Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems Massachusetts Institute of Technology

February 2014

where $f_i : \Re^n \mapsto \Re$ are convex, and the sets X_ℓ are closed and convex.

Incremental algorithm: Typical iteration

- Choose indexes $i_k \in \{1, \ldots, m\}$ and $\ell_k \in \{1, \ldots, q\}$.
- Perform a subgradient iteration or a proximal iteration

$$x_{k+1} = P_{X_{\ell_k}} \left(x_k - \alpha_k \tilde{\nabla} f_{i_k}(x_k) \right) \quad \text{or} \quad x_{k+1} = \arg \min_{x \in X_{\ell_k}} \left\{ f_{i_k}(x) + \frac{1}{2\alpha_k} \|x - x_k\|^2 \right\}$$

where α_k is a positive stepsize and $\tilde{\nabla}$ denotes (any) subgradient.

Motivation

- Avoid processing all the cost components at each iteration
- Use a simpler constraint to simplify the projection or the proximal minimization

- Joint and individual works with A. Nedic and M. Wang.
- Focus on convergence, rate of convergence, component formation, and component selection.
- Work on incremental gradient methods and extended Kalman filter for least squares, 1994-1997 (DPB).
- Work on incremental subgradient methods with A. Nedic, 2000-2010.
- Work on incremental proximal methods, 2010-2012 (DPB).
- Work on incremental constraint projection methods with M. Wang 2012-2014 (following work by A. Nedic in 2011).
- See our websites.

Two Methods for Incremental Treatment of Constraints

Convergence Analysis

- Problem: $\min_{x \in X} \sum_{i=1}^{m} f_i(x)$, where f_i and X are convex
- Long history: LMS (Widrow-Hoff, 1960, for linear least squares w/out projection), former Soviet Union literature 1960s, stochastic approximation literature 1960s, neural network literature 1970s

Basic incremental subgradient method

$$\mathbf{x}_{k+1} = \mathbf{P}_{\mathbf{X}} ig(\mathbf{x}_k - lpha_k \tilde{
abla} \mathbf{f}_{\mathbf{i}_k}(\mathbf{x}_k) ig)$$

Stepsize selection possibilities:

$$\sum_{k=0}^{\infty} \alpha_k = \infty$$
 and $\sum_{k=0}^{\infty} \alpha_k^2 < \infty$

- α_k : Constant
- Dynamically chosen (based on estimate of optimal cost)
- Index *i_k* selection possibilities:
 - Cyclically
 - Fully randomized/equal probability 1/m
 - Reshuffling/randomization within a cycle (frequent practical choice)

Convergence Mechanism

- Conceptually, the idea generalizes to higher dimensions, but is hard to treat/quantify analytically
- Adapting the stepsize α_k to the farout and confusion regions is an important issue
- Shaping the confusion region is an important issue

Method with momentum/extrapolation/heavy ball: $\beta_k \in [0, 1)$

$$\mathbf{x}_{k+1} = \mathbf{P}_{\mathbf{X}}(\mathbf{x}_k - \alpha_k \tilde{\nabla} f_{\mathbf{i}_k}(\mathbf{x}_k) + \beta_k (\mathbf{x}_k - \mathbf{x}_{k-1}))$$

Accelerates in the farout region, decelerates in the confusion region.

Aggregated incremental gradient method

$$x_{k+1} = P_X\left(x_k - \alpha_k \sum_{j=0}^{m-1} \tilde{\nabla}f_{i_{k-j}}(x_{k-j})\right)$$

- Proposed for differentiable *f_i*, no constraints, cyclic index selection, and constant stepsize, by Blatt, Hero, and Gauchman (2008).
- Recent work by Schmidt, Le Roux, and Bach (2013), randomized index selection, and constant stepsize.
- A fundamentally different convergence mechanism (relies on differentiability and aims at cost function descent). Works even with a constant stepsize (no region of confusion).

