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1 What?

Convex optimization problems arising from applications or as approximations of intractable prob-

lems are often large, but structured. Exploiting the structures, possibility through duality, is key
to solving these problems efficiently. We will examine different types of structures and, for each,
look for algorithms that best exploit the structures. The problem types include quadratic, conic

(semidefinite cone, second-order cone), smooth, and “simple” non-smooth. The algorithms include

first-order gradient methods and second-order Newton methods (e.g., interior-point methods).

Relevant issues include approximation bounds, convergence, complexity, and implementation.

Below is a list of topics that we hope to cover:

Motivation

Background on convex analysis, covex optimization, duality
Interior-point methods

Gradient methods

Incremental, coordinate gradient methods, simplicial decomposition (maybe?)

e Approximation bounds

These notes are supposed to be integrated into a book that I am writing with Dimitri Bertsekas,
so any questions/comments and (gentle) criticisms are welcome! Below is a list of references
(annotated).
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2 Motivation

Convex optimization arises in many guises, both in applications and as approximation to in-
tractable problems; see [1, 3, 4, 5]. Let’s look at some recent examples. We’ll see other examples
as the course moves along.

2.1 Compressed sensing

A problem in signal processing that has received much attention is that of compressed sensing. In
the basic version of this problem, we wish to find a sparse representation of a given (discretized)



noiseless signal b € R™ from a dictionary of n elementary signals (e.g., Wavelets), guided by
Occam’s Razor principle that “simplest is best.” This may be formulated as

min, f(x)

s.t. Az =0 (1)

where A € R™*™ comprises the elementary signals for its columns and #(z) counts the number of
nonzero components in z € R”. In typical applications, m and n are large (m,n > 2000). This
problem is known to be intractable (NP-hard).? (We won’t go into detail on what is an NP-hard
problem. Roughly speaking, it’s a problem for which no “polynomial-time” algorithm is known.
Moreover, if a polynomial-time algorithm can be found, then P = NP, i.e., all problems in the
class NP are solvable in polynomial time.)

A popular solution approach is to approximate it by a convex problem, with #(-) replaced by
the 1-norm || - [l1 (ie., |zlli = 27, |z;]), which is a convex function; also see [3, Section 6.2].

This results in
ming ||z

s.t. Ax =b (2)

which is a convex problem. In fact it can be transformed into a linear program (LP) by making
the substitution |z;| = u; + v, with 2; = u; — v; and u; > 0,v; > 0:

miny, , elu+elv 3)
S.t. Au—Av=>b, u>0, v>0

where e denotes the column vector of 1’s and T denotes transpose. The LP has twice as many
variables as (2), but its constraint matrix (A —A) is structured. There has been active recent
research showing that, when the columns of A are “nearly orthogonal” (which occurs with high
probability when A is randomly generated from, say, a Gaussian distribution) and the soluton of
(1) is sufficiently sparse, a solution of (2) also solves (1).

2.2 Robust optimization

The data in an optimization problem may be uncertain, and we would like our solution to be robust
in the sense that it is optimal with respect to the worst-case scenario. To illustrate consider an

LP:

min, 'z

(4)

T . _
st. a;z<b, i=1,...,m,

where ¢ € R*, a; € R*, b; € R Suppose q; is uncertain and all we know is that it belongs to
the ellipsoidal set & = {a; + A;u; | ||uill2 < 1}, where a; € R*, A; € R"*Pi are given, and || - ||2
denotes the 2-norm (i.e., [[ulls = VuTu). Then z satisfies al 2 < b; under all scenarios a; € &
means that

max a z < b;.
a; €EE;

2This can be shown by reduction from the NP-hard integer linear feasibility problem: Given C' € ZP*? and
d € Z?, is there an x € {0,1}7 satisfying Cx = d? It can be shown that the answer is ‘yes’ if and only if the optimal
A 0

T I)’ b= (z), I is the identify matrix, and e is the vector of 1’s.

value of (1) equals p, where A = (

4



We have

maxal z = max (a; + Awu;) z =al 24+ max u! (ATx) =al z+ || AT z||o,
a; €€ llusl[2<1 [luilla<1
where the last equality uses the observation that a linear function u — u’'c attains its maximum

over the unit Euclidean ball at u = 5, provided ¢ # 0. Then the robust version of (4) is

[lell2”
min, 'z (5)
st. @l o+ ||Afzlla <bi, i=1,...,m.

The problem (5) is an example of second-order cone program (SOCP), which is a convex problem
and can be solved “efficiently” by, say, interior-point method; also see [1, Section 3.4.2].

2.3 Ellipsoid optimization

For any symmetric A € R**" (A = AT), we have \;(4) €R, i =1,...,n, and
Amin(A)||2]|2 < 2T Az < Amax(A)||z|2 Vz € R™.

