Math 582 B, Winter 2009 Lecture Notes for Weeks 6-7
Instead of (49), we can use
e[e] = min{e | (z[a], y[o], ule], €) € N},
which may or may not be easy to compute, depending on the choice of N.

As for the neighborhood N, one choice is the same “narrow” neighborhood as (32) and (35):
N,

nar

(V) ={(z,y, ) [ Az =b, y = A"p —c, 7 € intK, [zoy —cel| < e} (52)

with 0 < v < 1. This is not as practical as other neighborhoods we will see later, but it yields
the best worst-case iteration complexity. What about L, and L,?

e For LP, since g—wl(xzyz) = y; and aa—w(x,yz) = x;, we see from (46) that
Lyu=you, Lyv =zow. (53)

There has been much study of the primal-dual path-following method for LP, especially
around 1990 to 2000. A good reference is the 1997 book by Steve Wright, Primal-Dual
Interior-Point Methods.

e For SOCP, one possible choice of o in (45) is the Jordan product associated with second-order
cones:
i—1
(%4,iYn,i + Tn,iYii) ey

N .
Toy = [z; 0yl with Z;0Y; = szyz

and e = [e™]Y, (" € R™ has 1 in the last entry and 0 else where). We have then
L,u = you, Lyy=zow.

However, unlike LP, z,y € K, does not ensure z oy € K .. Primal-dual path-following
methods for SOCP were studied by Monteiro and Zhang around 1998. In general, interior-
point methods for SOCP have not been too much studied.

e For SDP, the choice of Lx and Ly is more complicated, as there are many choices! (These
choices coincide if X,Y, u are on the central path since X and Y commute there, but they
can be quite different off the central path.) At issue is the linearization of the nonlinear
equation in (45), which for SDP is

X2y X112 = e, (54)
with X,Y > 0 and € > 0.

0. A naive approach is to multiply (54) left and right by X/2 and X /2 respectively, to

obtain
XY =€l

and then linearize (i.e., replace X,Y by X + U, Y 4+ V, expand, and drop the higher-than-
linear terms in U, V). This yields the (linear) Newton equation in U, V:

XY +UY + XV =, (55)
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What’s wrong with this? Multiplying it on the right by Y1, it becomes X + U+ XVY ! =
€Y 1. While X and Y ! are symmetric, XVY ! is generally not symmetric even if V is
symmetric, which means U is generally not symmetric even if it exists!

1. An early idea to overcome the difficulty of U asymmetry, proposed independently by Helm-
berg et al., Kojima, Shindo, Hara, and Monteiro, is to multiply (55) left and right by X-1/2
and X'/2 (so it is symmetric in all except one term) and then symmetrize. This yields the
(linear) Newton equation in U, V:

X oY +Sym[ X V2UY X2+ X oV =,

where Sym[A] = (A4 + AT)/2 for any A € R**". Since X ~1/2UYX1/2 = (X~1oU)(X oY),
this is equivalent to the third equation in (48) with

LxU=S8Sym[(XtolU)(XoY), ILyV=XoV. (56)

The U,V satisfying (48) and (56), called “HRVW /KSH/M direction”, can be shown to be

symmetric, exist, and are unique.'?

2. A second idea, proposed by Alizadeh, Haeberly, and Overton, is to directly symmetrize (55).
This yields the (linear) Newton equation in U, V:

Sym[XY +UY + XV] = el. (57)

This equation cannot be written in the form of the third equation in (48). Nevertheless, the
(U, V) satisfying this equation and the first two equations of (48), called “AHO direction”,
can be shown to be symmetric, exist, and are unique if in addition Sym[XY] > 0. Thus,
the AHO direction is usable under more restrictive condition. In practice it seems to yield
more accurate solution.

3. A third idea, proposed by Monteiro and Tsuchiya, is to linearize X'/2. In particular,
expanding X +U = (X2 4+W)? yields U = X'/2W +W X /2 4-0(||W||). Similarly expanding
(X2 + W)Y (X2 + W) = eI and dropping the o(||W||) terms yields the (linear) Newton
equation in U,V, W:

U=X"VW+WX'?2,  XoY+WYXPP4+XV2YW+XoV =l

Rewriting the first equation as X ! o U = Sym[W X /2] (which can be seen to have a
unique solution W € S™ for each U € S™) and using WY X/2 = WX~/2(X oY), we see
that this is equivalent to the third equation in (48) with

LxU =Sym[WX~Y2(X oY)] with Sym[WX /2| =X"1oU, LyV=XoV. (58)

The U,V satisfying (48) and (58), called “MT direction”, can be shown to be symmetric,
exist, and are unique. (This is not easy to show.) Notice that (58) reduces to (56) when
W X~1/2 is symmetric.

