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POMDP (Partially Observable Markov Decision Problems)

e \VVery important in control and other fields

e Hard (because of infinite state space - the space of “beliefs” or
conditional state distributions)

e Last frontier for Exact DP

e Great challenge for Approximate DP
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Approximation/Finite Parametrization Methods for POMDP

Let’s focus on finite parametrizations of finite-state POMDP:

e Discretization/interpolation in belief space

e Problem approximation (use a finite-state MDP to approximate
a POMDP/aggregation)

e Piecewise linear approximations (approximate value and policy
iteration)

e Optimization over a set of finite-state controllers



Outline of the Talk

e Introduction to POMDP (finite-state average cost)

e Lower bounds/MDP approximations to POMDP optimal cost func-
tion (a brief summary of our work)

e On Near-Optimality of the Set of Finite-State Controllers
for Average Cost POMDP
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Introduction to POMDP

Graphical model of discrete-time POMDP:

-
' .

S state space, Y observation space, U control space

g(s,u) per-stage cost
¢ initial distribution of state
w € IT history-dependent randomized policies

m = {po, H15---5F  mo(-);pe(he, ) € PU)
ht = (uo,y1,u1,---,yt), Observed history up to time ¢

¢, = — stochastic process {Sp, Uy, S1, Y1,U1,...}
joint probability distribution P5:™



Expected Cost Criteria

k-Stage cost

k—1
JF(€) = EF7 {Z g(St, Ut)} Ji (&) = inf JF(€)
i—0 well
Average cost
JT = limi flJ7r JT = 1i 1J7’
T = e k(&) T = im sup o % (&)

J*(§) = inf JT(€) TE(§) = inf JT(E)
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Important Analytical Features

e Sufficient statistic for control is &;:
belief state/conditional distribution of the state

e k-stage policy cost function: linear in &

e Lower k-stage optimal cost function: piecewise linear/concave

In &

e Key guestions for average cost. are the lower or upper optimal
cost functions flat (constant/independent of the initial belief £)?
Are they equal?

e In POMDP constant cost across beliefs is far less “likely” than in
MDP



Average Cost Optimality Equations

Pair of coupled optimality equations
J(§) = min B{J (6u(&,Y))}, U Z argmin B{J (6u(&Y))},

J(&) + h(€) = uénUi_r(lg) [9(&;u) + E{h (Pu(,Y))} (1)



Average Cost Optimality Equations

Pair of coupled optimality equations

J(§) = min B{J (6u(&,Y))}, U Z argmin B{J (6u(&Y))},
T +h(©) = min [3(&w)+ B {h(Gul& V)], @)

Constant average cost DP equation

A+ h(£) = min [§(£, u) + E{h (du(s, Y))} - (2)
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Average Cost Optimality Equations

Pair of coupled optimality equations

S J©=min B{J(@u(& )}, UE Y argmin B{JT (6u(6, )},
multichain
= min [g(& u u(&, , 1
@ +hE©) = min 196w + Bk (6u(& YN @)

Constant average cost DP equation

= min [g(&, uw w(&, . 2
unichain . A+ h(€) = min[g(& u) + B {h (6u(&,Y))}] 2)

Bounded Solutions (J*,h*) of (1) = JZ(-) = J3(-) = J*(-)
Bounded Solutions (A", h™) of (2) = JZ(:) = JI(:) = A"



Example: Non-Constant Optimal Average Cost

10

States: {1, 2, 3, 4}, Actions: {a, b}

e Markov chain recurrent and aperiodic
Observations: {c,d}, state 1,3 — ¢, state 2,4 — d
Cost: g(lva) =1,9(1,b) = 0; g(3,a) = 039(391)) =1

E:€1)=10r £B8) =1, J*@) =0
£:¢(1) = £(3) =1/2, THE) =1/3>0

e Non-constant optimal average cost in POMDP
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Existence of Solutions to Constant AC DP Equation

Sufficient conditions:
e reachability and detectability [Platzman 80]

e interior accessibility, relative interior accessibility [Hsu, Chuang,
Arapostathis 05]

Constant AC: not fully understood
Non-constant AC: not much has been done



Outline of the Talk
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e Introduction to POMDP and the average cost problem

e Lower bounds for average cost POMDP

o Near-optimality of finite-state controllers
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Lower Bounds for Average Cost POMDP

JH(€) < JE(&) VEEP(S).

