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We have the following key approximation properties of ℓ(·;x) and descent property of (95).

Lemma 1. (a) For any x ∈ domP , we have

fP (y) ≥ ℓ(y;x) ≥ fP (y) − L

2
‖y − x‖2 ∀y ∈ domP. (97)

(b) For any x ∈ domP , letting x+ solve (95) and we have

ℓ(x+;x) +
L

2
‖x+ − x‖2 ≤ ℓ(y;x) +

L

2
‖y − x‖2 − L

2
‖y − x+‖2 ∀y. (98)

Proof. (a) Fix any x ∈ domP . By convexity of f , we have (see (15))

f(y) ≥ f(x) + 〈∇f(x), y − x〉 ∀y ∈ domP.

Adding P (y) to both sides yields the first inequality in (97). To prove the second inequality, fix

y ∈ domP and let φ(t) = f(x + t(y − x)). Then by (92) and the chain rule, φ is continuously

differentiable on [0, 1]. By the fundamental theorem of calculus, φ(1)− φ(0) =
∫ 1
0 φ

′(t)dt, so that

f(y) = f(x) +

∫ 1

0
〈∇f(x+ t(y − x)), y − x〉dt

= f(x) + 〈∇f(x), y − x〉 +

∫ 1

0
〈∇f(x+ t(y − x)) −∇f(x), y − x〉dt

≤ f(x) + 〈∇f(x), y − x〉 +

∫ 1

0
Lt‖y − x‖2dt

= f(x) + 〈∇f(x), y − x〉 +
L

2
‖y − x‖2,

where the inequality uses the Cauchy-Schwarz inequality and the Lipschiz property (92) (x, y ∈
domP and the convexity of domP imply x+ t(y − x) ∈ domP for 0 ≤ t ≤ 1).

(b) For any differentiable convex function ψ : H → R, if

x+ = arg min
y

ψ(y) + P (y),

then x+ is a minimizer of y 7→ 〈ψ(x+), y〉 + P (y), i.e.,

〈ψ(x+), x+〉 + P (x+) ≤ 〈ψ(x+), y〉 + P (y) ∀y.

(This can be argued by contradiction.) In fact, the converse also holds, though we don’t need

it. Applying this to ψ(y) = 〈∇f(x), y〉 + L
2 ‖y − x‖2 (so that ∇ψ(y) = ∇f(x) + L(y − x)) and

rearranging terms yields (98).

Intuitively, Lemma 1 says that ℓ(y;x) approximates fP (y) with second-order error O(‖y −
x‖2) and that the minimizer x+ of ℓ(y;x) yields sufficient descent of second-order. (The second

inequality in (97) does not require f to be convex and is useful in extending the method to

nonconvex f and proving global convergence. However, the subsequent complexity results hold

only for convex f .)
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6.2 Proximal gradient method

We saw in the previous subsection examples for which (95) can be solved easily. Given x ∈ domP ,

we solve (95) to obtain a new x+ and re-iterate. We call this the proximal gradient method. When

P ≡ 0, it reduces to Cauchy’s steepest descent method. When P is the indicator function for

a closed convex set, it reduces to the gradient projection method of Goldstein, and Levitin and

Polyak.11 To analyze the convergence and iteration complexity of this method, let xk (or xk?)

denote the new iterate after the kth iteration, so that

xk+1 = arg min
y

ℓ(y;xk) +
L

2
‖y − xk‖2, k = 0, 1, . . . , (99)

with x0 ∈ domP given. Using Lemma 1, we obtain the following O(L
k
) bound on the optimality

gap after k iterations.

Proposition 5. For any x ∈ domP , we have

fP (xk) ≤ fP (x) +
L

k

‖x− x0‖2

2
∀k ≥ 1,

where xk is given by (99).

