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A Mixed Value and Policy Iteration Method for

Stochastic Control with Universally Measurable Policies

Huizhen Yu∗ Dimitri P. Bertsekas†

Abstract

We consider the stochastic control model with Borel spaces and universally measurable
policies. For this model the standard policy iteration is known to have difficult measurability
issues and cannot be carried out in general. We present a mixed value and policy iteration
method that circumvents this difficulty. The method allows the use of stationary policies in
computing the optimal cost function, in a manner that resembles policy iteration. It can also
be used to address similar difficulties of policy iteration in the context of upper and lower
semicontinuous models. We analyze the convergence of the method in infinite horizon total
cost problems, for the discounted case where the one-stage costs are bounded, and for the
undiscounted case where the one-stage costs are nonpositive or nonnegative.

For the undiscounted total cost problems with nonnegative one-stage costs, we also give a new
convergence theorem for value iteration, which shows that value iteration converges whenever
it is initialized with a function that is above the optimal cost function and yet bounded by a
multiple of the optimal cost function. This condition resembles Whittle’s bridging condition
and is partly motivated by it. The theorem is also partly motivated by a result of Maitra
and Sudderth, which showed that value iteration, when initialized with the constant function
zero, could require a transfinite number of iterations to converge. We use the new convergence
theorem for value iteration to establish the convergence of our mixed value and policy iteration
method for the nonnegative cost models.
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1 Introduction

We consider discrete-time stochastic control problems with additive one-stage costs in a general
framework that involves Borel state and control spaces and universally measurable policies. Histor-
ically, our framework traces back to the pioneering work on dynamic programming (DP) in Borel
spaces by Blackwell [11, 12, 13, 14] and Strauch [47], which was developed further, along several
directions, through a sequence of subsequent works. These include: the books by Hinderer [29], and
Dynkin and Yushkevich [20], which considered a framework based on Borel measurable policies and
the notion of almost-surely ε-optimality; the work of Maitra [32], Furukawa [25], Freedman [24] and
Schäl [40], as well as Dynkin and Yushkevich [20], which studied Borel measurable policies and semi-
continuous models; the work of Blackwell, Freedman and Orkin [16], which introduced a formulation
involving analytic sets and analytically measurable policies; and the work of Shreve and Bertsekas
[44, 45], and Bertsekas and Shreve [7, Part II], which considered universally measurable policies.
Further research on alternative frameworks suitable for DP include: Shreve [41] and Bertsekas and
Shreve [7, Part II] on C-sets and limit-measurable policies, Blackwell [15] on Borel-programmable
functions and Shreve [43] on Borel-approachable functions. We refer to the monograph [7] and the
papers [44, 42] for a discussion of the differences between these frameworks, along with a review of
the literature for the early period of the subject. We refer to the books [38, 27, 28, 2, 23] and the sur-
vey paper [21] for more recent accounts and extensive references about the significant development
of the field since then. In this paper, we will focus on the universally measurable policies framework
of [44, 45, 7], and three types of classical infinite horizon total cost problems: the discounted case
where the one-stage costs are bounded, and the undiscounted case where the one-stage costs are all
nonpositive or all nonnegative.

The early works of Blackwell and Strauch showed that taking Borel measurable policies as the
only admissible policies does not lead to desirable results that are comparable with the ones available
for problems where measurability is not a concern. In particular, a Borel measurable policy need
not exist even when the control constraint set is Borel [14]. Moreover, if we restrict attention to
Borel measurable policies, there need not exist an everywhere ε-optimal policy even in discounted
problems [12]. An important step toward a more satisfactory framework was taken by Blackwell,
Freedman and Orkin [16]. Studying finite horizon nonnegative reward problems, they introduced an
approach based on analytic sets and semi-analytic functions (a family of functions whose level sets
are analytic sets), and obtained optimality results for analytically measurable policies (a larger class
of policies that includes Borel measurable ones). Their model still does not admit the existence of
everywhere optimal policies or the existence of everywhere ε-optimal nonrandomized policies among
structured families of policies in general. Building upon analytic sets and semi-analytic functions as
in [16], a fuller framework was developed in Shreve and Bertsekas [44, 45], Bertsekas and Shreve [7,
Part II]. In this framework, the class of admissible policies is enlarged to be the class of universally
measurable policies, structural properties of the optimal cost functions are derived, and selection
theorems that stem from Jankov-von Neumann’s theorem ensure the existence of everywhere ε-
optimal or optimal policies among structured families of policies (e.g., stationary, Markov or semi-
Markov policies), both for finite horizon problems and for infinite horizon problems that we consider.

However, with analytically or universally measurable policies, standard policy iteration has
measurability-related difficulties, as noted in [16, p. 940] and [7, p. 232]. The selection of an ad-
missible measurable policy can fail at the policy improvement step because the cost function of
an analytically or universally measurable policy need not have the necessary structure for exact or
ε-exact selection of an improved policy. This causes the policy iteration procedure to break down.

A similar difficulty occurs in upper and lower semicontinuous models. There the selection of a
Borel measurable policy at the policy improvement step may fail because the cost function of the
current Borel measurable policy does not have adequate semicontinuity structure.

One of the major purposes of this paper is to provide an approach to circumvent the difficulty



4 §1. Introduction

just discussed, and to allow stationary policies to be used in computing the optimal cost function, in
a manner that resembles policy iteration (even when ε-optimal stationary policies do not exist). We
refer to our approach as a mixed value and policy iteration method, as it combines characteristics
of both value and policy iteration. Algorithmically, compared to standard policy iteration, the main
difference of our method is in the policy evaluation phase: instead of computing the costs of a given
policy, it solves exactly or approximately an optimal stopping problem defined by a stationary policy
of interest and by a stopping cost that is an estimate of the optimal cost. The stopping costs are
then adjusted and the procedure is repeated. To avoid measurability issues, we exploit the fact that
every universally measurable stationary policy has Borel measurable portions (see Prop. 3.1(b)), and
we define the optimal stopping problems accordingly so that the iterative method just mentioned
can operate within the family of functions with the desired semi-analytic structure. Another critical
feature of our approach results from the optimal-stopping formulation: for convergence, relying on
an inherent value iteration character, it is not required that the policies involved improve successively
over one another (this is generally impossible within our context). This feature allows us to operate
the method with various policies and leads to algorithms of various forms. As a result, we obtain
policy iteration-like algorithms if we choose policies in a way analogous to policy improvement, using
the Jankov-von Neumann type of selection theorems.

Similarly, for semicontinuous models we exploit the fact that Borel measurable policies have
continuous portions (Lusin’s Theorem; see e.g., [19]). We use it to specialize our method to produce
policy iteration-like algorithms that operate within the desired family of semicontinuous functions.

We establish the convergence of our method under certain initial conditions for the three types of
infinite horizon total cost problems we consider. Our convergence results parallel those for standard
value iteration for these problems.

The mixed value and policy iteration method of this paper evolved from the enhanced policy iter-
ation algorithmic framework proposed and analyzed in our earlier works for finite-state and control
problems [10, 57] and for abstract DP problems [9] under discounted and undiscounted total cost cri-
teria (see also the book accounts of these works in [5, 6]). In the finite-spaces or abstract DP context,
measurability is not an issue. Asynchronous distributed computation of the optimal cost function,
by model-free stochastic approximation algorithms in certain cases, has been our main motivation
for a policy iteration-like method that is convergent without relying strongly on the performance
of the policies involved. The method in this paper is based on the same idea and shares many
important features with its counterparts in our earlier works, although its form has been modified
and extended, in order to overcome the measurability issues in the present general-spaces stochastic
control context. By providing a Borel-space counterpart of the method, one of our purposes is also
to demonstrate that the mixed value and policy iteration approach is useful for addressing issues
of not only computational but also theoretical nature. Of course our method preserves the com-
putational advantages of its predecessors. In particular, it is suitable for asynchronous distributed
computation, although we do not discuss this possibility in detail in the present paper.

The convergence analysis of our mixed value and policy iteration method for nonnegative cost
models relies on another main result of this paper, which is of independent interest. This is a
new convergence theorem for value iteration. It is well-known that for nonnegative cost models,
value iteration need not converge to the optimal cost function. Conditions for convergence from
below, which involve compactness-type assumptions on the control constraint set, have been given
by Bertsekas [3] for a related special case of minimax reachability problems, by Schäl [40] and
Bertsekas [4] for cases where measurability issues are not a concern, and by Bertsekas and Shreve
[7] for the universally measurable policies framework of this paper. Sufficient conditions have also
been studied by Whittle [55, 56].

Our theorem shows that value iteration converges whenever it is initialized with a function
that lies above the optimal cost function and yet is bounded by a multiple of the optimal cost
function. This condition resembles Whittle’s bridging condition [55, 26] and is partly motivated
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by it. Whittle’s condition, however, delineates a subset of nonnegative cost models in which value
iteration converges when initialized with the constant function zero, whereas our theorem holds
without model restrictions. In formulating the theorem, we were also partly motivated by a general
convergence result of Maitra and Sudderth [33], which showed that starting from the constant
function zero, value iteration could require a transfinite number of iterations to converge. Our proof
of the new theorem for the convergence of value iteration (in the standard, non-transfinite form)
uses, among others, Maitra and Sudderth’s result.

Using the new convergence theorem for value iteration, we are also able to show that for cer-
tain nonnegative cost models (which include countable-spaces problems with finite optimal costs),
convergence of our mixed value and policy iteration method is maintained if the optimal stopping
problems involved are solved approximately by solving associated linear programs. This result can be
contrasted with the fact that nonnegative cost models in general do not admit a linear programming
formulation. It suggests that even when there are no measurability concerns, for the nonnegative
cost models, the mixed value and policy iteration approach may provide computationally efficient
algorithms that are based on linear programming.

The paper is organized as follows. In Section 2, we provide background. In Section 3, we
introduce the mixed value and policy iteration method, and derive various algorithmic versions. We
give greater attention to policy iteration-like algorithms, and we discuss their relation with standard
policy iteration, as well as the application range of a special algorithm involving Borel measurable
policies. In Section 4, we prove convergence results for the proposed method, for discounted problems
with bounded one-stage costs and for total cost problems with nonpositive one-stage costs. In
Section 5, we consider total cost problems with nonnegative one-stage costs. We first prove the
new convergence theorem for value iteration in Section 5.1. We then derive convergence results
for the proposed method in Section 5.2. In Section 6, we discuss the applications of our results in
semicontinuous models, including the application of the mixed value and policy iteration approach,
and a result on the structure of the optimal cost function and optimal policies for nonnegative cost
upper semicontinuous models. In Section 7, we conclude the paper with remarks on extensions and
future research directions. Appendices A-C collect some related formulations, proofs, and illustrative
examples.

2 Background

In this section we describe the stochastic control framework with universally measurable policies.
We give a brief summary of basic optimality results for infinite horizon, discounted and undiscounted
total cost problems. We then explain the measurability issues that cause standard policy iteration
to break down.

2.1 Preliminaries

In this subsection we introduce some concepts and terminologies, including universal σ-algebras,
analytic sets and lower semi-analytic functions. We also highlight some properties that are important
and provide the basis for the stochastic control framework.

Let us first introduce some notation. For a topological space X, we denote by B(X) the Borel
σ-algebra. Let X and Y be two topological spaces. By a Borel measurable function (or mapping)
from X to Y , we mean that the function is measurable from (X,B(X)) to (Y,B(Y )) (i.e., the
preimage of any B ∈ B(Y ) lies in B(X)). Similarly, if F is a σ-algebra on X, by an F-measurable
function from X to Y , we mean that the function is measurable from (X,F) to (Y,B(Y )) (i.e., the
preimage of any B ∈ B(Y ) lies in F). We define likewise F-measurable functions from X ′ to Y ,
where X ′ is a subset of X and the σ-algebra on X ′ is the trace σ-algebra F∩X ′ = {D∩X ′ | D ∈ F}.
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In this paper we will focus on separable and metrizable topological spaces, and besides the Borel
σ-algebra B(X), we will need to consider σ-algebras onX that are finer than B(X). The universal σ-
algebra on X is defined through the set P(X) of Borel probability measures on X (i.e., probability
measures on B(X)) as follows. A Borel probability measure p can be extended to a probability
measure on the σ-algebra Bp(X) generated by B(X) and all the subsets of X that have p-outer
measure zero, such that the extension agrees with the p-outer measure on Bp(X). This extension
of p is called the completion of p [19, Sec. 3.3] and will also be denoted by p. The intersection of
all the σ-algebras Bp(X) for p ∈P(X) is called the universal σ-algebra U (X) [7, Def. 7.18]. Sets
in U (X) and measurable functions on (X,U (X)) are said to be universally measurable, and by the
definition of U (X), they are measurable with respect to the completion of any Borel probability
measure on X.

We consider subsets of a Polish space – a topological space that can be metrized by a metric
under which it is separable and complete [19, p. 344]. In this paper, a Borel space refers to a Borel
subset of a Polish space,1 endowed with the relative topology and Borel σ-algebra. The Cartesian
product of countably many Polish (Borel) spaces is also a Polish (Borel) space.

We now introduce analytic sets in a Polish space X. The empty set is an analytic set by
definition. The nonempty analytic sets are the images of Borel sets under continuous or Borel
measurable functions, roughly speaking. They were first discovered when studying projections of
Borel sets, which are important also in the optimal control context since partial minimization can be
viewed as projection. Analytic sets have several equivalent definitions (see e.g., [7, Prop. 7.41], [19,
Sec. 13.2]). We mention one here. A nonempty set A ⊂ X is analytic if A = f(B) for some Borel set
B in a Polish space and Borel measurable function f : B → X [19, Thm. 13.2.1(c’)]. Every Borel set
in a Polish space is analytic; the converse is not true ([7, Appendix B.3], [19, Prop. 13.2.5]). Every
analytic set is universally measurable ([7, Cor. 7.42.1], [19, Thm. 13.2.6]).

For a Borel space X or an analytic set X, besides the Borel σ-algebra B(X) and the universal σ-
algebra U (X), we also have the analytic σ-algebra A (X), the σ-algebra generated by the analytic
subsets of X. A measurable function from (X,A (X)) or (X,U (X)) to (Y,B(Y )), where Y is
a topological space, is said to be analytically measurable or universally measurable, respectively.
The three σ-algebras on X satisfy B(X) ⊂ A (X) ⊂ U (X) (the inclusions are strict if X is
an uncountable Borel space) [7, p. 171]. Thus, every Borel measurable function is analytically
measurable, and every analytically measurable function is universally measurable.

The class of analytic sets in a Polish space is closed under countable unions, countable inter-
sections and Borel preimages ([7, Cor. 7.35.2, Prop. 7.40], [46, Chap. 4]). This gives rise to many
nice properties of lower semi-analytic functions, functions whose lower level sets are analytic. More
specifically, a function f : D → [−∞,∞] is said to be lower semi-analytic if D is an analytic set and
for every c ∈ <, the level set {x ∈ D | f(x) < c} of f is analytic [7, Def. 7.21]. (Equivalently, the
epigraph of f , {(x, c) | x ∈ D, f(x) ≤ c, c ∈ <}, is analytic; cf. [7, p. 186].) Every lower semi-analytic
function is universally measurable, since analytic sets are universally measurable. Moreover, based
on the properties of analytic sets, the following operations on lower semi-analytic functions result in
a lower semi-analytic function (see [7, Lemma 7.30]):

(i) If f, g : D → [−∞,∞] are lower semi-analytic functions, then f+g is lower semi-analytic (here
∞−∞ and −∞+∞ are defined to be ∞). In addition, if f, g ≥ 0 or if g is Borel measurable
and g ≥ 0, then fg is lower semi-analytic. Note a particular implication of this: for a Borel
subset B of D, f · 1B is lower semi-analytic, where 1B denotes the indicator function for B.

(ii) If g : X → Y is Borel measurable, where X,Y are Borel spaces, and f : g(X) → [−∞,∞] is
lower semi-analytic, then the composition f ◦ g is lower semi-analytic.

(iii) For a sequence of lower semi-analytic functions fn : D → [−∞,∞], n ≥ 1, the functions

1The definition of Borel spaces given in [7] is more general than the one we give here. The two definitions are,
however, essentially equivalent, and the Borel spaces are now commonly called standard Borel spaces (see e.g. [46]).
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infn fn, supn fn, lim infn fn and lim supn fn are all lower semi-analytic. (These are pointwise
definitions.)

Several properties of analytic sets and lower semi-analytic functions play instrumental roles in
the stochastic control framework we will introduce. They concern analytic sets in product spaces
or functions involving two variables. The first property is closely related to value iteration and the
structure of the optimal cost function in the stochastic control context. If A is an analytic set in
X × Y , where X,Y are Polish, the projection of A on X, projX(A) = {x | (x, y) ∈ A for some y},
is analytic [7, Prop. 7.39]. When applied to level sets of functions, an implication of this is that
if D ⊂ X × Y is analytic and f : D → [−∞,∞] is lower semi-analytic, then the function f∗ :
projX(D)→ [−∞,∞] resulting from the partial minimization,

f∗(x) = inf
y∈Dx

f(x, y), where Dx = {y | (x, y) ∈ D}, (2.1)

is lower semi-analytic [7, Prop. 7.47].

The Jankov-von Neumann’s selection theorem asserts that if A is an analytic set in X×Y , where
X,Y are Polish, then there exists an analytically measurable function φ : projX(A)→ Y such that
the graph of φ lies in A, i.e., (x, φ(x)) ∈ A for all x ∈ projX(A) [7, Prop. 7.49]. For minimization
problems of the form (2.1), the theorem is applied to the level sets or epigraphs of lower semi-analytic
functions, and together with other properties, it yields the existence of an analytically measurable ε-
minimizer and the existence of a universally measurable ε-minimizer that attains the minimum f∗(x)
at every x where f∗(x) is attained by some y ∈ Dx. For details, see the selection theorems given
in [7, Prop. 7.50(a)-(b)]. In the stochastic control context, this is closely related to the existence of
optimal or nearly optimal policies and their structures.

Another important property of lower semi-analytic functions involves integration and stochastic
kernels. Let X and Y be Borel spaces. In this paper, a Borel, analytically or universally measurable
stochastic kernel on Y given X is a mapping κ(· | ·) : B(Y )×X → [0, 1] such that:

(i) For each B ∈ B(Y ), the function κ(B | ·) : X → [0, 1] is F-measurable with F = B(X),A (X)
or U (X), respectively.

(ii) For each x ∈ X, κ(· | x) is a probability measure on (Y,B(Y )).

Equivalently, the function x 7→ κ(· | x) is F-measurable from X to the space P(Y ) endowed with the
weak topology [7, Prop. 7.26, Lemma 7.28, Prop. 11.6]. If f : X×Y → [0,∞] is lower semi-analytic
and κ(dy | x) is a Borel measurable stochastic kernel on Y given X, then the integral

∫

Y

f(x, y)κ(dy | x)

as a function of x is lower semi-analytic on X [7, Prop. 7.48], where for each x, the integration is
defined to be with respect to the completion of the Borel probability measure κ(dy | x). If instead
κ(dy | x) is analytically or universally measurable, then the integral as a function of x is universally
measurable [7, Prop. 7.46, Sec. 11.2] and is not necessarily lower semi-analytic. These facts are
closely related to the structure of the cost functions and the selection of measurable policies in the
stochastic control context.

For more properties of analytic sets and lower semi-analytic functions, see the paper [16] and the
monograph [7, Chap. 7]. (For general properties of analytic sets, see also the books [37, 46].)

2.2 Stochastic Control Model

Our stochastic control model involves a state space S and a control space C, which are assumed to
be Borel spaces. We will write x for a state in S and u for a control in C. At each state x ∈ S,



8 §2. Background

one can apply a control from a nonempty subset U(x) ⊂ C. The set-valued function U given by
x 7→ U(x) specifies the control constraint for all states. We assume that the graph of U ,

Γ = {(x, u) | x ∈ S, u ∈ U(x)},

is an analytic subset of S × C. Applying a control u at a state x incurs a possibly infinite one-
stage cost and moves the system to another state x′. The one-stage cost is given by g(x, u), where
g : Γ → [−∞,∞] is assumed to be a lower semi-analytic function. The transition to state x′ is
according to a Borel measurable stochastic kernel q(dx′ | x, u) on S given S × C.

2.2.1 Policies and Induced Stochastic Processes

A policy is a sequence of functions, π = (µ0, µ1, . . .), where for each k, µk maps (x0, u0, . . . , uk−1, xk) ∈
(S ×C)k ×S to a Borel probability measure on C, denoted µk

(
duk | x0, u0, . . . , uk−1, xk

)
, such that

with respect to the completion of this measure,

µk
(
U(xk) | x0, u0, . . . , uk−1, xk

)
= 1, ∀ (x0, u0, . . . , uk−1, xk). (2.2)

The constraint (2.2) says that the set of non-admissible controls, C \ U(xk), has probability zero.
This is meaningful since Γ is analytic: each vertical section U(x) of Γ is universally measurable [7,
Lemma 7.29] and hence measurable for the completion of any Borel probability measure on C.

A policy π is said to be nonrandomized if for every k and every (x0, u0, . . . , uk−1, xk), the proba-
bility measure µk

(
duk | x0, u0, . . . , uk−1, xk

)
is a Dirac measure that assigns probability one to some

point in U(xk). A policy π is said to be semi-Markov if for every k, µk depends only on (x0, xk);
Markov if for every k, µk depends only on xk; stationary if π is Markov and µk = µ for all k. For
the stationary case, we simply write µ for π = (µ, µ, . . .). A nonrandomized stationary policy µ can
be viewed as a mapping that maps x ∈ S to a point in U(x) ⊂ C. We denote this mapping also by
µ, and we will use both notations µ(x), µ(du | x) in the paper, depending on the context.

So far, no measurability conditions are placed on the functions µk of a policy π = (µ0, µ1, . . .).
In this paper we will focus on measurable policies, in particular, universally measurable policies,
defined as follows.

A policy π is said to be universally measurable if for each k, µk
(
duk | x0, u0, . . . , uk−1, xk

)
is a

universally measurable stochastic kernel on C given (S × C)k × S. Similarly, a policy π is said to
be Borel measurable or analytically measurable if each stochastic kernel component of π is Borel
measurable or analytically measurable; such a policy is by definition also universally measurable.
Because Γ is analytic, by Jankov-von Neumann’s selection theorem [7, Prop. 7.49], there exists at
least one universally measurable (in fact, analytically measurable) nonrandomized stationary policy.
A Borel measurable policy, however, may not exist [14].

We denote by Π′ the set of universally measurable policies and by Π the set of universally
measurable Markov policies. Both sets are nonempty, as just mentioned. In what follows, when no
confusion arises, we will simply refer to universally measurable policies as policies.