Select index i_k and set

$$x_{k+1} = \arg\min_{x \in X} \left\{ f_{i_k}(x) + \frac{1}{2\alpha_k} \|x - x_k\|^2 \right\}$$

Many similarities with incremental subgradient

- Similar stepsize choices
- Similar index selection schemes
- Can be written as

$$\mathbf{x}_{k+1} = \mathbf{P}_{\mathbf{X}} \big(\mathbf{x}_{k} - \alpha_{k} \tilde{\nabla} f_{i_{k}}(\mathbf{x}_{k+1}) \big)$$

where $\tilde{\nabla} f_{i_k}(x_{k+1})$ is a special subgradient at x_{k+1} (index advanced by 1)

Compared to incremental subgradient

- Likely more stable
- May be harder to implement

Select index i_k and set

$$x_{k+1} = \arg\min_{x \in X} \left\{ f_{i_k}(x) + \sum_{j=1}^{m-1} \tilde{\nabla} f_{i_{k-j}}(x_{k-j+1})'(x-x_k) + \frac{1}{2\alpha_k} \|x-x_k\|^2 \right\}$$

where $\tilde{\nabla} f_{i_{k-j}}(x_{k-j+1})$ is special subgradient at x_{k-m+1} (index advanced by 1)

Can be written as

$$x_{k+1} = P_X\left(x_k - \alpha_k \sum_{j=0}^{m-1} \tilde{\nabla}f_{i_{k-j}}(x_{k-j+1})\right)$$

- More stable (?) than incremental subgradient or proximal
- May be harder to implement
- Convergence can be shown if $\sum_{k=0}^{\infty} \alpha_k = \infty$ and $\sum_{k=0}^{\infty} \alpha_k^2 < \infty$

Typical iteration

Choose $i_k \in \{1, ..., m\}$ and do a subgradient or a proximal iteration

$$x_{k+1} = P_X(x_k - \alpha_k \tilde{\nabla} f_{i_k}(x_k))$$
 or $x_{k+1} = \arg\min_{x \in X} \left\{ f_{i_k}(x) + \frac{1}{2\alpha_k} \|x - x_k\|^2 \right\}$

where α_k is a positive stepsize and $\tilde{\nabla}$ denotes (any) subgradient.

- Idea: Use proximal when easy to implement; use subgradient otherwise
- A very flexible implementation
- The proximal iterations still require diminishing α_k for convergence

Under Lipschitz continuity-type assumptions:

- Convergence to the optimum for diminishing stepsize.
- Convergence to a neighborhood of the optimum for constant stepsize.
- Faster convergence for randomized index selection (relative to a worst-case cyclic choice).

Notes:

• Fundamentally different from the proximal gradient method, which applies when m = 2,

$$\min_{x\in X} \{f_1(x) + f_2(x)\},\$$

and f_1 is differentiable. This is a cost descent method and can use a constant stepsize.

Aggregated version possible

Incremental Treatment of Many Constraints by Exact Penalties

Problem

 $\text{minimize} \ \sum_{i=1}^m f_i(x) \qquad \text{subject to} \qquad x \in \cap_{\ell=1}^q X_\ell, \\$

where $f_i : \Re^n \mapsto \Re$ are convex, and the sets X_ℓ are closed and convex.

Equivalent Problem (Assuming *f_i* are Lipschitz Continuous)

$$\text{minimize} \quad \sum_{i=1}^m f_i(x) + \gamma \sum_{\ell=1}^q {\rm dist}(x,X_\ell) \qquad \text{subject to} \qquad x \in \Re^n,$$

where γ is sufficiently large (the two problems have the same set of minima).

Proximal iteration on the dist(x, X_{ℓ}) function is easy

Project on X_{ℓ} and interpolate:

 $x_{k+1} = (1 - \beta_k)x_k + \beta_k P_{X_{i_k}}(x_k), \qquad \beta_k = \min\left\{1, (\alpha_k \gamma)/\operatorname{dist}(x_k; X_{i_k})\right\}$

(since γ is large, usually $\beta_k = 1$).

Constraint Projection Methods (Thesis by M. Wang and Joint Papers)

minimize
$$\sum_{i=1}^m f_i(x)$$
 subject to $x \in \cap_{\ell=1}^q X_\ell,$

where $f_i : \Re^n \mapsto \Re$ are convex, and the sets X_ℓ are closed and convex.

Incremental constraint projection algorithm

- Choose indexes $i_k \in \{1, \ldots, m\}$ and $\ell_k \in \{1, \ldots, q\}$.
- Perform a subgradient iteration or a proximal iteration

$$x_{k+1} = P_{X_{\ell_k}}(x_k - \alpha_k \tilde{\nabla} f_{l_k}(x_k)) \text{ or } x_{k+1} = \arg\min_{x \in X_{\ell_k}} \left\{ f_{l_k}(x) + \frac{1}{2\alpha_k} \|x - x_k\|^2 \right\}$$

where α_k is a positive stepsize and $\tilde{\nabla}$ denotes (any) subgradient.

