Math 582 B, Winter 2009 Lecture Notes for Week 8
For SDP, we have from AU = ((4;,U))/%; and A*w = }_; Ajw; that

mij = (A, Lx'Ly 4;), 1<i,5 <m.

For general Ai,..., Ay, we need to compute L)_(lLij (which typically take O(n®) operations;
see discussion later) for j = 1,...,m, and then take its trace inner product with A; (in O(n?)
operations) fori = 1,...,m (or i < j if M is symmetric). Thus, the overall work is O(mn3+m?n?)
operations. Notice that m < n(n + 1)/2 since Null(A*) = {0}. Once M is computed, solving
the reduced Newton equation (65) takes only O(m?) operations (using Gaussian elimination or
QR factorization or, if M > 0, Cholesky factorization or conjugate gradient method). Thus, in

contrast to LP, the main computational work lies in computing M rather than solving (65)!

For the MT direction (58) or the family of directions (59), it can be shown that L}'Ly is
positive definite (and also symmetric for (59)). Thus the corresponding directions exist and are
unique. Moreover, M is symmetric and M > 0 for (59). For the AHO direction (57), M is
generally not symmetric, so the work to solve (65) is greater.

If Aq,..., Ay, have special structure, then we may be able to exploit the structure and compute
M with less work. For the SDP relaxation of the MaxCut problem, we have A; = ¢(e’)” and
m = n. Consider the family of directions (59), we have upon letting V7 = Ly Aj and Ui = L;(le
that

mij = tr[e’ ()T V] = ()T Ué.
Now we show that Lx is invertible by solving LxU = V explicitly for U in terms of V: We have
from (59) that
ZT[j’Zl—T + Zl—TUZT
2

where we let Z = X oY and U = X! o U. Consider an eigen-decomposition of Z: Z =
QDiag((1,...,C)QT with QT Q = I. Multiplying left and right by Q7 and Q, we can rewrite the
above equation as

=V

Diag(¢],...,¢7)UDiag(¢i 7, ..., ¢A77) + Diag(¢{ 7, ..., (7 7)UDiag(¢T, ..., ¢7) = 2V,
where we let U = QTUQ and V= QTV Q. This yields
C/?ﬁkte*T + C;i*T[AflceCZ =2V VE, L.

Thus we can solve for U: .
A 2Vie

Uke: —T —T
GGG

Notice that U is symmetric since V is. Applying this to U7 and V7 yields

Vk, £,

V= Q"VIQ = Q"(LyA;))Q = Q" (X6l (e))"X'/*)Q = w (/)"
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where we let v/ = QT X1/2¢J, and

mi; = (ei)TXl/2Ule/26i

(ei)TXl/QQU'jQTXl/Qei

— ( i)TUj i

= ZukUjeW
k.t

— 2Vlg€ i

- Z 7' 1 T 1-7 '7"u'1Z
k.2 k: +Clc Cé

_ Z ZUfCu% u%
i T_i_ClifTCZ

What’s the total work to find M? We can compute X /2, then Z, and then Q in O(n?) operations.
We then compute each w/ in O(n?) operations. Computing each m;j by the double sum takes
O(n?) operations. (At least, I don’t see a quicker way.) Thus the total work to compute M
is O(n3 + mn? + m?n?) = O(n*) operations (since m = n). However, for the NT direction,
corresponding to 7 = %, the above expression simplifies to

LN\ 2
mij = Z“ Cl/ng/Q = (Z ;1/2k> = ((@")"a’)",

k

where 4¢ = (u}/(, V/ 4) "_,. Thus in this case the total work to compute M is only O(n?) operations,
of the same order as for the dual path-following method (though here the work is greater since it
needs to find X1/2, @, and cannot exploit the sparsity of Y)!