Given a policy π ∈ Π′, the collection of stochastic kernels

µ0(du0 | x0), q(dx1 | x0, u0), µ1(du1, | x0, u0), q(dx2 | x1, u1), . . . ,

. . . , µk
(
duk | x0, u0, . . . , uk−1, xk

)
, q(dxk+1 | xk, uk), . . . ,

uniquely determines, for each initial distribution p0 of x0, a probability measure r(π, p0) on the
universal σ-algebra on (S×C)∞ with the following property [7, Prop. 7.45]:2 with respect to r(π, p0),

2It is worth noting that the universal σ-algebra on (S × C)∞ is not a product σ-algebra, so the existence of a
unique probability measure r(π, p0) here does not follow immediately from the Ionescu Tulcea theorem.
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the expectation Ef for any nonnegative, universally measurable function f : (S × C)k+1 → [0,∞]
equals the iterated integral
∫

S

∫

C

· · ·
∫

S

∫

C

f(x0, u0, . . . , xk, uk)µk(duk | x0, u0, . . . , xk) q(dxk | xk−1, uk−1) · · · µ0(u0 | x0) p0(dx0).

Here and in what follows, an integral
∫
fdp that involves a universally measurable function f and a

Borel probability measure p, is defined to be the integral of f with respect to the completion of p.

In general, for a measurable, extended real-valued function f , Ef is defined as usual to be
Ef+−Ef−, where f+ = max{0, f}, f− = −min{0, f}. The convention∞−∞ = −∞+∞ =∞ will
be adopted, although in the control problems we consider, we will not encounter such summations.

2.2.2 Infinite Horizon Total Cost Problems

We consider primarily three types of control problems under total expected cost criteria: discounted
total cost problems with bounded one-stage costs (D), and undiscounted total cost problems with
nonpositive one-stage costs (N) and with nonnegative one-stage costs (P). Specifically, let α ∈ [0, 1]
be the discount factor.

(D) α < 1 and −b ≤ g(x, u) ≤ b for all (x, u) ∈ Γ, where b ∈ <.

(N) α = 1 and g ≤ 0.

(P) α = 1 and g ≥ 0.

We mention that for reward maximization (instead of cost minimization), the reverse terminologies
are used in the literature [13, 47, 33, 38]: case (N) here corresponds to the positive model and case
(P) to the negative model considered there.

In each of the (D)(N)(P) cases, we define the cost of π ∈ Π′ for an initial state x0 = x ∈ S to be

Jπ(x) = Eπ

{ ∞∑

k=0

αkg(xk, uk)

}
,

the expectation of the universally measurable function
∑∞
k=0 α

kg(xk, uk) with respect to the prob-
ability measure r(π, δx), which is induced by π and the initial distribution δx (a Dirac measure
that assigns probability 1 to the point x), as described earlier. (Although g is only defined on Γ,
π is a policy and satisfies the control constraint, so (xk, uk) ∈ Γ for all k with probability one and
the expectation is thus well-defined.) By the bounded convergence theorem (for case (D)) and the
monotone convergence theorem (for cases (N)(P)), we can also write Jπ(x) as

Jπ(x) =

∞∑

k=0

αk Eπ
{
g(xk, uk)

}
,

where the expectation is with respect to the marginal of r(π, δx) on the space S×C of (xk, uk). For
all π ∈ Π′, the cost functions Jπ are universally measurable [7, p. 215].

The optimal cost function is defined by the minimal cost of universally measurable policies π for
each state:

J∗(x) = inf
π∈Π′

Jπ(x), ∀x ∈ S.

If Jπ(x) = J∗(x), π is optimal for state x. For ε > 0, π is said to be ε-optimal if for all x ∈ S,

Jπ(x) ≤
{
J∗(x) + ε if J∗(x) > −∞;

−1/ε if J∗(x) = −∞.
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Remark 2.1 (Special Cases with Transition-Dependent Discounting). In certain discounted problems,
the discount factor at each stage can depend on the state transition. Problems of this type are
considered in e.g., [40, 55]. Under mild model assumptions, we can convert such discounted problems
to equivalent, discounted or undiscounted problems in the stochastic control framework we just gave,
as we show below. Thus the existing results for (D)(N)(P) as well as the results of this paper are
applicable to these problems as well.

Suppose that our objective is to minimize over π the expected total discounted cost for each
initial state x0 = x,

Jπ(x) = Eπ

{
ĝ(x0, u0, x1) +

∞∑

k=1

( k∏

i=1

β(xi−1, ui−1, xi)
)
· αk ĝ(xk, uk, xk+1)

}
,

where α ∈ [0, 1] as earlier, β : S × C × S → [0, 1] is a Borel measurable function that describes the
transition-dependent discount factors, and ĝ : Γ × S → [−∞,∞] is a lower semi-analytic function
that describes the transition costs.

We convert this problem to an equivalent one, by applying a simple transformation of the state
transition dynamics as follows. In the equivalent problem, we introduce an additional cost-free and
absorbing state, denoted ∞, and let the state space be S̃ = S ∪{∞}. We define the state transition
kernel q̃ on C given S̃ × C as follows: q̃

(
{∞}| ∞, u

)
= 1 for all u ∈ C, and for each (x, u) ∈ S × C,

q̃(B | x, u) =

∫

B

β(x, u, x′) q(dx′ | x, u), B ⊂ S, B Borel measurable,

q̃
(
{∞}| x, u

)
= 1− q̃(S | x, u).

We consider the standard discounted cost criterion (α < 1) or undiscounted total cost criterion
(α = 1), with the one-stage cost function g given by g(∞, u) = 0 for all u ∈ C and

g(x, u) =

∫

S

ĝ(x, u, x′) q(dx′ | x, u), (x, u) ∈ Γ.

This problem is then of type (D) if in the original problem α < 1 and ĝ is bounded, of type (N) if
α = 1 and ĝ ≤ 0, and of type (P) if α = 1 and ĝ ≥ 0.

2.3 Optimality Properties

Let A(S) denote the set of functions f : S → [−∞,∞] that are lower semi-analytic, and let M(S)
denote the set of functions f : S → [−∞,∞] that are universally measurable. In each of the
(D)(N)(P) cases, the optimal cost function J∗ is lower semi-analytic, and it satisfies the optimality
equation

J∗ = T (J∗),

where T maps A(S) into A(S) and is given by

T (J)(x) = inf
u∈U(x)

{
g(x, u) + α

∫

S

J(x′) q(dx′ | x, u)

}
, x ∈ S. (2.3)

We will refer to T as the optimal cost operator. We note that T (J) ∈ A(S) for any function J ∈ A(S),
as just mentioned. This is a direct consequence of the preservation of lower semi-analyticity by the
partial minimization operation (cf. Eq. (2.1)) and other properties of lower semi-analytic functions
(cf. Section 2.1), combined with our model assumption that the graph Γ of the control constraint U
is analytic, the one-stage cost g is lower semi-analytic, and the state transition kernel q(dx′ | x, u) is
Borel measurable (cf. Section 2.2).
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In each of the (D)(N)(P) cases, the cost function Jµ for a stationary policy µ is universally
measurable. It satisfies a linear equation,

Jµ = Tµ(Jµ),

where Tµ is a mapping from M(S) to M(S), given by

Tµ(J)(x) =

∫

C

(
g(x, u) + α

∫

S

J(x′) q(dx′ | x, u)

)
µ(du | x), x ∈ S. (2.4)

In terms of the convergence properties of the value iteration sequence T k(J) and the structures
of the optimal policies, the (D)(N)(P) cases differ. We consider primarily pointwise convergence.
Throughout the paper, for a sequence of functions fn converging pointwise to a function f , we write
fn → f , and if the convergence is monotonically from above or from below, we write fn ↓ f or
fn ↑ f , respectively. Some convergence properties of value iteration under (D), (N) or (P) are:

(a) For (D)(N), value iteration converges pointwise to J∗. In particular, T k(J) → J∗ for any
bounded lower semi-analytic function J in case (D), and T k(J) ↓ J∗ for J ≡ 0 in case (N).

(b) For (P), value iteration need not converge to J∗: for J ≡ 0,

T k(J) ↑ J∞ ≤ J∗,

where the pointwise limit J∞ of {T k(J)} satisfies J∞ ≤ T (J∞).

In all three cases, ε-optimal nonrandomized policies exist for each ε > 0; however, they can be
taken to be stationary for (D), semi-Markov for (N), and Markov for (P). An ε-optimal randomized
Markov policy need not exist for (N) (a counterexample was given by van der Wal [51]; see also [38,
p. 326]). If for each state x, an optimal policy exists, then:

(a) For (D)(P), an optimal nonrandomized stationary policy exists.

(b) For (N), an optimal randomized semi-Markov policy exists.

The readers can find in [7, Chap. 9] the optimality properties mentioned above, as well as finer
characterizations of the optimal cost function and optimal policies, some of which we will mention
later in the paper where they are needed.

2.4 Measurability Issues in Standard Policy Iteration

In the policy iteration scheme, we repeat the following two steps:

(i) Evaluate the cost function Jµ of a given stationary policy µ.

(ii) Find a stationary policy µ′ with
Tµ′(Jµ) = T (Jµ)

and go to step (i) with µ = µ′.

A variant of it is the modified policy iteration [38]:

(i’) For a given stationary policy µ and a given function J , compute as an approximation of Jµ,

J ′ = Tmµ (J) for some positive integer m.

(ii’) Find a stationary policy µ′ with
Tµ′(J

′) = T (J ′)

and go to step (i’) with µ = µ′ and J = J ′.
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Both schemes break down, however, for the stochastic control model with universally measurable
policies, due to measurability issues (cf. [16, p. 940], [7, p. 232]). We explain the reasons below.

As defined in (2.3), T is also a mapping from M(S) to the space of functions on S: it maps a
universally measurable function J to the function T (J), possibly outside M(S). For a stationary
policy µ, Jµ is universally measurable, so T (Jµ) is defined. But since Jµ need not be lower semi-
analytic, even if T (Jµ) is universally measurable, a stationary, universally measurable policy µ′ such
that

Tµ′(Jµ) = T (Jµ) or Tµ′(Jµ) ≤ T (Jµ) + ε, for some given ε > 0,

may not exist. When this happens, step (ii) of policy iteration cannot be carried out. The same
issue also causes modified policy iteration to break down.

Blackwell et al. [16, Example (48)] gave an example of an analytically measurable function J
on [0, 1] for which T (J) is not Lebesgue measurable. If Jµ equals such J , then there is certainly
no stationary policy µ′ that can satisfy Tµ′(J) = T (J), because for all µ′, Tµ′(J) is universally
measurable, whereas T (J) is not. Moreover, since T (J) is not universally measurable, for some
p ∈ P(S), T (J) is not integrable with respect to the completion of p. Hence, T 2(J) as well as
(Tµ ◦ T )(J) for a stationary policy µ can be undefined for some states x (cf. [16, Example (48)]).
This means that variants of policy iteration of the form Jk+1 = Tk(Jk), where some of the Tk’s equal
T and others equal Tµ for some stationary policy µ, can also run into trouble.

3 A Mixed Value and Policy Iteration Method

LetM(Γ) (resp. A(Γ)) denote the set of all functions f : Γ→ [−∞,∞] that are universally measur-
able (resp. lower semi-analytic). Denote the subset of bounded (resp. nonnegative and nonpositive)
functions of A(Γ) by Ab(Γ) (resp. A+(Γ) and A−(Γ)).

For (D)(N)(P), recall that the relation J∗ = T (J∗) holds:

J∗(x) = inf
x∈U(x)

{
g(x, u) + α

∫

S

J∗(x′) q(dx′ | x, u)

}
, ∀x ∈ S.

We define Q∗ ∈ A(Γ) by

Q∗(x, u) = g(x, u) + α

∫

S

J∗(x′) q(dx′ | x, u), (x, u) ∈ Γ. (3.1)

For each (x, u) ∈ Γ, we may view Q∗(x, u) as the result of cost minimization over controllers that
start at state x, apply control u, and then choose some policy. This interpretation of Q∗(x, u) is
better revealed in the following equation, which is equivalent to (3.1) [7, Cor. 9.5.2]:

Q∗(x, u) = g(x, u) + α inf
π∈Π′

∫

S

Jπ(x′) q(dx′ | x, u), (x, u) ∈ Γ. (3.2)

(In the literature on learning and simulation-based DP, Q∗(x, u) is known as the optimal Q-factor
associated with (x, u); see e.g., [8, 48].) To simplify notation, for any function Q on Γ, let

M(Q)(x) = inf
u∈U(x)

Q(x, u), x ∈ S.

The mappingM maps A(Γ) into A(S) [7, Prop. 7.47]. With this notation, we can write the optimality
equation in two equivalent ways:

J∗ = T (J∗) ⇐⇒ J∗ = M(Q∗). (3.3)
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We introduce in this section a mixed value and policy iteration method, which operates on
the product space A(S) × A(Γ). The method combines characteristics of both value and policy
iteration, and the combination has two crucial features. First, it uses portions of a universally
measurable policy that are Borel, to preserve the lower semi-analytic properties of the functions
involved, thereby overcoming the measurability issues in standard policy iteration. Second, thanks
to its value iteration character, it does not rely strongly on the behavior of policies for convergence.
In particular, the policies involved are not required to be successively improving – a requirement
that in general cannot be met in our context or in the case where the policies involved are restricted
to be Borel measurable [12]. Our method gives rise to various policy iteration-like algorithms, whose
convergence we will analyze in Sections 4 and 5.

In what follows we introduce a family of mappings underlying the method and we discuss its
relation to optimal stopping problems (Section 3.1). We then give various forms of algorithms (Sec-
tion 3.2), followed by related discussions on the existence of Borel measurable policies (Section 3.3)
in connection with one of our policy iteration-like algorithms.

3.1 Mappings Induced by Stationary Policies

First, we introduce a family of parametrized mappings Fθ, with parameter θ ∈ Θ. Let Θ denote
the set of all pairs (µ,B), where µ is a stationary policy and B a Borel subset of S, such that the
function x 7→ µ(du | x) restricted to B is Borel measurable (equivalently, for every Borel subset D
of C, µ(D | ·) is Borel measurable on B).

For each θ = (µ,B) ∈ Θ, we define a mapping Fθ :M(Γ)×M(S)→M(Γ) by

Fθ(Q ; J)(x, u) = g(x, u) + α

∫

S\B
J(x′) q(dx′ | x, u)

+ α

∫

B

∫

C

min
{
J(x′) , Q(x′, u′)

}
µ(du′ | x′) q(dx′ | x, u), (x, u) ∈ Γ, (3.4)

for all Q ∈ M(Γ) and J ∈ M(S). Here the convention ∞−∞ = −∞ +∞ = ∞ is used. We also
note that although Q is defined only on Γ, the inner integral in the third term in (3.4) is well-defined
because µ satisfies the control constraint. (We could, for example, view this integral as an integral
for the extension of Q to S × C with Q(x′, u′) =∞ outside Γ.)

For any stationary policy µ, the trivial choice B = ∅ gives θ = (µ, ∅) ∈ Θ, but the corresponding
mapping Fθ does not depend on the policy µ at all. To introduce greater dependence of Fθ on µ, we
desire “large” sets B. By the nature of universally measurable policies, one can indeed find “large”
B with (µ,B) ∈ Θ (see Prop. 3.1(b) below and see also Example 3.1, Section 3.2). If the policy µ is
Borel measurable, then (µ, S) ∈ Θ.

An important property of Fθ is that it preserves the lower semi-analyticity of functions. This
will allow us to overcome the measurability difficulties that hamper standard policy iteration.

Proposition 3.1.

(a) For any θ ∈ Θ and J ∈ A(S), Fθ(· ; J) maps A(Γ) into A(Γ).

(b) For each stationary policy µ, given any p ∈P(S), there is a Borel set B ⊂ S with p(S \B) = 0
and (µ,B) ∈ Θ.

Proof. (a) Let Q ∈ A(Γ). We show that the function Fθ(Q ; J)(·, ·) given by Eq. (3.4) is lower semi-
analytic, by proving that each term in the right-hand side of Eq. (3.4) is lower semi-analytic. The
first term is lower semi-analytic by definition. The second term equals

∫
S

1S\B(x′)J(x′) q(dx′ | x, u).
Here the set S \B is Borel, J is lower semi-analytic, and q(dx′ | x, u) is a Borel measurable stochastic
kernel on S given S × C in our stochastic control model. Then by [7, Lemma 7.30(4) and Prop.
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7.48], the second term is lower semi-analytic on S×C and hence lower semi-analytic on the analytic
set Γ. We show now that the third term,

α

∫

B

∫

C

min
{
J(x′) , Q(x′, u′)

}
µ(du′ | x′) q(dx′ | x, u), (3.5)

is lower semi-analytic. Let Qe be an extension of Q to S×C with Qe(x, u) =∞ for (x, u) 6∈ Γ. Since
Q is lower semi-analytic, Qe is lower semi-analytic by definition. Using the fact that µ satisfies the
control constraint, we can write the term in (3.5) equivalently as

α

∫

S

∫

C

f(x′, u′)µ(du′ | x′) q(dx′ | x, u), (3.6)

where f : S×C → [−∞,∞] is given by f(x′, u′) = 1B(x′) ·min{J(x′), Qe(x′, u′)} for (x′, u′) ∈ S×C.
The function f is lower semi-analytic, since the functions J and Qe are lower semi-analytic and the
set B is Borel [7, Lemma 7.30(2),(4)]. It follows that f is lower semi-analytic on B × C. Since
(µ,B) ∈ Θ, the defining property of Θ implies that µ(du′ | x′) is a Borel measurable stochastic
kernel on C given B. Hence

∫
C
f(x′, u′)µ(du′ | x′) is lower semi-analytic on B by [7, Prop. 7.48].

We also have
∫
C
f(x′, u′)µ(du′ | x′) = 0 for x′ 6∈ B. Therefore,

∫
C
f(x′, u′)µ(du′ | x′) is lower semi-

analytic on S. Then, since q(dx′ | x, u) is a Borel measurable stochastic kernel on S given S × C,
the integral (3.6) as a function of (x, u) is lower semi-analytic on S×C by [7, Prop. 7.48] and hence
lower semi-analytic on the analytic set Γ. Equivalently, the integral (3.5) as a function of (x, u) is
lower semi-analytic on Γ. This proves part (a).

(b) Since µ(du | x) is a universally measurable stochastic kernel on C given S, by [7, Lemma 7.28],
there is a Borel measurable stochastic kernel µ̃(du | x) with µ̃(du | x) = µ(du | x) everywhere except
on a set D with p-outer measure zero. Let D′ ⊃ D be a Borel set with p(D′) = 0. Letting B = S \D′
proves part (b).

In the discounted case (D), we work with J ∈ Ab(S), Q ∈ Ab(Γ), the subsets of bounded lower
semi-analytic functions. In the nonpositive case (N), we work with J ∈ A−(S), Q ∈ A−(Γ), the
subsets of nonpositive lower semi-analytic functions, whereas in the nonnegative case (P), we work
with J ∈ A+(S), Q ∈ A+(Γ), the subsets of nonnegative lower semi-analytic functions. By Prop. 3.1
and the definition of Fθ(· ; J), we see that in each of the (D)(N)(P) cases, Fθ(· ; J) maps the sets
Ab(Γ), A−(Γ), and A+(Γ) into themselves, for J ∈ Ab(S), J ∈ A−(S), and J ∈ A+(S), respectively.

For discrete spaces and abstract DP problems, where measurability is not a concern, we have
considered in our earlier work [10, 57, 9] mappings of the form Fθ, θ = (µ, S), without splitting the
state space by a set B ⊂ S according to the policy µ. In the present context, however, in order for Fθ
to map lower semi-analytic functions to lower semi-analytic functions, it is important to introduce
B as a parameter component in defining Fθ.

Optimal stopping problems corresponding to Fθ(· ; J)

It is intuitive to relate Fθ(· ; J) to an optimal stopping problem defined by (θ, J) and the parameters
of the original control problem, with J specifying the stopping costs. We give a precise mathematical
formulation in Appendix A, where we will also show that Fθ(· ; J) can be viewed as a form of the
optimal cost operator. Here we describe this optimal stopping problem intuitively. In the optimal
stopping problem associated with θ = (µ,B) and J , the states are the state-control pairs of the
original control problem. Suppose we start from a state (x, u) in Γ at time 0; at this time we must
pay g(x, u) and choose to continue. (This corresponds to the first term in Eq. (3.4).) At time 1, we
first land at x′ according to q(dx′ | x, u). If x′ ∈ S \ B, then we must pay J(x′) and immediately
stop. (This corresponds to the second term in Eq. (3.4).) If x′ ∈ B, then u′ is generated and we land
at (x′, u′) according to µ(du′ | x′), and there, we can either stop and pay J(x′), or continue with
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Figure 1: Illustration of the system dynamics of an optimal stopping problem corresponding to
Fθ(· ; J) with θ = (µ,B) ∈ Θ.

the continuation cost g(x′, u′). (This corresponds to the third term in Eq. (3.4).) If we choose to
continue, we repeat the process just described for time 1. Figure 1 illustrates this optimal stopping
problem.

A special case of the function J provides further insight, by allowing us to relate the total
cost in the optimal stopping problem to that in the original problem. Suppose J = Jπ for some
π = (π0, π1, . . .) ∈ Π′ (with Jπ lower semi-analytic). Let Qθ,Jπ (x, u) be the minimal cost starting
from (x, u) in the optimal stopping problem just described. We may interpret Qθ,Jπ (x, u) as the
minimal cost of a set of policies (in an extended sense) in the original control problem, by constructing
these policies from policies in the optimal stopping problem based on interpreting the action to stop
as the decision to switching from applying µ to applying π forever in the original problem. More
specifically, these policies apply control u at state x at time 0. From time 1 on, they either follow
the stationary policy µ or use the policy π, which they must do if the state goes outside the set B.
Once they start to use π at time τ , say, they apply π0, π1, . . . at time τ, τ + 1, . . ., respectively, and
continue in this way forever. (We do not include a formal proof for this interpretation of Qθ,Jπ (x, u)
in the paper; but we note that it is similar to the analysis we give in Appendix B.)

Because of the correspondence between Fθ(· ; J) and an optimal stopping problem, some of the
theories for (D)(N)(P) with a finite number of controls can be applied to analyze the properties of
Fθ (see Appendices A and B).

Some basic properties of Fθ

We now discuss a few basic properties of the mappings Fθ and Fθ(· ; J), relating to monotonicity and
fixed point properties, and their relation with (J∗, Q∗). Let Fnθ (· ; J) denote the n-fold composition
of Fθ(· ; J), i.e.,

Fnθ (Q ; J) = Fθ
(
· · ·Fθ

(
Fθ︸ ︷︷ ︸

n times

(Q ; J) ;J
)
· · · ; J

)
.