First proposal and analysis of the case where m = 1 and some of the constraints are explicit

$$X_\ell = ig\{ x \mid g_\ell(x) \leq 0 ig\}$$

was by A. Nedic (2011). Connection to feasibility/alternating projection methods.

Second method does not require a penalty parameter γ , but needs a linear regularity assumption: For some $\eta > 0$,

$$\left\|x-\mathcal{P}_{\cap_{\ell=1}^{q}X_{\ell}}(x)\right\|\leq\eta\max_{\ell=1,\ldots,q}\left\|x-\mathcal{P}_{X_{\ell}}(x)
ight\|,\qquadorall\ x\in\Re^{d}$$

Linear Regularity Satisfied

Linear Regularity Violated

Both methods require diminishing stepsize α_k . Unclear how to construct an aggregated version, or any version that is convergent with a constant stepsize.

The second method involves an interesting two-time scale convergence analysis (the subject of the remainder of this talk).

Incremental Random Projection Method

Typical iteration

- Choose randomly indexes $i_k \in \{1, \ldots, m\}$ and $\ell_k \in \{1, \ldots, q\}$.
- Set

$$\mathbf{x}_{k+1} = \mathbf{P}_{\mathbf{X}_{\ell_k}} \left(\mathbf{x}_k - \alpha_k \tilde{\nabla} f_{i_k}(\bar{\mathbf{x}}_k) \right)$$

•
$$\bar{x}_k = x_k$$
 or $\bar{x} = x_{k+1}$.

• $\sum_{k=0}^{\infty} \alpha_k = \infty$ and $\sum_{k=0}^{\infty} \alpha_k^2 < \infty$ (diminishing stepsize is essential).

Two-way progress

- Progress to feasibility: The projection $P_{X_{\ell_k}}(\cdot)$.
- Progress to optimality: The "subgradient" iteration $x_k \alpha_k \tilde{\nabla} f_{i_k}(\bar{x}_k)$.

Visualization of Convergence

Progress to feasibility should be faster than progress to optimality. Gradient stepsizes α_k should be << than the feasibility stepsize of 1.

Nearly independent sampling

$$\inf_{k>0} \operatorname{Prob}(\ell_k = X_\ell \mid \mathcal{F}_k) > 0, \qquad \ell = 1, \ldots, q,$$

where \mathcal{F}_k is the history of the algorithm up to time *k*.

Cyclic sampling

Deterministic or random reshuffling every q iterations.

Most distant constraint sampling

$$\ell_k = \arg \max_{\ell=1,\ldots,q} \left\| x_k - P_{X_\ell}(x_k) \right\|$$

Markov sampling

Generate ℓ_k as the state of an ergodic Markov chain with states $1, \ldots, q$.

Random independent uniform sampling

Each index $i \in \{1, ..., m\}$ is chosen with equal probability 1/m, independently of earlier choices.

Cyclic sampling

Deterministic or random reshuffling every *m* iterations.

Markov sampling

Generate i_k as the state of a Markov chain with states $1, \ldots, m$, and steady state distribution $\{1/m, \ldots, 1/m\}$.

Assuming Lipschitz continuity of the cost, linear regularity of the constraint, and nonemptiness of the optimal solution set, $\{x_k\}$ converges to some optimal solution x^* w.p. 1, under any combination of the preceding sampling schemes.

Idea of the convergence proof

There are two convergence processes taking place:

- Progress towards feasibility, which is fast (geometric thanks to the linear regularity assumption).
- Progress towards optimality, which is slower (because of the diminishing stepsize α_k).
- This two-time scale convergence analysis idea is encoded in a coupled supermartingale convergence theorem, which governs the evolution of two measures of progress

 $\mathbf{E}[dist^2(x_k, X)]$: Distance to the constraint set, which is fast

 $\mathbf{E}[dist^2(x_k, X^*)]$: Distance to the optimal solution set, which is slow

- Incremental methods exhibit interesting and complicated convergence behavior
- Proximal variants enhance reliability
- Constraint projection variants provide flexibility and enlarge the range of potential applications
- Issues not discussed:
 - Distributed asynchronous implementation
 - Incremental Gauss-Newton methods (Extended Kalman Filter)

Thank you!