Math 582 B, Winter 2009 Lecture Notes for Week 4

4 Interior-Point Methods

For LP, the feasible set is polyhedral and it can be solved by the simplex method, moving suc-
cessively from a vertex to a neighboring vertex of lower cost. This does not work for SOCP or
SDP since their feasible sets are not polyhedral. There has been some study to try to extend
the simplex method to solve SOCP or SDP, but none successfully. Interior-point methods do not
move along the boundary of the feasible set but in the “interior” and can solve a large class of
convex optimization problems. In fact, even for LP, interior-point method can be more efficient
than the simplex method on certain large scale problems.

Interior-point (abbreviated as “IP”) methods were popularized by Narendra Karmakar who
in his 1984 paper proposed a projective scaling method for LP, proved its polynomial-time com-
plexity, and claimed superior practical performance over simplex methods. (The latter turned
out to be not quite accurate.) Soon it was recognized that Karmark’s method is closely related
to the log-barrier method from the late 1960s, based on which many improvements were made,
and this is how the method is often presented now. In the early 1990s, these methods were
extended to solve SDP and later also SOCP. IP methods are not the only methods for convex
optimization, but they are special in that they enjoy the best iteration complexity and in prac-
tice the number of iterations are typically below 50. The main computational cost per iteration
lies in solving a certain linear equation that becomes increasingly ill-conditioned as the method
converges. Whether an TP method is efficient depends on how efficiently this linear equation can
be solved per iteration.

The idea underlying IP methods is to add a log-barrier function to the objective to make it
unconstrained and solve it approximately by Newton’s method. Why log? Roughly speaking, the
1st- and 2nd-derivatives of logarithm have nice scaling properties (2nd-derivative is square of the
1st-derivative), which is not true for other functions. In what follows, we assume the cone is

K, ., =1[0,00" or K

SOCP

= S0C™ x -+ x SOC™ or K, ={X€eS"| X >0}

with corresponding log-barrier functions

—Yiilogz; if z € intK,
€T =
Vur ) {OO else
N . _
eoun(@) = { >i=1log (mfm — (@4 + a:irl’i)) if z € intK g .p
SOCP -

00 else

—logdetX if X € intK

00 else

Yspp (X) = {

In applications, these three cones arise most often. They are also symmetric cones, with associated
Jordan algebra and spectral decomposition, which can be useful in computation. The type of IP
method we study here are called path-following, for reasons we will see below. (These are not the
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only IP methods, but they are the most popular these days.) There are primal, dual, and primal-
dual path-following methods. The first two methods can be readily generalized to other cones
using suitable barrier functions (so-called self-concordant barrier functions), while the primal-
dual method is trickier to generalize even for K .. Primal-dual path-following method tends to
converge faster and yields more accurate solution, but in the case of SDP, its linear equation can
be computationally more expensive to solve than dual path-following method.

Consider the primal and dual problems (18) and (19). We will simplify the notation by
introducing the linear mapping A : HH — R™ defined as

Az = [(as, )]

Its adjoint A* : R™ — H is

m

A*p = Z aif.

i=1
(Here * denotes the adjoint, not an optimal solution.) We assume without loss of generality that
ai,-..,ay, are linearly independent, so that

Null(A*) = {0}. (23)

4.1 Dual path-following method

For K € {K, ., K K.}, we have K° = —K, so the dual problem (19) can be rewritten as

socp»
min, by (24)
st. A'pw—ceK.
The log-barrier problem is
min, de(p) :=bTp+ ep(A*p — c) (e > 0), (25)

where ¥ € {1, ., Vsocp, Ygpp }- Since domyp = intK, (25) is feasible if and only if (D) N (int K° x
R™) # (). However, an optimal solution may not exist even when (24) has an optimal solution,
eg. b=c=0and A =1 so any g > 0 solves (24) but min, —elog(y) = —oo. A sufficient
condition for (25) to have an optimal solution (which is unique since % is strictly convex and

Null(A*) = {0}) is F(P) N intK # (.

Proposition 1. Suppose that F(P) NintK # O and F(D) N (intK° x R™) # 0. Then (25) has
an optimal solution (which is unique).

Proof. We prove this for H = S", K = K., and 9 = 9. The case of 9 = 1, ,,%s,.p can be
treated similarly. It suffices to show that the level set

{u | b" p — elogdet(A*p — C) < v}

is bounded for any v € R. Then an optimal solution exists by the Bolzano-Weirestrass theorem.
We argue this by contradiction. Suppose this level set is unbounded for some v € R. Then there
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exists a sequence iy such that ||ug|l2 — oo and by, — elog det(A*p — C) < v for all k. Dividing
both sides by ||ux|| yields

—log \i( —
||Mk||2 ||Mk||2 |1l

We can rewrite the ith term in the sum of (26) as
—log Ai(A"px — C)  Ai(A™pg — O)
Ai(A*p — ©) |14k |2

The first term tends to 0 if A\;(A*ur — C) — oo (since limy_ oo logt = 0). It is bounded from
below if \;(A*pr — C) is bounded as k — oo. The second term is bounded since \;(-) is Lipschitz
continuous on S™? Moreover, it tends to 0 if \;(A*ux — C) is bounded as k — oo. Thus the
limit-infimum of the this ith term is nonnegative. It follows from (26) that every cluster point
u of ug/||ukll2 as k — oo satisfies b'u < 0 and u # 0. On the other hand, since A*uy — C > 0
so that (A*ux — C)/|lpklle = 0 for all k, we also have A*u = 0. Also, A*u # 0 (since u # 0
and Null(A*) = {0}). Since F(P) NintK # (), there exists X > 0 satisfying AX = b, implying
b'u = (X, A*u) > 0. (In general, (z,y) < 0 for any z € intK,0 #y € K°.) =

