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Abstract. We consider the gradient method xt+1 = xt + γt(st + wt), where st is a descent
direction of a function f : �n → � and wt is a deterministic or stochastic error. We assume that
∇f is Lipschitz continuous, that the stepsize γt diminishes to 0, and that st and wt satisfy standard
conditions. We show that either f(xt) → −∞ or f(xt) converges to a finite value and ∇f(xt) → 0
(with probability 1 in the stochastic case), and in doing so, we remove various boundedness conditions
that are assumed in existing results, such as boundedness from below of f , boundedness of ∇f(xt),
or boundedness of xt.
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1. Introduction. We consider the problem

(1.1)
minimize f(x)

subject to x ∈ �n,

where �n denotes the n-dimensional Euclidean space and f : �n �→ � is a continuously
differentiable function, such that for some constant L we have

(1.2) �∇f(x)−∇f(x)� ≤ L�x− x� ∀ x, x ∈ �n.

The purpose of this paper is to sharpen the existing convergence theory for the
classical descent method

(1.3) xt+1 = xt + γt(st + wt),

where
(a) γt is a positive stepsize sequence satisfying

(1.4)
∞�

t=0

γt = ∞,

∞�

t=0

γ
2
t <∞;

(b) st is a descent direction satisfying for some positive scalars c1 and c2, and
all t,

(1.5) c1�∇f(xt)�2 ≤ −∇f(xt)�st, �st� ≤ c2�∇f(xt)�;

(c) wt either is a deterministic error satisfying for some positive scalars p and q,
and all t,

(1.6) �wt� ≤ γt
�
q + p�∇f(xt)�

�
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or is a stochastic error satisfying conditions that are standard in stochastic gradient
and stochastic approximation methods.

Our main result is that either f(xt) → −∞ or f(xt) converges to a finite value
and limt→∞∇f(xt) = 0 (with probability 1 on the stochastic case).

The method where the errors wt are deterministic includes as a special case the
standard incremental gradient/backpropagation method for neural network training,
the convergence of which has been the object of much recent analysis [Luo91], [Gai94],
[Gri94], [LuT94], [MaS94], [Man93], [Ber95a] (see [BeT96] for our discussion of incre-
mental gradient methods and their application to neural network training). The
method where the errors wt are stochastic includes as a special case the classical
Robbins–Monro/stochastic gradient method, as well as methods involving scaling
of the gradient and satisfying the pseudogradient condition of Poljak and Tsypkin
[PoT73]; see section 4 for a precise statement of our assumptions. Basically, the entire
spectrum of unconstrained gradient methods is considered, with the only restriction
being the diminishing stepsize condition (1.4) (which is essential for convergence in
gradient methods with errors) and the attendant Lipschitz condition (1.2) (which is
necessary for showing any kind of convergence result under the stepsize condition
(1.4)).

To place our analysis in perspective, we review the related results of the literature
for gradient-like methods with errors and in the absence of convexity. Our results
relate to two types of analysis:

(1) Results that are based on some type of deterministic or stochastic descent
argument, such as the use of a Lyapunov function or a supermartingale convergence
theorem. All of the results of this type known to us assume that f is bounded below
and in some cases require a boundedness assumption on the sequence {xt} or show
only that lim inft→∞ �∇f(xt)� = 0. By contrast, we show that limt→∞ �∇f(xt)� = 0
and we also deal with the case where f is unbounded below and {xt} is unbounded.
In fact, a principal aim of our work has been to avoid any type of boundedness as-
sumption. For example, the classical analysis of Poljak and Tsypkin [PoT73], under
essentially the same conditions as ours, shows that if f is bounded below, then f(xt)
converges and lim inft→∞ �∇f(xt)� = 0 (see Poljak [Pol87, p. 51]). The analysis of
Gaivoronski [Gai94], for stochastic gradient and incremental gradient methods, under
similar conditions to ours shows that limt→∞ �∇f(xt)� = 0, but it also assumes that
f(x) is bounded below and that �∇f(x)� is bounded over �n. The analysis of Luo and
Tseng [LuT94] for the incremental gradient method shows that limt→∞ �∇f(xt)� = 0,
but it also assumes that f(x) is bounded below, and it makes some additional assump-
tions on the stepsize γt. The analyses by Grippo [Gri94] and by Mangasarian and
Solodov [MaS94] for the incremental gradient method (with and without a momen-
tum term) make assumptions that are different from ours and include boundedness of
the generated sequence xt. The analysis of Walk [Wal92, p. 2] (see also Pflug [Pfl96,
p. 282]) shows that limt→∞ �∇f(xt)� = 0, assuming that st = −∇f(xt), that wt

is deterministic and satisfies somewhat different conditions than ours, and that f is
bounded below. Our method of proof for the case of deterministic errors is similar
to the method of Walk. (The assumption that f is bounded below is not critical
for Walk’s analysis.) However, in the case of stochastic errors, standard stochastic
descent proofs rely critically on the boundedness of f from below, and we have used
a new line of proof for our result (see the discussion in section 4).