By definition Fθ is monotone:

J ≥ J ′, Q ≥ Q′ =⇒ Fθ(Q ; J) ≥ Fθ(Q′ ; J ′).

Applying this relation with Fθ(Q ; J) in place of Q and Fθ(Q
′ ; J ′) in place of Q′, and repeating the

argument n times, we see that

J ≥ J ′, Q ≥ Q′ =⇒ Fnθ (Q ; J) ≥ Fnθ (Q′ ; J ′), ∀n ≥ 1. (3.7)
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Let 0 denote the constant function zero. We consider the pointwise limit

Qθ,J = lim
n→∞

Fnθ (0 ; J),

which can be interpreted as the optimal cost function of the optimal stopping problem mentioned
earlier (see Cor. A.1, Appendix A).

Proposition 3.2. (D)(N)(P) Let J ∈ Ab(S) for (D), J ∈ A−(S) for (N), and J ∈ A+(S) for (P).
Then Qθ,J = limn→∞ Fnθ (0 ; J) is well-defined and lower semi-analytic, and satisfies

Qθ,J = Fθ(Qθ,J ; J). (3.8)

For (D), it is the only solution of Q = F (Q ; J) in Ab(Γ).

Proof. For case (D), the proposition will be directly proved in Lemma 4.1(b), Section 4, after show-
ing that Fθ(· ; J) has a contraction property. For case (N)(resp. (P)), Qθ,J is the pointwise limit
of a sequence of nonincreasing nonpositive functions (resp. nondecreasing nonnegative functions).
Equation (3.8) then follows from the definition (3.4) of Fθ(· ; J) and the monotone convergence
theorem.

We can relate Fθ and Qθ,J to Q∗ as follows.

Proposition 3.3. (D)(N)(P) Let θ ∈ Θ, J ∈ A(S), Q ∈ A(Γ).

(a) Fθ(Q
∗; J∗) = Q∗.

(b) If J ≥ J∗, Q ≥ Q∗, then Fnθ (Q; J) ≥ Q∗ for all n ≥ 1.

(c) Let J ≥ J∗ with J ∈ Ab(S) for (D), J ∈ A−(S) for (N), and J ∈ A+(S) for (P). Then

Qθ,J ≥ Qθ,J∗ = Q∗.

Proof. Let θ = (µ,B). We have J∗(x) ≤ Q∗(x, u) for all (x, u) ∈ Γ. Thus we can rewrite the iterated
integral in the sum (3.4) defining Fθ(Q

∗; J∗)(x, u) as
∫

B

∫

C

min
{
J∗(x′) , Q∗(x′, u′)

}
µ(du′ | x′) q(dx′ | x, u) =

∫

B

J∗(x′) q(dx′ | x, u).

and by combining it with the second term in (3.4), we obtain

Fθ(Q
∗ ; J∗)(x, u) = g(x, u) + α

∫

S

J∗(x′) (dx′ | x, u) = Q∗(x, u), ∀ (x, u) ∈ Γ.

This proves part (a). Part (b) then follows from part (a) and the monotonicity of Fθ (cf. Eq. (3.7)).

For part (c), since J ≥ J∗, we have Fnθ (0 ; J) ≥ Fnθ (0 ; J∗) for every n, by the monotonicity of
Fθ (cf. Eq. (3.7)). Then by Prop. 3.2,

Qθ,J = lim
n→∞

Fnθ (0 ; J) ≥ lim
n→∞

Fnθ (0 ; J∗) = Qθ,J∗ .

There remains to show Qθ,J∗ = Q∗. For case (D), this is true because by part (a), Q∗ is the solution
of Fθ(Q ; J∗) = Q,Q ∈ Ab(Γ), whereas we will show in Lemma 4.1 (Section 4) that this equation
has Qθ,J∗ as its unique solution.

For case (N), we have J∗ ≤ 0 and consequently, Fθ(0 ; J∗) = Q∗ by the definitions of Fθ and Q∗.
In view of part (a), this implies Fnθ (0 ; J) = Q∗ for every n, and hence Qθ,J∗ = Q∗ by Prop. 3.2.

For case (P), we will show that Qθ,J∗ = Q∗ as Prop. B.1 in Appendix B (the proof is not as
simple as in (D)(N)).
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3.2 Algorithms

We give first our mixed value and policy iteration algorithm in its basic form. The conditions needed
for the convergence of the algorithm are different for each of the (D)(N)(P) cases, and will be given
in the subsequent Sections 4 and 5. Our algorithm starts with a pair (J0, Q0), which depending
on whether case (D), (N), or (P) holds, must belong to Ab(S) × Ab(Γ), or A−(S) × A−(Γ), or
A+(S)×A+(Γ), respectively.

Algorithm I (basic form):

Iterate for each k ≥ 0:

• Choose θk = (µk, Bk) ∈ Θ, let

Qk+1 = Fnkθk (Qk; Jk) for some nk ≥ 1, or Qk+1 = Qθk,Jk , (3.9)

and let
Jk+1 = M(Qk+1). (3.10)

The above algorithm outputs a sequence of lower semi-analytic function pairs (Jk, Qk). This can
be seen from the inductive argument: by Props. 3.1 and 3.2, the function Qk is lower semi-analytic
if Jk is lower semi-analytic, whereas the infimization (3.10) results in a lower semi-analytic function
Jk+1 by [7, Prop. 7.47].

The algorithm (3.9)-(3.10) allows any choice of θk = (µk, Bk) ∈ Θ. If we let θk = (µk, ∅) for each
iteration k, the policy µk has no effect on the iterates, and the algorithm reduces to value iteration
Jk+1 = T (Jk). By Prop. 3.1(b), we can choose sets Bk that are not only nonempty but also large
(cf. Example 3.1). In what follows, we consider choices of µk based on Qk and a selection theorem
of the Jankov-von Neumann type, and we derive policy iteration-like algorithms.

Recall that if Q ∈ A(Γ), then by a selection theorem for lower semi-analytic functions [7, Prop.
7.50(b)], for any ε > 0, we can select a universally measurable, nonrandomized stationary policy µ
such that, with I =

{
x ∈ S

∣∣ arg minu∈U(x)Q(x, u) 6= ∅
}
,

µ(x) ∈ arg min
u∈U(x)

Q(x, u) if x ∈ I, (3.11)

Q(x, µ(x)) ≤
{
M(Q)(x) + ε if x 6∈ I, M(Q)(x) > −∞,
−1/ε if x 6∈ I, M(Q)(x) = −∞. (3.12)

If we relax the condition (3.11), then by [7, Prop. 7.50(a)], we can find instead an analytically
measurable policy µ such that for all states x,

Q(x, µ(x)) ≤
{
M(Q)(x) + ε if M(Q)(x) > −∞,
−1/ε if M(Q)(x) = −∞. (3.13)

Choosing the policies in the basic algorithm based on the above selection theorem, we obtain a
special form of the basic algorithm that resembles to some degree the modified policy iteration:

Policy Iteration-Like Algorithm II:

In the basic algorithm I, for each k ≥ 1:

• Let µk+1 be a nonrandomized stationary policy satisfying Eqs. (3.11) and (3.12), or Eq. (3.13),
with Q = Qk+1 and a desired value of ε.

If there exists at least one Borel measurable policy, we can further specialize the above algorithm
to use Borel measurable µk together with Bk = S for every iteration or whenever this is desirable.
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As an example, we give below a policy iteration-like algorithm with Borel measurable policies. When
the set Γ is Borel, a nonrandomized Borel measurable policy is known to exist under fairly general
conditions (see Section 3.3 for some useful facts). Thus algorithms of this kind can be applied to a
large class of problems.

Policy Iteration-Like Algorithm III with Borel Measurable Policies:

Let µ0 be a Borel measurable stationary policy (assumed to exist).

Iterate for each k ≥ 0:

• For θk = (µk, S), compute Qk+1, Jk+1 as in the basic algorithm I: let Qk+1 = Fnkθk (Qk; Jk) for
some nk ≥ 1 or let Qk+1 = Qθk,Jk , and then let Jk+1 = M(Qk+1).

• Let µ′k+1 be a stationary policy satisfying Eqs. (3.11) and (3.12), or Eq. (3.13), with Q = Qk+1

and a desired value of ε.

• Select pk+1 ∈ P(S) and let B ⊂ S be a Borel set such that pk+1(B) = 1 and (µ′k+1, B) ∈ Θ
(cf. Prop. 3.1(b)). Define a Borel measurable policy µk+1 by

µk+1(du | x) =

{
µ′k+1(du | x) on B,

µ̄(du | x) on S \B, (3.14)

where µ̄ is some Borel measurable stationary policy.

In particular, if µ̄ can be chosen to be nonrandomized, then every µk, k ≥ 1, is a nonrandomized
Borel measurable policy.

Remark 3.1. Let us contrast Algorithm III with standard policy iteration. Algorithm III involves
mappings F(µ,S) for Borel measurable policies µ. Such a mapping by its definition (3.4) is given by

F(µ,S)

(
Q ; J)(x, u) = g(x, u) + α

∫

S

∫

C

min
{
J(x′) , Q(x′, u′)

}
µ(du′ | x′) q(dx′ | x, u), (x, u) ∈ Γ,

and for a nonrandomized µ, reduces to

F(µ,S)

(
Q ; J)(x, u) = g(x, u) + α

∫

S

min
{
J(x′) , Q

(
x′, µ(x′)

)}
q(dx′ | x, u), (x, u) ∈ Γ. (3.15)

By contrast, standard policy evaluation of µ involves the affine mapping Tµ : M(S) → M(S) (cf.
Eq. (2.4)), which is given by

Tµ(V )(x) = g
(
x, µ(x)

)
+ α

∫

S

V (x′) q
(
dx′ | x, µ(x)

)
, x ∈ S.

Remark 3.2. To further contrast Algorithm III with standard policy iteration, we discuss a property
of the policies µk in the algorithm, which may be related to a notion of almost-surely ε-optimality. For
simplicity, let us suppose that in Algorithm III, Qk+1 = Qθk,Jk for all k and µk are nonrandomized
policies. Denote

Vk(x) = min
{
Jk(x) , Qθk,Jk

(
x, µk(x)

)}
, x ∈ S.

Recall that with θk = (µk, S), Qθk,Jk = F(µk,S)(Qθk,Jk ; Jk) by Prop. 3.2. From this relation and
Eq. (3.15), we see that for all x ∈ S,

M
(
Qθk,Jk

)
(x) = inf

u∈U(x)

{
g(x, u) + α

∫

S

Vk(x′) q(dx′ | x, u)

}
= T (Vk)(x).
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Since µk+1 is chosen based on either Eqs. (3.11)-(3.12) or Eq. (3.13) (cf. the definition (3.14) of
µk+1), it follows that for k ≥ 0,

pk+1

({
x ∈ S | Tµk+1

(Vk)(x) ≤ T (Vk)(x) + ε
})

= 1, (3.16)

where pk+1 is the probability measure in Algorithm III. Equation (3.16) says that µk+1 is ε-optimal
for a set of states with pk+1-measure 1, in the two-stage problem with the terminal second-stage
costs given by Vk. This property of the policies µk, k ≥ 1, bears similarity to the notion of “(p, ε)-
optimal” policies [12, 47]. By contrast, standard policy iteration cannot operate with policies like µk,
if they are not ε-optimal but only optimal in a “(p, ε)-sense” for the optimization problems involved
in policy improvement.

It is also clear that we cannot obtain J∗ by policy iteration with Borel measurable policies if
for some state, there exists no stationary, ε-optimal Borel measurable policy. This can happen even
in finite-state countable-control problems; see e.g., [47, Example 6.1]. Similarly, if J∗ is not Borel
measurable, we cannot obtain J∗ by policy iteration or modified policy iteration operating with
Borel measurable policies, since these algorithms keep the iterates Jk in the set of Borel measurable
functions. For an example, see [47, Example 4.1]. By contrast, for Algorithm III we have Jk → J∗

in case (D), as well as in cases (N)(P) under certain initial conditions. In fact, the convergence
properties we will establish in Sections 4 and 5 hold for the basic algorithm I, regardless of the
choices of µk.

In Algorithms I-III, we repeatedly find, for a universally measurable policy µ, a Borel set B ⊂ S
such that as a function of x, µ(du | x) restricted to B is Borel measurable. As mentioned earlier, it
is desirable to have a “large” set B so that a large portion of the policy can be taken into account in
the algorithms. We may measure the “largeness” of B with respect to a chosen probability measure
p on S (cf. Prop. 3.1(b)). The question is then how to choose the measure p. Let us discuss a natural
possibility.

Example 3.1 (Choice of B based on the Markov chain induced by µ). Consider the Markov chain
{Xk} on (S,U (S)) with state transition kernel κ(dx′ | x) defined by

κ(D | x) =

∫

C

q(D | x, u)µ(du | x), D ∈ U (S),

where q(D | x, u) is the measure of D with respect to the completion of q(dx′ | x, u). Define recursively
the n-step transition kernels: κ0(dx′ | x) = δx(dx′) and

κn(dx′ | x) =

∫

S

κn−1(dx′ | y)κ(dy | x), n ≥ 1.

For some probability measure ρ on (S,U (S)) and β ∈ (0, 1), let p be the probability measure on
(S,U (S)) given by

p(D) = (1− β)

∞∑

n=0

βn
∫

S

κn(D | x) ρ(dx), D ∈ U (S).

We then let B be a Borel set in S with (µ,B) ∈ Θ and p(B) = 1.

The measure p reflects which sets of states are visited with positive probability under the policy
µ if the initial distribution is ρ. In particular, if µ induces a ψ-irreducible Markov chain {Xk} with
the maximal irreducibility probability measure ψ, then ψ is absolutely continuous with respect to p
[34, Prop. 4.2.1(iii)]; if in addition the initial distribution ρ is an irreducibility measure of {Xk}, then
p = ψ [34, Prop. 4.2.2(iv)]. In both cases, p(B) = 1 implies that B contains a nonempty absorbing
set of states [34, Prop. 4.2.3(ii)], and both the set S \ B and the set of states from which S \ B is
reachable under µ have ψ-measure zero [34, Prop. 4.2.2(iii)].
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3.3 Some Facts about the Existence of Borel Measurable Policies

In the rest of this section, we discuss some useful facts about the existence of Borel measurable
policies, to show a broad application range of the policy iteration-like algorithm III given earlier,
which uses Borel measurable policies. Recall that the graph of the control constraint U ,

Γ =
{

(x, u) | x ∈ S, u ∈ U(x)
}
⊂ S × C,

is an analytic subset of the product of two Polish spaces (of which S and C are Borel subsets). The
question whether a Borel measurable nonrandomized stationary policy exists in our control problem
is equivalently whether the set Γ admits a section f – a function f : S → C whose graph lies in Γ
(i.e., f(x) ∈ U(x) for all x), such that f is Borel measurable. Measurable selection theorems concern
questions of this type. The Jankov-von Neumman’s selection theorem tells us that Γ admits an
analytically measurable section.

Suppose Γ is a Borel subset of S × C. It can still happen that Γ has no Borel measurable
section [14]. Then, there exists no Borel measurable stationary policy, randomized or nonrandomized.
(Because if a randomized Borel measurable stationary policy were to exist, a nonrandomized one
must also exist by the selection theorem of Blackwell and Ryll-Nardzewski [17].) Nevertheless, when
Γ is Borel, a number of selection theorems for Borel sets in the product of two Polish spaces can be
applied to assert the existence of a Borel measurable section of Γ, under fairly general conditions on
the control constraint U (see e.g., [46]). We give below several examples.

Let Y be the Polish space of which C is a Borel subset. Assume Γ is Borel. In each of the
following cases, a Borel measurable nonrandomized stationary policy exists:

(a) For every x, U(x) is a countable set (by a theorem of Lusin, [46, Theorem 5.8.11]).

(b) For every x, U(x) contains a nonempty open set in Y (by theorems of Kechris and Sarbadhikari,
[46, Theorem 5.8.5]).

(c) For every x, U(x) is a σ-compact set in Y (by a theorem of Arsenin and Kunugui, [46, Theorem
5.12.1]), which is true, in particular when Y is σ-compact and each U(x) is a countable union
of open or closed sets in Y .

(d) U is a Borel measurable multifunction (i.e., set-valued function) and for every x, U(x) is a
closed set in Y (by Kuratowski and Ryll-Nardzewski’s selection theorem, [46, Theorem 5.2.1]).

These examples illustrate that for many general classes of control constraints U , the policy iteration-
like algorithm III, which operates with Borel measurable policies, can be applied.

4 Convergence Analysis for Discounted Case (D) and Non-
positive Case (N)

In this section, we analyze the convergence of the mixed value and policy iteration algorithms given
in Section 3.2 for cases (D) and (N). We state convergence results for the basic algorithm (3.9)-(3.10),
since the two other policy iteration-like algorithms are its special cases.

4.1 Discounted Case (D)

In the discounted case (D), we work with bounded functions. Let Mb(S) and Mb(Γ) denote the
vector spaces of bounded universally measurable functions on S and Γ respectively. With the
supremum norm ‖ ·‖∞, defined for f ∈Mb(S) orMb(Γ) by ‖f‖∞ = supy |f(y)|,Mb(S) andMb(Γ)
are Banach spaces. Note that Ab(S), Ab(Γ) (the sets of bounded, lower semi-analytic functions) are
closed subsets ofMb(S),Mb(Γ), respectively, and endowed with the metric dsup(f, f

′) = ‖f−f ′‖∞,
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the spaces (Ab(S), dsup) and (Ab(Γ), dsup) are complete. Our mixed value and policy iteration
algorithms work on the product space Ab(S)×Ab(Γ) endowed with the metric

d
(
(J,Q) , (J ′, Q′)

)
= ‖(J,Q)− (J ′, Q′)‖∞ := max

{
‖J − J ′‖∞ , ‖Q−Q′‖∞

}
,

which is also a complete metric space. Our convergence analysis below parallels the one given in our
earlier work [10] for discounted finite-state and control problems.

Lemma 4.1. (D) Let θ ∈ Θ, J, J ′ ∈ Ab(S), and Q,Q′ ∈ Ab(Γ).

(a) We have

‖Fθ(Q ; J)− Fθ(Q′ ; J ′)‖∞ ≤ αmax
{
‖J − J ′‖∞ , ‖Q−Q′‖∞

}
,

‖Fθ(Q ; J)−Q∗‖∞ ≤ αmax
{
‖J − J∗‖∞ , ‖Q−Q∗‖∞

}
.

(b) The function Qθ,J = limk→∞ F kθ (0 ; J) is the unique solution to Q = Fθ(Q ; J), Q ∈ Ab(Γ).
Moreover,

‖Qθ,J −Q∗‖∞ ≤ α‖J − J∗‖∞.

Proof. (a) For every (x, u) ∈ Γ,

J(x) ≤ J ′(x)+max
{
‖J−J ′‖∞ , ‖Q−Q′‖∞

}
, Q(x, u) ≤ Q′(x, u)+max

{
‖J−J ′‖∞ , ‖Q−Q′‖∞

}
,

so
min

{
J(x) , Q(x, u)

}
−min

{
J ′(x) , Q′(x, u)

}
≤ max

{
‖J − J ′‖∞ , ‖Q−Q′‖∞

}

and by symmetry,

∣∣min
{
J(x) , Q(x, u)

}
−min

{
J ′(x) , Q′(x, u)

}∣∣ ≤ max
{
‖J − J ′‖∞ , ‖Q−Q′‖∞

}
.

Using the above inequality and the definition of Fθ given in Eq. (3.4), a direct calculation then shows
that for each (x, u) ∈ Γ,

∣∣∣Fθ(Q; J)(x, u)− Fθ(Q′; J ′)(x, u)
∣∣∣ ≤ α ‖J − J ′‖∞ · q(S \B | x, u)

+ αmax
{
‖J − J ′‖∞ , ‖Q−Q′‖∞

}
· q(B | x, u)

≤ αmax
{
‖J − J ′‖∞ , ‖Q−Q′‖∞

}
.

This proves the first inequality in part (a). The second inequality is proved by setting Q′ = Q∗ and
J ′ = J∗, and using the fact Fθ(Q

∗; J∗) = Q∗ (Prop. 3.3(a)).

(b) Part (a) implies ‖Fθ(Q ; J)− Fθ(Q′; J)‖∞ ≤ α‖Q−Q′‖∞, so by Banach’s contraction principle
[39, p. 220], the equation Q = Fθ(Q ; J), Q ∈ Ab(Γ), has a unique solution Q̄, and F kθ (Q ; J) → Q̄
for any Q ∈ Ab(Γ). This shows Qθ,J = limk→∞ F kθ (0 ; J) = Q̄ and Qθ,J = Fθ(Qθ,J ; J). Letting
Q = Qθ,J in the second inequality in part (a), we then have

‖Qθ,J −Q∗‖ ≤ αmax
{
‖J − J∗‖∞ , ‖Qθ,J −Q∗‖∞

}
.

Since α < 1, this is equivalent to ‖Qθ,J −Q∗‖ ≤ α‖J − J∗‖∞.

Theorem 4.1. (D) For any J0 ∈ Ab(S) and Q0 ∈ Ab(Γ), the sequence {(Jk, Qk)} generated by the
iteration (3.9)-(3.10) converges to (J∗, Q∗), and

∥∥(Jk, Qk)− (J∗, Q∗)
∥∥
∞ ≤ α

k
∥∥(J0, Q0)− (J∗, Q∗)

∥∥
∞.
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Proof. At iteration k, either Qk+1 = Fnθ (Qk ; Jk) or Qk+1 = Qθ,Jk for some θ ∈ Θ, n ≥ 1. For the
first case, applying the second inequality in Lemma 4.1(a) n times, we have

∥∥Fnθ (Qk ; Jk)−Q∗
∥∥
∞ ≤ αmax

{
‖Jk − J∗‖∞ , αn−1‖Qk −Q∗‖∞

}
,

whereas for the second case, ‖Qθ,Jk −Q∗‖ ≤ α‖Jk − J∗‖∞ by Lemma 4.1(b). Thus in either case,

‖Qk+1 −Q∗‖∞ ≤ αmax
{
‖Jk − J∗‖∞ , ‖Qk −Q∗‖∞

}
.

Since Jk+1 = M(Qk+1), J∗ = M(Q∗), and M is nonexpansive, i.e., ‖M(Q)−M(Q′)‖∞ ≤ ‖Q−Q′‖∞,
we have

‖Jk+1 − J∗‖∞ = ‖M(Qk+1)−M(Q∗)‖∞ ≤ αmax
{
‖Jk − J∗‖∞ , ‖Qk −Q∗‖∞

}
.