Proof. Fix any x ∈ domP . For any k ∈ {0, 1, . . . }, we have

fP (xk+1) ≤ ℓ(xk+1;xk) +
L

2
‖xk+1 − xk‖2 (100)

≤ ℓ(x;xk) +
L

2
‖x− xk‖2 − L

2
‖x− xk+1‖2

≤ fP (x) +
L

2
‖x− xk‖2 − L

2
‖x− xk+1‖2, (101)

where the first and third inequalities use Lemma 1(a) and the second inequality uses (99) and

Lemma 1(b). Letting ek = fP (xk) − fP (x) and ∆k = L
2 ‖x− xk‖2, this simplifies to

ek+1 ≤ ∆k − ∆k+1.

Thus

∆k+1 ≤ ∆k − ek+1 ≤ ∆k−1 − ek − ek+1 ≤ · · · ≤ ∆0 − e1 − · · · − ek+1. (102)

By (99), the right-hand side of (100) is less than or equal to ℓ(y;xk)+ L
2 ‖y−xk‖2 for all y. Setting

y = xk yields

fP (xk+1) ≤ ℓ(xk;xk) = fP (xk).

Thus ek+1 ≤ ek for all k. It follows from (102) that

∆k+1 ≤ ∆0 − (k + 1)ek+1.

11If P (x) =

(

0 if x ∈ C

∞ else
with C ⊆ H a nonempty closed convex set, then x+ = arg min

y∈C

〈g, y〉 + L
2
‖y − x‖2 =

arg min
y∈C

L
2
‖y − (x − g

L
)‖2 = ProjC(x − g

L
), where g = ∇f(x).
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Since ∆k+1 ≥ 0, this implies (k + 1)ek+1 ≤ ∆0 or ek+1 ≤ ∆0

k+1 , for all k. Thus ek ≤ ∆0

k
, for all

k ≥ 1.

Assuming fP has a minimizer and taking x∗ to be the minimizer nearest to x0 in Proposition

5, we obtain that fP (xk) ≤ fP (x∗) + ǫ whenever

k ≥ L‖x∗ − x0‖2

2ǫ
. (103)

Thus the number of iterations to compute an ǫ-optimal solution is O(L
ǫ
). If infx fP (x) is not

attained, then we can take x∗ to be an ǫ
2 -optimal solution. The O(1

ǫ
) bound cannot be improved

upon as can be seen with the example minx≤0 e
x. (If f is strongly convex, then this bound can

be improved.) The work per iteration is between O(n) and O(n3) operations for the applica-

tions of Section 5. In contrast, the number of iterations for interior-point methods is at best

O(
√
n log

(

ǫ0

ǫ

)

) and the work per iteration is typically between O(n3) and O(n4) ops. Thus, for

moderate ǫ (ǫ = .001), moderate L (which may depend on n), and large n (n ≥ 10000), the

proximal gradient method can outperform interior-point methods.

In practice, L is typically difficult to estimate or its estimate is too conservative (i.e., too

large), leading to slow convergence. A more practical strategy is to start with a guess of L and

increase L whenever sufficient descent is not achieved and backtrack:

• Initialize L > 0.

• Chek at each iteration k if xk+1 satisfies the descent condition (100). If not, then increase

L and recompute xk+1.

6.3 Accelerated proximal gradient method

Can the proximal gradient method be accelerated? The steepest descent method is well known

to be slowly converging when f is “ill-conditioned.” If f is twice differentiable, then one could

replace the rough quadratic approximation in (99) with a more accurate quadratic perturbation:
1
2〈y − xk,Hk(y − xk)〉, where Hk : H → H is an approximation of the Hessian of f at xk.

However, the corresponding subproblem will be much more difficult to solve. Alternatively, we

can approximate f by not a single linear approximation but by the pointwise maximum of multiple

linear approximations. But this too makes the subproblem much more difficult to solve.