10The symmetry of U is due to the fact that Sym[W Z] = R has a unique solution W € S™ for any Z > 0 and any
R € S™. In fact, by using the eigen-decomposition of Z: Z = QDiag((1, ..., ¢.)QT with QTQ = I, we can rewrite

this as QW QDiag(Ci, .. .,¢n) + Diag(Cu, ..., 6 )QTWQ = 2QT RQ and hence W = Q [%] Qr.
i i
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4. Can the previous directions be generalized? One generalization, parameterized by 0 < 7 <

1

99 is

LxU=Sym[(X oY) (X 'oU)(XoY)!""], ILyV=XoV. (59)
Here 7 = 0 corresponds to the HRVW/KSH/M direction, and 7 =  corresponds to a search
direction proposed by Nesterov and Todd (NT direction). Although the NT direction looks

complicated, it can be easier to compute, as we shall see for the SDP relaxation of MaxCut.
The U,V satisfying (48) and (59) can be shown to be symmetric, exist, and are unique.

5. Another generalization, proposed by Monteiro and Zhang, is to first multiply (55) left and
right by P and P~!, where P € R™*" is invertible (possibly depending on X,Y’), and then
symmetrize. The resulting scaled Newton equation is

Hp[XY +UY + XV] = el. (60)

where for simplicity we denote Hp[A] = Sym[PAP~!]. This yields the AHO direction when
P = I, the HRVW/KSH/M direction when P = X~/2, and (with some algebra) the N'T
direction when PTP = X 1/2(X o Y)/2X /2. The (U, V) satisfying (60) and the first two
equations of (48), called the “MZ family”, can be shown to be symmetric, exist, and are
unique under suitable assumptions on P and X,Y.

6. Notice that (60) corresponds to replacing X,Y, U,V in (57) by, respectively, PXPT, P~TY P~
PUPT, P~TVP~1. Making the same replacement in (58) yields another generalization,
which can be shown to yield the NT direction when P = Y'/2 and the HRVW /KSH/M
direction when P = (Y XY)'/2. (Check?) The (U, V) satisfying (48) and this generalization
of (58), called the “X-MT family”, can be shown to be symmetric, exist, and are unique
under suitable assumptions on P and X,Y.

For SDP, is there a unified way to generate all the different directions? There have been
some studies of this by, e.g., Kojima et al. using the notion of inexact Newton directions, but
I think we still don’t have a full understanding yet. Are some directions “better” than others?
We will compare the work of computing them later. What about the number of iterations?
In practice, greater solution accuracy is reported using the AHO direction, but it’s theoretical
property is not so nice. We will see that a wide neighborhood can be used in conjunction with NT
and HRVW/KSH /M directions and still achieve “polynomial” iteration complexity. Overall, the
AHO, NT, and HRVW/KSH/M directions seem to be more popular. The 1999 paper by Todd,
A study of search directions in primal-dual interior-point methods for semidefinite programming,
compares 20 directions using many different measures.

Another open question: When specialized to SOCP (for starter, consider a single SOC), are
the above directions still different? Or are some of them the same? I am not aware that this
question has been studied.

Like Proposition 2 for the dual path-following method, we can prove a similar iteration com-
plexity for the primal-dual path-following method using the family of directions (59) and narrow
neighborhood (52). The complexity analysis with the MZ and X-MT families are more compli-
cated.
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Proposition 3. Consider o and Ly, L, given by (46), (53) for LP or by (47), (59) for SDP. If

(:ana/'l’a 6) € Nnar(7) and 7 < 2_\/3; then (‘T-f-ay—f-au—l—ae-f-) gien by (48)’ (49)) (50) with o = 1,
— 2 . .

a=1,0= % is also in N, (7).

Proof. We prove this for SDP only. LP is recovered as a special case when C and Ay,..., A,, are
diagonal matrices.

We have from (48), (59), and o = 1 that
1 _ _ _
AU =0, V = A*w, E(ZTUZH +ZVTUZT)+V =€l - Z. (61)

where for simplicity we let Z = X oY, U= X"1oU,and V = X o V. Since (z,y, u,€) € N, (V)
we have AX =b, Y = A*u—C, X > 0, and ||R||r < 7e, where we let R = el — Z. Since a =1
sothat Xy =X +U,Y, =Y +V, and py = p + w, the first two equations in (61) imply

AX, =b, Y, =A"uy —C.
Also, [N(R)| < ||R||r < ye for all 4, so that (since A\;(R) = € — A\i(Z))

(1 =7e<Ai(Z2) < (A +7)e Vi (62)
We have, as in the proof of Proposition 2, that

| X4 oYy —el|F
= tr[(X4Y} —el)?]
= tr[(X+U)(Y +V) —el)?]
— tr :((I +O)NZ+V) - 61)2]

i 2
= tr ((I +0) (eI - %(ZTUZ1_T + Zl_TUZT)> - d)

2
= tr (eU - %(ZT{‘JZH +ZVTUZ7) - %(027(72H + UZ”(‘JZT))

