the discretized problem can be written
more simply as
. 1 i
min - Cflu—bl+7" Y [[ATu]l2. (86)
ueRN2 2 —
1<ij<N

Here we view u as a vector for notational simplicity. For computation, it may be more convenient
to represent u as an N x N matrix, so that forward finite-differencing can be implemented by a
row and column shift and then differencing.

UN1 'lfNZ R _ UNN
[ ] * * * °
Ui+1,5
* ° * °

[ 2 L ® * »
u11 uip S uiN
The objective function in (86) is convex, but || - ||2 is not differentiable, which complicates its

structure. It can be reformulated as an SOCP and solved by an interior-point method, but we
will see faster methods for solving it. Specifically, the dual of this problem has a simpler structure
that can be exploited. To get the dual, we introduce new variables ¥/ = Ay and rewrite (86) as

1 g
: - —b 2 ! ij
min - ofju —bllz + 7 Eij Iy 12

st.  y¥ =AYy Vi,j.

We then form the Lagrangian, with Lagrange multipliers £/ € R? associated with the constraints:

L(u,y,2) = 5llu - BlI5+ 7> Iy ll2 + Y (v — AVu,z).
2% 2

Intuitively, z*/ acts as a variable penalty that penalizes violation of the constraint 4"/ = A%w. In
particular, the primal problem (86) is equivalent to min max L(u, ¥y, z), where x = (211, T12,---,ZnyN)% -
uy T

The dual problem is max min L(u, y, z), which works out to be
T uy

2
__ J\* ] _ 1 \* .17
max = —g Z (A" "z <b, Z (A)*x > (87)
el 1<i,j<N ) 1<, j<N
s.t. |z¥]|s < 7" V1<14,5 < N.
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The objective function is quadratic and the constraint is a Cartesian product of Euclidean balls.
However, the problem size is large. For a 4 Mega-pixel image, the number of variables is 8 million!

5.4 Matrix rank minimization

A matrix analog of the compressed sensing problem (1) is that of rank minimization:

min rank(X)

Xesn (88)

s.t.  AX =0,
where AX = [(4;, X)]", with A; € S™ and b € R™. This has applications in control and systems
theory, such as model reduction, minimum order control synthesis; see the work of Boyd, Fazel,
Candés, and others. In the so-called matrix completion problem, we seek the lowest rank matrix
with certain entries given. This problem, like (1), can be shown to be NP-hard. Here we consider
X € S™, but the discussions readily generalize to rectangular matrices X € RP*".

A convex approximation of (88), analogous to (2), is

min || XY,

Xesn (89)
s.t.  AX =0,
where || X|,.. = >_;0i(X) (“nuclear” norm) and o1(X),...,0,(X) are the singular values of X.

Thus, nuclear norm is simply the 1-norm of the singular values. Since X € S", we have

0i(X) = VAi(X?) = [Mi(X)].

The problem (89) can be reformulated as an SDP by using a fact that

[X[[aue = min 3 (tr[W] + tx[2))
w X
s.t. [ X z ] > 0.

This can be shown by verifying that W = Z = (X?)'/2 is feasible for this problem, and that
Sign(X) is feasible for its dual with the same objective function value, where Sign(X) is obtained
from X by replacing the eigenvalues in its eigen-decomposition by their signs. The SDP can
be solved by primal-dual interior-point method, but the work per iteration is O(n*) operations,
which limits the size of problems solvable.

If b is noisy, then we consider, analogous to (82), the regularized least-square problem
L1
min & [ AX = b + 71X e (90)

with 7 > 0. This problem can be reformulated as a quadratic SDP.

6 First-Order Gradient Methods

Looking at the application problems of the previous section, we see that they mostly have the
following form:

min  fp(z) = (z) + P(z), (1)
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where P : HH - RU {oo} is proper, closed, convex, and f : H — R is differentiable, convex, and
V f is Lipschitz continuous on domP, i.e., there exists scalar L > 0 such that

IVf(z) = Vil < Llz —yl| Vz,y € domP. (92)

Recall that || - || = v/(:, ), i.e., H is a Hilbert space (although the subsequent development readily
extend to H being a real Banach space). Moreover, in the application problems, P is simply
structured, which will be key to the efficient solution of (91). We discuss this in more detail
below.

1. The lasso problem (82) corresponds to

1
H = R?, f($)=§||A$—b||§, P(z) = 7|z

Thus domP = R™ and, by the chain rule for differentiation, V f(z) = AT (Az — b), which is
computable in O(mn) operations (or less if A is sparse or structured, such as when Az and
ATw are computable by fast Fourier transform). Moreover,

IVF (@) = Vi)l = |AT (Az — Ay)ll2 < Amax(ATA) |z —yll2  Vz,y € R".

