Math 582 B, Winter 2009 Lecture Notes for Week 5
Proof of Proposition 2 for the case of SDP:
Since (u, €) € N (), there exists X satisfying AX = b and

IY2XY2 —el||p < ve, (38)

where Y = A*y — C > 0. To show that (u4+,e1) € N(y), it suffices to find an X satisfying
analogous conditions. Letting w = pu4 — p and using (28), we can rewrite the Newton equation
(36) as

b+ eAVY(Y) + eAV2(Y) A*w = 0, (39)

where Y = A*u — C > 0. Letting V = A*w and using the formula for V4, and V23, from
week 2, this expands to
b—eAYV ' +eAYT'VY T =0

or b= A(eY ! — ¥ ~VY). This suggests taking
X, =Y ey~ lyy-L, (40)

which then satisfies AX, =b. LettingY, =Y +V (so Y = A*u, — C) and V = Y~1/2yy—1/2
we have

V22X —enlp = (X - ery?]
= tr [YIPx, v X, v -2y x, Y2 4 I]

= tr[X;YVi X Yy — 2eX, Yy + €]

= tr [(X;Yy —el)?]

— tr [((eY_ YWY (Y 4 V) —61)2]
= tr[(VYY)’

— 2ir [(Y‘l/2V2Y1/2) 2]

= 62 tr [Vﬂ

= & (i [V?)°

= &V, (41)
where the third, eighth equalities use tr[AB] = tr[BA] (A,B € R"*"); the fifth equality uses
(42); the seventh equality uses Y ! = Y ~1/2Y~1/2 and Y~1/2Y/2 = [I; the nineth and tenth
equalities use tr[AF] = Y=, X\;(4F) = Y, Xi(A)* for any even integer k; and the inequality uses

)Y azz <2 |az’|)2-

24

Now we bound ||[V||r. Letting U = X, — X, we have AU = 0. (Equivalently, (40) and
AU =0, V = A*w are the linearization of (33).) Multiplying left and right by Y"'/2, (40) can be
written as

Y2UY'? 4 ey VPvYy 12 = el — Y2 XY/ (42)
Letting U = Y'Y2UYY2 and R = eI — YY/2XY'/2, this simplifies to
U+¢€eV =R.
Using tr[AB] = tr[BA] (4, B € R**") and AU = 0 yields
(U, V) = te[YV2uy 2y -2y —12) = 2[UV] = (U, V) = (U, A*w) = (AU, w) = 0.
Thus
IRIZ = IU+eVIE = 1UI%+2¢V,0)+e|VIF = U7+ €V

Since, by (38), | R||F < e, this implies

- R
e < e < (13)

Using (37) and the triangle inequality yields

IV 2x v 2 e dlr = |Y2X,7)? - e - 0)I|p
< VEPX Y2 — el g+ 0|
< ey +ebvn
= ve(1-6)
= €+,

where the second inequality uses (41) and (43). Finally, (43) implies Y7, A(V)? = [V ||Z <42,
so [Xi(V)| €« < 1 for all 4, implying \;(I + V) =1+ X;(V) > 0 for all 4, so I + V = 0 and hence
Y, =Y'2U+V)Y'2%0. =

If C and Ai,...,A,, are diagonal, then so is Y, and X can be taken to be diagonal. The
SDP then reduces to an LP. There are still the questions of how to find an initial (x4, €) and how
to efficiently solve the Newton equation (36) or, equivalently, (39). This is problem specific and
often requires exploiting the problem structure.

Consider the SDP relaxation of the MaxCut problem we saw in week 1:
maxx Z Cij(l - J,‘ij)
1,JEN
S.t. X =0, i =1VieN.

Letting C' = [c¢jj]i,jen (C is symmetric) and A; be the matrix with 1 in its (¢,7)th entry and zero
elsewhere, we can rewrite this problem in the primal conic form (18):

maxy (—C,X)
s.t. (A4, X) =1, i=1,...,n,
X = 0.

25

Notice that X = I is feasible and I > 0. The dual problem is

n
min,, Z b
i=1
s.t. Z?Zl Aju; +C = 0.

Take p; = € for all 2. Then

Y= A)e+C=Te+C=0 <= el=-C <= €>nu(-0).
%
Moreover,

vyi/2xyl/2

€

F € Y

Thus, for € > max {)\max(—C), ”(’:YHF }, we have (u,e) € N(v).

For SDP, (39) reduces to
b—eAY ! 4 eAY 1 A*w)Y ! = 0.

or, using the forms of A and A*,

m
bi — (A, Y1) + (A, YT Ay Y =0, i=1,...,m.
j=1

Thus, letting m;; = (4;, Y 'A4;Y 1) and r; = €(A4;,Y ') — b;, this reduces to the m x m linear
equation
eMw =r. (44)

Moreover, it’s not hard to verify that M is symmetric, positive definite (check?), so one can
solve it using direct method like Cholesky factorization or iterative method like preconditioned
conjugate gradient method (typically with a diagonal preconditioner). On the other hand, as
e — 0, this equation becomes increasingly ill-conditioned (due in part to Amin(Y) — 0) which
means the equation cannot be solved to high accuracy. This in turn limits how small € can be in
practice. The primal-dual method that we will see next turns out to be better suited for achieving
high solution accuracy.