We say A is positive semidefinite (abbreviated as “X > 0”) if z7 Az > 0 for all z € R" or,

equivalently, Amin(A4) > 0. We A is positive definite (abbreviated as “X > 07) if 27 Az > 0 for

all 0 # z € R” or, equivalently, Anin(4) > 0 or, equivalently, a;; > 0, det (le Zm) > 0,
12 Q22

..., detA > 0. For symmetric A,B € R*"*" “A > B” means A — B = 0 and “A = B” means

A—-— B> 0.

An ellipse in R?, centered at the origin and aligned with the coordinate-axes, is specified by
the solutions (z1,22) to the following inequality

2 2
a42 <y,
a2

with ¢; > 0, g2 > 0. In general, an ellipsoid in R, centered at the origin, is specified by the
solutions to the inequality
Q72 <1,

with @@ € R*™*™ being symmetric and positive definite. For n fixed, the volume of the ellipsoid is

proportional to y/detQ.

In certain applications, we wish to find the minimum volume ellipsoid, centered at the origin,
containing a given set of points 21, 22,...,2, € R*. This can be formulated as

ming det@
S.t. Q-0, 2I'Q %<1, i=1,...,p.



This is not friendly looking, however. By taking the natural log of det) and making the substi-
tution X = Q !, this can be rewritten as

miny —logdetX (6)
st.  X=0, 2/'Xz<1, i=1,...,p.

We will see that the problem (6) is a convex problem, which can be solved “efficiently” by, say,
interior-point method. There are many variants of this problem, e.g., volume is replaced by the
diameter, which is proportional to y/Amax(Q). Another is finding the largest ellipsoid, centered
at the origin, contained in a polyhedron specified by linear inequalities. See [4, Chapter 5].

2.4 Stability of linear differential equations

Consider the linear ordinary differential equation (ODE)
z(t) = Az(t) VYt >0, (7)

where A € RP*P | and z(0) € RP is given. It is well-known that it has a unique continous solution
z(+) (in fact, z(t) = eA*z(0)). Moreover, lim; ,o 2(t) = 0 for every z(0) (“asymptotic stability”)
if and only if all eigevalues of A have negative real part. It can be shown that this is equivalent
to the existence of a matrix P € RP*P satisfying the Lyapunov inequality:

ATP4+PA<0, P>0. (8)
(M < 0 means —M > 0). One direction is easy to see. If (8) holds, then letting
V(z) = 2z’ Pz,
we have V(z) > 0 and V(z) = 0 if and only if z = 0 (since P > 0). Moreover,

d d .
CV@) = o P

= &(t)T Px(t) + z(t)T Pi(t)

= (Az(t))TPz(t) + z(t)T PAz(2)
()T (ATP 4+ PA)z(t)
Amax(ATP + PA)||z(t)||3

< 0 whenever z(t)#0.

IA

From this it’s not hard to show that V(z(¢)) | 0 and z(¢) — 0.

The time-invariant ODE (7) generalizes to the following time-varying ODE:
z(t) = A(t)z(t), A(t) € Conv{Ai,...,An}, (9)
where A; € RP*P| z(0) € RP is given, and

Conv{A;,...,Ap}t={a1A1+ - amnln | a1 >0,...,0p, > 0,1 + - + ap, = 1}.



Here (9) is assumed to hold for all t > 0 except on a set of measure 0. When is this ODE asymp-
totically stable? There is no simple charactization involving only the eigenvalues of A1,..., A,
when m > 1. However, the Lyapunov inequality (8) generalizes nicely, so that (9) is asymptoti-
cally stable (over all £(0) and measurable A(-) satisfying (9)) if and only if there exists a P € RP*P
satisfying

ATP4+PA; <0, i=1,...,m, P 0. (10)

Since M > 0 if and only if 71 + M > 0 for some 7 < 0, we can verify the existence of such P by
solving the following optimization problem

minp, T

s.t. I —ATP-PA; =0, i=1,...,m, P+1I>0 (11)

and check if the optimal 7 is negative (assuming the minimum in (11) is attained). The problem
(11) is an example of a semidefinite program (SDP), which is a convex problem and can be solved
“efficiently” by, say, interior-point method. Other variants of this problem are discussed in [4,
Chapter 5].

2.5 Combinatorial optimization

A well-known intractable problem is the MaxCut problem. In this problem, we are given an
undirected graph G with node set N’ = {1,...,n}, edge set £ C N x N with a nonnegative weight
w;; for each edge (i,7) € € (so (¢,5) = (4,%) and w;; = wj;). We wish to find a cut of maximum
weight, i.e.,
‘Isng% w(S) == Z Wij -

In the case of w;; = 1 for all (4, j) € &, this seeks a cut with most number of edges. This problem
is known to be NP-hard even in this special case. (See, e.g., the 1979 book: Computers and
Intractability: A Guide to the Theory of NP-Completeness, by Garey and Johnson.)