Somewhat remarkably, the proximal gradient method can be accelerated “for free” by inserting

an extrapolation step in the direction xk − xk−1 at each iteration k. The idea for this goes back

to a work of Nesterov in 1983 for the unconstrained case (P ≡ 0). The extension to P 6≡ 0 is a

very recent result. To motivate this, let’s revisit the complexity proof for the proximal gradient

method. The key to the proof is the recursion (101). Suppose we can obtain a similar recursion

but with L scaled by something tending to zero with k. Then a faster convergence rate would

result. How to obtain this? We obviously need to modify (99). One possible modificaction is

xk+1 = arg min
y

ℓ(y; yk) +
L

2
‖y − yk‖2, (104)
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with yk to be determined. (An alternative would be to replace the second yk by xk, but the re-

sulting method and analysis is somewhat more complicated.) Then, as in the proof of Proposition

5, we have that

fP (xk+1) ≤ ℓ(xk+1; yk) +
L

2
‖xk+1 − yk‖2 (105)

≤ ℓ(y;xk) +
L

2
‖y − yk‖2 − L

2
‖y − xk+1‖2

≤ fP (y) +
L

2
‖y − yk‖2 − L

2
‖y − xk+1‖2 ∀y,

where the first and third inequalities use Lemma 1(a) and the second inequality uses (104) and

Lemma 1(b). So far, nothing new. Now the key step: Recall that we want L to be scaled by

something tending to zero. Fix any x ∈ domP and set y = (1−θk)x
k +θkx in the above inequality,

with 0 < θk ≤ 1 to be determined. We then factor θk out of x to scale L. Specifically, we have

fP (xk+1)

≤ fP ((1 − θk)x
k + θkx) +

L

2
‖(1 − θk)x

k + θkx− yk‖2 − L

2
‖(1 − θk)x

k + θkx− xk+1‖2

= fP ((1 − θk)x
k + θkx) +

L

2
θ2
k‖x+ (θ−1

k − 1)xk − θ−1
k yk‖2 − L

2
θ2
k‖x+ (θ−1

k − 1)xk − θ−1
k xk+1‖2

= fP ((1 − θk)x
k + θkx) +

L

2
θ2
k‖x− zk‖2 − L

2
θ2
k‖x− zk+1‖2,

where we have rewritten the terms on the next-to-last line to suggest (101) and the last equality

is obtained by setting

zk = −(θ−1
k − 1)xk + θ−1

k yk (106)

and choosing yk so that this equals −(θ−1
k−1 − 1)xk−1 + θ−1

k−1x
k, which works out to be

yk = xk + θk(θ
−1
k−1 − 1)(xk − xk−1). (107)

Using also the convexity of fP , we thus obtain that

fP (xk+1) ≤ (1 − θk)fP (xk) + θkfP (x) +
L

2
θ2
k‖x− zk‖2 − L

2
θ2
k‖x− zk+1‖2 ∀k.

Letting ek = fP (xk) − fP (x) and ∆k = L
2 ‖x− zk‖2, this simplifies to

ek+1 ≤ (1 − θk)ek + θ2
k∆k − θ2

k∆k+1.

Dividing both sides by θ2
k yields

1

θ2
k

ek+1 + ∆k+1 ≤ 1 − θk

θ2
k

ek + ∆k.

This can be rewritten as the recursion

1 − θk+1

θ2
k+1

ek+1 + ∆k+1 ≤ 1 − θk

θ2
k

ek + ∆k
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by choosing θk+1 so that
1−θk+1

θ2
k+1

= 1
θ2
k

, which works out to be

θk+1 =

√

θ4
k + 4θ2

k − θ2
k

2
, (108)

with 0 < θ0 ≤ 1 arbitrary. It is easily seen that θk+1 > 0 and
θk+1

θk
=
√

1 − θk+1 < 1, so that

θk+1 < θk ≤ 1. Upon propagating the preceding recursion backwards, we have

1 − θk+1

θ2
k+1

ek+1 + ∆k+1 ≤ · · · ≤ 1 − θ0
θ2
0

e0 + ∆0 ∀k.

Take θ0 = 1. Since ∆k+1 ≥ 0 and
1−θk+1

θ2
k+1

= 1
θ2
k

, this simplifies to

ek+1

θ2
k

≤ ∆0 ∀k.

Hence

ek ≤ θ2
k−1∆0 ∀k ≥ 1.