Combining the preceding two inequalities, we obtain

∥∥(Jk+1, Qk+1)− (J∗, Q∗)
∥∥
∞ ≤ α

k+1
∥∥(J0, Q0)− (J∗, Q∗)

∥∥
∞,

which is the desired inequality and implies (Jk, Qk)→ (J∗, Q∗).

Remark 4.1. Finally, let us note that given the sequence {Jk} generated by the algorithm, we may
extract an asymptotically near-optimal sequence of policies {νk} by using the selection theorem of
[7, Prop. 7.50]: for some ε > 0, choose universally measurable stationary policies νk such that

∥∥Tνk(Jk)− T (Jk)
∥∥
∞ ≤ ε, ∀ k ≥ 1.

Using the contraction property of Tνk and T , it can be shown (see e.g., [6, p. 45]) that

‖Jνk − J∗‖∞ ≤
ε

1− α +
2α ‖Jk − J∗‖∞

1− α , ∀ k ≥ 1.

For the policy iteration-like algorithm II (resp. III) in particular, the sequence of policies {µk} (resp.
{µ′k}) generated by the algorithm is asymptotically ε/(1− α)-optimal.

4.2 Nonpositive Case (N)

In case (N) the one-stage cost function g ≤ 0 and J∗ ≤ 0, Q∗ ≤ 0. The mixed value and policy
iteration algorithms operate with nonpositive lower semi-analytic functions in A−(S) and A−(Γ).
We will rely on the monotonicity and fixed point properties of Fθ to ensure their convergence.

First, we derive some simple upper and lower bounds on the iterates generated by the algorithms.
To simplify notation, let

H(x, u, J) = g(x, u) +

∫

S

J(x′) q(dx′ | x, u), (x, u) ∈ Γ. (4.1)

Expressed in these terms, T (J)(x) = infu∈U(x)H(x, u, J), the optimality equation J∗ = T (J∗) is

J∗(x) = inf
u∈U(x)

H(x, u, J∗), x ∈ S,

and by the definition of Q∗ (cf. Eq. (3.1)),

Q∗(x, u) = H(x, u, J∗), (x, u) ∈ Γ. (4.2)
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For (D)(N)(P), the functions Fθ(Q ; J) and Qθ,J can be upper bounded simply by

Fθ(Q ; J)(x, u) ≤ H(x, u, J), Qθ,J(x, u) ≤ H(x, u, J), ∀ (x, u) ∈ Γ. (4.3)

To derive the first inequality above, we upper bound the term min{J(x′), Q(x′, u′)} by J(x′) in
the definition of Fθ(Q ; J)(x, u). To derive the second inequality above, we apply the first one to
Qθ,J = Fθ(Qθ,J ; J) (Prop. 3.2). By minimizing over U(x) for each x in Eq. (4.3), we see that

M
(
Fθ(Q ; J)

)
≤ T (J), M

(
Qθ,J

)
≤ T (J). (4.4)

We use these bounds to bound the iterates of the algorithms. The next lemma applies also to
(D)(P). For the algorithm that uses the second rule of (3.10) to set Qk+1 = Qθk,Jk at some iterations,
the second statement of the lemma will rely on Prop. 3.3(c), which in the case (P) will be proved in
Appendix B as Prop. B.1.

Lemma 4.2. (N)(P) Let {(Jk, Qk)} be iterates generated by the iteration (3.9)-(3.10) with J0 ∈
A−(S), Q0 ∈ A−(Γ) in case (N) and with J0 ∈ A+(S), Q0 ∈ A+(Γ) in case (P). Then for k ≥ 1,

Jk ≤ T k(J0), Qk(x, u) ≤ H(x, u, Jk−1), ∀ (x, u) ∈ Γ. (4.5)

If J0 ≥ J∗, Q0 ≥ Q∗, then we also have Jk ≥ J∗, Qk ≥ Q∗.

Proof. For each k ≥ 0, either Qk+1 = Fnθ (Qk ; Jk) or Qk+1 = Qθ,Jk for some θ ∈ Θ, n ≥ 1. By
Eq. (4.3), the right-hand side inequality for Qk in Eq. (4.5) follows. Since Jk+1 = M(Qk+1), we
have, by Eq. (4.4), Jk+1 ≤ T (Jk) for all k. This implies Jk ≤ T k(J0) by the monotonicity of T .

Let J0 ≥ J∗ and Q0 ≥ Q∗. We show by induction that Jk ≥ J∗, Qk ≥ Q∗ for every k. Suppose it
holds for some k ≥ 0. Then either Qk+1 = Fnθ (Qk ; Jk), in which case, by the induction hypothesis,
the monotonicity of Fθ (cf. Eq. (3.7)) and Prop. 3.3(a), we have

Qk+1 = Fnθ (Qk ; Jk) ≥ Fnθ (Q∗ ; J∗) = Q∗;

or Qk+1 = Qθ,Jk , in which case Qk+1 ≥ Q∗ by the induction hypothesis and Prop. 3.3(c) (proved as
Prop. B.1 for (P)). Thus in either case, Qk+1 ≥ Q∗. Hence Jk+1 = M(Qk+1) ≥M(Q∗) = J∗.

The relation J∗ ≤ Jk ≤ T k(J0) in Lemma 4.2, which holds when J0 ≥ J∗, is the key to
our convergence analysis for cases (N) and (P). It implies that our method converges to J∗ from
above whenever the ordinary value iteration method does. In case (N), we will exploit the generic
convergence property of value iteration in the following theorem, whereas in case (P), we will derive
sufficient conditions for convergence of value iteration from above in the next section.

Theorem 4.2. (N) For any J0 ∈ A−(S) and Q0 ∈ A−(Γ) such that J0 ≥ J∗ and Q0 ≥ Q∗, the
sequence {(Jk, Qk)} generated by the iteration (3.9)-(3.10) converges to (J∗, Q∗).

Proof. We show first Jk → J∗. We have J∗ ≤ Jk ≤ T k(J0) by Lemma 4.2. Since J∗ ≤ J0 ≤ 0 by
assumption and T k(0) ↓ J∗ under (N), we have T k(J0) → J∗ and hence Jk → J∗. Then, for each
(x, u) ∈ Γ, by Fatou’s lemma [19, p. 131] (applied to nonpositive functions),

lim sup
k→∞

H(x, u, Jk) ≤ H
(
x, u, lim sup

k→∞
Jk
)

= H(x, u, J∗) = Q∗(x, u)

(cf. Eqs. (4.1)-(4.2)). Since Q∗(x, u) ≤ Qk+1(x, u) ≤ H(x, u, Jk) by Lemma 4.2, this implies the
convergence Qk → Q∗.
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Remark 4.2. Regarding near-optimal policies in case (N), recall that they are guaranteed to exist
among semi-Markov policies, but not necessarily among stationary or Markov policies. The con-
struction of an ε-optimal semi-Markov policy under (N) is much more involved than under (D)(P),
and knowing the optimal cost function J∗ alone is insufficient (see the proof of [7, Prop. 9.20]), even
if it was available. Moreover, even if an optimal stationary policy exists, it is possible that a policy
µ satisfies Tµ(J∗) = T (J∗) without being optimal.3 Hence, we do not expect to have simple ways to
obtain an asymptotically near-optimal sequence of policies from the iterate sequence {Jk} generated
by our algorithm. Intuitively, it seems possible to us to construct history-dependent or semi-Markov
policies that are asymptotically near-optimal for each given state, by using the relations between
the optimal stopping problems and the original problem. Due to its complexity, however, we do not
discuss this subject in this paper.

5 Convergence Analysis for Nonnegative Case (P)

In this section we consider the case (P) with nonnegative one-stage costs. We first prove a new
convergence theorem for value iteration in Section 5.1. Using this theorem, we then derive in
Section 5.2 convergence results for the mixed value and policy iteration algorithms discussed in
Section 3.2, and for another variant algorithm which admits a linear programming implementation
for a certain class of problems and thus has computational advantages.

Recall that A+(S) denotes the set of nonnegative, lower semi-analytic functions. The symbol 0
stands for the constant function zero.

5.1 A Convergence Theorem for Value Iteration

The nonpositive case (P) is more complex than (D)(N). Neither value iteration nor policy iteration
are guaranteed to give us J∗, even if policy iteration encounters no measurability issues. For value
iteration, as mentioned in Section 2.3, for some J∞ ∈ A+(S), we have

T k(0) ↑ J∞ ≤ J∗,

and it is possible that J∞ < J∗. It is known that J∞ = J∗ if U(x) is a finite set for each x ∈ S, or
more generally, if a compactness-type condition on the control constraint set holds [7, Prop. 9.17,
Cor. 9.17.1]; but these conditions are restrictive. For policy iteration, it can happen that for a
suboptimal stationary policy µ,

Tµ(Jµ) = T (Jµ),

even in finite-state and control problems,4 and the method terminates with the suboptimal policy µ.

We thus look for ways to mitigate the difficulties. Any condition forcing T k(0) ↑ J∗, however,
seems restrictive, in view of Maitra and Sudderth’s result [33]. They showed that J∗ can be obtained
by applying T a transfinite number of times, starting from the function J ≡ 0, and in general, the
number of times needed can be uncountably infinite [33, p. 930]. This led us to consider ways to
make value iteration converge from above instead of from below, which is also natural when using
policy costs, since Jµ ≥ J∗. We will modify Whittle’s bridging condition [55, 26] to suit our purpose.

3As an example, let S = {0, 1} with state 0 being cost-free and absorbing. At state 1, there are two controls:
control 1 leads to state 1 with cost 0, and control 0 leads to state 0 with cost −1. Then J∗(0) = 0, J∗(1) = −1, and
the suboptimal policy µ that makes self-transitions at state 1 satisfies Tµ(J∗) = T (J∗).

4For a simple example, consider a problem with two states {0, 1}. State 0 is cost-free and absorbing. State 1 has
two controls {0, 1}: the control 1 leads to a zero-cost self-transition to state 1, and the control 0 leads to state 0 with
cost 1. Then the nonrandomized stationary policy µ with µ(1) = 0 is suboptimal but satisfies Tµ(Jµ) = T (Jµ). See
[38, Example 7.3.4] for a similar example. We also note that total cost finite-state and control problems can be solved
by using the policy iteration algorithms of Veinott [52] and of Miller and Veinott [35] based on the concept of sensitive
optimality ([53]; see also [38, Sec. 10.3]).
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Before proceeding, let us give a simple example to exemplify the behavior of value iteration just
discussed. The example is from [7, p. 215]. In this example J∞ ≡ 0 < J∗ ≡ ∞. We illustrate
how value iteration with transfinite recursion is able to obtain J∗ in the end, after countably many
iterations. This example falls into a special case analyzed in [33, Sec. 5], which predicted, for a
broad class of problems, that the number of iterations required for value iteration to converge from
below is at most countably infinite.

Example 5.1. The state and control spaces are S = {0, 1, 2, . . .}, C = {1, 2, . . .}, and the control
constraint is U(x) = C for every x ∈ S. State transitions are deterministic and uncontrolled except
at state 0: applying control u at state x, the successor state is u if x = 0 and x − 1 if x ≥ 1. The
one-stage cost is zero except at state 1: g(1, u) = 1 for all u. Write a function J on S in vector form
as J =

(
J(0), J(1), . . .

)
. The optimal cost function is J∗ = (∞,∞, . . .) because under any policy,

the system will visit state 1 infinitely often and accumulate one more unit of cost at each visit.

The pointwise limit J∞ of {T k(0)} is J∞ = (0, 1, 1, . . .), since T k(0) = (0, 1, 1, . . . , 1, 0, 0, . . .)
with k 1’s followed by all 0’s. As in [30], set J∞0 = J∞ and initiate value iteration with it. This
gives us J∞1 = limk→∞ T k(J∞0), which is J∞1 = (1, 2, 2, . . .). Continuing in this way, we define
recursively J∞(m+1) = limk→∞ T k(J∞m) and we get J∞(m+1) =

(
m, m+ 1, m+ 1 , . . .

)
= J∞m + 1.

In the end, from the pointwise limit of the nondecreasing sequence {J∞m} we obtain J∗.

We now proceed to place a condition on the initial function J0 for value iteration T k(J0), to
ensure the convergence of value iteration (from above, primarily) to J∗. This condition, given in
the following theorem, is motivated by Whittle’s bridging condition [55, 26] (cf. Remark 5.3) and
its appealingly simple form. (The paper [55] called J0 the “terminal function” instead of “initial
function,” for the reason that J0 can be viewed as setting the terminal costs for finite horizon
problems.) The implications of our theorem given below are, however, different from Whittle’s
[55, 26], as we will remark shortly.

Theorem 5.1. (P) (a) For any c > 1, T k(cJ∗) ↓ J∗.
(b) T k(J)→ J∗ for all J ∈ A+(S) such that

J ≤ J ≤ cJ∗, for some c > 1,

where J ∈ A+(S) satisfies J ≤ J∗, T k(J) → J∗. In particular, if T k(0) ↑ J∗, then T k(J) → J∗ for
all J ≤ cJ∗, J ∈ A+(S).

(c) J∗ is the unique fixed point of T within the set {J ∈ A+(S) | J ≤ cJ∗ for some c > 1}.

We note that Theorem 5.1(b)-(c) follows directly from Theorem 5.1(a). To see this, suppose part
(a) is proved. Then under the assumptions of part (b), we have T k(J) ≤ T k(J) ≤ T k(cJ∗) by the
monotonicity of T . Since T k(J)→ J∗ by assumption and T k(cJ∗) ↓ J∗ by part (a), part (b) follows.
For part (c), by [7, Prop. 9.10(P)] we have the following implication,

J ∈ A+(S), J = T (J) =⇒ J ≥ J∗,
which together with part (a) implies the conclusion of part (c). Thus to prove Theorem 5.1, it
suffices to prove its part (a).

Before giving the proof, let us make several remarks about the implications of Theorem 5.1 and
its relation with Whittle’s bridging condition.

Remark 5.1. In Theorem 5.1(b), we can always let J = J∗. Then Theorem 5.1(b) reads as:

T k(J)→ J∗, ∀ J s.t. J∗ ≤ J ≤ cJ∗, c > 1. (5.1)

Indeed, in view of the result of Maitra and Sudderth [33] and the simple Example 5.1, among the
functions obtainable with (transfinite) value iteration starting from the constant function 0, J∗ may
be the only function that can serve as J in Theorem 5.1(b).
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Remark 5.2. Theorem 5.1(a)-(b) roughly says that value iteration converges to J∗ if the initial
function J is “commensurate” with J∗. In particular, if J ≥ J∗, then on the set of states x with
finite J∗(x), the shape of J must be “compatible” with that of J∗, with J(x) = 0 whenever J∗(x) = 0.
The theorem also implies that whenever the policy iteration algorithm gets stuck at a suboptimal
policy µ with Tµ(Jµ) = T (Jµ), Jµ must have a “wrong shape” relative to J∗.

Of course it can be difficult to know even the “shape” of J∗. In Example 5.1, for instance,
J∗ ≡ ∞, so the only function between J∗ and cJ∗, c > 1, is J∗ itself. In an example of Strauch [47,
p. 881] (see also [33, p. 930]), J∗ takes values in {0, 1} and T k(0) 6→ J∗. The set {x ∈ S | J∗(x) = 0}
is rather intricate. If we know this set of states, then with any initial function J that takes the value
0 on this set and the value a > 1 elsewhere, value iteration turns out to converge in one iteration in
this example (see Appendix C).

Remark 5.3. Whittle’s bridging condition is as follows: for some real c and stationary policy µ,
either Jµ ≤ c Tn(0) for some n, or Jµ ≤ cJ∞ and J∞ = T (J∞). The condition implies that J∞ = J∗

and T k(J)→ J∗ for all J ∈ A+(S) with J ≤ aJ∗ for some real a [55, 26]. A similar, slightly weaker
condition leading to the same conclusions is J∗ ≤ c Tn(0) for some n (personal communication with
E. Feinberg). The main difference between these results and Theorem 5.1 is that Theorem 5.1 does
not place any condition on the model of the control problem. Instead, it restricts only the initial
function for value iteration and it holds for all nonnegative control models. If the bridging condition
or any other condition for T k(0) ↑ J∗ holds, they can be used to set J ≡ 0 in the theorem, as stated
in Theorem 5.1(b). Then, the condition for J becomes 0 ≤ J ≤ cJ∗, the same as in [55, 26].

We now proceed to prove Theorem 5.1. As discussed earlier, it suffices to prove Theorem 5.1(a).
To this end, we start with two lemmas to characterize the pointwise limit of {T k(cJ∗)}. The first
lemma below is a basic fact; the second one is important for our proof.

Lemma 5.1. If J ∈ A+(S) satisfies T (J) ≤ J , then for some J∞ ∈ A+(S), we have

T k(J) ↓ J∞ and T (J∞) ≤ J∞.

Proof. By the monotonicity of T , T k(J) ↓ J∞. For every k, since J∞ ≤ T k(J), we have, by the
monotonicity of T , T (J∞) ≤ T k+1(J). Hence T (J∞) ≤ J∞.

Lemma 5.2. Let c > 1. Then we have T (cJ∗) ≤ cJ∗ and for some J∞ ∈ A+(S),

T k(cJ∗) ↓ J∞, T (J∞) = J∞, J∗ ≤ J∞ ≤ cJ∗.

Proof. Since c > 0 and J∗ ∈ A+(S), cJ∗ ∈ A+(S). Since c > 1 and the one-stage costs are nonneg-
ative, it follows from the definition of T that T (cJ∗) ≤ cJ∗. Let Jk = T k(cJ∗). By Lemma 5.1,

cJ∗ ≥ Jk ↓ J∞ ≥ J∗ and T (J∞) ≤ J∞,

where the inequality J∞ ≥ J∗ follows from the monotonicity of T and the fact T (J∗) = J∗. By
rearranging the terms and using also the monotonicity of T , we have

cJ∗ ≥ J∞ ≥ T (J∞) ≥ J∗.

To prove T (J∞) = J∞, we now show T (J∞) ≥ J∞, using the monotone convergence theorem.
Consider each x ∈ S. If J∗(x) =∞, then T (J∞)(x) = J∞(x) =∞. Suppose J∗(x) <∞; we prove
T (J∞)(x) ≥ J∞(x) below.

To simplify notation, for each u ∈ U(x), denote

H(x, u, J) = g(x, u) +

∫

S

J(x′) q(dx′ | x, u).
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Then T (J∗)(x) = infu∈U(x)H(x, u, J∗) (cf. Eq. (2.3)). Since T (J∗)(x) = J∗(x) <∞, we have

D(x) :=
{
u ∈ U(x) | H(x, u, J∗) <∞

}
6= ∅.

For u ∈ D(x),

H(x, u, cJ∗) ≤ cH(x, u, J∗) <∞
(because c > 1 and g ≥ 0), so in view of the relation cJ∗ ≥ Jk ↓ J∞, we have by the monotone
convergence theorem [19, p. 131],

H(x, u, J∞) = lim
k→∞

H(x, u, Jk). (5.2)

Consequently,

H(x, u, J∞) ≥ lim sup
k→∞

{
inf

u∈U(x)
H(x, u, Jk)

}
= lim
k→∞

T (Jk)(x) = J∞(x), ∀u ∈ D(x). (5.3)

For u ∈ U(x) \D(x),

H(x, u, J∞) ≥ H(x, u, J∗) =∞.
Combining this with Eq. (5.3), we have

T (J∞)(x) = inf
u∈U(x)

H(x, u, J∞) = inf
u∈D(x)

H(x, u, J∞) ≥ J∞(x).

This completes the proof.

We are now ready to prove Theorem 5.1. We will use a simple concavity property of T , which can
be verified directly. (Hartley [26] also used it in an alternative proof of Whittle’s bridging condition.)
On the convex set A+(S), T has the property that for any β ∈ [0, 1] and J1, J2 ∈ A+(S),

T
(
βJ1 + (1− β)J2

)
≥ β T (J1) + (1− β)T (J2). (5.4)

We will also use Maitra and Sudderth’s results [33]. Let ω1 be the first uncountable ordinal. For
ordinals ξ < ω1, define functions Jξ ∈ A+(S) by transfinite recursion as follows. Let

J0 = T (0), Jξ = T
(

sup
η<ξ

Jη
)
, for ξ > 0.

Also let

Jω1 = sup
ξ<ω1

Jξ.

That all these functions are indeed in A+(S) is proved in [33]. Moreover, Maitra and Sudderth [33,
Thm. 1.1] proved that

T (Jω1) = Jω1 = J∗. (5.5)

(For ordinals, transfinite induction and transfinite recursion, see e.g., [31, p. 27-28], [19, Secs. 1.3,
A.3] or [46, Chap. 1].)

Proof of Theorem 5.1. Denote J∞ = limk→∞ T k(cJ∗). By Lemma 5.2,

T (J∞) = J∞, J∗ ≤ J∞ ≤ cJ∗.

We now prove J∞ = J∗. This will prove the theorem, as discussed earlier.
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Let β = 1/c < 1. Since J∞ ≤ cJ∗, J∗ ≥ βJ∞, so by the monotonicity and concavity properties
of T (Eq. (5.4)),

T (J∗) ≥ T
(
βJ∞ + (1− β) 0

)
≥ β T (J∞) + (1− β)T (0).

Since T (J∞) = J∞ and T (J∗) = J∗, using the definition J0 = T (0), we can write the above
inequality equivalently as

J∗ ≥ βJ∞ + (1− β)J0.

We now apply transfinite induction. Suppose that for an ordinal ξ ≤ ω1,

J∗ ≥ βJ∞ + (1− β)Jη, ∀ η < ξ.

Then

J∗ ≥ sup
η<ξ

{
βJ∞ + (1− β)Jη

}
= βJ∞ + (1− β) sup

η<ξ
Jη.

Consequently, by the monotonicity and concavity properties of T ,

J∗ ≥ βJ∞ + (1− β)T
(

sup
η<ξ

Jη
)

= βJ∞ + (1− β)Jξ, (5.6)

where in the first inequality we also used the fact T (J∞) = J∞ and T (J∗) = J∗, and in the equality
we used the definition of Jξ for ξ < ω1, and the definition of Jω1 for ξ = ω1, together with the
fact T (Jω1) = Jω1 ([33, Thm. 1.1]; cf. Eq. (5.5)). This proves, by transfinite induction, that the
inequality (5.6) holds for all ξ ≤ ω1, and in particular,

J∗ ≥ βJ∞ + (1− β)Jω1 . (5.7)

Since Jω1 = J∗ by [33, Thm. 1.1] (cf. Eq. (5.5)) and J∗ ≥ 0, we have J∗ ≥ J∞ by Eq. (5.7). We
also have J∞ ≥ J∗. Therefore, J∞ = J∗.