4.4 More practical primal-dual path-following methods

The primal-dual method analyzed in Proposition 3 has the best worst-case iteration complexity,
but in practice it is slower than other variants. We will look at two variants below. One replaces
the narrow neighborhood by a wide neighborhood and another adds an extra predictor step to
accelerate convergence. Also, the path-following methods we have seen so far require feasible
interior starting points. For specially structured problems like the MaxCut SDP relaxation, such
starting point can be found easily. But this is not true in general. We will see two approaches to
handle this, both of which allow infeasible starting points.

4.4.1 A wide neighborhood

Primal-dual path-following methods can be significantly speeded up in practice by using a wider
neighborhood (so that larger steps can be taken and still remain inside the neighborhood), even
though the worst-case iteration complexity bound is worse. A popular choice is the “wide”
neighborhood:

Nwide(7) = {(xayaua 6) | Az =b, y= A" —c, z € intK, min(x ° y) > 76} (66)
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with 0 < v < 1. Here min(z) = min; z; in the case of LP,

min(z) = minzp, — /22, +---+22 |,
Z b} (2 bl
in the case of SOCP, and
min(Z) = min \;(Z)
3

in the case of SDP. It’s not hard to see that ||z — ee|| < (1 — 7)e implies min(z) > e, and hence
Noo(l—7) CN_,..(7). In fact, The latter is much larger than the former. For SDP, this is the

nar W

difference between /Y _;(Ai(Z) — €)2 < (1 — y)e and A\;(Z) > e for all i, where Z = X o Y.

The wide neighborhood was originally conceived for LP, for which it yields fast convergence
in practice and has a worst-case iteration complexity that’s only a factor of y/n worse than the
best known. The above extensions to SOCP and SDP are very natural. However, the complexity
analysis is not easy to extend. For SDP, a complexity analysis is known only for directions from
the MZ family (see (60))

AU =0, V=Aw, Hp|XY+UY +XV]=oel, (67)
where 0 < o < 1 and P € R®*" ig invertible, symmetric, and satisfies
PXY P! is symmetric. (68)

Monteiro and Zhang calls such P the “commutative” class of scaling matrices. This class includes
the HRVW/KSH/M direction (P = X~'/2), its “dual” (P = Y~'/2), and the NT direction
(P=(X"Y*(Xo Y)I/QX_I/Q)I/Z), as can be checked.

Letting X = PXP, U = PUP and Y = P 'YP!, V = P!V P!, we can rewrite the third

equation in (67) as
Sym[XY +UY + XV]| = oel. (69)

Since P is symmetric and invertible, we have X > 0, ¥ > 0. Let SxU = Sym[XU]. It’s not hard
to check that S; and Sy are self-adjoint and positive definite, so S;IS  is self-adjoint. Moreover,

(68) is equivalent to XY = Y X, so X and Y commute. Then it can be shown that S + and Sy
commute, so that
-1
Gxy =5y 5%

is positive definite. In fact, X and Y are simultaneously diagonalizable, i.e.,

X = QDiag(6)Q", Y = QDiag($)Q" with Q'Q =1, (70)
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where @) € R™*™ and &, € (0,00)" are the eigenvalues of X and Y, respectively. For any V € S,
letting V = S;U (so U = S;lV), we have

. T T : . .

oTvQ = Dias)Q UQ—;Q UQDiag(y) _ [wz;% QUQ);|

)
and hence 5
T _ T .
QU= [ @R )
It readily follows that
Gy U = S7HS.U) = [ﬁ Ty ] T
Xy Y(X ) Q ’lﬁz-l-’lﬁ](Q Q)]i,jQ

We define the condition number of G = G4 ;- in the usual way: cond(G) = Amax(G)/Amin(G)-

Below we estimate the improvement at each iteration of the path-following method using the
wide neighborhood and MZ directions based on commutative scaling matrix. The proof, which
streamlines that given in a 1998 paper of Monteiro and Zhang, differs from Propositions 3 because
we work with Apin(-) instead of || - —elI||p. In particular, we can no longer use properties of the
trace. Instead, we use the matrix facts (i) A € R™" and PAP~! have the same eigenvalues
for any invertible P € R™ " (ii) min; ReXj(A) > Amin(Sym[A4]), and (iii) Amin(+) is a concave
function. (See the book Topics in Matrix Analysis by Horn and Johnson.) The estimate is for
SDP, but it easily specializes to LP (i.e., A; and X,Y are diagonal matrices) and possibly SOCP.