1
approximating processes (usually finite-state MDPS)

Notes:

e J* computable when spaces are finite:
the bounds involve discretized approximations, finite state and
control MDP algorithms

e Nneither J* nor J* have to be constant

e uUse of lower bounds:
characterize the optimal performance, provide suboptimal con-
trol

e extension to semi-Markov and constrained cases



Outline of the Analysis
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POMDP

\

Fictitious Process

\

Modified Belief
MDP

POMDP

Modified Belief
MDP

A

\

Approximating
POMDP
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e Introduction to POMDP and the average cost problem

e Lower bounds for average cost POMDP

e Near-optimality of finite-state controllers
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%%

@ @ Internal states

/ of controller
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Finite-State Controllers

Internal states
Vs of controller

Key properties and advantages of FSC

{(St, Yz, Zt, Uy) } jointly Markov chain, {(S;, Yz, Z;) } marginally Markov
chain

asymptotic behavior well-understood; MDP theory applies

connection with piecewise linear concave approximations (Hansen
1998)
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Existence of Near-Optimal FSC/Average Cost

Question: Given € > 0, under what conditions does there exist an
e-optimal FSC (with sufficiently large number of internal states)?

Notes:

We mean e-optimal simultaneously for all initial beliefs (so J*: flat
IS @ necessary condition)

The existence of an e-optimal FSC for a given single initial belief is
an open question

For discounted problems, there are easy answers:

e There is no FSC that is simultaneously e-optimal for all initial
beliefs

e There is an e-optimal FSC for a given single initial belief
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Near-Optimality of Finite-State Controllers

Assumption: Finite spaces, J* constant

Our Main Theorem: J_"; = J*: and for all e > 0, there exists an
e-optimal FSC.

Recall definitions:

kE—1
m = {pos i1y} o(+), me(he,-) € PU) JT(€) = EFT { > 9(St, Ut)}

1 t=0
JI(£) =liminf Jp(€)  JZ(£) = inf JI(E)

Lemma: J[ (&) linear; J™(£) concave; J* (£) concave.

1st Key Observation: Suppose J* constant. Then, the first case

cannot happen i -

| l

J* — J*—

e There must exist = nearly optimal for some interior &, with J™
almost “flat”
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First Result on Independence from Initial Belief

Proposition: For all e > 0, there exists an e-liminf optimal policy
7 that does not functionally depend on the initial belief &, i.e.,

JT(E) < JX +e€ VEEP(S).
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First Result on Independence from Initial Belief

Proposition: For all e > 0, there exists an e-liminf optimal policy
7 that does not functionally depend on the initial belief &, i.e.,

JT(E) < JX +e€ VEEP(S).

2nd Key Observation: There must exist kg, with kloJ,jO uniformly
“close” to J™

1 gqm
/ k1Jk1

1

—J7

ks ko
/ /

TS |
JT = lim inf EJZ;

/ k— o0
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Finite-Stage Uniform “Closeness” Lemma

Lemma: For all e > 0, there exists =g € IT and an integer kg (de-
pending on mg) such that

E=T5€) —J*| <€,  VEEPS).

Final construction: Construct infinite-stage policy by replication of
the finite-stage policy:

e Form a new policy = that has a “finite-length history window”:

o = {NO? H1seeos HEy—1s-- }
1 = {105 K15+« + s Bkg— 1 Bloys Bl 10 -+ + 5 Mgy 10+ + -}
def
pi(hts ) = pg) gy (he), ), k(D)

where Of(+) extracts the last length-k(t) segment of a length-t
history h.

mod (t, ko),

e J™°(.): uniformly close to J* =— J"'(-): uniformly close to J*

e For finite spaces: =1 is FSC = J'(¢§) = J['(£),V &€ € P(S).
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Near-Optimality of FSC

Assumption: Finite spaces, J* constant

Theorem:;

e for all e > 0, there is a FSC that is e-optimal, and does not func-
tionally depend on the initial belief ¢.

Note:
The e-optimal FSC is also a finite-history controller

Intuitive implication: If J* does not depend on the initial belief, old
Information becomes increasingly obsolete
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