We mention two immediate implications of Theorem 5.1. The first one follows from and sharpens
slightly Theorem 5.1(b).

Corollary 5.1. (P) Suppose J ∈ A+(S) is such that J ≤ Tn(J) ≤ cJ∗ for some c > 1 and n ≥ 1,
where J is as in Theorem 5.1(b). Then T k(J)→ J∗.

Corollary 5.2. (P) Suppose that the state space S is finite and J∗ is real-valued. Let V be the set
of nonnegative, real-valued functions J such that J(x) = 0 for all x ∈ S with J∗(x) = 0. Then J∗ is
the unique fixed point of T within V. Moreover, T k(J)→ J∗ for all J ∈ V.

Proof. By Theorem 5.1(c), J∗ is the unique fixed point of T in {J ≥ 0 | ∃ c ∈ <+ s.t. J ≤ cJ∗} = V.
By Theorem 5.1(b), we have T k(J) → J∗ for all J ∈ V if T k(0) ↑ J∗. The latter holds when S is
finite and J∗ is finite everywhere (cf. [38, Thm. 7.3.10(a)]). The reason is that T k(0) converges to
its limit J∞ uniformly, i.e., for any ε > 0, ‖T k(0)− J∞‖∞ ≤ ε for all k sufficiently large. Thus with
1 denoting the constant function 1, we have, by the monotonicity of T , that for all k sufficiently
large,

T (J∞) ≤ T
(
T k(0) + ε1

)
≤ T k+1(0) + ε1.

Since ε is arbitrary, this implies T (J∞) ≤ J∞. Since J∞ ≤ T (J∞) [7, Prop. 9.16], we have J∞ =
T (J∞) and hence by [7, Prop. 9.16], J∞ = J∗, i.e., T k(0) ↑ J∗.
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In connection with Cor. 5.2, we note that even when S is finite, J∞ 6= J∗ is possible if J∗ is not
real-valued. As an example, let S = {0, 1, 2}, C = (0, 1) ∪ {t} and U(x) = C for all x ∈ S. States
0, 1 are absorbing; the self-transition costs are g(0, u) = 0 and g(1, u) = 1 for all u (so J∗(0) = 0,
J∗(1) = ∞). At state 2, for control u ∈ (0, 1), the one-stage cost is g(2, u) = 0 and the next state
is state 1 with probability u and state 0 with probability (1− u); and for control u = t, g(2, t) = 1
and the next state is state 0. Then T k(0)(2) = 0 for all k, so J∞(2) = 0; but J∗(2) = 1.

Finally, we remark that when the problem does not admit a near-optimal stationary policy for
some state, one cannot hope to find an initial function J with the desired property J ≤ cJ∗ for some
c > 1, among the cost functions of stationary policies. This is shown in the following proposition.

Proposition 5.1. (P) Suppose that for some x̄ ∈ S and ε > 0, an ε-optimal stationary policy for x̄
does not exist. Then these exists no stationary policy µ such that Jµ ∈ A+(S), T k(Jµ)→ J∗ (hence
6 ∃Jµ ∈ A+(S) with Jµ ≤ cJ∗ for some c > 1).

Proof. To arrive at a contradiction, suppose µ is a stationary policy with Jµ ∈ A+(S), T k(Jµ)→ J∗.
Let k be large enough so that T k(Jµ)(x̄) ≤ J∗(x̄) + ε/2. By the selection theorem of [7, Prop. 7.50],
there exist stationary policies µ1, µ2, . . . , µk satisfying

Tµi
(
T i−1(Jµ)

)
≤ T i(Jµ) + ε/(2k), i = 1, 2, . . . , k.

Consider the Markov policy π = (µk, µk−1, . . . , µ1, µ, µ, . . .). By a direct calculation we have

Jπ(x̄) =
(
Tµk ◦ Tµk−1

◦ · · ·Tµ1

)
(Jµ) ≤ T k(Jµ)(x̄) + ε/2 ≤ J∗(x̄) + ε.

Now consider an associated subproblem where at every state x, there are only k+ 1 “controls” cor-
responding to {µ, µ1, µ2, . . . , µk}. Since the number of controls is finite, one can verify by a direct
calculation that value iteration starting with the constant function zero does not have measurability
issues and maintains the cost function iterates within the family of nonnegative universally measur-
able functions. Using a theorem for (P) [7, Props. 5.10, 5.4], we then obtain that for this subproblem,
the optimal cost function is universally measurable and moreover, there exists an optimal nonran-
domized universally measurable stationary policy µ̃. Clearly, µ̃ also corresponds to a universally
measurable stationary policy in the original problem. By the optimality of µ̃ in the subproblem, we
have Jµ̃(x̄) ≤ Jπ(x̄) ≤ J∗(x̄) + ε, which contradicts the assumption that there exists no ε-optimal
stationary policy for state x̄. This proves the main part of the proposition; the rest then follows by
Theorem 5.1(b).

We illustrate Prop. 5.1 by an example based on [47, Example 6.1], in which the cost function
of every stationary policy, although not nearly optimal, is a fixed point of T . Let S = {0, 1, 2},
C = (0, 1) and U(x) = C for all x. State 0 is cost-free and absorbing. From state 2, any control
leads to state 1 with cost 1. For state 1, under control u, we have probability u to transition to state
0 with transition cost 1, and probability (1 − u) to transition to state 1 with self-transition cost 0.
The optimal costs are J∗(0) = J∗(1) = 0, J∗(2) = 1. An ε-optimal Markov policy, for example, is to
apply at state 1 control uk for the kth stage, with

∑
k uk ≤ ε. No stationary policy is ε-optimal for

states 1 and 2: for any stationary policy µ, transition from state 1 to state 0 occurs with probability
one, so Jµ(0) = 0, Jµ(1) = 1, Jµ(2) = 2, and moreover, Jµ is also a fixed point of T .

5.2 Convergence Properties of Mixed Value and Policy Iteration

We now consider the mixed value and policy iteration method in case (P). Unlike case (N) where
it is natural to apply the method with the initial iterate J0 ≡ 0, Q0 ≡ 0, here, as can be shown by
a direct calculation, doing so reduces the method to value iteration T k(0), and this is undesirable
computationally even if T k(0)→ J∗, which is not guaranteed to hold. Our interest thus lies primarily
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in applying the method with an initial (J0, Q0) above the optimal costs. We will apply Theorem 5.1
to analyze the convergence of the basic algorithm (3.9)-(3.10) given in Section 3.2. We will also
discuss another variant algorithm that connects to linear programming, and prove its convergence.

Theorem 5.2. (P) (a) Let J0 ∈ A+(S) and Q0 ∈ A+(Γ) be such that

J∗ ≤ J0 ≤ cJ∗ for some c > 1, and Q0 ≥ Q∗. (5.8)

Then the sequence {(Jk, Qk)} generated by the iteration (3.9)-(3.10) converges to (J∗, Q∗).

(b) If T k(0) ↑ J∗, then the initial condition (5.8) in (a) on (J0, Q0) can be relaxed to J0 ≤ cJ∗.
(c) Suppose T k

(
J
)
↑ J∗ for some J ∈ A+(S). Then the conclusion of (a) holds for the iteration

(3.9)-(3.10) that always defines Qk using the first rule in (3.9), under the initial condition that

J ≤ J0 ≤ cJ∗ for some c > 1, and Q0(x, u) ≥ J(x) ∀ (x, u) ∈ Γ.

In either part of the theorem, it is assumed that J0 ≤ cJ∗ for some c > 1. We prove first that
under this condition on J0, the limits of the iterates (Jk, Qk) can be upper bounded by (J∗, Q∗).

Lemma 5.3. (P) Let J0 ∈ A+(S) and Q0 ∈ A+(Γ). If J0 ≤ cJ∗ for some c > 1, then the sequence
{(Jk, Qk)} generated by the iteration (3.9)-(3.10) satisfies

lim sup
k→∞

Jk ≤ J∗, lim sup
k→∞

Qk ≤ Q∗.

Proof. Let Jk = T k(cJ∗). Since J0 ≤ cJ∗, we have Jk ≤ T k(J0) ≤ Jk for every k, by Lemma 4.2
and the monotonicity of T . Since Jk ↓ J∗ by Theorem 5.1(a), lim supk→∞ Jk ≤ J∗.

Consider now Qk(x, u) for each (x, u) ∈ Γ, and note that Q∗(x, u) = H(x, u, J∗) by definition
[cf. Eqs. (4.1), (4.2)]. By Lemma 4.2, for every k ≥ 0,

Qk+1(x, u) ≤ H(x, u, Jk) ≤ H(x, u, Jk).

If Q∗(x, u) <∞, then we have

lim
k→∞

H(x, u, Jk) = H
(
x, u, lim

k→∞
Jk
)

= H(x, u, J∗) = Q∗(x, u),

where the first equality follows from the monotone convergence theorem as we showed with Eq. (5.2)
in the proof of Lemma 5.2. By combining the preceding two relations, we obtain

lim sup
k→∞

Qk+1(x, u) ≤ Q∗(x, u).

This inequality also holds, trivially, if Q∗(x, u) =∞. Therefore, lim supk→∞Qk ≤ Q∗.

We now proceed to prove the theorem by bounding the iterates from below.5

Proof of Theorem 5.2. (a) Since J0 ≥ J∗ and Q0 ≥ Q∗, we have Jk ≥ J∗, Qk ≥ Q∗ by Lemma 4.2,
and hence Jk → J∗, Qk → Q∗ by Lemma 5.3.

(b) Starting with J0 ≥ 0, Q0 ≥ 0, let us prove by induction that for every k ≥ 0,

Jk ≥ T k(0), Qk(x, u) ≥ T k(0)(x), ∀ (x, u) ∈ Γ. (5.9)

5For part (a), we will use the lower bounds given in Lemma 4.2, which rely on the relation Qθ,J∗ = Q∗ for all
θ ∈ Θ (cf. Prop. 3.3(c)). This relation will be proved as Prop. B.1 in Appendix B, and it is needed in the analysis for
the algorithm that can set Qk+1 to be Qθk,Jk at some iterations.
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By Lemma 5.3 and the assumption T k(0) ↑ J∗, the first inequality above will immediately imply
that Jk → J∗.

To simplify notation, let Ĵk = T k(0) and define Ĵek ∈ A+(Γ) by

Ĵek(x, u) = Ĵk(x), ∀ (x, u) ∈ Γ.

We will use the following facts. For any θ ∈ Θ, in view of g ≥ 0 and the fact Ĵk ≥ Ĵk−1 ≥ · · · ≥ 0, a
direct calculation using the definition (3.4) of Fθ and its monotonicity shows that

Fθ
(
0 ; Ĵk

)
≥ Ĵe1 , Fθ

(
Ĵe1 ; Ĵk

)
≥ Ĵe2 , · · · Fθ

(
Ĵek−1 ; Ĵk

)
≥ Ĵek , (5.10)

and that for every n ≥ 1,
Fnθ
(
Ĵek ; Ĵk

)
≥ Fθ

(
Ĵek ; Ĵk

)
. (5.11)

In view of g ≥ 0 and the definition of H(x, u, J) (cf. Eq. (4.1)), a direct calculation shows that

Fθ
(
Ĵek ; Ĵk

)
(x, u) = H

(
x, u, Ĵk

)
≥ T

(
Ĵk
)
(x) = Ĵk+1(x), ∀ (x, u) ∈ Γ. (5.12)

Now suppose Eq. (5.9) holds for some k ≥ 0. Consider the kth iteration of the algorithm.
We have either Qk+1 = Fnθ (Qk ; Jk) or Qk+1 = Qθ,Jk for some θ ∈ Θ and n ≥ 1. For the case
Qk+1 = Fnθ (Qk ; Jk), we have

Fnθ (Qk ; Jk) ≥ Fnθ
(
Ĵek ; Ĵk

)
≥ Fθ

(
Ĵek ; Ĵk

)
,

where the first inequality follows from the monotonicity of Fθ (cf. Eq. (3.7)) and the induction
hypothesis that Jk ≥ Ĵk, Qk ≥ Ĵek , and the second inequality follows from Eq. (5.11). For the case
Qk+1 = Qθ,Jk , we have

Qθ,Jk ≥ F k+1
θ

(
0 ; Jk

)
≥ F k+1

θ

(
0 ; Ĵk

)
≥ Fθ

(
Ĵek ; Ĵk

)
,

where the first inequality holds because Fnθ (0 ; Jk) ↑ Qθ,Jk as n → ∞ (Prop. 3.2), the second

inequality follows from the induction hypothesis Jk ≥ Ĵk and the monotonicity of Fθ (cf. Eq. (3.7)),
and the third inequality follows from Eq. (5.10) and the monotonicity of Fθ(· ; Ĵk). Thus in either
case, we have

Qk+1 ≥ Fθ
(
Ĵek ; Ĵk

)
≥ Ĵek+1, Jk+1 = M(Qk+1) ≥ Ĵk+1,

where Eq. (5.12) is used in the second inequality of the first relation above. This completes the
induction and establishes Eq. (5.9) for all k.

We can now conclude that Jk → J∗, as discussed earlier. We prove Qk → Q∗ next. As we just
proved, Qk+1 ≥ Fθ

(
Ĵek ; Ĵk

)
for every k. By Eq. (5.12), this is equivalent to

Qk+1(x, u) ≥ H
(
x, u, Ĵk

)
, ∀ (x, u) ∈ Γ. (5.13)

Since Ĵk ↑ J∗ and Ĵk ≥ 0, by the monotone convergence theorem,

H
(
x, u, Ĵk

)
↑ H

(
x, u, J∗

)
= Q∗(x, u)

(cf. Eqs. (4.1), (4.2)). Together with Lemma 5.3, the preceding two relations imply that Qk → Q∗.

(c) By assumption T k(J) ↑ J∗. For the algorithm stated in (c), if we define Ĵ0 = J , Ĵk = T k(J)
for k ≥ 1, then the same arguments in the preceding proof for part (b) go through to establish that
Eqs. (5.11)-(5.12) hold, that for every k,

Jk ≥ T k(J), Qk(x, u) ≥ T k(J)(x), ∀ (x, u) ∈ Γ,

and that Jk → J∗, Qk → Q∗. (Among the crucial facts used in the proof of part (b), the only one
that does not hold under the present initial condition on J0 is the first inequality Fθ

(
0 ; Ĵk

)
≥ Ĵe1

in Eq. (5.10). This relation is needed in the convergence proof only when Qk+1 is generated by
the second rule of (3.9) as Qk+1 = Qθk,Jk ; but such cases are ruled out by the assumptions of
part (c).)
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A Variation of the Basic Algorithm (3.9)-(3.10)

Let us consider a variation of the algorithm (3.9)-(3.10), whereby instead of (3.9), we use a different
rule to update Qk+1:

• Choose θk = (µk, Bk) ∈ Θ, and find Qk+1 ∈ A+(Γ) such that

Qk+1 ≤ Fθk(Qk+1; Jk), Qk+1 ≥ Qθk,Jk . (5.14)

Then let
Jk+1 = M(Qk+1). (5.15)

This algorithm is motivated by a computational issue in case (P). Unlike (D)(N), control problems
of type (P), even when the spaces S,C are discrete, do not admit a linear programming formulation
in general (cf. [7, Prop. 9.10(P)], [38, Sec. 7.3.6]). Thus to calculate Qθk,Jk in the algorithm (3.9)-
(3.10) without iterating Fnθk(0 ; Jk) till convergence, we cannot solve the optimal stopping problem
associated with (θk, Jk) by simply solving some linear program.

On the other hand, an upper bound on Qθk,Jk will suffice if it also satisfies the first relation
in (5.14), as we show in the theorem below. Unlike computing Qθk,Jk , a solution to (5.14) can
be computed by solving a linear program associated with the optimal stopping problem defined by
(θk, Jk), under certain conditions that involve (θk, Jk), as we will show in Lemma A.3, Appendix A.3.
These conditions are satisfied, for example, if S and C are countable and Jk is finite on Bk; see
Remark A.1 in Appendix A.3. Given that if J0 ≤ cJ∗ for some c > 1, the algorithm (5.14)-(5.15) will
generate Jk with Jk ≤ cJ∗ throughout (see the theorem below), this means that the step (5.14) can
be carried out by linear programming for countable-spaces problems where J∗ is finite everywhere,
in particular.

Theorem 5.3. (P) Under the same conditions as in Theorem 5.2(a) or (b), the sequence {(Jk, Qk)}
generated by the iteration (5.14)-(5.15) satisfies Jk ≤ cJ∗ for all k, and converges to (J∗, Q∗).

Proof. The proof is similar to that for Theorem 5.2(a)-(b). We will bound (Jk, Qk) from above and
from below. As we derived in Eqs. (4.3)-(4.4), for any θ ∈ Θ, J ∈ A+(S) and Q ∈ A+(Γ),

Fθ(Q ; J)(x, u) ≤ H(x, u, J), ∀ (x, u) ∈ Γ, M
(
Fθ(Q ; J)

)
≤ T (J).

From this and the upper bound on Qk+1 given in Eq. (5.14), we have

Qk+1(x, u) ≤ H(x, u, Jk), ∀ (x, u) ∈ Γ, Jk+1 = M(Qk+1) ≤ T (Jk).

By the monotonicity of T , this implies that for every k, Jk ≤ T k(J0) and hence Jk ≤ T k(cJ∗) ≤ cJ∗.
The preceding upper bounds on Jk, Qk are the same as the ones given in Lemma 4.2 for the basic

algorithm. Using these bounds in place of Lemma 4.2 in the proof of Lemma 5.3, and using also the
assumption that J0 ≤ cJ∗ for some c > 1, we obtain that the conclusion of Lemma 5.3 holds for the
iteration (5.14)-(5.15):

lim sup
k→∞

Jk ≤ J∗, lim sup
k→∞

Qk ≤ Q∗. (5.16)

Under the conditions of Theorem 5.2(a), we have J0 ≥ J∗, Q0 ≥ Q∗. Lemma 4.2 showed that
if Qk+1 = Qθk,Jk at every iteration of the algorithm, then Jk ≥ J∗, Qk ≥ Q∗ for all k. Since here
we have Qk+1 ≥ Qθk,Jk by Eq. (5.14), and the iteration (5.14)-(5.15) clearly has the monotonicity
property, it follows that for the iteration (5.14)-(5.15), we have Jk ≥ J∗, Qk ≥ Q∗ for all k as well.
This together with Eq. (5.16) implies that Jk → J∗, Qk → Q∗.

Similarly, under the conditions of Theorem 5.2(b), the proof of Theorem 5.2(b) established the
lower bounds (5.9), (5.13) on Jk, Qk for the case where Qk+1 = Qθk,Jk at every iteration, and these
lower bounds also hold for the iteration (5.14)-(5.15) since Qk+1 ≥ Qθk,Jk . Together with Eq. (5.16),
they imply that Jk → J∗, Qk → Q∗, as the proof of Theorem 5.2(b) showed.
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Remark 5.4. We note that under (P), given the sequence {Jk} generated by the algorithm (3.9)-
(3.10) or (5.14)-(5.15), in general one cannot extract easily an asymptotically near-optimal sequence
of policies in the manner of Remark 4.1. Even if J∗ was available, an ε-optimal stationary policy
may not exist (see the discussion after Prop. 5.1 or [6, p. 145] for an example). If an ε-optimal
stationary policy exists, then under favorable circumstances it may be possible to extract such a
sequence, based on the following observation. Let {Jk} ⊂ A+(S) be such that Jk → J∗, and let
{νk} be a sequence of universally measurable policies. Suppose {Jk} and {νk} satisfy

Tνk(Jk) = T (Jk) ≤ Jk, ∀ k ≥ 1. (5.17)

Then Jνk → J∗. (To see this, note that by [7, Prop. 9.11], Jνk is the “smallest” nonnegative function
J ∈ M(S) satisfying Tνk(J) ≤ J , so the assumption implies that Jνk ≤ Jk. Since Jk → J∗, the
result follows.) The assumption (5.17), however, need not always hold for our algorithm.

6 Applications in Semicontinuous Models

We discuss in this section some direct applications of our results for two special cases of the stochastic
control model given in Section 2.2: the upper semicontinuous model and the lower semicontinuous
model as defined in [7, Chap. 8]. To apply the mixed value and policy iteration method in these
models, it is desirable to work with semicontinuous functions instead of lower semi-analytic functions.
We will show that we can keep the function iterates within the set of semicontinuous functions by
choosing properly the parameters of the mappings Fθ involved in the method, and we will use Lusin’s
theorem for this purpose. In this section we will also give a result about the structure of J∗ and
optimal policies for the upper semicontinuous model in case (P), as an application of Theorem 5.1.

We need some definitions. Let X be a metrizable topological space. A function f : X → [−∞,∞]
is said to be upper semicontinuous (u.s.c.) if for every c ∈ <, its upper level set {x ∈ X | f(x) ≥ c}
is closed in X. Equivalently, f is u.s.c. if and only if for any sequence {xn} in X converging to
some x ∈ X, we have lim supn→∞ f(xn) ≤ f(x). A function f : X → [−∞,∞] is said to be lower
semicontinuous (l.s.c.) if for every c ∈ <, its lower level set {x ∈ X | f(x) ≤ c} is closed in X.
Equivalently, f is l.s.c. if and only if for any sequence {xn} in X converging to some x ∈ X, we have
lim infn→∞ f(xn) ≥ f(x).

Let X and Y be separable metrizable topological spaces. Let the topology on the space P(Y ) of
Borel probability measures on Y be the weak topology. A stochastic kernel κ(dy | x) on Y given X
is continuous if the function κ(dy | ·) : X →P(Y ) is continuous. Similarly, if restricted to a subset
B ⊂ X, the function κ(dy | ·) : B →P(Y ) is continuous, we say κ(dy | x) is continuous on B.

6.1 Upper Semicontinuous Models

We consider the upper semicontinuous model as defined in [7, Def. 8.8]. Here, in addition to the
model assumptions given in Section 2.2, we assume that:

(a) The control constraint set Γ is an open subset of S × C.

(b) The state transition stochastic kernel q(dx′ | x, u) is continuous.6

(c) The one-stage cost function g is u.s.c. on Γ and bounded above.

It is known that under (D)(N), the optimal cost function J∗ is u.s.c. Starting with J ≡ 0 for (N)
and with any bounded u.s.c. function J for (D), value iteration generates u.s.c. functions T k(J)

6Such state transition kernels are said to be weakly continuous in the literature to differentiate them from those
that satisfy stronger continuity conditions; see e.g., [28, 22].
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converging to J∗. There exists an ε-optimal, nonrandomized Borel measurable policy which is
stationary under (D) and Markov under (P). (For these optimality results, see [7, Props. 8.7, 9.21].)