2. The regularized logistic regression problem (84) corresponds to
H=R", f(z)=4Az), P(z)=rlzlL,

with £ given by (83). Thus domP = R" and it can be verified that V£ is Lipschitz continuous
Ama,x(ATA) I
4 ’

(with constant %, I think), so that Vf is Lipschitz continuous (with constant
think). Moreover, V f(z) is computable in O(mn) operations or less.
3. The dual TV-regularized problem (87) corresponds to
2 ..
. PN
_ m2N? _1 ij . ij if . ij I 8 E 0 P i
H=R"", f(:v)—i ZA x +<b,ZA zv), P(z)=
0

— oo else.
2 z’j

Notice that P is closed and convex since it is the indicator function for a closed convex set,
namely, the Cartesian product of closed Euclidean balls. Also, using the sparsity structure
of A% (see (85)), Vf(z) is computable in O(N?) operations.

4. The regularized least-square problem (90) corresponds to
1
H=8" f(X)=gllAX —bll3, P(X)=7[X],-

The work to compute Vf(X) depends on A and A*.
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6.1 Partial linear approximation

So (91) has nice large-scale applications. How to solve it? As always, we approximate a complex
problem by a simpler problem. Here, we will exploit the properties that f is differentiable and P,
though nondifferentiable, is simply structured. Specifically, we will approximate f locally to first
order by its linearization at a given z € domP:

@) = @)+ (Vf(z),y — ) + olly — =)
Adding P(y) to both sides yields the approximation fp(y) = £(y;z) + o(||ly — z||), where we let

Uy;z) = f(z) + (Vf(z),y — ) + P(y). (93)
(We do not approximate P since it is already simply structured.)

The above discussion suggests a simple method for solving (91): Given z € domP, solve the

(partial) linearization
min £(y; z) (94)
y

to obtain a new x; and re-iterate. What’s wrong with this? For one, the minimum may not exist.
This is certainly true if, say, P = 0. But it’s also true if P is coercive (i.e., its level set {z | P(z) <
o} is bounded). An example is minger 322 + |z|; see (82). At z =2, {(y;2) =2+ 2(y — 2) + |y
has no minimum. Even if a minimum exists, the minimizing y may be far from z, so that ¢(y; x)
poorly approximates fp(y) (although this can sometimes be remedied by performing a line search
on the line segment joining z and y).

How to ensure a minimizing y exists and is not far from z?7 We can add a proximity term
between z and y to (94). The simplest such term is the quadratic |ly — z||%. (An alternative
is |ly — z||, but it is not differentiable nor separable.) Scaling this by L yields a second-order
approximation (since L is a bound on the rate of change in the gradient). This results in

) L
min £(y;z) + 5 ly = al|*. (95)

The objective function is strictly convex and coercive (due to the quadratic proximal term), so it
has a unique minimizer. Let’s see some examples of P for which the minimizer is easy to compute.
Letting ¢ = V f(x) and using (93), this simplifies to

. L
min (9,y) + P(y) + 5 lly — | (96)

1. Suppose P = 0. Then (96) reduces to
. L
min (g,) + Iy — z|*.
Y 2

The objective function is quadratic. By either completing the square or differentiating with
respect to y and setting it to 0, we obtain that the minimizing y satisfies g + L(y —x) = 0

and hence g
This is Cauchy’s steepest descent method, with stepsize % (so a larger L means a smaller
step).
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. Suppose H = R" and P(y) = 7|ly|l1 (as in (82) and (84)). Then (96) reduces to

: L o L
min (g,9) + 7yl + 5y — 2l = min =gy + 7yl + 5 (v: — 7).
i=1
The objective function is separable, so we can minimize over each y; independently. By
considering the three cases y; > 0, y; < 0, y; = 0, it is straightforward to check that the
minimizing y; is given by the formula

Yi :median{xi - gi+T,$i - gi%,ﬂ}.

L

Then the minimizing y can be found in only O(n) operations.

0 if [lyello <7 V£

oo else
7> 0 (as in (87)). Then (96) reduces to

. Suppose H = R?" and P(y) = { , where y = (y¢)7_, with y, € R? and

L : L 2
ming (g,y) + §||y —z|3 _ miny %:(9&3/1{) + 5”3/12 — zg||5
st lyella <7 Ve st. el <7 Ve

. L ge
miny, Z§||ye—($e—f)||%+“'
7
st lyell2 <7 V2

where the second equality is obtained by completing the square, and “---” denotes terms
independent of y. The objective function is separable, so we can minimize over each
independently, yielding y; as the nearest-point projection of z, — 4 onto the Euclidean ball
of radius 7. Thus the minimizing y, is given by the formula

zo— % if flzg — % <7
- zp— 9
e T éigf else.
lze — Fll2

Then the minimizing y can be found in only O(n) operations.

. Suppose H = 8" and P(Y) = 7||Y|,.. (as in (89)). Then (96) reduces to
L
n%in <G7Y> + T||Y||nuc + EHY - X”%"

It can be shown that the minimizing Y can be computed from an eigen-decomposition of
X — £ in O(n®) operations.
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