MATH/AMATH 516, Spring 2009 Homework 3 Due May 15 at 10:30 AM

You can discuss the problems with each other, but you must write up your answers on your own. Feel
free to ask for a hint if you get stuck. [The page/equation numbers are from Nonlinear Programming, 2nd
edition, 1999.]

The answers to the two * problems are to be turned in jointly with your (randomly chosen) partner.

#1. [Normal cones and simplex constraint]
a) Find the normal cone Nx(z) for the following closed convex sets X:

X ={0}c &,

X ={zeR" ||z <1},
X ={zeR"|a’z <b},
X ={z e R" | Az =d},

where 0 £a € R", be R, A e R™*", de R™ (n,m >1).
b) A simplex constraint can sometimes be easily handled. Find closed-form solutions for

n
min ij(:cj) +cjz; st Za:j =1,
i=1 j=1
; _ _ .2 _J0 ifxz; >0 . .
with fij(z;) = zjlnz;, fi(z;) = 23/2, fi(z;) = J . You might be able to use the linear
constraint to eliminate a variable and make it unconstrained. Simplify your solution if possible.
c¢) [Exercise 2.1.6] Find closed-form solutions for

n
max z7'zg?---xen st E z;j=1, z; >0, j=1,...,n,

=1

with a; > 0 integer. (Hint: Argue x > 0 at any optimal solution and then take In(-).) Here a; is the
number of observed occurrences of event j and z; is the probability of event j occurring, which we
estimate by maximum-likelihood.

#2. [Conditional gradient method] Exercise 2.2.1. This is the computational problem for the conditional
gradient method. Use starting point 2° = (.2,.3,.5). [z* has a closed form expression, as does the minimizing
stepsize af. In particular, if f is a convex quadratic function, then ¢ (a) = f(2* + ad*) is also a convex
quadratic function, and its minimum over [0,1] can be found in closed form.] Don’t forget to verify (via

analysis) that (3,1,0) is a global minimum, as the question asks.

#3.* [Convergence rate of gradient projection method] Suppose f: R" — R satisfies
IVf(@) = Vi <Lllz—yll and (Vf(2)=Viy) (@@-y) > Az—-yl> Ve,yeR", (V)

where 0 < A < L. Let X be a nonempty closed convex set in R®” and let [z]T denote the (nearest-point)
projection of x onto X.

a) Show that, for any s > 0 and any z,y € R", ||[[z—sV f(2)|" —[y—sVF()]T||* < (1-2sA+L3s?)||lz—y|*.
[Hint: Use the nonexpansive property of [-]*.]

b) Let z* be a stationary point of f over X (so that z* = [z* — sV f(z*)]T for any s > 0). Use (a) to show
that {z*} generated by the gradient projection method with unity stepsize: z*¥+t! = [z¥ — sV f(z*)]*
satisfies ||z*t! — z*||2 < (1 — 25\ + L2s?)||z* — z*||2 for k = 0,1,.... Use this to show that, for
s € (0,2)\/L?), the rate of convergence is (at least) linear.

c) Suppose f(z) = %xTQx + ¢T'z for some symmetric positive definite Q € R7*™ and some ¢ € R". Show
that f satisfies (©).



#4. [Gradient-projection for dual] Consider the problem of finding a point z € R” inside a polyhedral set
{z|Az < b} that is nearest to a point Z outside the set:

1 .
min §||:1:—:z‘:||2 s.t. Az <b,

where A € R™>*" b € ™.
a) Define the Lagrangian L(z, u) = 3||z — z||* + p* (Az — b), where u € R™. The dual problem is

in L .
max min (z, 1)
Show that the dual problem is equivalent to a convex quadratic program of the form
1
min ipTQ,u +cTp st pu>0,

for some positive semidefinite @ € R™*™ and ¢ € R™.

b) Using Matlab or your favorite computer language, implement the gradient projection method (2.30),
using the Armijo rule along the projection arc (2.32)-(2.33), to solve the dual problem. The input for
your code should be A,b,Z. Take u® = 0. Terminate when ||u* — [u* — s¥g*]*||/sF < 1075, Your code
should also find the primal solution x. Test your code on the set

{(z1,22) € R | zy + 225 <1, =331 + 219 <4, —T2) + 29 <2, —271 — 29 < 2}

and Z = (—3,3). What is the (i) number of iterations, (ii) total number of function evaluations?
c¢) Can the conditional gradient method be applied to solve the dual problem? Why or why not?

#5.* [Network utility optimization] Many protocols for congestion control of data networks (TCP variants)
may be interpreted as implicitly solving the optimization problem

n
mianj(mj) st. Rr<c, x>0,
j=1

where z; is the data rate of source j, ¢ € (0,00)™ is the vector of capacities for the m links in the network,
R € {0,1}™*™ is the routing matrix (R;; = 1 if link ¢ is in the path of source j and R;; = 0 else), and f;,
the negative of the utility function, is convex. Examples of f; are f;j(z;) = —w;Inz; (TCP Vegas, FAST)
' 4
and fj(z;) = w; w; (TCP Reno, HTCP) with p > 0, w; > 0. [Chiang et al., “Layering as optimization
decomposition: a mathematical theory of network architectures,” Proc. IEEE, Vo. 95, 2007.]
a) Define the Lagrangian L(z, u) = Z?:l fi(z;) + uT (Rz — c), where u € ®™. The dual problem is

max min L(z, ).

Let z(u) denote the z that attains the inner minimum (it’s a function of u). For f;(z;) = —w;Inz;,
find z(u) and show that the dual problem is equivalent to an optimization problem of the form

min Z f;(—RjTu) +cfp st p>0,
j=1

with f; a convex function on (0, 00) (called the conjugate function of f;) and R; the jth column of R.
b) Let h(u) denote the convex objective function of the second dual problem in (a). Show that Vh(u) =
¢ — Rx(p). (This formula is valid for any strictly convex f; in fact.)
c) TCP Vegas adjusts = and p in real time by the formula:

q(t) = R u(t),

a‘-J(t) = qj—(Jt)7 .7 = 17"'7"7
y(t) = Ra(t),
wit+1) = ma.x{O,/Ji(t) + yzc—(t) - 1} , 1=1,..,m,

What kind of method is TCP Vegas?



