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POMDP (Partially Observable Markov Decision Problems)

• Very important in control and other fields

• Hard (because of infinite state space - the space of “beliefs” or
conditional state distributions)

• Last frontier for Exact DP

• Great challenge for Approximate DP
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Approximation/Finite Parametrization Methods for POMDP

Let’s focus on finite parametrizations of finite-state POMDP:

• Discretization/interpolation in belief space

• Problem approximation (use a finite-state MDP to approximate
a POMDP/aggregation)

• Piecewise linear approximations (approximate value and policy
iteration)

• Optimization over a set of finite-state controllers
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Outline of the Talk

• Introduction to POMDP (finite-state average cost)

• Lower bounds/MDP approximations to POMDP optimal cost func-
tion (a brief summary of our work)

• On Near-Optimality of the Set of Finite-State Controllers
for Average Cost POMDP
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Introduction to POMDP

Graphical model of discrete-time POMDP:

1

1u0

2Y

S1 S20S

Y
u

S state space, Y observation space, U control space

g(s, u) per-stage cost
ξ initial distribution of state

π ∈ Π history-dependent randomized policies
π = {µ0, µ1, . . . , } µ0(·), µt(ht, ·) ∈ P(U)

ht = (u0, y1, u1, . . . , yt), observed history up to time t

ξ, π −→ stochastic process {S0, U0, S1, Y1, U1, . . .}
joint probability distribution Pξ,π
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Expected Cost Criteria

k-Stage cost

Jπ
k (ξ) = EPξ,π


k−1∑
t=0

g(St, Ut)

 J∗
k(ξ) = inf

π∈Π
Jπ

k (ξ)

Average cost

Jπ
−(ξ) = lim inf

k→∞

1

k
Jπ

k (ξ) Jπ
+(ξ) = lim sup

k→∞

1

k
Jπ

k (ξ)

J∗
−(ξ) = inf

π∈Π
Jπ

−(ξ) J∗
+(ξ) = inf

π∈Π
Jπ

+(ξ)
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Important Analytical Features

• Sufficient statistic for control is ξt:

belief state/conditional distribution of the state

• k-stage policy cost function: linear in ξ

• Lower k-stage optimal cost function: piecewise linear/concave
in ξ

• Key questions for average cost: are the lower or upper optimal
cost functions flat (constant/independent of the initial belief ξ)?
Are they equal?

• In POMDP constant cost across beliefs is far less “likely” than in
MDP
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Average Cost Optimality Equations

Pair of coupled optimality equations

J(ξ) = min
u∈U

E {J (φu(ξ, Y ))} , U(ξ)
def
= arg min

u∈U
E {J (φu(ξ, Y ))} ,

J(ξ) + h(ξ) = min
u∈U(ξ)

[ḡ(ξ, u) + E {h (φu(ξ, Y ))}] , (1)
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Pair of coupled optimality equations

J(ξ) = min
u∈U

E {J (φu(ξ, Y ))} , U(ξ)
def
= arg min

u∈U
E {J (φu(ξ, Y ))} ,

J(ξ) + h(ξ) = min
u∈U(ξ)

[ḡ(ξ, u) + E {h (φu(ξ, Y ))}] , (1)

Constant average cost DP equation

λ + h(ξ) = min
u∈U

[ḡ(ξ, u) + E {h (φu(ξ, Y ))}] . (2)

multichain
�

���

@
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Bounded Solutions (J∗, h∗) of (1) ⇒ J∗
−(·) = J∗

+(·) = J∗(·)
Bounded Solutions (λ∗, h∗) of (2) ⇒ J∗

−(·) = J∗
+(·) = λ∗
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Example: Non-Constant Optimal Average Cost

States: {1, 2, 3, 4}, Actions: {a, b}

{ − , 1 }

31

4

2

 

{ − , 1/2 }
{ − , 1 }

{ − , 1/2 }

{ − , 1/2 }

{ − , 1/2 }

• Markov chain recurrent and aperiodic

Observations: {c, d}, state 1, 3 → c; state 2, 4 → d

Cost: g(1, a) = 1, g(1, b) = 0; g(3, a) = 0, g(3, b) = 1

ξ̄ : ξ̄(1) = 1 or ξ̄(3) = 1, J∗(ξ̄) = 0

ξ : ξ(1) = ξ(3) = 1/2, J∗(ξ) = 1/3 > 0

• Non-constant optimal average cost in POMDP
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Existence of Solutions to Constant AC DP Equation

Sufficient conditions:

• reachability and detectability [Platzman 80]

• interior accessibility, relative interior accessibility [Hsu, Chuang,
Arapostathis 05]

Constant AC: not fully understood

Non-constant AC: not much has been done
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Outline of the Talk

• Introduction to POMDP and the average cost problem

• Lower bounds for average cost POMDP

• Near-optimality of finite-state controllers
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Lower Bounds for Average Cost POMDP

J̃∗(ξ) ≤ J∗
−(ξ) ∀ ξ ∈ P(S).

