Math 582 B, Winter 2009 Lecture Notes for Week 2

3 Convex Conic Optimization

We saw from week 1 a number of examples of optimization problems with vectors or symmetric
matrices as variables, and with constraints that are either linear or involve the 2-norm or positive
(semi)definiteness. These problems belong to the class of convex conic optimization problems,
which we now study in more depth.

3.1 Spaces

It is clear that we need to work with both the space of n-dimensional real column vectors R” and
the space of n X n real symmetric matrices, which we denote by S™, i.e.,

S"={X e R¥" | X = XT}.

For X € S", its trace is tr[X] = > 7" i = Y,; \i(X). More generally, let H be a finite-
dimensional real linear space* equipped with an inner product (z,y)® and norm ||z|| = \/{(z, ).
This is a “Hilbert space.” If this feels too abstract, then just consider the two cases of interest:

o H=R", (z,y) ="y =37 7w, |z]l = llzl2,
e H=S" (X,Y)=tr[XTY] = >t j=1%ij¥ij, 1X|| = [ X||r (so-called “Frobenius-norm”).

. . . n(n+1) . .
We can identify each X = [z;;] € S™ 1-to-1 with the column vector (z;;)i<; € R e , and identify
. . n(n+1)
(X,Y) on S™ with the inner product <(5Uij)i§j, (yij)igj) = Zz TiiYii + 2Zi§j Ty on R™ 2.

However, we won’t working with R~ 2 since operations such as matrix-matrix multiplication or
matrix inversion become too complicated and unintuitive.

3.2 Convex sets and cones

Consider a set K C H. We say K is convez if
ar+(l—a)ye K Vz,ye K, V0<a<1.

(Here we use lower case letters for the elements of H in general. We will switch to upper case
letters in the special case where H is a space of matrices.) We say K is a cone if

ar € K Vre K, Ya>0.

We denote the open ball by B(z,r) = {y e H| ||y — z|| < r}, for x € H, r > 0. The interior of K
is

intK = {z € K | B(z,r) C K for some r > 0}.

“so x,y € H implies  +y € H and ax € H Va € R.
5s0 (x,y) = (y,z), (x,z) > 0 for £ # 0, and (x,-), (-,y) are linear.
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Then K is open if and only if (abbreviated as “iff” or “<=") K = intK. K is closed iff H\ K
is open or, equivalently, the limit of any convergent sequence in K also lies in K, i.e., 7} € K,
k=1,2,..., and limg_,, ¢y = z (i.e., limg_,, ||zx — x| = 0) implies z € K.

Three exampes of closed convex cones are:

o K = {gg e RrR” | x>0} =[0,00)", “nonnegative orthant”
o Ky = :1: eRrR® 24422 < a:n “second-order cone (SOC)”
n = n=2 I:BQ n=3,r3
o Ky={X eS"| X =0}. “semidefinite cone”
n=2
T11 ( " 12) >0 <= z11 >0, z92 >0, 211722 >z,
ZTi2 T22

For example, K3 is closed since X, € K3 iff 0 < " Xju for all u € R, so that limy_,oo X3 = X
implies 0 < limy_,00 u? Xpu = ! Xu and hence X € K3. Ks is convex since, for X,Y € K3, we
have 0 < ' Xu and 0 < uw'Yu for all u € R?, so that 0 < a v"Xu + (1 — a) u'Yu =
ul'(aX + (1 —a)Y)u for all 0 < a < 1, and hence aX + (1 — )Y (which is symmetric since X,Y
are) is in K3. K3 is a cone by a similar reasoning. It’s not hard to see that

intK; = (0,00)",

intKy = {.Q:ER"

intKs = {XeS"| X »0}.

For a cone K C H, its polar is
K°={y|(z,y) <0Vz € K}.

