[Homework can be handed in to me or to my mail box in the Math Lounge (opposite the Math main office). Please show your work to receive full credit.]

A. An intramural four-man basketball team is trying to choose its starting line-up from a six-man roster so as to maximize average height. The roster follows:

Player	Number	$Height^*$	Position
Dave	1	10	Center
John	2	9	Center
Mark	3	6	Forward
Rich	4	6	Forward
Ken	5	4	Guard
Jim	6	-1	Guard

^{*} In inches over 5'6".

The Starting line-up must satisfy the following constraints:

- i) At least one guard must start.
- ii) Either John or Ken must be held in reserve.
- iii) Only one center can start.
- iv) If John or Rich starts, then Jim cannot start.

Formulate this problem as an integer program.

B. Consider the plane purchasing problem from the lecture:

Apply the branch & bound algorithm to this IP to find an optimal solution. Branch on x_2 from the initial LP relaxation L_0 .

C. Consider the following IP in 2 variables:

max.
$$x_1 + x_2$$

s.t. $-x_1 + 2x_2 \le 0$,
 $x_1 \le 1$,
 $4x_2 \ge 1$, x_1, x_2 integer.

Apply the branch & bound algorithm to this IP to determine if it has an optimal solution and, if so, find an optimal solution.

D. Consider the following IP in 2 variables:

Apply the branch & bound algorithm to this IP to determine if it has an optimal solution and, if so, find an optimal solution.