(2) Results based on the so-called ODE analysis [Lju77], [KuC78], [BMP90],
[KuY97] that relate the evolution of the algorithm to the trajectories of a differ-
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ential equation dx/dt = h(x). For example, if we are dealing with the stochastic
steepest descent method xt+1 = xt − γt(∇f(xt) − wt), the corresponding ODE is
dx/dt = −∇f(x). This framework typically involves an explicit or implicit assump-
tion that the average direction of update h(x) is a well-defined function of the current
iterate x. It cannot be applied, for example, to a gradient method with diagonal
scaling, where the scaling may depend in a complicated way on the past history of
the algorithm, unless one works with differential inclusions—rather than differential
equations—for which not many results are available. For another example, an asyn-
chronous gradient iteration that updates a single component at a time (selected by
some arbitrary or hard-to-model mechanism) does not lead to a well-defined aver-
age direction of update h(x), unless one makes some very special assumptions, e.g.,
the stepsize assumptions of Borkar [Bor95]. In addition to the above described dif-
ficulty, the ODE approach relies on the assumption that the sequence of iterates xt
is bounded or recurrent, something that must be independently verified. Let us also
mention the following more recent results by Delyon [Del96], which have some similar-
ities with ours: they are proved using a potential function argument and can establish
the convergence of ∇f(xt) to zero. Similar to the ODE approach, these results as-
sume a well-defined average update direction h(x) and are based on boundedness or
recurrence assumptions.

The paper is organized as follows. In the next section, we focus on the method
where there is a nonrandom error wt satisfying the condition (1.6). The convergence
result obtained is then applied in section 3 to the case of incremental gradient meth-
ods for minimizing the sum of a large number of functions. In section 4, we focus
on stochastic gradient methods. Finally, in section 5, a stochastic version of the
incremental gradient method is discussed.

2. Deterministic gradient methods with errors. Throughout the paper,
we focus on the unconstrained minimization of a continuously differentiable function
f : �n �→ �, satisfying for some constant L

(2.1) �∇f(x)−∇f(x)� ≤ L�x− x� ∀ x, x ∈ �n.

As mentioned in the preceding section, the line of proof of the following proposition is
known, although some of our assumptions differ slightly from those in the literature.
We will need the following known lemma, which we prove for completeness.

Lemma 1. Let Yt, Wt, and Zt be three sequences such that Wt is nonnegative for
all t. Assume that

Yt+1 ≤ Yt −Wt + Zt, t = 0, 1, . . . ,

and that the series
�T

t=0 Zt converges as T → ∞. Then either Yt → −∞ or else Yt

converges to a finite value and
�∞

t=0Wt <∞.
Proof. Let t be any nonnegative integer. By adding the relation Yt+1 ≤ Yt + Zt

over all t ≥ t and by taking the limit superior as t→∞, we obtain

lim sup
t→∞

Yt ≤ Yt +
∞�

t=t

Zt <∞.

By taking the limit inferior of the right-hand side as t → ∞ and using the fact
limt→∞

�∞
t=t Zt = 0, we obtain

lim sup
t→∞

Yt ≤ lim inf
t→∞

Yt <∞.
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This implies that either Yt → −∞ or else Yt converges to a finite value. In the latter
case, by adding the relation Yi+1 ≤ Yi −Wi + Zi from i = 0 to i = t, we obtain

t�

i=0

Wi ≤ Y0 +
t�

i=0

Zi − Yt+1, t = 0, 1, . . . ,

which implies that
�∞

i=0 Wi ≤ Y0 +
�∞

i=0 Zi − limt→∞ Yt <∞.
We have the following result.
Proposition 1. Let xt be a sequence generated by the method

xt+1 = xt + γt(st + wt),

where st is a descent direction satisfying for some positive scalars c1 and c2, and all t,

(2.2) c1�∇f(xt)�2 ≤ −∇f(xt)�st, �st� ≤ c2
�
1 + �∇f(xt)�

�
,

and wt is an error vector satisfying for some positive scalars p and q, and all t,

(2.3) �wt� ≤ γt
�
q + p�∇f(xt)�

�
.