Consider the mixed value and policy iteration algorithm (3.9)-(3.10). By a selection theorem for
u.s.c. functions [7, Prop. 7.34], if Q : Γ→ [−∞,∞] is u.s.c., then the function resulting from partial
minimization,

M(Q)(x) = inf
u∈U(x)

Q(x, u), x ∈ S,

is u.s.c., and for any ε > 0, there exists a Borel measurable nonrandomized stationary policy µ such
that for all x ∈ S,

Q
(
x, µ(x)

)
≤
{
M(Q)(x) + ε if M(Q)(x) > −∞,
−1/ε if M(Q)(x) = −∞. (6.1)

Suppose we can maintain the iterates (Jk, Qk) of the algorithm (3.9)-(3.10) within the family of
u.s.c. functions. Then at each iteration k, we can choose the policy µk based on Qk and the above
selection theorem, thereby obtaining policy iteration-like algorithms7 with Borel measurable policies
µk. One way to keep the iterates (Jk, Qk) within the family of u.s.c. functions is to choose, at each
iteration, for a given stationary Borel measurable policy µ, an appropriate set B ⊂ S to form the
parameter θ = (µ,B) in the mapping Fθ as follows.

Let µ be a Borel measurable stationary policy. Consider an open set B ⊂ S such that restricted
to B, the function x 7→ µ(du | x) is continuous. We know from Lusin’s theorem [19, Thm. 7.5.2]
that there exists a closed subset B̄ of S such that restricted to B̄, the function x 7→ µ(du | x) is
continuous, and moreover, for any given p ∈P(S), the set B̄ can be chosen to have p(B̄) arbitrarily
close to 1. Then we can let B = int(B̄), the interior of B̄, for instance.8

Proposition 6.1 (Upper Semicontinuous Models). Let θ = (µ,B) for an open subset B of S and a
Borel measurable stationary policy µ such that µ(du | ·) is continuous on B. Then for any functions
J,Q that are u.s.c. and bounded above, Fθ(Q ; J) is u.s.c. and bounded above.

Proof. Since g is u.s.c. and bounded above by our model assumption, to show that Fθ(Q ; J) is u.s.c.
and bounded above, it suffices to show that the sum of the two integral terms in the definition (3.4)
of Fθ(Q ; J) is u.s.c. and bounded above. To this end, let us rewrite this sum as

α

∫

S

(
φ(x′) · 1B(x′) + J(x′) · 1S\B(x′)

)
q(dx′ | x, u), (6.2)

where the function φ(x′) is given by

φ(x′) =

∫

C

min{J(x′), Q(x′, u′)}µ(du′ | x′), x′ ∈ S. (6.3)

We prove first that φ(x′) is u.s.c. on B. Since J,Q are u.s.c. and bounded above, the function
min{J(x), Q(x, u)} is u.s.c. and bounded above on Γ. Note that since Γ is an open subset of S ×C,
we may extend the function min{J(x), Q(x, u)} to an u.s.c. function on S×C that is bounded above,
and view the integral defining φ(x′) as the integral of this extension. This will not change the value

7Without stronger model assumptions, standard policy iteration has the same difficulties in the upper and lower
semicontinuous models considered here as those explained in Section 2.4. For a Borel measurable policy, its cost
function is Borel measurable and not necessarily u.s.c. or l.s.c., so the policy improvement step will generate an
analytically or universally measurable policy. The subsequent iterations will then be subject to the measurability
difficulties described in Section 2.4.

8We note that int(B̄) may be empty. However, if the state space is continuous, e.g., S = <n, then B̄ can clearly
be chosen to have a nonempty interior, by letting the probability measure be absolutely continuous with respect to
Lebesgue measure, for example.
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φ(x′), since µ satisfies the control constraint. Then since the function x 7→ µ(du | x) is continuous
on B, we can apply [7, Prop. 7.31(b)] to conclude that φ(x′) is u.s.c. on B.

Denote ψ(x′) = φ(x′) · 1B(x′) + J(x′) · 1S\B(x′) for x′ ∈ S. We prove that ψ(x′) is u.s.c. on
S. Consider any sequence {xn} in S converging to some x̄ ∈ S. By the definition of φ, we have
φ(x′) ≤ J(x′) for all x′ ∈ S. Therefore, in the case x̄ 6∈ B, we have

lim sup
n→∞

ψ(xn) ≤ lim sup
n→∞

J(xn) ≤ J(x̄) = ψ(x̄),

where the second inequality follows from the u.s.c. property of J ; whereas in the case x̄ ∈ B, since
B is open, we have

lim sup
n→∞

ψ(xn) = lim sup
n→∞

φ(xn) ≤ φ(x̄) = ψ(x̄),

where the inequality holds since φ restricted to B is u.s.c., as we proved earlier. This proves that the
function ψ is u.s.c. Clearly ψ is bounded above. Then, using also the fact that the state transition
kernel q(dx′ | x, u) is continuous, we have, by [7, Prop. 7.31(b)], that the integral (6.2) as a function
of (x, u) is u.s.c. and clearly bounded above. This proves the proposition.

Based on Prop. 6.1, we see that to keep the iterates Jk, Qk of the iteration (3.9)-(3.10) within
the set of functions that are u.s.c. and bounded above, we can start with J0, Q0 that are u.s.c. and
bounded above, choose the parameters θk = (µk, Bk) in the way described earlier, and update Qk+1

using always the first rule in (3.9), thereby resulting in u.s.c. functions Qk+1 and Jk+1. For cases
(D)(N), it is not hard to show that the second rule in (3.9), Qk+1 = Qθk,Jk , also makes Qk+1 u.s.c.
and therefore can be used. For case (P), however, we do not know if Qθk,Jk is u.s.c. in general.

We conclude this subsection with an optimality result for the upper semicontinuous model in
case (P). To our knowledge, here there is no guarantee that J∗ is u.s.c.; however, an application of
Theorem 5.1 shows the following.

Proposition 6.2 (Case (P) in Upper Semicontinuous Models). Suppose that J∗ is bounded above
and for some open set B ⊂ S and δ > 0, B ⊃ {x ∈ S | J∗(x) < δ} and J∗ is u.s.c. on B. Then J∗

is u.s.c. and for any ε > 0, there exists an ε-optimal, Borel measurable Markov policy.

Proof. Suppose J∗(x) ≤ a for all x. Let J(x) = J∗(x) if x ∈ B and J(x) = a otherwise. Since
J∗ is u.s.c. on the open set B, J is by definition u.s.c. and bounded above. Consequently, for all
k, T k(J) is u.s.c. and bounded above by [7, Props. 7.31, 7.34]. We also have J∗ ≤ J ≤ cJ∗ for
c ≥ max{1, a/δ}, so by Theorem 5.1(b), T k(J)→ J∗. Then, using the fact that T k(J) is u.s.c. and
T k(J) ≥ J∗ for all k, it follows that J∗ is u.s.c.9 The assertion of the existence of ε-optimal, Borel
measurable Markov policy then follows from a selection theorem for u.s.c. functions ([7, Prop. 7.34];
cf. Eq. (6.1)) and the same proof argument as that for [7, Prop. 9.19(P)].

6.2 Lower Semicontinuous Models

We now consider the lower semicontinuous model as defined in [7, Def. 8.7]. For simplicity, in
addition to the model assumptions given in Section 2.2, let us assume that:

(a) The control space C is compact, and the control constraint set Γ is a closed subset of S × C.

(b) The state transition stochastic kernel q(dx′ | x, u) is continuous.

(c) The one-stage cost function g is l.s.c. on Γ and bounded below.

9Here we used the fact that if {fn} is a sequence of u.s.c. functions on a metrizable space X converging pointwise
to f with fn ≥ f for all n, then f is u.s.c. To see this, let {xk} be a sequence in X converging to x ∈ X. We have for
every n, lim supk→∞ f(xk) ≤ lim supk→∞ fn(xk) ≤ fn(x), and hence lim supk→∞ f(xk) ≤ limn→∞ fn(x) = f(x).
This shows that f is u.s.c.
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This is a special case of the model defined in [7, Def. 8.7], but our discussion below applies to that
more general model. Let us also mention that there have been substantial efforts in the literature
to weaken the assumptions (a) and (c) above. For these more general lower semicontinuous models
and the most recent results, we refer to the paper by Feinberg, Kasyanov and Zadoianchuk [22].
In principle, the approach we describe here is applicable in these models as well to address the
measurability issues in standard policy iteration (cf. Footnote 7), although the subject is beyond the
scope of the present paper.

It is known that under the assumptions (a)-(c) above, the optimal cost function J∗ is l.s.c. for
the models (D)(P). Starting with J ≡ 0 for (P) and with any bounded l.s.c. function J for (D),
value iteration generates l.s.c. functions T k(J) converging to J∗. There exists an optimal, Borel
measurable nonrandomized stationary policy under (D)(P). (For these optimality results, see [7,
Prop. 8.6 and Cor. 9.17.2].)

Consider the mixed value and policy iteration algorithm (3.9)-(3.10). In what follows, we apply
arguments similar to those for the upper semicontinuous model, and we show that one can have
policy iteration-like algorithms that keep iterates (Jk, Qk) within the set of l.s.c. functions. More
specifically, by a selection theorem for l.s.c. functions [7, Prop. 7.33], we have that if Q : Γ→ [−∞,∞]
is l.s.c., then the function M(Q)(x) = infu∈U(x)Q(x, u) is l.s.c. on S and for any ε > 0, there exists
a Borel measurable nonrandomized stationary policy µ such that

Q(x, µ(x)) = M(Q)(x), x ∈ S. (6.4)

Thus at the kth iteration of the algorithm (3.9)-(3.10), assuming Qk is l.s.c., we can choose a Borel
measurable policy µk based on Qk and the above selection theorem, to obtain a policy iteration-like
algorithm. In order for Qk+1, Jk+1 to be l.s.c. and bounded below, we can choose an appropriate
set Bk when forming the parameter θk = (µk, Bk) for the mapping Fθk in the algorithm, as follows.

Let µ be a Borel measurable stationary policy. There exists a closed subset B ⊂ S such that
restricted to B, the function x 7→ µ(du | x) is continuous. Again, we know from Lusin’s theorem [19,
Thm. 7.5.2] that B can be chosen to be very “large,” with its measure arbitrarily close to 1 for any
given Borel probability measure on S.

Proposition 6.3 (Lower Semicontinuous Models). Let θ = (µ,B) for a closed subset B of S and a
Borel measurable stationary policy µ such that µ(du | ·) is continuous on B. Then for any functions
J,Q that are l.s.c. and bounded below, Fθ(Q ; J) is l.s.c. and bounded below.

Proof. Similar to the proof of Prop. 6.1, it suffices to show that the integral (6.2) as a function of
(x, u) is l.s.c. and bounded below on Γ. We prove first that the function φ(x′) given by Eq. (6.3)
is l.s.c. on B. Since J,Q are l.s.c. and bounded below, the function min{J(x), Q(x, u)} is l.s.c. and
bounded below on Γ. We may extend the function min{J(x), Q(x, u)} to an l.s.c. function on S×C
that is bounded below, by defining its values outside Γ to be ∞, and we can view the integral
defining φ(x′) as the integral of this extension. This will not change the value φ(x′), since µ satisfies
the control constraint. Then, since the function x 7→ µ(du | x) is continuous on B, we can apply [7,
Prop. 7.31(a)] to conclude that φ(x′) is l.s.c. and bounded below on B.

Denote ψ(x′) = φ(x′) · 1B(x′) + J(x′) · 1S\B(x′) for x′ ∈ S. We prove that ψ(x′) is l.s.c. on S.
Consider any sequence {xn} in S converging to some x̄ ∈ S. If x̄ 6∈ B, then since S \B is open, we
have

lim inf
n→∞

ψ(xn) = lim inf
n→∞

J(xn) ≥ J(x̄) = ψ(x̄),

where the inequality follows from the l.s.c. property of J . Suppose now x̄ ∈ B. There exists a
subsequence {xni} of {xn} such that lim infn→∞ ψ(xn) = limi→∞ ψ(xni) and either (i) xni ∈ B for
all i or (ii) xni 6∈ B for all i. Then in case (i), we have

lim inf
n→∞

ψ(xn) = lim
i→∞

ψ(xni) = lim
i→∞

φ(xni) ≥ φ(x̄) = ψ(x̄),
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where the inequality holds since φ restricted to B is l.s.c., as we proved earlier. In case (ii), we have

lim inf
n→∞

ψ(xn) = lim
i→∞

ψ(xni) = lim
i→∞

J(xni) ≥ J(x̄) ≥ φ(x̄) = ψ(x̄),

where the first inequality holds since J is l.s.c., and the second inequality holds since by the definition
of φ, we have φ(x′) ≤ J(x′) for all x′ ∈ S. Thus we have proved that the function ψ is l.s.c. Clearly ψ
is bounded below. Then, using also the fact that the state transition kernel q(dx′ | x, u) is continuous,
we have, by [7, Prop. 7.31(a)], that the integral (6.2) as a function of (x, u) is l.s.c. and bounded
below. This proves the proposition.

Based on Prop. 6.3, we see that to keep iterates Jk, Qk of the iteration (3.9)-(3.10) within the set
of functions that are l.s.c. and bounded below, we can start with J0, Q0 that are l.s.c. and bounded
below, choose the parameters θk = (µk, Bk) in the way described earlier, and update Qk+1 using
always the first rule in (3.9), thereby resulting in l.s.c. functions Qk+1 and Jk+1. For cases (D)(P),
it is not hard to show that the second rule in (3.9), Qk+1 = Qθk,Jk , also makes Qk+1 l.s.c. and
therefore can be used. For case (N), however, we do not know if Qθk,Jk is l.s.c. in general.

7 Concluding Remarks

In this paper we have addressed the long-standing open issue of constructing a valid policy itera-
tion algorithm for total cost Borel-space stochastic DP with universally measurable policies. Our
approach is based on a mixed value and policy iteration idea. It makes critical use of the fact that
any universally measurable policy has Borel measurable portions, to maintain cost function iterates
within the set of lower semi-analytic functions. It employs an algorithmic framework that combines
the characteristics of both value and policy iteration, to allow stationary policies to be used in com-
puting the optimal cost function. Our approach can also address similar policy iteration issues that
arise in upper and lower semicontinuous models. By choosing algorithmic parameters accordingly,
we have shown how to obtain policy iteration-like algorithms that can keep the cost function iterates
within the desired family of semicontinuous functions.

The mixed value and policy iteration method was first proposed and studied in our earlier work
for discrete spaces [10, 57] and abstract DP models [9], with the focus on asynchronous distributed
computation. With this paper we have thus provided a Borel-space counterpart of the method,
and broadened the algorithmic framework of our earlier work to deal with measurability or non-
measurability related structural restrictions in stochastic DP problems.

For nonnegative DP models, however, the standard versions of value iteration and policy iteration
may fail, even for discrete-state and other models where measurability issues are not a concern. In
order to apply and analyze our mixed value and policy iteration method, we have derived a new
sufficient condition for convergence of value iteration. This is a simple condition on the initial
function only. It applies to all nonnegative models (countable space or uncountable Borel space
models), and it provides, in addition, a new characterization of the set of functions within which
the optimal cost function is the unique solution of the optimality equation. Using this condition,
our method is shown to produce in the limit the optimal cost function when initialized properly.
Obtaining useful initial functions satisfying this condition is generally an open question at present,
which we aim to address in the future.

For nonnegative DP models, we have also proposed a variation of our method, where the optimal
stopping problems in its “policy evaluation” phase can be approximately solved by using linear
programming under certain conditions. To our knowledge, this is the first proposal of an algorithmic
approach based on linear programming for nonnegative DP models.

Our approach yields function sequences that converge pointwise to the optimal cost function
for discounted, nonpositive, and nonnegative cost DP models. It also yields asymptotically optimal
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policy sequences for discounted cost, but not for nonpositive and nonnegative cost DP models. For
the latter two models, extracting nearly optimal policies from the data produced by the algorithm
is difficult in the absence of additional assumptions, since in general there may not exist ε-optimal
stationary policies.

Further analyses of our algorithms and their variations, including stochastic asynchronous Q-
learning versions (similar to those considered in [54, 49, 50, 18, 1, 10, 57, 58]), are important subjects
for future investigation. We conclude the paper with a discussion about other applications of our
approach and future research directions.

Asynchronous computation

One may consider asynchronous distributed computation in the framework of universally mea-
surable policies, by combining the approach and analysis given in this paper with arguments used
in our earlier works [10, 57, 9]. We discuss the subject briefly here, focusing on issues related to
universal measurability in a simplified setting.

Suppose that instead of the basic algorithm (3.9)-(3.10), at each iteration k, we only compute
Qk+1(x, u) for a subset Γk of state-control pairs in Γ and compute Jk+1(x) for a subset Sk of states
in S. (For the rest of states x or state-control pairs (x, u), we let Jk+1(x) = Jk(x), Qk+1(x, u) =
Qk(x, u).) This is the type of operations that would be performed in a distributed computation
environment, where a single processor handles only part of a computation task and processors share
results with each other.

As before, with universally measurable policies, we need to keep the iterates within the set of
lower semi-analytic functions. To meet this requirement, we can let Sk be a Borel subset of S and
let Γk = Rk ∩ Γ, where Rk is a Borel subset of S × C. This will keep Qk+1 ∈ A(Γ). The reason is
that if Q,Q′ ∈ A(Γ) and R is a Borel set in S × C, then the function

Q · 1R∩Γ +Q′ · 1(S×C\R)∩Γ

is lower semi-analytic by [7, Lemma 7.30(4)], because 1R∩Γ(x, u) and 1(S×C\R)∩Γ(x, u) are nonneg-
ative Borel measurable functions on Γ. Similarly, the reason for Jk+1 ∈ A(S) is that if J, J ′ ∈ A(S)
and D ⊂ S is Borel, then the function J · 1D + J ′ · 1S\D is lower semi-analytic.

More elaborate variants

In this paper we have focused on the mappings Fθ, θ ∈ Θ, defined by (3.4), where we partition
the state space into two subsets. The same idea leads to more elaborate mappings, which can also
be used in the mixed value and policy iteration approach. We give one such example here, in which
we will partition the state-control space S × C.

For a stationary universally measurable policy µ, let R ⊂ S × C be a Borel set such that
B = projS(R) is Borel and the function x 7→ µ(du | x) is Borel measurable on B. For any such pair

θ̂ = (µ,R), we may consider a mapping Fθ̂ defined by

Fθ̂(Q ; J)(x, u) = g(x, u) + α

∫

S\B
J(x′) q(dx′ | x, u) + α

∫

B

J(x′) · µ
(
C \Rx′ | x′

)
q(dx′ | x, u)

+ α

∫

B

∫

Rx′

min
{
J(x′) , Q(x′, u′)

}
µ(du′ | x′) q(dx′ | x, u), (x, u) ∈ Γ, (7.1)

for all J ∈ A(S), Q ∈ A(Γ), where B = projS(R) and Rx = {u ∈ C | (x, u) ∈ R} is the vertical
section of R at x. That the function Fθ̂(Q ; J) is lower semi-analytic can be established similar
to Prop. 3.1(a), using the arguments in its proof, together with the fact that restricted to B,
µ(C \ Rx′ | x′) is a nonnegative Borel measurable function [7, Cor. 7.26.1] and hence the term∫
B
J(x′) · µ

(
C \Rx′ | x′

)
q(dx′ | x, u) in (7.1) as a function of (x, u) is lower semi-analytic.
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Extensions to other models

Finally, we note that while we have focused on the three classical total cost problems in this
paper, the technique we used to handle the measurability issues in policy iteration can be applied
to other types of stochastic control problems. These include, for instance, discounted problems with
unbounded one-stage costs, and undiscounted total cost problems without sign constraints on the
one-stage costs. Convergence properties of the mixed value and policy iteration method for these
models are worthy of further study. Also among the important subjects for future research are
extensions to average cost problems and partially observable problems.
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Appendices

A Optimal Stopping Problems Associated with the Map-
pings Fθ

In this appendix, for a given θ = (µ,B) ∈ Θ, J ∈ A(S), and a control problem of type (D), (N)
or (P), we formulate an associated optimal stopping problem of the same type. We establish the
relation between its optimal cost function and the pointwise limit Qθ,J = limk→∞ F kθ (0 ; J), and we
show that the mapping Fθ(· ; J) can be viewed as a form of the optimal cost operator and F kθ (0 ; J)
is related to the value iteration sequence for this problem. (Other formulations of the optimal
stopping problem are also possible and equivalent for our purpose. We will focus only on one here.)
In addition we describe a linear program in case (P) and show that under certain conditions, it yields
an upper bound on Qθ,J that can be used in a mixed value and policy iteration algorithm discussed
in Section 5.2.

A.1 Formulation

As before we assume that the given function J is such that J ∈ Ab(S) in case (D), J ∈ A−(S) in
case (N), and J ∈ A+(S) in case (P). The function J will define the stopping costs, while the policy
µ will be used to define the dynamics of the unstopped process.

Optimal Stopping Problem Associated with J and (µ,B) ∈ Θ

• State space So =
(
S × C) ∪ {∞}, with ∞ representing an absorbing, cost-free state. (The

topology of So consists of the open sets in S × C, the set {∞} and their unions.)

• Control space Co = {0, 1}, with 0 representing “to stop” and 1 “to continue.”

• Control constraint: Uo(∞) = {0, 1} and

Uo
(
(x, u)

)
= {0, 1} on B × C, Uo

(
(x, u)

)
= {0} on (S \B)× C.

• One-stage costs: go(∞, 0) = go(∞, 1) = 0 and

go
(
(x, u), 0

)
= J(x) ∀ (x, u) ∈ S × C,

go
(
(x, u), 1

)
= g(x, u) ∀ (x, u) ∈ (B × C) ∩ Γ,

go
(
(x, u), 1) = K ∀ (x, u) ∈ (B × C) \ Γ,

where K = 0 for (N), K = +∞ for (P), and K ≥ max{‖g‖∞, ‖J‖∞} for (D).