Also, an inductive argument shows that θk ≤ 2
k+2 for all k. Moreover, we have from (107) and

(106) and taking θ−1 = 1 that z0 = y0 = x0. We thus arrive at the following improved iteration

complexity for the accelerated proximal gradient method.

Proposition 6. For any x ∈ domP , we have

fP (xk) ≤ fP (x) + θ2
k−1L

‖x− x0‖2

2
∀k ≥ 1,

where xk is given by (104), with yk given by (107), θk given by (108), and θ−1 = θ0 = 1. Moreover,

θk−1 ≤ 2
k+1 for all k ≥ 1.

Assuming fP has a minimizer and taking x∗ to be the minimizer nearest to x0 in Proposition

6, we obtain that fP (xk) ≤ fP (x∗) + ǫ whenever 2
(k+1)2

L‖x∗ − x0‖2 ≤ ǫ or, equivalently,

k ≥
√

2L‖x∗ − x0‖2

2ǫ
− 1. (109)

Thus the number of iterations to compute an ǫ-optimal solution is O(
√

L
ǫ
). This significantly

improves on O(L
ǫ
) for the proximal gradient method and the only additional work per iteration

is the computation of yk, which takes only O(n) ops for H = R
n and O(n2) ops for H = S

n. In

practice, the accelerated method seems invariably faster. Here, L can be similarly adjusted using

backtracking, but with (105) replacing (100).

As k → ∞, we have θk → 0 and θk

θk−1
=

√
1 − θk → 1, so that (107) yields

yk ≈ xk + (xk − xk−1).

Thus yk is asymptotically an isometric extrapolation from xk−1 towards xk. The accelerated

method takes a gradient step from the extrapolated point yk instead of xk.
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x2

x1

f = 2

xk+1

xk

yk

xk−1
f = 3

How to terminate the proximal gradient method (99) or (104)? We can use (103) and (109),

but this requires estimating ‖x∗−x0‖ and can be too conservative. However, if f can be expressed

in the saddle form

f(x) = max
v∈V

φ(x, v),

for some suitable function φ, then we can accelerate termination of the method using duality gap.

Introducing the Lagrangian

L(x, v) := φ(x, v) + P (v),

the primal problem (91) corresponds to minx maxv L(x, v) and the dual problem corresponds to

maxv minx L(x, v). Letting dP (v) := minx L(x, v) (“dual function”), we compute (maybe every 5

or 10 iterations) a candidate dual solution

vk = arg max
v

φ(xk, v)

and check that fP (xk) − dP (vk) ≤ ǫ. In fact, assuming furthermore that domP is bounded (such

as the dual image denoising problem (87)), it can be shown that

0 ≤ fP (xk+1) − qP (v̄k) ≤ θ2
k

L

2
max

x∈domP
‖x− x0‖2 ∀k ≥ 0.

where xk+1, yk, θk are given by (104), (107), (108), with θ−1 = θ0 = 1, and we let

v̂k = arg max
v

φ(yk, v), v̄k = (1 − θk)v̄
k−1 + θkv̂

k.

with v̄−1 = 0.

In some applications, P is the indicator function for the unit simplex (or a Cartesian product

of unit simplices) in H = R
n. An example is when x is a probability distribution. Then (95)

reduces to a projection onto the unit simplex, which can be computed in O(n) ops. However, the

algorithms to compute this projection tend to be complicated (e.g., bisection of breakpoints using

a linear-time median-finding algorithm). An alternative is to replace the quadratic proximity

term ‖y − x‖2/2 in (95) by a proximity term of the form

D(y, x) = h(y) − h(x) − 〈∇h(x), y − x〉,

where the kernel function h is strongly convex on domP and differentiable on domP ∩ (0,∞)n.

(D was first used in a 1965 paper of Bregman.) For h(x) = ‖x‖2/2, we recover D(y, x) =

‖y − x‖2/2. For h(x) =
∑

i xi log xi, D(y, x) is the so-called Kullback-Liebler divergence for

probability distributions and, more importantly, (95) has a closed-form solution computable in

58



O(n) ops. For this D, an accelerated proximal gradient method can be developed with O( 1
k2 )

convergence rate.