S . | S 1, - _ 2
< (||6U — (202 + 27U Z)|p + U270 Z 7 ||r + §||UZ1_TUZT||F)
= s 2
< (I0leve + 101 EAmax(2)) " (63)

where the third and fifth equalities use X = X/2X'/2? and tr[AB] = tr[BA] (4, B € R**"); the
fourth equality uses (61); the first inequality uses tr[A4%] < [|A||% (A € R"*") and the triangle
inequality; the second inequality uses ||UZ“UZ'%||p < [|U||pAmax(Z) (0 < w < 1) and ||eU —
HZ7UZY 7+ ZVTUZT)||F < ||U||pye (see Eq. (25) and Lemma 4.1(d) in the paper: Tseng, P.,
Search directions and convergence analysis..., Optimization Methods and Software, Vol. 9, 1998,
245-268).
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Now we bound ||U||z. We have from (62) that

Amin(Z) U |17
||ZT/20Z(177)/2||%‘
tr [UZ7UZ"]

1L =melUlF <
<

(U, %(ZTUZH +Z'7TUZ7))
= (U,R-V)

= (U,R)

< |UlrlIRIF,

where the second inequality uses || Z*UZ* || > |U||pAmin(Z) (see Eq. (24) in the above paper);
the third equality uses (61) and R = eI — Z; and the fourth equality uses (U, V) = 0 (which can
be shown similarly as in the proof of Proposition 2). Thus

(L
(I—=7)e ™ 1—-v

1Tl < (64)

Using (49), (50), a = 1, and the triangle inequality yields

1/2 1/2 1/2 1/2
VX v % —edlr = IVPXv? —e(l-0)I|F
< IVIPx, V)P —ell|p + 0| ||
v’ v’
< €+ 1+ 7)e+ eby/n
l—y  (1- 7)2( )
272
= ———¢e+eb/n
(1—7)? &
= ve(1—-0)
= 7€+,

where the second inequality uses (62), (63), and (64); the third equality uses the definition of 6.
Here > 0 because v < 2 — /3. Finally, (43) implies |\;(T)| < [|U||r <y < 1 for all 4, so that
MN(I +TU) =1+ M(0) > 0 for all 4, implying I + U > 0 and hence X, = X'/2(I + U)X/? > 0.
]

We see from Proposition 3 that §~! = O(y/n). Thus, like the dual path-following method using
narrow neighborhood, the primal-dual method terminates after O <\/ﬁ log (EﬁeToal)) iterations.
Proposition 3 can be extended to allow for o < 1, provided ~ is sufficiently small (depending on
o). The algebra becomes more complicated, however. Proposition 3 treats LP and SDP. SOCP
can be treated by reformulating it as an SDP, and taking care to exploit the structure when
computing the Newton direction. Can SOCP be treated directly?

What about computing the Newton direction? In general, we need to solve a linear equation
of the form
Au=0, v=Aw, Lyu+Lyw=r
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for some linear mappings L, and L, and r € H (see (48) and (60)). Does this have a solution?
Is it unique? Assuming L, is invertible, then we can apply L, ! to the third equation to obtain
u+ L7'Lyv = r and then using the first two equations to reduce this to

Mw=AL;'r  with M = AL;'L,A*. (65)

(This is sometimes called the Schur equation.) Since Null(A*) = {0}, it follows that M is positive
definite (and hence invertible and (65) has unique solution), provided that L;!L, is positive
definite.

For LP, we have z € R" and Az = Az, where A € R™*". Also, the linear mapping L, can
be represented as matrix multiplication by a diagonal matrix with diagonal entries y1, ..., y, and
similarly for L,. Thus

M = ADiag(z1/y1, .- ., Tn/yn) A"

Then M is symmetric, positive definite (since Null(A?) = {0}), and its entries are computable in
O(m?n) operations (less if A is sparse). Notice that m < n since Null(AT) = {0}. Moreover, M
is often sparse when A is sparse, and the sparsity pattern is independent of D. Then the equation
(65) can be efficiently solved using Cholesky factorization of M in O(n®) operations (and the
permutation matrix needs to be computed only once). If A is sparse except for a few columns,
then we can use a product-form Cholesky factorization proposed by Goldfarb and Scheinberg.
Alternatively, we can drop the dense columns and find Cholesky factorization for the reduced
A. The solution of the original equation can be recovered using Sherman-Morrison-Woodbury
inverse updates. If M is dense, then preconditioned conjugate gradient (CG) method is a possible
alternative way to solve (65). However, M becomes increasingly ill-conditioned as x,y approaches
optimality (since z; — 0 or y; — 0 for each i by complementarity), so preconditioned CG can
take many iterations to solve (65) accurately (unless a good preconditioner can be found).

For the LP reformulation of the convex approximation of the compressed sensing problem that
we saw in week 1 (see (3)), we have Az = Au — Av, where z = [?] € R*". Correspondingly

T
M o= (4 _A)Diag(ﬂ,... ___) (_AAT)

’ y s
w1 Wnp 21 Zn
. Uy U1 Un Un T
— ADiag (YL 4% Un | Un) g1
w1y 21 Wp, Zn

where y = [7;] Thus, by exploiting its structure, the LP can be solved as if it has only n variables
instead of 2n.
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