Assume that the stepsize γt is positive and satisfies

∞�

t=0

γt = ∞,

∞�

t=0

γ
2
t <∞.

Then either f(xt) → −∞ or else f(xt) converges to a finite value and limt→∞∇f(xt) =
0. Furthermore, every limit point of xt is a stationary point of f .

Proof. Fix two vectors x and z, let ξ be a scalar parameter, and let g(ξ) =
f(x+ ξz). The chain rule yields (dg/dξ)(ξ) = z�∇f(x+ ξz). We have

(2.4)

f(x+ z)− f(x) = g(1)− g(0)

=

� 1

0

dg

dξ
(ξ) dξ

=

� 1

0
z�∇f(x+ ξz) dξ

≤
� 1

0
z�∇f(x) dξ +

����
� 1

0
z�
�
∇f(x+ ξz)−∇f(x)

�
dξ

����

≤ z�∇f(x) +

� 1

0
�z� · �∇f(x+ ξz)−∇f(x)�dξ

≤ z�∇f(x) + �z�
� 1

0
Lξ�z� dξ

= z�∇f(x) +
L

2
�z�2.

We apply (2.4) with x = xt and z = γt(st + wt). We obtain

f(xt+1) ≤ f(xt) + γt∇f(xt)�(st + wt) +
γ

2
tL

2
�st + wt�2.
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Using our assumptions, we have

∇f(xt)�(st + wt) ≤ −c1�∇f(xt)�2 + �∇f(xt)� �wt�
≤ −c1�∇f(xt)�2 + γtq�∇f(xt)�+ γtp�∇f(xt)�2.

Furthermore, using the relations �st�2 ≤ 2c22
�
1 + �∇f(xt)�2

�
and �wt�2 ≤ 2γ2

t

�
q2 +

p2�∇f(xt)�2
�
, which follow from (2.2) and (2.3), respectively, we have

�st + wt�2 ≤ 2�st�2 + 2�wt�2

≤ 4c22
�
1 + �∇f(xt)�2

�
+ 4γ2

t

�
q2 + p2�∇f(xt)�2

�
.

Combining the above relations, we obtain

f(xt+1) ≤ f(xt)− γt(c1 − γtp− 2γtc22L− 2γ3
t p

2L)�∇f(xt)�2

+ γ
2
t q�∇f(xt)�+ 2γ2

t c
2
2L+ 2γ4

t q
2L.

Since γt → 0, we have for some positive constant c and all t sufficiently large

f(xt+1) ≤ f(xt)− γtc�∇f(xt)�2 + γ
2
t q�∇f(xt)�+ 2γ2

t c
2
2L+ 2γ4

t q
2L.

Using the inequality �∇f(xt)� ≤ 1 + �∇f(xt)�2, the above relation yields for all t

f(xt+1) ≤ f(xt)− γt(c− γtq)�∇f(xt)�2 + γ
2
t (q + 2c22L) + 2γ4

t q
2L,

which for sufficiently large t can be written as

(2.5) f(xt+1) ≤ f(xt)− γtβ1�∇f(xt)�2 + γ
2
t β2,

where β1 and β2 are some positive scalars.
By using (2.5), Lemma 1, and the assumption

�∞
t=0 γ

2
t < ∞, we see that either

f(xt) → −∞ or else f(xt) converges and

(2.6)
∞�

t=0

γt�∇f(xt)�2 <∞.

If there existed an � > 0 and an integer t such that �∇f(xt)� ≥ � for all t ≥ t, we
would have

∞�

t=t

γt�∇f(xt)�2 ≥ �2

∞�

t=t

γt = ∞,

which contradicts (2.6). Therefore, lim inft→∞ �∇f(xt)� = 0.
To show that limt→∞∇f(xt) = 0, assume the contrary; that is, lim supt→∞

�∇f(xt)� > 0. Then there exists an � > 0 such that �∇f(xt)� < �/2 for infinitely
many t and also �∇f(xt)� > � for infinitely many t. Therefore, there is an infinite
subset of integers T such that for each t ∈ T , there exists an integer i(t) > t such
that

�∇f(xt)� < �/2, �∇f(xi(t))� > �,

�/2 ≤ �∇f(xi)� ≤ � if t < i < i(t).
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Since

�∇f(xt+1)� − �∇f(xt)� ≤ �∇f(xt+1)−∇f(xt)�
≤ L�xt+1 − xt�
= γtL�st�
≤ γtLc2

�
1 + �∇f(xt)�

�
,

it follows that for all t ∈ T that are sufficiently large so that γtLc2 < �/4, we have

�/4 ≤ �∇f(xt)�;

otherwise, the condition �/2 ≤ �∇f(xt+1)� would be violated. Without loss of gener-
ality, we assume that the above relations as well as (2.5) hold for all t ∈ T .