• State transition stochastic kernel qo(· | ·) on So given So × Co: for any Borel set D ⊂ So and
any (x, u) ∈ S × C,

qo
(
D | ∞, 0) = qo

(
D | ∞, 1) = δ∞(D), qo

(
D | (x, u), 0

)
= δ∞(D),

qo
(
D | (x, u), 1

)
=

∫

S

∫

C

1D\{∞}
(
(x′, u′)

)
µ̃(du′ | x′) q(dx′ | x, u),

where µ̃(du′ | x′) is a Borel measurable stochastic kernel on C given S such that

µ̃(du′ | x′) = µ(du′ | x′), ∀x′ ∈ B.
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(Such a kernel can be constructed by letting µ̃(du′ | x′) = µ(du′ | x′) for x′ ∈ B and µ̃(du′ |
x′) = p(du′) for x′ 6∈ B, where p is any Borel probability measure on C.) In particular, with
the control 1, for any (x, u) ∈ S × C and Borel D ⊂ So,

qo
(
D | (x, u), 1

)
=

∫

B

∫

C

1D\{∞}
(
(x′, u′)

)
µ(du′ | x′) q(dx′ | x, u)

+

∫

S\B

∫

C

1D\{∞}
(
(x′, u′)

)
µ̃(du′ | x′) q(dx′ | x, u). (A.1)

The above formulation fits the general stochastic control model described in Section 2.2. In
particular, the graph of the control constraint Uo is an analytic set, the one-stage cost function go

is lower semi-analytic, and the state transition kernel qo is Borel measurable. For a state z ∈ So,
we denote the cost of a universally measurable policy πo by Vπo(z). It is as defined in Section 2.2
and can be expressed as follows. For k ≥ 0, let (zk, u

o
k) denote the state and control at time k,

and let τ be the time when the process is stopped: τ = min
{
k ≥ 0 | uok = 0

}
with τ = ∞ if{

k ≥ 0 | uok = 0
}

= ∅. For each k, let (xk, uk) = zk if zk ∈ S × C, and let (xk, uk) equal some fixed

state in S × C if zk =∞. Then for z0 = (x, u) ∈ S × C, Vπo
(
(x, u)

)
can be expressed as

Vπo
(
(x, u)

)
= Eπ

o

{ ∞∑

k=0

αkgo
(
zk, u

o
k

)
}

= Eπ
o

{
τ−1∑

k=0

αkgo
(
(xk, uk), 1

)
+ ατJ(xτ )

}
. (A.2)

Note that in the above, (xk, uk) is meaningfully defined on {τ ≥ k}.
Denote the optimal cost function by V ∗ and the optimal cost operator by To. The following

lemma is a direct consequence of the theory for (D)(N)(P) in the case where the number of controls
at each state is finite [7, Props. 9.8, 9.14, Cor. 9.17.1]. (We note that in case (N), an optimal policy
need not exist even when the control space is finite. See [6, Ex. 4.1, p. 181] for such an example.)

Lemma A.1. (D)(N)(P) The optimal cost function V ∗ is lower semi-analytic (bounded for (D),
nonpositive for (N), and nonnegative for (P)), and satisfies

T ko (0)→ V ∗, V ∗ = To
(
V ∗
)
.

For (N)(P), T ko (0) converges monotonically. For (D), V ∗ is the unique solution to V = To(V ), V ∈
Ab(S

o). Furthermore, for (D)(P), there exists an optimal nonrandomized stationary policy.

Let Vk = T ko (0), k ≥ 0, be the optimal k-stage cost functions. To simplify notation we will write
V (x, u) for V

(
(x, u)

)
. Clearly, for the absorbing state ∞ and for the states in (S \ B) × C, where

the only control is to stop, we have for all k ≥ 1,

V ∗(∞) = Vk(∞) = 0, V ∗(x, u) = Vk(x, u) = J(x), ∀ (x, u) ∈ (S \B)× C. (A.3)

Next we will calculate the optimal costs for states in the set (B×C)∩Γ and relate the results to
Qθ,J and Fθ(· ; J). For our purposes, the set (B ×C) \ Γ of states can be ignored, not only because
they are outside the control constraint set of the original problem, but also because in the optimal
stopping problem, they are formulated to be unreachable (as they should be) from the rest of the
states. In particular, if the starting state (x, u) is in (B × C) ∩ Γ, then since the policy µ satisfies
the control constraint of the original problem, we see from the first term in the expression (A.1) for
the state transition probability qo(· | (x, u), 1) that the probability of the successor state being in
(B × C) \ Γ is zero. If the starting state (x, u) is in (S \B)× C, then the control 1 (to continue) is
not allowed according to the control constraint Uo, so the successor state is ∞. Therefore, the set
(B × C) \ Γ is not reachable from the rest of the states.
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Since at time k, the continuation cost is go((xk, uk), 1) = g(xk, uk) if (xk, uk) ∈ (B ×C)∩Γ, the
preceding discussion also shows that for each (x, u) ∈ Γ, the cost of πo for the initial distribution
po(·) = qo(· | (x, u), 1) is

Vπo,po = Eπ
o,po

{
τ−1∑

k=0

αkg(xk, uk) + ατJ(xτ )

}
, (A.4)

where the expectation is with respect to the probability measure induced by πo and po (cf. Eq. (A.2)).
We will use the expression (A.4) later to derive an expression for Qθ,J (see Cor. A.1).

A.2 Relations with Fθ(· ; J), Qθ,J

We will now express the operator To and calculate Vk, V
∗ for the states in (B × C) ∩ Γ. Consider

the set of functions
{
V ∈ A(So) | V (∞) = 0, V (x, u) = J(x), (x, u) ∈ (S \B)× C

}
, (A.5)

which includes V ∗, Vk (cf. Eq. (A.3)). For any V in this set, using the expression of qo(dz | (x, u), 1)
given in (A.1), we have that for any (x, u) ∈ S × C,
∫

S×C
V (z) qo

(
dz | (x, u), 1

)
=

∫

S\B
J(x′) q(dx′ | x, u) +

∫

B

∫

C

V (x′, u′)µ(du′ | x′) q(dx′ | x, u),

(A.6)

and by a direct calculation we also have

To(V )(x, u) = min

{
J(x) , g(x, u) + α

∫

S×C
V (z) qo

(
dz | (x, u), 1

)}
, (x, u) ∈ (B × C) ∩ Γ,

where the first term J(x) is the stopping cost and the second term is associated with the continuation
action. Therefore, for any V in the set (A.5),

To(V )(x, u) = min {J(x) , GV (x, u)} , (x, u) ∈ (B × C) ∩ Γ, (A.7)

where

GV (x, u) = g(x, u) + α

∫

S\B
J(x′) q(dx′ | x, u) + α

∫

B

∫

C

V (x′, u′)µ(du′ | x′) q(dx′ | x, u). (A.8)

This yields the optimality equation V = To(V ) in a reduced form for V in the set (A.5).

Using the fact V ∗ = To(V
∗), we then obtain

V ∗(x, u) = To
(
V ∗
)
(x, u) = min {J(x) , f∗(x, u)} , ∀ (x, u) ∈ (B × C) ∩ Γ, (A.9)

where f∗(x, u) is the optimal expected future cost for continuation and can be expressed in several
equivalent ways:

f∗(x, u) = g(x, u) + α

∫

S×C
V ∗(z) qo

(
dz | (x, u), 1

)
(A.10)

= g(x, u) + α

∫

S\B
J(x′) q(dx′ | x, u) + α

∫

B

∫

C

V ∗(x′, u′)µ(du′ | x′) q(dx′ | x, u)

= g(x, u) + α

∫

S\B
J(x′) q(dx′ | x, u) + α

∫

B

∫

C

min
{
J(x′) , f∗

(
x′, u′

)}
µ(du′ | x′) q(dx′ | x, u).

(A.11)
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Here in deriving Eq. (A.11), we used the fact that for all (x, u) ∈ S × C,
∫

B

∫

C

V ∗(x′, u′)µ(du′ | x′) q(dx′ | x, u) =

∫

B

∫

C

min
{
J(x′) , f∗

(
x′, u′

)}
µ(du′ | x′) q(dx′ | x, u).

(A.12)
To see this, note that since µ satisfies the control constraint of the original problem, µ

(
U(x′) | x′

)
= 1

for x′ ∈ B, and for x′ ∈ B and u′ ∈ U(x′), V ∗(x′, u′) can be expressed as in (A.9).

Similar to the preceding derivation, we can calculate the optimal k-stage cost functions Vk, k ≥ 1,
and define functions fk on (B × C) ∩ Γ associated with the continuation action, for k ≥ 0, by

fk(x, u) = g(x, u) + α

∫

S×C
Vk(z) qo

(
dz | (x, u), 1

)
, (x, u) ∈ (B × C) ∩ Γ, k ≥ 0. (A.13)

From the recursive relations,

Vk+1(x, u) = To
(
Vk
)
(x, u) = min {J(x) , fk(x, u)} , (x, u) ∈ (B × C) ∩ Γ, k ≥ 0,

we obtain that the functions fk, k ≥ 1, satisfy the recursion (A.11) with fk replacing f∗ on the
left-hand side and with fk−1 replacing f∗ in the right-hand side.

We recognize the expression on the right-hand side of Eq. (A.11) as the same expression that
defines Fθ(f

∗; J)(x, u) (cf. Eq. (3.4)). To be more precise, since Fθ(· ; J) is a mapping on A(Γ) and
f∗ is defined on (B × C) ∩ Γ, we will adopt the following convention: for any function f defined
on (B × C) ∩ Γ, by Fθ(f ; J) we mean any Fθ(fe ; J) where fe is an (arbitrary) extension of f to Γ.
This is valid because by definition Fθ(Q ; J) is completely determined by the function Q restricted
to (B × C) ∩ Γ. In other words, denoting ΓB = (B × C) ∩ Γ, we have

Q |ΓB = Q′|ΓB =⇒ Fθ(Q ; J) = Fθ(Q
′; J). (A.14)

Based on the equivalence between Eq. (A.11) and Fθ(f
∗; J)(x, u), we can relate the optimal

cost functions V ∗, Vk of the optimal stopping problem to the mapping Fθ(· ; J) and the function
Qθ,J = limk→∞ F kθ (0 ; J) as follows.

Lemma A.2. (D)(N)(P) Let ΓB = (B × C) ∩ Γ, and let f∗, fk : ΓB → [−∞,∞], k ≥ 0, be
the minimal future cost functions associated with continuation, given by Eqs. (A.10) and (A.13)
respectively; in particular, f0 = g|ΓB . Then

f∗ = Fθ
(
f∗; J

)∣∣
ΓB
, fk = Fθ

(
fk−1; J

) ∣∣
ΓB
, k ≥ 1,

and fk → f∗. Moreover,
Qθ,J

∣∣
ΓB

= f∗, Qθ,J = Fθ
(
f∗; J). (A.15)

Proof. The recursive relations for f∗, fk were derived earlier. The fact fk → f∗ follows from
Eqs. (A.10) and (A.13) by applying the bounded convergence theorem in case (D), and the mono-
tone convergence theorem in cases (N)(P), using the convergence Vk → V ∗ in each of these cases
(Lemma A.1).

We now prove the relation (A.15) between the function Qθ,J = limk→∞ F kθ (0 ; J) and f∗. Since
fk → f∗, using the relation fk = Fθ

(
fk−1; J

) ∣∣
ΓB

and Eq. (A.14), we have fk = F kθ (g ; J)
∣∣
ΓB
→ f∗.

Suppose we have proved F kθ (g; J)→ Qθ,J . Then it will follow that Qθ,J
∣∣
ΓB

= f∗. In turn, this will

imply Fθ(Qθ,J ; J) = Fθ(f
∗; J) by Eq. (A.14), and hence Qθ,J = Fθ(f

∗; J) since Qθ,J = Fθ(Qθ,J ; J)
by Prop. 3.2. Thus it is sufficient to prove F kθ (g; J)→ Qθ,J . For (D), this was proved by Lemma 4.1.
For (N), we have g ≤ 0 and J ≤ 0. By a direct calculation, Fθ(0 ; J) ≤ g ≤ 0, so we have, by the
monotonicity of Fθ(· ; J),

F kθ (0 ; J) ≤ F k−1
θ (g; J) ≤ F k−1

θ (0 ; J), k ≥ 1.
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Since F kθ (0 ; J) ↓ Qθ,J by Prop. 3.2, we have F kθ (g; J) ↓ Qθ,J . The convergence F kθ (g; J)→ Qθ,J in
case (P) follows from a symmetrical argument.

We see from Lemma A.2 that we may view Fθ(· ; J) as an optimal cost operator for the minimal
future cost function f∗ associated with the continuation action in the optimal stopping problem. For
states (x, u) ∈ ΓB , we can also interpret Qθ,J(x, u) as the minimal costs at (x, u) with continuation
at the first stage.

We now give several expressions of Qθ,J(x, u) in terms of V ∗ and Vπo , for all (x, u) ∈ Γ, in the
following corollary. For each (x, u) ∈ Γ, we will consider the optimal stopping problem starting with
an initial state distribution po given by qo(· | (x, u), 1), the transition distribution for (x, u) under
the continuation action.

Corollary A.1. (D)(N)(P) For all (x, u) ∈ Γ,

Qθ,J(x, u) = g(x, u) + α

∫

S×C
V ∗(z) qo(dz | (x, u), 1)

= g(x, u) + α inf
πo

∫

S×C
Vπo(z) q

o(dz | (x, u), 1).

In particular, if in the optimal stopping problem associated with (θ, J), an optimal policy πo∗ exists
(as is true under (D)(P)), then for all (x, u) ∈ Γ,

Qθ,J(x, u) = g(x, u) + αEπ
o∗,po

{
τ−1∑

k=0

αkg(xk, uk) + ατJ(xτ )

}
,

where τ = min{k ≥ 0 | uok = 0} with τ = ∞ if this set is empty, and the expectation is with
respect to the probability measure induced by πo∗ and the initial distribution po of (x0, u0), given by
po(·) = qo(· | (x, u), 1).

Proof. Since Qθ,J = Fθ(f
∗; J) (Lemma A.2), using the definition of Fθ(· ; J) and Eq. (A.12), we

have that for all (x, u) ∈ Γ,

Qθ,J(x, u) = g(x, u) + α

∫

S\B
J(x′) q(dx′ | x, u) + α

∫

B

∫

C

V ∗(x′, u′)µ(du′ | x′) q(dx′ | x, u), (A.16)

which together with (A.6) implies the first expression for Qθ,J(x, u) in the corollary. The second
expression for Qθ,J in the corollary follows from the first one and [7, Cor. 9.5.2]. From the second
expression and Eq. (A.4) for policy πo∗, we obtain the third expression for Qθ,J in the corollary.

A.3 A Useful Linear Program for Case (P)

As Cor. A.1 shows, we can obtain Qθ,J from the optimal cost function V ∗ of the optimal stopping
problem associated with (θ, J). For case (D) (resp. case (N)), the function V ∗ is the maximal solution
to V ≤ To(V ) among the set of bounded lower semi-analytic functions (resp. the set of nonpositive
lower semi-analytic functions) [7, Props. 9.10, 9.15]. The inequality V ≤ To(V ) can be expressed as
a system of linear inequalities, so under suitable conditions, V ∗ can be obtained by solving a linear
program. (See [27, Chap. 6] for standard linear programming formulations for DP problems with
infinite state space.)

In case (P), however, V ∗ is the minimal nonnegative lower semi-analytic solution to V ≥ To(V )
[7, Prop. 9.10(P)], and this in general does not admit a linear programming formulation. We consider
below a linear program with linear constraints based on the inequality V ≤ To(V ) instead. While
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it does not yield V ∗ in general, under an assumption to be given shortly, we can use it to obtain
an upper bound on V ∗ (in an almost-everywhere sense) and then an upper bound on Qθ,J (see
Lemma A.3). This bound on Qθ,J can be used in a mixed value and policy iteration algorithm
given in Section 5.2, which is convergent under certain initial conditions for case (P), as shown by
Theorem 5.3.

Let ΓB = (B × C) ∩ Γ as earlier. Let U denote the universal σ-algebra on S × C.

Assumption A.1. (P) There exists a σ-finite measure ρ on (S × C, U ) such that

(i)
∫

ΓB
J(x)ρ

(
d(x, u)

)
<∞; and

(ii) for each (x, u) ∈ ΓB, the measure ρx,u on (S × C, U ) given by

ρx,u(D) =

∫

B

∫

C

1D(x′, u′)µ(du′ | x′) q(dx′ | x, u), D ∈ U ,

is absolutely continuous with respect to ρ (i.e., ρ(D) = 0⇒ ρx,u(D) = 0).

Suppose Assumption A.1 holds (which is the case if S, C are countable and J is finite on B; see
Remark A.1). Let A+(ΓB) denote the set of nonnegative, lower semi-analytic functions on ΓB . Let
ΓB,ρ ⊂ ΓB be such that ρ(ΓB \ ΓB,ρ) = 0. We consider a linear program on the space A+(ΓB):

Maximize
V ∈A+(ΓB)

∫

ΓB

V (x, u) ρ
(
d(x, u)

)
(A.17)

Subject to: V (x, u) ≤ J(x), ∀ (x, u) ∈ ΓB,ρ,

V (x, u) ≤ g(x, u) +

∫

S\B
J(x′) q(dx′ | x, u)

+

∫

B

∫

C

V (x′, u′)µ(du′ | x′) q(dx′ | x, u), ∀ (x, u) ∈ ΓB,ρ.

As can be seen from the expression (A.7)-(A.8) for the operator To, this linear program corresponds
to the following maximization problem:

Maximize
V ∈A+(ΓB)

∫

ΓB

V (x, u) ρ
(
d(x, u)

)

Subject to: V (x, u) ≤ To(V e)(x, u), ρ-almost every (x, u) ∈ ΓB ,

where V e is the extension of V on So with V e(∞) = 0, V e(x, u) = J(x), (x, u) ∈ (S \B)× C.

Corresponding to any optimal solution V̄ of (A.17), we define Q̄ ∈ A+(Γ) by the expression on
the right-hand side of the second constraint in (A.17), with V̄ in place of V and for all (x, u) in Γ:

Q̄(x, u) = g(x, u) +

∫

S\B
J(x′) q(dx′ | x, u) +

∫

B

∫

C

V̄ (x′, u′)µ(du′ | x′) q(dx′ | x, u), (x, u) ∈ Γ.

(A.18)

The next lemma shows that Q̄ satisfies a property needed for the convergence analysis of the mixed
value and policy iteration algorithm (5.14)-(5.15) discussed in Section 5.2.

Lemma A.3. (P) Let Assumption A.1 hold. Then an optimal solution V̄ of the linear program
(A.17) exists, and the function Q̄ ∈ A+(Γ) given by Eq. (A.18) satisfies

Q̄ ≤ Fθ
(
Q̄ ; J

)
, Q̄ ≥ Qθ,J .
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Proof. Since V ∗ = To(V
∗), the optimal cost function V ∗ restricted to ΓB is a feasible solution of

(A.17), so the feasible set of (A.17) is nonempty. By Assumption A.1(i), the optimal objective
value v∗ of (A.17) is finite. Let V̄n, n ≥ 1, be a sequence of feasible solutions with their objective
values approaching v∗. Then the function resulting from taking pointwise supremum, supn V̄n, lies
in A+(ΓB) [7, Lemma 7.30(2)], satisfies the constraints of (A.17), and achieves the optimal value v∗.
It is hence an optimal solution of (A.17). This shows that an optimal solution V̄ of (A.17) exists.

The function max{V ∗, V̄ } on ΓB is then an optimal solution of (A.17) as well. This implies that

V ∗(x, u) ≤ V̄ (x, u) for ρ-almost every (x, u) ∈ ΓB , (A.19)

for otherwise, by Assumption A.1(i) we would have

∞ >

∫

ΓB

max
{
V ∗(x, u), V̄ (x, u)

}
ρ
(
d(x, u)

)
>

∫

ΓB

V̄ (x, u) ρ
(
d(x, u)

)
,

a contradiction to the optimality of V̄ . We now show Q̄ ≥ Qθ,J . By Eq. (A.16), for all (x, u) ∈ Γ,
Qθ,J(x, u) equals the right-hand side of Eq. (A.18) with V ∗ in place of V̄ . This, together with
Assumption A.1(ii) and the relation (A.19), implies Qθ,J ≤ Q̄. To show Q̄ ≤ Fθ

(
Q̄ ; J

)
, notice that

by the feasibility of V̄ for (A.17) and the definition of Q̄,

V̄ (x, u) ≤ min
{
J(x) , Q̄(x, u)

}
, ∀ (x, u) ∈ ΓB,ρ.

We use this relation to upper-bound V̄ ρ-almost everywhere on ΓB , in the integral on the right-hand
side of (A.18), which defines Q̄. Using also Assumption A.1(ii), we then obtain that for all (x, u) ∈ Γ,

Q̄(x, u) ≤ g(x, u) +

∫

S\B
J(x′) q(dx′ | x, u) +

∫

B

∫

C

min
{
J(x) , Q̄(x′, u′)

}
µ(du′ | x′) q(dx′ | x, u),

which is the inequality Q̄ ≤ Fθ
(
Q̄ ; J

)
. This completes the proof.

Remark A.1. Assumption A.1 holds in particular when the state and control spaces S and C are
countable sets and the function J is finite on B. Without loss of generality, suppose S = C =
{1, 2, . . .}. Denote by ρ(x, u) the mass assigned to a point (x, u) ∈ S × C by the measure ρ in
Assumption A.1. Then Assumption A.1 is satisfied by letting ρ(x, u) = 2−(x+u)/(J(x) + 1) if
(x, u) ∈ ΓB , and ρ(x, u) = 0 otherwise, for instance.

In the case where µ is a nonrandomized policy, we may let ρ(x, µ(x)) = 2−x/(J(x) + 1) if
x ∈ B and let ρ(x, u) = 0 for all the other (x, u). Then, with ΓB,ρ = {(x, µ(x)) | x ∈ B}, the
linear program (A.17) involves only the variables V (x, µ(x)), x ∈ B, and with the change of variable
W (x) = V (x, µ(x)), it becomes:

Maximize
W≥0

∑

x∈B
W (x) ρ

(
x, µ(x)

)

Subject to: W (x) ≤ J(x), ∀x ∈ B,
W (x) ≤ g

(
x, µ(x)

)
+

∑

x′∈S\B
J(x′) q

(
x′ | x, µ(x)

)
+
∑

x′∈B
W (x′) q

(
x′ | x, µ(x)

)
, ∀x ∈ B.

Although S is countable, if B is a finite set, this is a finite-dimensional linear program.

B Proof of Qθ,J∗ = Q∗ for Nonnegative Case (P)

In this appendix we prove for the nonnegative case (P) that for any θ ∈ Θ, the function Qθ,J∗ =
limk→∞ F kθ (0 ; J∗) is Q∗ given in Eq. (3.1). This establishes Prop. 3.3(c) for (P), which is also used
in the lower bound part of Lemma 4.2 for (P).
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Proposition B.1. (P) Let θ = (µ,B) ∈ Θ. We have Qθ,J∗ = Q∗.

