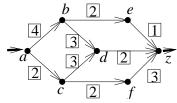
[Homework can be handed in to me or to my mail box in the Math Lounge (opposite the Math main office). Please show your work to receive full credit.]

A. Consider a digraph G = (V, A) and two vertices $s \neq t \in V$. To hedge against possible arc failures, we wish to find the largest number of paths from s to t that are arc-disjoint (i.e., no two paths share any arc). Formulate this as a maximum flow problem. Explain your answer. [Hint: Use unit capacities.]

B. Consider the capacitated digraph shown below:



- (a) Apply the algorithm MAXFLOW to find a maximum flow and minimum cut from a to z.
- (b) For the a-z flow $x_{ab} = x_{be} = x_{ez} = 1$, $x_{ac} = x_{cd} = x_{dz} = 2$ (with zero flow on remaining arcs), find the residual digraph and an a-z augmenting path. Augment flow along the autmenting path to obtain a new a-z flow.

C. Suppose that $(x_{uv})_{(u,v)\in A}$ is an s-t flow of value v and [S,T] is an s-t cut of capacity c (with $T=V\setminus S$). Prove that v=c if and only if $x_{uv}=c_{uv}$ for all $(u,v)\in [S,T]$ and $x_{vu}=0$ for all $(v,u)\in [T,S]$. [You can use the fact that $v=\sum_{(u,v)\in [S,T]}x_{uv}-\sum_{(v,u)\in [T,S]}x_{vu}$ for any s-t flow $(x_{uv})_{(u,v)\in A}$ of value v.]

\mathbf{D} .

- (a) Give an example of a digraph G = (V, A) with arc capacities of 1 and two vertices s, t such that $|V| \le 4$ and the s-t flow of maximum value is not unique.
- (b) For your answer to (a). Find an s-t flow of maximum value whose arc flows are not all integer.
- (c) Give an example of a digraph G = (V, A) with arc capacities of 1 and two vertices s, t such that |V| = 3 and the s-t cut of minimum capacity is not unique.
- (d) Consider a digraph G = (V, A) with arc capacities c_{uv} , $(u, v) \in A$, and $s \neq t \in V$. Suppose u_1, u_2, u_3, u_4 is an s-t augmenting path relative to an s-t flow $(x_{uv})_{(u,v)\in A}$. Suppose (u_2, u_3) is a forward arc and $(u_2, u_1), (u_4, u_3)$ are backward arcs. Write down a formula for the augmentation amount Δ in terms of the flow and capacity of these arcs.

Bonus. Consider a digraph G=(V,A) with arc capacities c_{uv} , $(u,v) \in A$, and $s \neq t \in V$. Suppose that $[S_1,T_1]$ and $[S_2,T_2]$ are two s-t cuts of minimum capacity. Prove that $[S_1 \cap S_2,T_1 \cup T_2]$ and $[S_1 \cup S_2,T_1 \cap T_2]$ are also s-t cuts of minimum capacity. [Hint: First show that they are s-t cuts. Then show that their capacities equal that of $[S_1,T_1]$ and $[S_2,T_2]$ by considering arcs out of $S_1 \cap S_2$, $S_1 \setminus S_2$, $S_2 \setminus S_1$.]