Math 582 B, Winter 2009 Lecture Notes for Week 3

3.5 Dual problem

Duality is a very powerful tool for problem solving. For example, the dual problem may have
nicer structure than the primal problem (‘primal’ basically means ‘original’) and can be solved
more efficiently. Sometimes, as in the case of interior-point algorithm, solving primal and dual
problems simultaneously in a symmetric way is more efficient than solving either primal or dual
by themselves. Dual solution provides a certificate of optimality. Duality gap provides an effective
termination criterion for iterative methods.

To motivate the dual problem, let us associate a Lagrange multiplier y; € R with the ith
constraint in (18) and introduce the corresponding Lagrangian function:

m

L(z,p) = {(c,z) + Z(bZ —{ai, x)) ;-

i=1

Notice that, for a fixed z € K, we have

min L(z, u) =
u

{(c, z) if (a;,z) =b; Vi

—o0  else

so that (18) is equivalent to maxgec x min, L(z, 4). Switching the order of ‘max’ and ‘min’ yields
the dual problem: min, maxyecx L(z, ). (This has the interpretation of a 2-person game, with
primal or dual problem corresponding to the primal player choosing its strategy first or second.)
For a fixed p € R™, we have

m m
L — _ L b1
wpten) = (e D)+ 3ohin

Yoty bips if ¢ =370 aipu; € K°
00 else

Thus the dual of (18) is
minu Z:’ll bi,ui (19)
s.t. C—Zgil a;lb; € K°.
For those familiar with LP duality, this should look very familiar! By introducing z = ¢ —
Yot @i, this dual problem may be rewritten as

. m
ming 33 bij

s.t. Z4 Y i aipi =c (20)
z € K°.

In fact, the primal problem (18) and the dual problem (20) can be rewritten to look nearly
identical. Specifically, suppose there exists d € H satisfying (a;,d) = b; for all i. (If no such d
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exists, then (18) is clearly infeasible.) Then (a;, z) = b; iff (a;,z —d) = 0, so that (18) is equivalent
to
max, (c,z)
st.  z—deNull(a,...,an)
z €K

where Null(ay,...,am) = {u € H | (a;,u) =0, i =1,...,m}. Also, z = c— > 1" aju; satisfies
Yo b =Y i (ai, dypi = (Qoimy ai,d) = (c— z,d) = (¢,d) — (z,d), so that (20) is equivalent to

max, (z,d)
s.t. z —c € Span(ay, ..., an)
z€K°

where Span(ai,...,am) = {d 1t aipi € H | pi € R, i =1,...,m}. Since Null(ai,...,an) is the
orthogonal complement of Span(ay,...,a,,), we see that the rewritten primal and dual problems
have the same form, namely, maximizing a linear function over the intersection of a translated
subspace and a closed convex cone. They differ only in that their subspaces are orthogonal
complements of each other and their cones are polars of each other. On the other hand, the
algebraic representations of the subspaces, which are not unique, impact the numerical linear
algebra involved in solving these problems. Thus, although the above rewrites are elegant, from a
practical standpoint, the original primal and dual problems (18), (20) are more efficient to work
with.

Let F(P) and F(D) denote the feasible sets of (18) and (20), i.e.,
F(P) = {ze€K|(az)=0b,i=1,...,m}
m
F(D) = {(z,u) € K° xR™ | z—i—Zaim = c} .
i=1
Two key relationship between the primal and dual problems are the following.
Weak duality: For any = € F(P) and (z,u) € F(D), we have {c,z) < bT 1.8

Strong duality: For an LP (K = [0,00)"), it is known that if F(P) # (0 and F(D) # 0, then both
(18) and (19) have optimal solutions z* and (z*,u*), and {c,z*) = b’ u*. Also, if (18) has an
optimal solution, then so does (19), and vice versa. (This in fact holds for any polyhedral cone
K, and can be shown by either applying the simplex method or using a separating hyperplane
argument.) However, both these facts are false for SOCP and SDP! For example, the SDP

maxX, T12
s.t. z11 =0

T11 T12 “ 0
Ti2 T22)

1
has the primal form (18) with H = S2, C = ((1) 8), and A; = (é g) It’s not hard to see that
2

®This follows from switching the order of “max” and “min”. Specifically, (c,z) = (z + 3, aipi, v) = (2, z) +
Yilai, )i = (z,2) + 3, bipi <bTp.
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it has as optimal solutions X* = (g g) with @ > 0. Its dual problem (19) is
min, 0
0 i 10
t. - =<0.
TG
1

Dual feasibility is equivalent to ( ,ul _05) > 0, but this can never be satisfied since the deter-

2
minant can never be nonnegative. Thus the primal problem has an optimal solution, and yet the

dual problem is infeasible. Here the set of optimal solutions of the primal problem is unbounded.
It can be shown that if the set of optimal solutions is bounded, then the dual problem must be
feasible and their optimal values are equal (though the minimum in the dual may or may not be
attained).

On the other hand, it can be shown that if both the primal and dual have feasible solutions
in the interior of their cones, i.e.,

FP)NintK #0 and F(D)N (intK°® x R™) # 0, (21)

then both have optimal solutions z* and (z*, u*) and there is zero duality gap, i.e., (c, z*) = b’ p*.
(It can also be shown that the sets of optimal z* and z* are convex compact.) The existence and
compactness of optimal solutions are not hard to show by a contradiction argument. Zero duality
gap can be proved nonconstructively by a separating hyperplane argument. However, we will
prove this (for LP, SOCP, and SDP anyway) algorithmically, as a byproduct of the convergence
analysis for interior-point methods.

In general, some work may be needed to put a problem in the primal or dual conic form.
Consider the robust version of LP we saw in week 1:

min, c'x

22
st.  alz+||ATz|y <b;, i=1,...,m, (22)

where c € R, b; € R, a; € R*, A; € R"¥Pi are given. Rewriting the ith constraints as

T T
|Azllz <bi—ajz < (b,f’ ;Tx) € SOCHH!  «— (_Ob) —~ (AfT) z € —SOCPi+!
i Oy i ]

1

and letting K = SOCP1T! x ... x SOCP»t! we can rewrite (22) as
g

T

min; c'zx
0
_bl
s.t : — (4 -a Ap —Gm) € -K,
0
_bm

which has the dual conic form (19) (since —K = K°). Moreover, F(D) N (intK° x R™) # ( if
and only if there exists an Z € R" satisfying all constraints in (22) strictly. By writing down the
primal problem, conditions for F(P) NintK # () can be similarly derived.
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