Can the convergence rate be further improved? Reviewing the above proof, we see that the

convergence rate can be improved to O( 1
kp ) (p > 2) if we can replace ‖ · ‖2 in the proof by ‖ · ‖p.

However, this may require using a higher-order approximation of f in ℓ(·;x) (see Lemma 1(a)),

which means significantly more work to solve (95). Thus the improvement would not come “for

free”.

6.4 Proximal minimization method

In the proximal gradient method of the last two subsections, we linearize f at each iteration so

that the resulting subproblem is simpler. What if we do not linearize? In other words, we generate

xk+1 = arg min
y

fP (y) +
τk
2
‖y − xk‖2, k = 0, 1, . . . , (110)

with τk > 0 and x0 ∈ domP . On first appearance, this seems like a silly idea, since we seem to

be making the problem harder by adding a quadratic to the objective function and then we solve

this harder problem multiple times. However, the dual of (110) has nice structure and can be

solved efficiently (inexactly) by a Newton-type method. In fact, this approach is not unlike the

interior-point method, whereby we added a log-barrier to the objective function and solved the

resulting subproblem inexactly using Newton’s method.

We call (110), first studied by Martinet in the 70’s, the proximal minimization method. It was

shown by Terry Rockafellar that this method is equivalent to the augmented Lagrangian method

of Hesteness and Powell, applied to the dual problem. Very recently, this method was shown to

be effective (faster than existing methods, including interior-point method) for solving large SDP

with m = Θ(n2) constraints. Specifically, consider the conic optimization problem (18) and its

dual (19). Applying the proximal minimization method (110) to the primal problem (18) yields

xk+1 = arg max
y∈K,Ay=b

〈c, y〉 − τk
2
‖y − xk‖2.

By introducing the primal augmented Lagrangian

Lk(y, µ) = 〈c, y〉 − τk
2
‖y − xk‖2 + (b−Ay)Tµ,

the above subproblem corresponds to max
y∈K

min
µ∈Rm

Lk(y, µ). Its dual corresponds to min
µ∈Rm

max
y∈K

Lk(y, µ),

which works out to be (also using the fact that 〈ProjK(u),ProjK◦(u)〉 = 0 for any u ∈ H)

min
µ∈Rm

τk
2

(

∥

∥

∥

∥

ProjK(xk +
c−A∗µ

τk
)

∥

∥

∥

∥

2

− ‖xk‖2

)

+ bTµ. (111)

Moreover, it can be shown that

xk+1 = ProjK(xk +
c−A∗µk

τk
), (112)
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where µk solves the dual augmented Lagrangian subproblem (111). It can be shown that the

objective function in (111) is convex, continuously differentiable, but not twice differentiable.

Nonethelss, for SDP, it is possible to solve (111) efficiently using a Newton-type method, with

each Newton direction computed inexactly using a preconditioned conjugate gradient (PCG)

method. Unlike interior-point method, the linear equation solved by the PCG method does not

become progressively more ill-conditioned, which is a key advantage.

6.5 Proximal cutting-plane method

Somewhere between the proximal gradient methods of Subsections 6.2 and 6.3, which approximate

f by a single linear function at each iteration, and the proximal minimization method of Subsection

6.4, which uses the full f at each iteration, is a method that approximates f by the pointwise-

maximum of a finite number of linear functions. We call this the proximal cutting-plane method

(alternatively, “bundle method”), as the graph of each linear function may be viewed as a plane

in H × R supporting epif . The basic version of this method has the form

xk+1 = arg min
y

max
x∈Xk

ℓ(y, x) +
τk
2
‖y − xk‖2, k = 0, 1, . . . , (113)

with τk > 0, X k ⊂ domP , and x0 ∈ domP . Typically X k ⊂ {x0, x1, · · · , xk}. The work per

iteration is generally much greater than for the proximal gradient method, but less than for the

proximal minimization method. Iteration complexity? Accelerated methods?
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