We say that K is self-dual if C° = —C = {—z | z € C}. It’s not hard to verify that K;, Ko, K3
are self-dual. In fact, these cones are very special. They are symmetric cones, with associated
Jordan algebra (see the 1994 book Analysis on Symmetric Cones by Faraut and Kordnyi). This
connection is useful in developing efficient primal-dual interior-point methods for solving the
application problems we saw in the first week.
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3.3 Convex functions

Consider a function f: H — RU {oco}. We say f is proper if its effective domain
domf ={z e H| f(z) < oo}
is nonempty. We say f is closed (equivalently, lower semicontinuous) if its epigraph
epif ={(z,0) e H X R| f(z) < a}

is a closed set. (This is needed for the attainment of minimum in minimization problems.) We
say f is convez if epif is a convex set or, equivalently,

flaz + (1 —a)y) < af(z) + (1 —a)f(y) Vo,ycH, V0<a <1 (14)
For example, the 2-norm | - || on R*~! is a proper closed convex function and its epigraph is
K5. More generally, the norm || - || on H is proper, closed, convex. If domf is closed and f is

continuous on domf, then f is closed. However, a convex function f can be closed without being
continuous on domf, so the notion of a closed function is weaker than continuity.

T z
f is closed, convex f is not convex f is not closed

It’s not hard to check, using basic properties of log function, that the following three functions
are proper and closed.

— >0 logz; if z € intK;
€T =
hie) {oo else
folz) = —log (a7 — (a1 + -~ +274)) if z €intkK,
0 else

—logdetX if X € intK3

00 else

fs(X) = {
Notice that domf; = intK;, 7 = 1,2,3. We will see that they are also convex. In fact, they are
very special functions associated with Ki, K9, K3 and will be used in interior-point methods.

Another important connection between convex function and convex set is the following: If
f:H — RU{oo} is proper, closed, convex, then the lower level set

{zeH| f(z) <a}

is closed convex (possibly empty) for any @ € R. Thus the unit-ball {z € H | ||z|| < 1} is closed
and convex.

It’s usually easy to check that a function f : HH — R U {oo} is proper and closed. How do
we check that f is convex? There is a limited calculus for convex functions that allows complex
convex functions to be built from “elementary” convex functions:
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e Let f:H — RU{oo} be closed, convex. For any linear mapping A from another real linear
space H' to H, the composite function z' — f(Az') is convex.

e Let f:H — RU{oo} be closed, convex. For any function % : R — R U {oo} that is closed,
convex, increasing, the composite function z +— (f(z)) is convex.

o Let fi, fo : H— RU{oo} be closed, convex. The pointwise-sum function z — fi(z) + f2(z)
and the pointwise-maximum function z — max{ fi(z), fo(z)} are also closed, convex.

The above properties are easily proved using the definition (14) of convex functions.

If f is twice continuously differentiable, then the convexity of f is characterized by the positive
semidefiniteness of its Hessian. We say f : H — R U {00} is differentiable at z € int(domf) if
there exists an element of H, which depends on z and is usually denoted V f(x), that satisfies

flz+d) = f(z) =(Vf(z),d) +o(|d]) VvdeBO,r),
where lim,,_,o+ o9) — 0 and 7 > 0 is sufficiently small. It is not hard to show that if domf is

=
open, convex, and f is differentiable on domf, then f is convex if and only if

fly) 2 f(=) +(Vf(z),y —2) Vz,y € domf.° (15)

(Geometrically, the above inequality says the graph of f lies above its tangent plane at (z, f(z))
for all z € domf.) This result is very useful when analyzing the convergence or complexity of
gradient methods.

We say f:H — RU{oo} is twice differentiable at z € int(domf) if f is differentiable on an
open set containing z and there exists a linear mapping from H to H, which depends on x and is
often denoted V2f(r), that satisfies

Vi +d) = Vf(z) =Vf(z)d+o(|d]) VdeB,r), (16)

where lim,_,q+ @ = 0 and r > 0 is sufficiently small. Since H is finite-dimensional, V?f(z)

may be represented as a matrix. It can be shown that if domf is open, convex, and f is twice

continuously differentiable on domf, then V2 f(z) is self-adjoint for all z € domf and f is convex
if and only if

V2f(z) = 0 Vz € domf. (17)

SWhy? If f is convex, then (14) implies f(y + a(z — 1)) — f(y) < a(f(z) — f(y)) V 0 < a < 1, so taking limit as

a — 0 yields (15) (with “z” and “y” switched). Conversely, if (15) holds, then for any z,y € domf and 0 < a <1,
we have ax + (1 — a)y € domf so that

fly) 2 flaz+ (1 =a)y)+(Vf(az+ (1 -a)y),aly —2)),
f®) 2 flaz+ (1 -a)y) +(Vf(az+ (1 -a)y), (1 —a)(z—y)).