Proposition 4. Consider SDP. If (X,Y, ,€) € N....(7) with e = &Y then (X, Yy, py,er)

n_ 7’
given by (49), (50) with U,V given by (67) and (68),
0<a<mind1, 220 732 : ! (72)
1=20+% n,/cond(Gy y)

and @ =1— o is also in N, (y) with e, = (thi,)q)

Proof. Since (X,Y, pu,€) € N,,,.(7) wehave AX =b,Y = A*pu—C, X > 0, and Apin (X oY) > ve.

Since AU = 0 so that V = A*w, we have from (49) that
AX[e]=b,  Y[a]=A*pla]-C Y0<a<l.
We also have from (49) that
X[a]Y[a] = (X +aU)(Y +aV) = (1 - a)XY + (XY +UY + XV) + 2UV. (73)

Assuming X[a] = 0 (which will be verified later), so X[a]Y[a] has the same eigenvalues as
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X[a] o Y[a] and hence

Amin(X[a] 0 Y[a])

Amin (X [a]Y [a])

Amin(PX[a]Y [a]Pil)

Amin (Sym[PX[a]Y [a]P 1))

Amin (Hp[(1 — @) XY + (XY + UY + XV) + o*UV))

Amin (1 — @)Hp[XY] + aHp[XY +UY + XV] + o*Hp[UV])
A (1 — a)Hp[XY] + a(oel + aHp[UV]))

\Y%

(
min
(

min

Vv

1-— a))\min (HP[XY]) + @ Amin (O’EI + CYHP[UV])
1 — &) Amin (PXYP7Y) + & (0€ + ain(Hp[UV]))
1 — @) Amin (X oY) + aoe + o Apin (Hp[UV])

(
=
(
(1 — a)ye + aoe + &* Amin(Hp[UV]), (74)

v

where the second inequality uses 0 < @ < 1 and the concavity of Amin(+); the sixth equality uses
the symmetry of PXY P L.

For any 0 < a < 1, we have from (73) and (U, V) = 0 that

Kl Vla) _ () ) P6T) | POT)+ BN+ () | ()
(- ayeq QY HUY XV
= (1-ae+ OAM
= (1 —a)e—l—aaen
(1—ab)e
= ¢lal, (75)

where the third equality uses (67); the fifth equality uses # = 1 — o; and the last equality uses
(49).

It follows from (74) and (75) that Apmin(X[c] o Y]e]) > €[] whenever
(1 — @)ye + aoe + A Anin(Hp[UV]) > v(1 — a + ao)e

which simplifies to
o(l —v)e+ armin(Hp[UV]) > 0. (76)

Then (76) is satisfied by a constant a provided —Amin(Hp[UV]) is uniformly bound from above.
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We have upon letting U = PUP, V = P~'VP~!, and G = G ; that
Amin(Hp[UV]) = —Amin(Sym[PUVPY])

~Amin(Sym[UV])

Amax (—Sym[UV])

< |l = Sym[UV]||r
_ IOV +VU|r

2
_ 10V + VO
- 2
= |UV]|r

< )\max(ﬁ)HV”F
< UlrlIVIe
_ ”GI/ZG—I/ZUHF”G—I/ZGI/ZVHF
< )\maX(Gl/z)||G_1/2ﬁ||F)‘maX(G_1/2)||G1/2V||F
= cond ()2 |G U p|G?V ||k
172 IGO0 5 + G2V 15
2 7
where the last inequality uses ab < (a® + b%)/2. We have from (69) and symmetry of XY that

IN

cond (G)

(77)

S?U—i— SXV =oel — XV.
Applying s;l and then G~1/2 to both sides yields
G0+ GV = G728 el - XY).
Since S ¢ and Sy are positive definite and commute, we have G™1/2 = S§1/2SI/2 Also, (G‘lﬂﬁ, G1/2V) =
(U,V)=(U,V) =0. Thus
IG2U % + G2V 1% G20 + G2V %
= I55"/285 (oel = XT3