SinceQ∗ ≥ 0 and Fθ(Q
∗; J∗) = Q∗ (Prop. 3.3(a)), we have by the monotonicity of Fθ (cf. Eq. (3.7)),

Qθ,J∗ = lim
n→∞

Fnθ (0 ; J∗) ≤ Q∗.

Thus to prove Prop. B.1, we need to show Qθ,J∗ ≥ Q∗. We will prove this by showing that for each
(x, u) ∈ Γ and any ε > 0,

Qθ,J∗(x, u) ≥ Q∗(x, u)− ε. (B.1)

In the proof we will use the correspondence between the optimal stopping problem associated with
θ = (µ,B) and J∗, as defined in Appendix A.1, and a controller for the original problem.

We need some notations and an expression of Qθ,J∗ to be used in the proof. Fix (x̄, ū) ∈ Γ. For
the optimal stopping problem associated with θ = (µ,B) and J∗, by [7, Cor. 9.17.1], there exists
an optimal stationary nonrandomized (universally measurable) policy µo : So = (S × C) ∪ {∞} →
{0, 1}. Let the optimal stopping problem start from time 1, and consider the stochastic process
(z1, u

o
1), (z2, u

o
2), . . ., where zk ∈ So and uok ∈ {0, 1}, induced by µo and the initial distribution of z1

given by qo(· | (x̄, ū), 1) (cf. Eq. (A.1)). For each k ≥ 1, define (xk, vk) = zk if zk ∈ S×C, and define
(xk, vk) to be some fixed point in S × C if zk = ∞ (the absorbing state). Here for clarity, we are
using vk instead of uk to denote the component of zk in C, since we will use uk later for the controls
applied in the original problem. By Cor. A.1 we have

Qθ,J∗(x̄, ū) = g(x̄, ū) + Eµ
o

{
τ−1∑

k=1

g(xk, vk) + J∗(xτ )

}
, (B.2)

where τ is the time the process is stopped: τ = min
{
k ≥ 1 | µo(xk, vk) = 0

}
(∞ if the set is empty),

and Eµ
o

denotes expectation with respect to the probability measure induced by µo and the initial
distribution of (x1, v1), given by qo(· | (x̄, ū), 1).

To simplify notation, let

D = {(x, v) ∈ S × C | µo(x, v) = 0}, Dx = {v ∈ C | (x, v) ∈ D}, x ∈ S.

(D is the subset of S×C on which µo stops the process.) Since µo is universally measurable, D and
hence Dx, x ∈ S, are universally measurable sets [7, Lemma 7.29]. Note that expressed in terms of
these sets, τ = min

{
k ≥ 1 | vk ∈ Dxk

}
and

τ = m ⇐⇒ v1 6∈ Dx1
, · · · , vm−1 6∈ Dxm−1

, vm ∈ Dxm , (B.3)

τ > m ⇐⇒ v1 6∈ Dx1
, · · · , vm−1 6∈ Dxm−1

, vm 6∈ Dxm . (B.4)

We consider also the probability measure on the space of (x1, v1, x2, v2, . . .) induced by the policy
µ and the initial distribution q(dx1 | x̄, ū) of x1. Let τ be the same as defined earlier. Let us agree

that in this appendix, the expectation Eµ
{∑τ−1

k=1 g(xk, vk) + J∗(xτ )
}

is with respect to the induced

probability measure just mentioned.

Lemma B.1. We have

Eµ
o

{
τ−1∑

k=1

g(xk, vk) + J∗(xτ )

}
= Eµ

{
τ−1∑

k=1

g(xk, vk) + J∗(xτ )

}
.

We first prove Prop. B.1, assuming that Lemma B.1 has been proved, and then give the proof of
this lemma.
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Proof of Prop. B.1. Fix (x̄, ū) ∈ Γ and let ε > 0. Let πε = (πε0, π
ε
1, . . .) ∈ Π be an ε-optimal Markov

policy for the original control problem; such a policy exists by [7, Prop. 9.19]. We use the policies
µo, πε, and µ (the stationary policy defining Fθ and the associated optimal stopping problem) to
define a controller π̂ for the original problem, such that it applies control ū at state x̄ at the first
stage, and its expected total cost for state x̄ is no greater than Qθ,J∗(x̄, ū)+ ε. From this the desired
inequality (B.1) for establishing the proposition will be shown to follow.

Roughly speaking, the controller π̂ follows the policy µ before it switches to following policy πε.
To decide when to make the switch, it generates at each time k ≥ 1, an auxiliary variable vk ∈ C
to “simulate” a control that µ might apply at the current state and “query” the optimal-stopping
policy µo about whether that control suggested by µ should be followed. The history at time k ≥ 1
for the controller is

(x0, u0, x1, v1, u1, . . . , xk, vk) ∈ (S × C)× (S × C2)k−1 × (S × C),

including the auxiliary variables vj , 1 ≤ j ≤ k, as well as the past states xj , j ≤ k, and past controls
uj , j < k. The controller is denoted π̂ = (µ̂0, µ̂1, . . .), where each µ̂k is a universally measurable
stochastic kernel on C given the respective space of histories. We now define µ̂k, k ≥ 0.

For k = 0, let µ̂0 be a universally measurable stochastic kernel on C given S, such that µ̂0

satisfies the control constraint U and µ̂0(du0 | x̄) = δū. For each k ≥ 1, the auxiliary variable vk is
generated according to the stochastic kernel µ given the state xk:

µ
(
dvk | xk

)
. (B.5)

The stochastic kernels µ̂k, k ≥ 1, are defined as follows. For each k ≥ 1, define a universally
measurable function τk : (S × C)k → {0, 1, 2, . . .} by

τk(x1, v1, x2, v2, . . . , xk, vk) =

{
min

{
m | vm ∈ Dxm , 1 ≤ m ≤ k

}
if such m exists,

0 otherwise.
(B.6)

Let µ̂k be a universally measurable stochastic kernel on C given (S × C)× (S × C2)k−1 × (S × C),
given by

µ̂k(duk | x0, u0, x1, v1, u1, . . . , xk, vk) =

{
δvk if τk(x1, v1, . . . , xk, vk) = 0,

πεk−m(duk | xk) if τk(x1, v1, . . . , xk, vk) = m.
(B.7)

(I.e., π̂ “copies” the control vk if it has not yet switched to applying policy πε, and the switch
happens the first time vm ∈ Dxm .)

The controller π̂ = (µ̂0, µ̂1, . . .) induces a probability measure on the space (S ×C)× (S ×C2)∞

of (x0, u0, x1, v1, u1, x2, v2, u2, . . .) (with the universal σ-algebra). With respect to this probability,
the expected total cost of π̂ for state x̄ is

Ĵπ̂(x̄) = g(x̄, ū) + Eπ̂

{ ∞∑

k=1

g(xk, uk)

}
.

Let τ = min
{
k ≥ 1 | vk ∈ Dxk

}
with τ = ∞ if the set in the definition is empty. Using the

definition of conditional expectation and a formula for conditional expectation given the sub-σ-
algebra associated with the stopping time τ [36, Prop. II-1-3], it follows that

Ĵπ̂(x̄) = g(x̄, ū) + Eπ̂

{
τ−1∑

k=1

g(xk, uk) + Jπε(xτ )

}

= g(x̄, ū) + Eπ̂

{
τ−1∑

k=1

g(xk, vk) + Jπε(xτ )

}
, (B.8)
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where in (B.8) we used the fact uk = vk for k < τ (cf. Eqs. (B.6), (B.7)). We have

Jπε(x) ≤ J∗(x) + ε, ∀x ∈ S,

since πε is an ε-optimal policy of the original problem and J∗ ≥ 0. Then by Eq. (B.8),

Ĵπ̂(x̄) ≤ g(x̄, ū) + Eπ̂

{
τ−1∑

k=1

g(xk, vk) + J∗(xτ )

}
+ ε.

On the other hand, based on the definition of π̂, {vk} are generated according to µ (cf. Eq. (B.5))
and they are the controls applied before time τ (cf. Eqs. (B.6), (B.7)), so we have

Eπ̂

{
τ−1∑

k=1

g(xk, vk) + J∗(xτ )

}
= Eµ

{
τ−1∑

k=1

g(xk, vk) + J∗(xτ )

}
= Eµ

o

{
τ−1∑

k=1

g(xk, vk) + J∗(xτ )

}
,

where the second equality follows from Lemma B.1. Combining the preceding two relations with
Eq. (B.2), we obtain

Ĵπ̂(x̄) ≤ g(x̄, ū) + Eµ
o

{
τ−1∑

k=1

g(xk, vk) + J∗(xτ )

}
+ ε = Qθ,J∗(x̄, ū) + ε. (B.9)

Although the controller π̂ uses the additional auxiliary variables {vk} for control, it does not
have advantages over the set of policies in Π′, in the sense that we can construct a semi-Markov
randomized policy such that it applies control ū at the first stage if x̄ is the initial state, and it has
the same expected total cost Ĵπ̂(x̄) for the state x̄. (Such a construction is similar to that used to
prove Props. 8.1, 9.1 in [7].) This means that Ĵπ̂(x̄) ≥ Q∗(x̄, ū) (cf. Eq. (3.2)), so by Eq. (B.9),

Q∗(x̄, ū) ≤ Qθ,J∗(x̄, ū) + ε.

Since ε is arbitrary, we have Qθ,J∗(x̄, ū) ≥ Q∗(x̄, ū). This proves the proposition, as discussed
immediately after the proposition.

We now establish Lemma B.1.

Proof of Lemma B.1. We need to prove

Eµ
o

{
τ−1∑

k=1

g(xk, vk) + J∗(xτ )

}
= Eµ

{
τ−1∑

k=1

g(xk, vk) + J∗(xτ )

}
.

First, we introduce some functions to rewrite the two expectations above. In view of (B.3) (i.e.,
τ = m⇔ v1 6∈ Dx1

, · · · , vm−1 6∈ Dxm−1
, vm ∈ Dxm), we have that for each m ≥ 1,

1{τ=m}(x1, v1, . . .) ·
(
τ−1∑

k=1

g(xk, vk) + J∗(xτ )

)
= φm(x1, v1, . . . , xm, vm)

where φm : (S × C)m → [0,∞] is given by

φm(x1, v1, . . . , xm, vm) =

(
m−1∏

i=1

1C\Dxi (vi)

)
· 1Dxm (vm) ·

(
m−1∑

k=1

g(xk, vk) + J∗(xm)

)
,
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and for m =∞,

1{τ=∞}(x1, v1, . . .) ·
∞∑

k=1

g(xk, vk) = φ∞(x1, v1, x2, v2, . . .)

where φ∞ : (S × C)∞ → [0,∞] is given by

φ∞(x1, v1, x2, v2, . . .) =

( ∞∏

i=1

1C\Dxi (vi)

)
·
∞∑

k=1

g(xk, vk).

Since g ≥ 0, J∗ ≥ 0, we may write

Eµ
o

{
τ−1∑

k=1

g(xk, vk) + J∗(xτ )

}
=

∞∑

m=1

Eµ
o

{
1{τ=m}(x1, v1, . . .) ·

(
m−1∑

k=1

g(xk, vk) + J∗(xm)

)}

+ Eµ
o

{
1{τ=∞}(x1, v1, . . .) ·

∞∑

k=1

g(xk, vk)

}

=
∑

m∈{1,2,...}∪{∞}
Eµ

o{
φm(x1, v1, . . . , xm, vm)

}
, (B.10)

and similarly,

Eµ

{
τ−1∑

k=1

g(xk, vk) + J∗(xτ )

}
=

∑

m∈{1,2,...}∪{∞}
Eµ
{
φm(x1, v1, . . . , xm, vm)

}
. (B.11)

To prove that (B.10) and (B.11) are equal, we will proceed in four steps.

(i) First, we show that for each m ≥ 1,

Eµ
o{
φm(x1, v1, . . . , xm, vm)

}
= Eµ

{
φm(x1, v1, . . . , xm, vm)

}
. (B.12)

Note that φm(x1, v1, . . . , xm, vm) = 0 on {τ 6= m}, and τ 6= m if xi 6∈ B for some i < m (since
in the optimal stopping problem, the only control that µo can take for states in (S \ B) × C is to
stop, xi 6∈ B implies τ ≤ i). Using these facts together with the definition of Eµ, we have that
Eµ
{
φm(x1, v1, . . . , xm, vm)

}
is equal to

∫

B

∫

C

. . .

∫

B

∫

C

[∫

S

∫

C

φm(x1, v1, . . . , xm, vm)µ(dvm | xm) q(dxm | xm−1, vm−1)

]
·

µ(dvm−1 | xm−1) q(dxm−1 | xm−2, vm−2) · · ·µ(dv1 | x1) q(dx1 | x̄, ū). (B.13)

Using the same facts just mentioned, and using also the definition of the optimal stopping problem
(Appendix A.1), we have that Eµ

o{
φm(x1, v1, . . . , xm, vm)

}
is equal to

∫

B

∫

C

. . .

∫

B

∫

C

[∫

S

∫

C

φm(x1, v1, . . . , xm, vm) µ̃(dvm | xm) q(dxm | xm−1, vm−1)

]
·

µ̃(dvm−1 | xm−1) q(dxm−1 | xm−2, vm−2) · · · µ̃(dv1 | x1) q(dx1 | x̄, ū).

Since µ̃(· | x) = µ(· | x) for x ∈ B by the definition of the optimal stopping problem, the above
integral in turn equals

∫

B

∫

C

. . .

∫

B

∫

C

[∫

S

∫

C

φm(x1, v1, . . . , xm, vm) µ̃(dvm | xm) q(dxm | xm−1, vm−1)

]
·

µ(dvm−1 | xm−1) q(dxm−1 | xm−2, vm−2) · · ·µ(dv1 | x1) q(dx1 | x̄, ū). (B.14)
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Consider now the inner-most integral in (B.14). If xm ∈ S \B, then in view of the control constraint
Uo of the optimal stopping problem (cf. Appendix A.1), we have Dxm = C. Hence 1Dxm (vm) = 1
for all vm ∈ C, so

φm(x1, v1, . . . , xm, vm) =

(
m−1∏

i=1

1C\Dxi (vi)

)
·
(
m−1∑

k=1

g(xk, vk) + J∗(xm)

)

does not depend on vm. Consequently,

∫

C

φm(x1, v1, . . . , xm, vm) µ̃(dvm | xm) =

∫

C

φm(x1, v1, . . . , xm, vm)µ(dvm | xm), xm ∈ S \B.

If xm ∈ B, then since µ̃(· | x) = µ(· | x) for x ∈ B, we have

∫

C

φm(x1, v1, . . . , xm, vm) µ̃(dvm | xm) =

∫

C

φm(x1, v1, . . . , xm, vm)µ(dvm | xm), xm ∈ B.

The preceding two equalities together imply that the value of the integral (B.14) remains unchanged
if we replace µ̃(dvm | xm) in the inner-most integral in (B.14) by µ(dvm | xm). Hence the integral
(B.14) is equal to the integral (B.13), and this proves the desired equality (B.12) for m ≥ 1.

(ii) By arguments similar to the ones in the preceding proof, we have that for all m ≥ 1 and n ≥ m,

Eµ
o

{(
n∏

i=1

1C\Dxi (vi)

)
·
m∑

k=1

g(xk, vk)

}
= Eµ

{(
n∏

i=1

1C\Dxi (vi)

)
·
m∑

k=1

g(xk, vk)

}
. (B.15)

In particular, observing that
∏n
i=1 1C\Dxi (vi) = 0 if xi 6∈ B for some i ≤ n, an analysis similar to

the first half of the proof in (i) then shows that both sides of (B.15) are equal to

∫

B

∫

C

. . .

∫

B

∫

C

(
n∏

i=1

1C\Dxi (vi)

)
·
(

m∑

k=1

g(xk, vk)

)
µ(dvn | xn) q(dxn | xn−1, vn−1)·

· · ·µ(dv1 | x1) q(dx1 | x̄, ū).

We will need (B.15) shortly in the proof.

(iii) Let us now consider the two terms corresponding to m = ∞ in Eqs. (B.10) and (B.11). We
examine when they are equal, i.e., when

Eµ
o{
φ∞(x1, v1, x2, v2, . . .)

}
= Eµ

{
φ∞(x1, v1, x2, v2, . . .)

}
. (B.16)

From the definition of φ∞, we have, by the monotone convergence theorem, that as m→∞,

Eµ
o

{( ∞∏

i=1

1C\Dxi (vi)

)
·
m∑

k=1

g(xk, vk)

}
x Eµ

o{
φ∞(x1, v1, x2, v2, . . .)

}
,

Eµ

{( ∞∏

i=1

1C\Dxi (vi)

)
·
m∑

k=1

g(xk, vk)

}
x Eµ

{
φ∞(x1, v1, x2, v2, . . .)

}
.

Thus Eq. (B.16) holds if for each m ≥ 1,

Eµ
o

{( ∞∏

i=1

1C\Dxi (vi)

)
·
m∑

k=1

g(xk, vk)

}
= Eµ

{( ∞∏

i=1

1C\Dxi (vi)

)
·
m∑

k=1

g(xk, vk)

}
. (B.17)
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Now, for each m, we have the following pointwise convergence of functions as n→∞:
(

n∏

i=1

1C\Dxi (vi)

)
·
m∑

k=1

g(xk, vk)
y
( ∞∏

i=1

1C\Dxi (vi)

)
·
m∑

k=1

g(xk, vk).

We also have the equality (B.15) for all n ≥ m. Hence, if for each m there exists some n ≥ m
for which the quantity in (B.15) is less than ∞, then by the dominated convergence theorem [19,
p. 132], (B.17) holds for each m, and hence the desired equality (B.16) holds, which together with
(B.12) implies that (B.10) and (B.11) are equal.

(iv) The only case left now is that for some m and all n ≥ m, the quantity in (B.15) is ∞. But in
view of Eq. (B.4) (i.e., τ > m⇔ v1 6∈ Dx1

, · · · , vm−1 6∈ Dxm−1
, vm 6∈ Dxm), this would imply

Eµ
o

{
1{τ>m}(x1, x2, . . .)

τ−1∑

k=1

g(xk, vk)

}
=∞, Eµ

{
1{τ>m}(x1, x2, . . .)

τ−1∑

k=1

g(xk, vk)

}
=∞,

and hence both (B.10) and (B.11) equal ∞. This completes the proof.

C An Illustrative Example for Value Iteration in Case (P)

In this appendix we use an example to illustrate Theorem 5.1(b) for the convergence of value iteration
in case (P). This example is from Strauch [47, Example 6.2, p. 881] and also described in Maitra
and Sudderth [33, p. 930]. Our description below closely follows [33].

Let R(0,1) denote the set of rationals in (0, 1) with its usual ordering, and index its elements

by r1, r2, . . . Let
{
Wr | r ∈ R(0,1)

}
be a collection of Borel subsets of [0, 1] (called a Borel sieve).

Correspondingly, define for each z ∈ [0, 1],

Mz =
{
r ∈ R(0,1) | z ∈Wr

}
, D =

{
z ∈ [0, 1]

∣∣Mz is not well-ordered
}
.

Fix the sets {Wr} such that the set D is not Borel measurable. Define the control problem as follows.

Let S =
{

(z, r) | 0 ≤ z ≤ 1, 0 ≤ r ≤ 1, r rational
}
∪ {t}. Let C = {1, 2, . . .} and U(x) = C for

every state x ∈ S. State transitions are deterministic. The successor state f(x, u) when applying
control u at state x is given by

f(t, u) = t, f
(
(z, r), u

)
=

{
(z, ru) if ru < r and z ∈Wru ,

t otherwise.

The cost ĝ(x, u, x′) of transition from state x to state x′ is given by

ĝ(t, u, t) = 0, ĝ
(
(z, r), u, x′

)
=

{
0 if x′ 6= t,

1 otherwise.

Equivalently, the one-stage costs are:

g(t, u) = 0, g
(
(z, r), u

)
=

{
0 if ru < r and z ∈Wru ,

1 otherwise.

The optimal cost function J∗ takes only values 0 or 1, and it is not Borel measurable [47]. In
particular, J∗(t) = 0 and for states (z, 1) where z ∈ [0, 1], as shown by [47],

J∗(z, 1) =

{
0 if z ∈ D,
1 if z ∈ [0, 1] \D. (C.1)
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Value iteration starting from the constant function zero requires uncountably many iterations to
converge to J∗, as shown by Maitra and Sudderth [33, p. 930].

We have the convergence of value iteration T k(J) → J∗, if we let J be J(t) = 0 and for states
x = (z, r),

J(z, r) =

{
0 if (z, r) ∈ G,
v otherwise,

for some constant v ≥ 1,

where
G =

{
x ∈ S | J∗(x) = 0

}
.

This function J satisfies the condition of Theorem 5.1(b) for the convergence of value iteration, since
J∗ ≤ J ≤ vJ∗.

Indeed T (J) = J∗, as can be verified directly. Consider each (z, r) ∈ S where z ∈ [0, 1]. If
(z, r) ∈ G, then by the definition of the control problem given above and by the relation J∗ = T (J∗),
there must exists some u ∈ C such that with x′ = f

(
(z, r), u

)
,

J∗(z, r) = ĝ
(
(z, r), u, x′

)
+ J∗(x′) = 0,

which implies that ĝ
(
(z, r), u, x′

)
= 0 and x′ ∈ G. Consequently, we have T (J)(z, r) = 0 = J∗(z, r).

Suppose (z, r) 6∈ G, i.e., J∗(z, r) = 1. Then, by the relation J∗ = T (J∗) and the binary nature
of the costs, we must have that for each u ∈ C, either (i) or (ii) can happen:

(i) f
(
(z, r), u

)
= t and ĝ

(
(z, r), u, t

)
= 1, in which case

ĝ
(
(z, r), u, t

)
+ J(t) = 1.

(ii) x′ = f
(
(z, r), u

)
6= t, ĝ

(
(z, r), u, x′

)
= 0, and J∗(x′) = 1 (i.e., x′ 6∈ G), in which case

ĝ
(
(z, r), u, x′

)
+ J(x′) = v ≥ 1.

Therefore, if there exists u satisfying (i), then T (J)(z, r) = 1 = J∗(z, r).

Now, if r = 0, then only case (i) can happen, since ru > 0 for all u. If r ∈ (0, 1), then there
exists u with ru = r, and this u satisfies (i).

Suppose r = 1. Then the assumption J∗(z, r) = 1 implies that z 6∈ D (cf. Eq. (C.1)). By the
definition of D, this means that Mz is well-ordered and therefore has a smallest element r̄. Then,
there exists a rational number ru < r̄, and by the definition of Mz, z 6∈ Wru . The corresponding
index u satisfies (i). Thus, we have shown T (J) = J∗.