The exact solution of (25) traces the so-called central path as € ranges over (0, c0). Intuitively,
as € — 0, any cluster point of this exact solution is an optimal solution of the dual (24). The
dual path-following method solves (25) inexactly using Newton method and decreases e after each
iteration. The key to the complexity analysis is the notion of inexact solution. Since d, is convex
differentiable on its effective domain, the minimum is attained at

Vde(p) = 0. (27)

By the chain rule for differentiation, we have
V() = b+ eAVip(y),  Vd(n) = eAVP(y) A" with y=Ap—c.  (28)
Thus, the minimum is attained when b+eAV(y) = 0. This looks like primal feasibility, especially

if we let
5= —eVi(y). (29)
e For H = R" and % = 1, this yields
Ar=b, y=A'p—c>0, z=c¢€[l/yli—- (30)
This can rewritten more symmetrically in z and y:

Az =b, y=Ap—c, [ziyliz = ee, (31)

where e denotes the vector of 1s. Our notion of inexact solution is based on a relaxation of
the third equation, which is nonlinear.

N@) ={(n,€) [Tz with Az =b, y = A" —c >0, [[ziyiie, —eella <vep  (32)

with 0 < «v < 1. This is often called the “narrow neighborhood” of the central path, to
distinguish it from “wide neighborhood” that we will see later.

9See Matrix Analysis by Horn & Johnson, Cor. 6.3.4 or Matrix Analysis by Bhatia, p. 63.
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e For H =8S" and ¢ = 9, this yields
AX =b, Y=A'u-C»0, X=¢v 1 (33)
By expressing Y = Y/2Y1/2, this can rewritten more symmetrically in X and Y:
AX =b, Y=Au—-C>0, YV2XY¥2=l (34)
The corresponding narrow neighborhood of the central path is

N () ={(1,6) 13 X with AX =b, ¥ = A~ C =0, [Y/2XY2  el||p < ye}
(35)
Here we use Y1/2XY1/2 (which is symmetric and positive definite whenever X, Y > 0)
instead of XY because XY may not be symmetric when X,Y is off the central path. An
alternative is to use (XY +Y X)/2, which is symmetric (but not necessarily positive definite).
However, the complexity analysis becomes much harder.

For any (u,€) € N(v), there exists X with AX = b and |Y2XYY2 — eI||r < ~ye, where
Y=Au—-C >0 (so (=Y,u) € F(D)). We show below that X is primal feasible and the duality
gap is O(e). (For illustration, we consider SDP, but the same argument works for LP and SOCP.)

We have from [|A||p = (tr(42))"? = (37, \i(4)2)"? > max; | \i(A)| for any A € S that

max |\ (YY2XYY2 — eD)| < [[YY2XYY2 — el||p < 7ve.
1

Since \;(Y/2XYY/2 — eI) = X(Y/2XY1/2) — ¢, this yields
—ve < Ai(Yl/ZXYl/Q) —e<~ve Vi

Hence
(1—7)e < NYY2XYY2) < (1 +9)e Vi

Since (1 — 7)e > 0, this shows Y/2XY /2 »~ 0 and hence X > 0. Thus X € F(P). Moreover,

0 <(X,Y) = t2[XY] = tx[Y/2XY2] = Y N(V2XY?) < m(1+ 7)€ < 2ne
i=1

while

(X,Y) = (X, A" — C) = (AX, ) — (X, C) = (b,n) — (X, C).

Thus we obtain bounds on the duality gap: 0 < b’y — (C, X) < 2ne. As e — 0, a continuity
argument shows that any cluster point of X, 4 (which can be shown to exist by a similar argument
as in the proof of Proposition 1) solves the primal and the dual and there is no duality gap. In
the case of LP, it has been shown that there is a unique limit which is the “analytic center” of
the optimal face in the primal and dual. For SOCP and SDP, this may or may not be true. The
2002 book de Klerk (Chap. 3) discusses known results for SDP.

The dual path-following method starts with any (u,e) € N(y) and solves the optimality
equation (27) using Newton’s method, with e decreased after each iteration. This method is
often called “short-step” because it uses the narrow neighborhood. It is not as practical as the
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“long-step” method we will see later, but enjoys the best iteration complexity (in the worst-case
sense).

Dual Path-Following method

final

e Choose any initial (u,e) € N(y) ande > 0.
al

e While € > e

Solve the Newton equation

Vde(p) + V2de(p)(pr —p) = 0 (36)

for py, and update

er = €(1-0) with 0= ?;(17_\/_,;) (37)

Thus, if ¥ denotes the initial €, we have € = (1 — 0)¥¢® after k iterations, so that the method
terminates when (1 — 8)¥e® < e or, equivalently,

€! 1 €0
il < A_oF <~ log (W) < —klog(l —6)
log (%)
—_x J <Fk
—log(1—-0) —
o [Je ()
AR log(1 — 0)

Since log(1 — 8) < —#@, this yields

k<o 11 2l
= Og 6ﬁnaJ .

Since ! = O(y/n), this yields O (\/ﬁ log (eﬁ‘TOa])) iterations. Note that 6 is maximized at around

v = 1. We can accelerate convergence of the method by, say, setting u[a] = p + a(u4 — p) and
€[] = min{e | (p[a),€) € N(y)} and do a 1-dimensional search in a to minimize €[a] (which has
closed form in terms of ).

Proposition 2. If (u,e) € N(v), then (u4,ey) given by (36) and (37) is also in N(v).

Proof. We prove this for SDP only, i.e., ¢ = 9.,, and N () given by (35). LP and SOCP can be
recovered as special cases.
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