A brute-force way to find an optimal subset S* is to enumerate all subsets of A/, but that
would take exponential time as there are 2™ subsets. A (0.5-optimal subset can be found by a
simple randomized algorithm: include each node in & with probability %, independent of the
other nodes. Then each (i,5) € £ has probability % of being in the cut, so the expected weight of
the cut is

E[w(8)] = Z wi; P((¢,7) in the cut) Z Wij > — Z wij = ~w(S").
(1,5)€E (Z,J)ES le(‘;*ﬂﬁfg*
By repeated trials and saving the cut with the highest weight, we can find (with probability
approaching 1) a cut whose weight is within a multiplicative factor of 0.5 of the optimal value.
There is also a deterministc greedy algorithm that achieves the same approximation bound of
0.5. For a while, 0.5 was the best bound known — until 1994, when Michel Goemans (MIT) and
David Williamson (Cornell) showed using an elegant argument that an SDP relaxation of the
MaxCut problem, proposed by Shor and independently by Lovasz and Schrijver, yields a bound
of 0.87856... Their idea has subsequently been applied to many other NP-hard problems such as



graph partitioning, graph coloring; see [5]. The proof is remarkably simple. We now describe the
SDP relaxation and give a proof of this result.

We associate each S C N an z € {—1,1}" defined by

1 ifiesS
Xr; =
-1 ifi¢gS

Then )
e
w(S) = Z wij <72’ J) = Z cij(1 — zizj),
(s.9)e€ i,jEN
where we let ¢;j = w;; for (i,5) € € and ¢;; = 0 for (4,5) ¢ £. Then the MaxCut problem can
be written as as

max ci(l —xzxs5). 12
$€{—1,1}ni§v ”( ¢ 7) (12)

Now, introduce the matrix X = zzT. Notice that X > 0 and has rank 1. Moreover, ;; = z;T;
and z; € {—1,1} if and only if z;; = 1. Thus, we can rewrite (12) as

maxx Z cij(1 — z45)
1L,JEN
s.t. X >0, z; =1Vi, rankX =1.

We now drop the rank-1 constraint, yielding

maxx Z cij (1 — z45)
ijeN (13)
s.t. X >~ 0, Ti; = 1 Vi.

The problem (13) is a relaxation of MaxCut and is an example of an SDP. We will see that it is
a convex problem and can be solved “efficiently” by, say, interior-point method. For now, we will
simply assume that we have found an optimal solution X* of (13), which can be shown to exist
due to the compactness of the feasible set of (13) (X > 0 implies every principal submatrix of X

is positive semidefinite, so ( " ”) > 0 for all 4, j; since z;; = zj; = 1, this implies |z;;| < 1).

Tij Tjj
Then X* = 0 and |z};| <1 for all 4, .

We will now construct from X* an approximate solution of MaxCut. We will construct this
solution randomly, but using a probability distribution based on X*. Here we follow a Gaussian
randomization technique of Bertsimas and Ye instead of the original random-hyperplane approach
of Goemans and Williamson. (The Gaussian randomization is simpler to describe and more
broadly applicable.) Let ¢ € R™ be a normal random vector with 0 mean and covariance matrix
X*, ie., £~ N(0,X*). Let

)1 &G >0
-1 i <0



and S = {i | z; = 1}. Thus

E[’UJ(S)] = E Cz'j(l — .’IIZ'.’II]')
1,JEN
= Z Cij (1 - E[LIIZ:II]])
1,jEN
2
= Z Cij (1 - — sin_l(:z;-“j)>
i,5EN g
> > ey (1—z;) 0.87856
1,jEN

> w(S*) 0.87856,

where the third equality uses a result of Sheppard on normal random variables, namely,?

E[z;z;] = P[&¢; > 0] — P[&€; < 0] = %sin‘l(ﬂcé‘j),

and the first inequality follows from ¢;; > 0, |x;‘]| <1, and

1— 2sin™'(¢)

_{I%ltl%l 1——t :by calculus 087856

(Intuitively, the function 1 — 2 sin~!(¢) is closely approximated by 1—t for |t| < 1. We can see this
from their graphs shown below.) The last inequality is because (13) is a relaxation of MaxCut
(12) (so the optimal value of the former is greater than or equal to that of the latter). By repeated
trials and saving the cut with the highest weight, we can find (with probability approaching 1)
a cut whose weight is within a multiplicative factor of 0.87856.. of the optimal value. It is not
known if the bound of 0.87856.. for (13) can be further improved. It has been shown by Hastad
that no polynomial-time algorithm can achieve a bound greater than 0.94117, unless P=NP. Thus,
whatever improvement is unlikely to exceed 0.94117. BTW, it is not known if (13) is in the class

NP even, although (13) can be solved to high accuracy “efficiently”.
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e Open question: Can some refinement or variant of the SDP relaxation (13) yield a better bound
(i.e., closer to 1)7

3see, e.g., page 95 in the 1972 book of Johnson and Kotz: Distributions in Statistics: Continuous Multivariate

Distributions.