\/szw\/«m% LQ
2
¢&+@¢m+%

= Z £y 6 )°

o%e? "
= —20en+ ) &

0'26

—n — 20€en + en,
v

2

F

,J

IA
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where the third equality uses the formula (70), (71) for S}T/l (and the observation that S;l/ % is
obtained by taking square root of each %%% term in (71)) and we let Z = QT (cel — XY)Q =
Diag(oe — &191, . .., 0€ — €1y ); the inequality uses

ve < A(X oY) = N(PXYPY) = N(XY) = &9p; Vi

and en = (X,Y) = (X,Y) = >; &ti. This combined with (77) shows that (76) holds whenever
« satisfies (72).

Finally, since X[0] = X > 0, Y[0] =Y > 0, X[a], Y[a] are continuous in o and Amin(+) is
continuous on S", we also have that X[a] > 0, X[a] > 0 for all « in the interval (72) (otherwise
AminX [@] 0 Y[a] = 0 for some « in this interval, contradicting Amin(X[a] o Y[a]) > €[a], as is
implied by (76)). =

We need 0 < o < 1 to ensure that > 0 and the interval (72) is nonempty, so that e; < e. It’s
easily verified that, for the NT direction (P = (X_1/2(X o Y)I/QX_l/Q)l/Q), X =Y and hence

COIld(GX };) =1.

For the HRVW /KSH/M direction (P = X ~'/2) or its dual (P = Y~'/2), it can be shown that

cond(G; y) < L

’ Y
whenever @ = € and A\pin (X oY) > ve. It follows from Proposition 4 that, when the NT direc-
tion is used, we have & = ©(1) so that e; = (1 — ©(1))e. This in turn implies O (n log (jTOM))

n
iterations until termination. This is worse by a /n factor compared to using a narrow neighbor-
hood (see Proposition 3). For the HRVW /KSH/M direction, the iteration complexity is worse
by another y/n factor. However, in practice the wide neighborhood yields faster convergence (by
taking larger stepsize «, as long as the new iterate stays inside the neighborhood), even though its

worst-case complexity is worse. Can Proposition 4 be extended to other primal-dual directions?

4.4.2 Predictor-corrector methods

Primal-dual path-following methods stay near the central path by moving (z,y, ) along a di-
rection (u,v,w) towards the central path (sometimes called the “centering” direction) and then
decreasing €. Propositions 3 and 4 show that solving the Newton equation (48) with 0 < o < 1
yields such a centering direction. However, the solution we are seeking corresponds to ¢ = 0,
so intuitively we may be able to speed up convergence by also using directions corresponding
to 0 = 0 in (48) (sometimes called the “affine scaling” direction), with stepsize chosen to keep
(z,y,p) near the central path. This is in the spirit of predictor-corrector methods for equation
solving.

For example, at each iteration, we might move the current (z,y, u,e) € N () (the neighbor-
hood can be narrow or wide) along an affine scaling direction (uy, vp, wp, —€) to obtain

(‘Tlayl,/'l’laa) = (ZE,y,/j,, 6) + ap(upavpawpa _6)5
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with a;, > 0 chosen as large as possible such that (z/,y/,u',€') € N(y') for some vy < 4/ < 1.
This is the predictor step. Then move (2,1, u',€') along a centering direction (uc, v¢, we, —0€)
to obtain

(IE_|_, Yty Ut 6+) = (J",a y', /J'Ia el) + C‘éc(uw Vey We, _961)’
with . > 0 and 0 < € < 1 chosen so that (z4,y+,p+,€+) € N(y). This is the corrector step
(check?). Thus the predictor step aims to speed up convergence while the corrector step ensures

robustness of the method.