Multiplying the two inequalities by 1 — o and «, respectively, and summing yields (14).
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Here, a linear mapping L : H — H being self-adjoint means (Lu,v) = (u, Lv) for all u,v € H,
and L > 0 means (u,Lu) > 0 for all w € H. Also, f being twice continuously differentiable
at £ means lim,_,, V2f(y) = V?f(2), i.e., limy_, |||[V2f(y) — V2f(z)|| = 0 with operator-norm
I1L||| = maxy, =1 || Lul|. In addition, VZf(z) > 0 for all z € domf implies f is strictly convex,
ie.,

flaz+ (1 —a)y) <af(z)+(1—a)f(y) Vz#yecdomf, 0<a<l.

Strict convexity is useful for showing uniqueness of the optimal solution.

When H = R”, it can be seen that

o= (Lw) . e - (2lw)

Ox; i=1 0x;0x ij=1

In particular, we have that

1\" ) 1\"
Vi@ =-(2) . Vht)-deg(y)  vee oo
Li/i=1 Li/i=1
and similarly for fo. Since a diagonal matrix with positive diagonals is positive definite (the
diagonals are its eigenvalues), we have V2 f;(z) > 0 for all z € domf;. Since z; — :%2 is continuous

on (0,00), it follows that V2f; is continuous on domjf;. Thus f; is strictly convex. (This is not
the only way to prove f; is strictly, though the gradient and Hessian formulas will be useful later
in studying interior-point methods.) It can be similarly argued that f, is strictly convex. For f3,
the above approach does not work. Fortunately, we know from matrix analysis (see, e.g., the 1997
book Matriz Analysis by Bhatia) that

VHiX)=-X"1  Vf(X)D=X"'DX! vDeS", VX ~0.
(The formula for V2 f3(X)D can be derived from that for V f3(X) using the definition (16).) Thus
(D,V2f3(X)D) = tr[DX'DX ! = te[X 2 DX 2 X 2DX 2] = [X 2DX 2| >0,

where the second equality we use the fact that X = X2X? and tr[AB] = tr[BA] for A, B € R"*".
Thus V2f3(X) = 0 for all X > 0. (It can be argued similarly that V2f3(X) is self-adjoint.) Tt’s
also not hard to see that V2 f3 is continuous on domjf3. Thus f3 is strictly convex.

3.4 Primal problem

We can now state the conic optimization problem. The “primal” form of the problem looks much
like LP:
max, (c, )
s.t. (aj,z) =b;, i=1,...,m (18)
rz €K,

where a; € H, b; € R, ¢ € H, and K C H is a nonempty closed convex cone. Three special cases of
particular interest are linear program (LP), second-order cone program (SOCP), and semidefinite
program (SDP):
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o Ki=[0,00)", “LPp”

o Ky = SOC™ x --- x SOC™ | with SOC" = {av € R

\/LL‘% +-ota22  <uap }, “SOCP”

o K3={XeS"| X =0} “SDP”

These three cases include (most) of the application problems we saw in the first week (will say
more later). Here we continue to follow the convention of using upper case letters to denote the
elements of H when H = S™.

Since [0, 00) = SOC!, we have
[0, 00)" = SOC! x --- x SOC",

so LP is a special case of SOCP. Moreover, it can be seen that

I I
z € SOC" — R : = 0,7
I Tn—1
1 - Tp—1 Tn

from which it’s not hard to see that SOCP is a special case of SDP (i.e., any SOCP can be
reformulated as an SDP). However, LP and SOCP have special structures that can be exploited
to find solutions more efficiently than for a general SDP. (For example, LP can be solved by the
simplex method, whereas SOCP and SDP cannot. LP can be solved in polynomial time under
the Turing machine model of computation whereas this remains open for SOCP and SDP. LP
enjoys stronger duality properies than SOCP and SDP, as we will see.) Thus, for reasons both
theoretical and algorithmic, the three problems are often treated separately.

"Why? By a property of Schur complement, for any A = 0, b € R*"!, and ¢ € R, we have (bé ﬁ) >0

if and only if ¢ — 8T A7'b > 0. Thus if £, > 0, applying this property with A = z,I, b7 = (ml .’L‘n_1),
¢ = z, and simplifying shows that the two sides are equal. If x, = 0, then it is not hard to see that we must have
1 =---=2xp_1 = 0 on both sides.
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