↑
approximating processes (usually finite-state MDPs)

Notes:

• J̃∗ computable when spaces are finite:
the bounds involve discretized approximations, finite state and
control MDP algorithms

• neither J∗ nor J̃∗ have to be constant
• use of lower bounds:

characterize the optimal performance, provide suboptimal con-
trol

• extension to semi-Markov and constrained cases
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Outline of the Analysis

POMDP

Fictitious Process

Modified Belief

MDP

POMDP

Modified Belief

MDP

Approximating

POMDP
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Outline of the Talk

• Introduction to POMDP and the average cost problem

• Lower bounds for average cost POMDP

• Near-optimality of finite-state controllers
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Finite-State Controllers

2

1Y0Y
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0U 1U 2Y

Z Z Z0 1

�
��	

internal states
of controller

Key properties and advantages of FSC

{(St, Yt, Zt, Ut)} jointly Markov chain, {(St, Yt, Zt)} marginally Markov
chain

asymptotic behavior well-understood; MDP theory applies

connection with piecewise linear concave approximations (Hansen
1998)
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Existence of Near-Optimal FSC/Average Cost

Question: Given ε > 0, under what conditions does there exist an
ε-optimal FSC (with sufficiently large number of internal states)?

Notes:

We mean ε-optimal simultaneously for all initial beliefs (so J∗
−: flat

is a necessary condition)

The existence of an ε-optimal FSC for a given single initial belief is
an open question

For discounted problems, there are easy answers:

• There is no FSC that is simultaneously ε-optimal for all initial
beliefs

• There is an ε-optimal FSC for a given single initial belief
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Assumption: Finite spaces, J∗
− constant

Our Main Theorem: J∗
+ = J∗

−; and for all ε > 0, there exists an
ε-optimal FSC.
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Lemma: Jπ
k (ξ) linear; Jπ

−(ξ) concave; J∗
−(ξ) concave.

1st Key Observation: Suppose J∗
− constant. Then, the first case

cannot happen ...

J∗
−

-

Jπ
−
?

Jπ
−
?

J∗
−

-

• There must exist π nearly optimal for some interior ξ, with Jπ
−

almost “flat”
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First Result on Independence from Initial Belief

Proposition: For all ε > 0, there exists an ε-liminf optimal policy
π that does not functionally depend on the initial belief ξ, i.e.,

Jπ
−(ξ) ≤ J∗

− + ε, ∀ ξ ∈ P(S).
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First Result on Independence from Initial Belief

Proposition: For all ε > 0, there exists an ε-liminf optimal policy
π that does not functionally depend on the initial belief ξ, i.e.,

Jπ
−(ξ) ≤ J∗

− + ε, ∀ ξ ∈ P(S).

2nd Key Observation: There must exist k0, with 1
k0

Jπ
k0

uniformly
“close” to Jπ

−

�
�	

�
�	

�
�	

Jπ
− = lim inf

k→∞
1
kJπ

k

1
k1

Jπ
k1

1
k2

Jπ
k2
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Finite-Stage Uniform “Closeness” Lemma

Lemma: For all ε > 0, there exists π0 ∈ Π and an integer k0 (de-
pending on π0) such that

| 1
k0

Jπ0

k0
(ξ) − J∗

−| ≤ ε, ∀ ξ ∈ P(S).
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t(ht, ·) = µk̄(t)(δk̄(t)(ht), ·), k̄(t)

def
= mod(t, k0),

where δk̄(t) extracts the last length-k̄(t) segment of a length-t
history ht.

• Jπ0

− (·): uniformly close to J∗
− =⇒ Jπ1

− (·): uniformly close to J∗
−

• For finite spaces: π1 is FSC =⇒ Jπ1

− (ξ) = Jπ1

+ (ξ), ∀ ξ ∈ P(S).
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Near-Optimality of FSC

Assumption: Finite spaces, J∗
− constant

Theorem:

• J∗
+ = J∗

−

• for all ε > 0, there is a FSC that is ε-optimal, and does not func-
tionally depend on the initial belief ξ.

Note:

The ε-optimal FSC is also a finite-history controller

Intuitive implication: If J∗
− does not depend on the initial belief, old

information becomes increasingly obsolete
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