(v<9'<1)

For LP, the directions (uyp, vp, wp) and (u, v¢,w,) are typically computed by solving (48) with
o = 0 and o = 1, respectively. This has the key advantage that the left-hand matrix M in the
reduced Newton (Schur) equation (65) is the same for both directions, so that a Cholesky factor-
ization of M can be reused instead of computed twice. For this version of the predictor-corrector
method, local superlinear convergence can be shown (in addition to polynomial time complexity)
for suitable choices of the parameters v,~',6. (For example, v and 7/ —  need to be sufficiently
small.) However, for some large-scale problems (such as signal denoising by Wavelets), Cholesky
factorization is impractical for solving the Schur equation and iterative methods like conjugate
gradient method are used instead. In such cases, there is no advantage in having the same M, and
faster local convergence (quadratic rate) can be achieved when the centering direction (uc, v, we)
is computed by solving (48) with ¢ = 1 and (z,y, p, €) replaced by (2,4, u', €').

For SDP, the primal-dual direction is not unique, and the feasible sets F(P) and F(D) are
not polyhedral, which complicate matters. One version of the predictor-corrector method chooses
(Up, Vp, wp) to be the AHO affine scaling direction, i.e.,

AU, =0, V,=A*w,, Sym[XY +U,Y + XV,] =0,
and (U, V., w,) to solve (48) with 0 < o0 <1 and (X,Y, u,€) replaced by (X', Y’ u',€'). For this
version, local superlinear convergence, i.e.,

(X4 Vi i) = (X5 Y5, 05) |r = o([[(X, Y, p) = (X7, Y7, 7))

can be shown (in addition to polynomial time complexity) for suitable choices of the parameters
v,7', 6, and assuming also that the optimal primal and dual solutions X*, (Y*, u*) satisfy “strict
complementarity” and “nondegeneracy”, namely,

X*4+Y*>0, AU=0,V=Aw UY*+XU=0 = U=V=0, w=0.

Why the AHO affine scaling direction? This direction has the key property that it’s well defined
and unique at (X*,Y™, x*) under the above assumption, which existing convergence analysis
needs. This contrasts with NT and HRVW/KSH/M directions which seem not well defined at
(X*,Y*, u*). This does not mean superlinear convergence is not possible with other directions,
but a proof would need new ideas.
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4.4.3 Infeasible methods

The path-following methods of previous sections start with an (z,y, u, €) in some neighborhood
N,..(v) or N, . (7). For specially structured problems such as MaxCut SDP relaxation, such

nar

(z,y, 4, €) can be found easily. What if it cannot be found easily?

One approach is to allow the equality constraints to be violated, i.e., Az # b and/or y #
A*p — ¢. Accordingly, we modfiy Au = 0 and v = A*w in (48) to

Au=b—- Az, v=A"w+ A'p—c—y.

However, in general (u,v) # 0, which complicates the complexity analysis. Nonetheless, by
suitably estimating (u,v), a complexity analysis is possible under the primal and dual feasible
interior assumption (21). As the analysis is fairly involved, we will not go into details here. What
if (21) fails? Can this be detected by the method (possibly by monitoring the divergence of z or
(y,1))? This seems not easy, though some study has been made. An alternative approach will be
considered in the next subsection.

4.4.4 Self-dual homogeneous embedding

A second approach to finding a starting point for path-following methods, originally proposed by
Erling Andersen and Yinyu Ye for LP, is to reformulate the basic primal-dual optimality condition
(Karush-Kuhn-Tucker condition) as a self-dual conic optimization problem with (essentially) the
identity element e (with respect to the symmetric multiplication o) being a feasible point. Then
e would be feasible for the dual problem, and since e o e = e, we have a point on the central path
to start the path-following methods from previous subsections.

Specifically, it’s readily verified that the following conic optimization problem

maxy, (d,u)
s.t. Bu+v =d, (78)
u€e K, ve K°,

where K is a nonempty closed convex cone in H, d € H, and B is a linear mapping from H to H
having the skew-symmetry property B* = —B, is self-dual, i.e., its dual equals itself.