The dual method has one key advantage when solving SDP because Y = Y 7" Aju; + C
inherits the sparsity pattern in Ay,..., Ay, C. For the SDP relaxation of the MaxCut problem,
A;; has only one nonzero on the ith diagonal and C' is sparse (i.e., few nonzeros) whenever the
graph is sparse (i.e., few edges). This sparsity pattern does not change with the iteration, which
allows the coefficients m;; to be computed efficiently by computing a Cholesky factorization of Y,
ie.,

pYPT = LL7,

where L is lower triangular and P is a permutation matrix chosen at the beginning to reduce the
nonzero fill-in, such as minimum-degree ordering (see, e.g., the 1981 book Computer Solution of
Large Sparse Definite Systems by George and Liu or google “sparse linear” for more recent work.)

26

Often L is sparse, even though Y ! is typically dense, and L can be computed as fast or faster
than Y ! (to good accuracy). Then we compute m;; using L. For the SDP relaxation of the
MaxCut problem, A; = e*(e?)”, where e’ is the ith unit coordinate vector in R™. Thus

[ey ted(e) Ty]
r [ez —lei eJ)TY 1 Z]
(€’)T el)?

() (PTLLTP) el)?

(L~ Pe) (L™ PeY))?,

mi; = tr
t

=
=
=
where we use PT = P~! in the last equality. Thus, at each iteration, we compute L (in O(n?)
operations or less), solve Lu' = Pe for u' (in O(n?) operations or less) for i = 1,...,n, and
compute m;; = ((u®)Tw’)? (in O(n) operations) for i,5 = 1,...,n. Thus the total work to
compute M is O(n?®). r is computed similarly. Solving (44) takes O(n?®) operations using, say,
Cholesky factorization. Thus the total computational cost per iteration is O(n3) operations, which

is pretty good. Notice that M has the same sparsity pattern as Y !. In fact, M is the Hadamard
(entrywise) product of Y ~! with itself.

4.2 Primal path-following method

The primal problem (18) can be written as

min, (¢,)
st. Azx=b, ze€kK.

For K € {K,,,K ,.p,Kspp}, the log-barrier problem is

min, (c,z) + e(x)

s.t. Az =0 (€>0),

where 9 € {1, ., Vso0ps Yspp - A primal path-following method can be developed analogously as
the dual path-following method, whereby at each iteration it solves

min, (c,u) + (Vp(z),u) + %(V21/J(a:)u,u)
s.t. Au=0

and updates z; = z+u and e = ¢(1 — 6). However, this primal method does not appear to offer
any advantage in practice. Unlike the dual method, it cannot exploit the sparsity of the data on
SDP (because X is typically dense, even if C' and A4, ..., A, are sparse).

4.3 Primal-dual path-following method

Primal-dual methods, first suggested by Adler and Monteiro for LP in the late 80s, have the
advantages of fewer iterations (in practice) and can be accelerated to achieve local superlinear
convergence. These methods, instead of maintaining dual variables y and linearizing the opti-
mality equation the “dual form” (30) and (33), they maintain both primal variables z and dual

27

variables p and linearize the same equation written in the “primal-dual form” (31) and (34).
This seemingly small change turns out to make a big difference in practice! A further practical
improvement is to use a wider neighborhood, which allows the methods to take larger steps and
converge faster (albeit at the expense of a somewhat worse iteration complexity).

Specifically, (31) and (34) can be written in the form
Az =b, y=A"u—c, zoy=cee, (45)

where o is a suitable operator from H x H to H and e is the identity element with respect to o.
For LP, we see from (31) that the “natural” choice of o in (45) is

zoy = [ziyiliz1, (46)

and e is the vector of 1’s (so zoe =eoz =z for all z € R"). For SDP, a common choice of o in
(45) is
XoY =XY2yx!/? (47)

(or X oY = YY2XY'/?) and e = I. (Another choice is the Jordan product associated with
semidefinite matrices, namely, X oY = (XY + Y X)/2. But this turns out to be more difficult to
work with. For example, X > 0 and Y > 0 do not imply (XY +Y X)/2 > 0.)

Primal-Dual Path-Following method
e Choose a neighborhood N and an initial (z,y, u,€) € N and e > 0.
e While e > ¢
Solve the Newton equation

Au=0, v=Aw, Lyu+Lyw=o0ece—zoy (48)

for uw,v,w, where 0 < ¢ <1 and the linear mappings L, L, (to be specified) are in
some sense the partial derivatives of x o y with respect to =z and y. Set

zlal=z+au, yloj=y+a, pla]=p+aw, €a]=c¢c1l-ab), (49)

where 0 < 6 < 1 depends on o and N'. Choose « > 0 such that (z[a], y[a], u[a], €[a]) €
N. Update

(w+ay+’u+’€+) = ($[a]’y[a]au[a]76[a]) (50)

In popular implementations of the primal-dual method, the initial € is chosen to satisfy € =

<wn+y>, and this is maintained at subsequent iterations by setting

n
We will see that (51) corresponds to (49) with # = 1 — ¢. In this case, 0 < 1 is needed for
convergence. This choice has good practical performance especially when A is the so-called wide

neighborhood.

28