Now, consider the primal problem (18) and its dual (20). For simplicity, consider the case
of SDP. (The same idea specializes to LP and SOCP.) A basic condition for X and (Z, u) to be
optimal solutions is primal and dual feasibility plus no duality gap:

AX = b, C—Atp=2,

T

This is a sufficient condition for primal-dual optimality by weak duality, which in fact implies the
last inequality must hold with equality (if it has a solution at all). However, the inequality is
needed to obtain a self-dual problem. The sufficient condition (79) is also necessary for LP (when
Ai,...,An, C are diagonal matrices) and more generally when the cone in (18) is polyhedral.
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How to reformulate (79) into the form (78)? First, we put (79) into a homogeneous form by
scaling the constants b and C' by a new variable 7 > 0:

-AX +br  +v =0, uER™, v € {0},
A*p —Cr +Z =0, X =0, Z =0, (80)
—bTp +(C, X) +p =0, T >0, p<0.

Here we also introduced an artificial variable v (fixed at 0) and a nonpositive slack variable p to
put the equations in the self-dual form (78). Then any solution of (79) is a solution of (80) with
7 =1, v =0, and p appropriately chosen. Conversely, any solution of (80) with 7 > 0 yields
(X, Z,p)/T as a solution of (79). What if 7 = 0?7 We will address this later.

Second, we borrow a trick from LP for starting the simplex method. Let F(u, X, T,v, Z, p)
denote the left-hand side of the set of three linear equations in (80). Let

r=F(0,1,1,0,—1,—1)

and augment these equations by a new column —r6@ with 6 a new nonnegative variable. Then
(0,1,1,0,—1,—1) together with # = 1 is a solution of the augmented equations. We then minimize
0 so to drive 6 to zero. To maintain skew-symmetric form of the equations, we introduce a new
row (r,-) augmented by a zero. The reformulated problem is

mex, P
v,Z,p, T
0o -A b | L v 0
A* 0 -C -r X VA 0
T <T7 > T 0 o T B

yER™, X =0, 7>0,0>0,
ve{0}, Z2<0, p<0, 7<0,

where we let § = (r,(0,1,1)) — 1. Some calculation yields f = —(n + 2), so maximizing 36 is
equivalent to minimizing 6. It is readily seen that (81) has the self-dual form (78). Moreover,
our choice of r and 0 implies that (u, X, 7,0,v,Z,p,7) = (0,1,1,1,0,—1,—1,—1) is feasible. This
can be used to start a primal-dual path-following method to solve (81). By exploiting the special
structure of (81), the work per iteration can be made comparable to the primal-dual methods we
saw before.

Notice that (0,0,0,0,0,0,0,3) is feasible for (81), so it’s in fact optimal (since § > 0 on
the feasible set) and the optimal objective value is 0 (i.e., # = 0). So what good is solv-
ing (81)7 When we solve it using the path-following method, the optimal solution found, say
(u*, X*,7%,0,0, Z*, p*,7*), can be shown to be “maximally complementary” in the sense that
X* — Z* (which is positive semidefinite) has maximum rank among all optimal solutions. (Cau-
tion: This may not be true if another method is used to solve (81).) Then, it can be shown the
following:

o If 7" > 0, then )T(: and (Z*T—’*“*) solve (79) and hence are optimal solutions of (18) and its
dual (20).
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o If 7* = 0 and p* > 0, then a primal or dual improving direction is found (i.e., either
AX* =0, (C,X*) > 0 or Z* = —A*p*, b u* < 0). This implies the primal or the dual
problem is infeasible or unbounded.

o If 7* = 0 and p* = 0, then (79) has no solution and no primal or dual improving direction
exists.

More discussions and references on this can be found in Section 3.3 and Chapter 4 of the 2002
book Aspects of Semidefinite Programming by de Klerk.

The self-dual homogeneous embedding (81) for SDP was proposed by de Klerk et al. and was
implemented in the popular SDP solver SeDuMi by Jos Sturm (who died tragically young). In
practice, (81) is solved only inexactly within some tolerance.
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