We have for all t ∈ T , using the condition �st� ≤ c2
�
1 + �∇f(xt)�

�
and the

Lipschitz condition (2.1),

(2.7)

�

2
≤ �∇f(xi(t))� − �∇f(xt)�

≤ �∇f(xi(t))−∇f(xt)�
≤ L�xi(t) − xt�

≤ L

i(t)−1�

i=t

γi(�si�+ �wi�)

≤ Lc2

i(t)−1�

i=t

γi
�
1 + �∇f(xi)�

�
+ L

i(t)−1�

i=t

γ
2
i

�
q + p�∇f(xi)�

�

≤ Lc2(1 + �)

i(t)−1�

i=t

γi + L(q + p�)

i(t)−1�

i=t

γ
2
i .

From this it follows that

(2.8)
1

2Lc2(1 + �)
≤ lim inf

t→∞

i(t)−1�

i=t

γi.

Using (2.5), we see that

f
�
xi(t)

�
≤ f(xt)− β1

�
�

4

�2
i(t)−1�

i=t

γi + β2

i(t)−1�

i=t

γ
2
i ∀ t ∈ T .

Using the convergence of f(xt) already shown and the assumption
�∞

t=0 γ
2
t <∞, this

relation implies that

lim
t→∞, t∈T

i(t)−1�

i=t

γi = 0

and contradicts (2.8).
Finally, if x is a limit point of xt, then f(xt) converges to the finite value f(x).

Thus we have ∇f(xt) → 0, implying that ∇f(x) = 0.
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3. Incremental gradient methods. In this section, we apply the results of
the preceding section to the case where f has the form

f(x) =
m�

i=1

fi(x),

where fi : �n �→ � is for every i a continuously differentiable function satisfying the
Lipschitz condition

(3.1) �∇fi(x)−∇fi(x)� ≤ L�x− x� ∀ x, x ∈ �n

for some constant L.
In situations where there are many component functions fi, it may be attractive to

use an incremental method that does not wait to process the entire set of components
before updating x; instead, the method cycles through the components in sequence
and updates the estimate of x after each component is processed. In particular, given
xt, we may obtain xt+1 as

xt+1 = ψm,

where ψm is obtained at the last step of the algorithm

(3.2) ψi = ψi−1 − γt∇fi(ψi−1), i = 1, . . . ,m,

and

(3.3) ψ0 = xt.

This method can be written as

(3.4) xt+1 = xt − γt

m�

i=1

∇fi(ψi−1).

It is referred to as the incremental gradient method , and it is used extensively in
the training of neural networks. It should be compared with the ordinary gradient
method, which is

(3.5) xt+1 = xt − γt∇f(xt) = xt − γt

m�

i=1

∇fi(xt).

Thus, a cycle of the incremental gradient method through the components fi differs
from an ordinary gradient iteration only in that the evaluation of ∇fi is done at
the corresponding current estimates ψi−1 rather than at the estimate xt available
at the start of the cycle. The advantages of incrementalism in enhancing the speed
of convergence (at least in the early stages of the method) are well known; see, for
example, the discussions in [Ber95a], [Ber95b], [BeT96].

The main idea of the following convergence proof is that the incremental gradient
method can be viewed as the regular gradient iteration where the gradient is perturbed
by an error term that is proportional to the stepsize. In particular, if we compare the
incremental method (3.4) with the ordinary gradient method (3.5), we see that the
error term in the gradient direction is bounded by

m�

i=1

��∇fi(ψi−1)−∇fi(xt)
��.
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In view of our Lipschitz assumption (3.1), this term is bounded by

L

m�

i=1

�ψi−1 − xt�,

which from (3.2) is seen to be proportional to γt. (A more precise argument is given
below.)

Proposition 2. Let xt be a sequence generated by the incremental gradient
method (3.2)–(3.4). Assume that for some positive constants C and D, and all i =
1, . . . ,m, we have

(3.6) �∇fi(x)� ≤ C +D�∇f(x)� ∀ x ∈ �n.

Assume also that

∞�

t=0

γt = ∞,

∞�

t=0

γ
2
t <∞.

Then either f(xt) → −∞ or else f(xt) converges to a finite value and limt→∞∇f(xt) =
0. Furthermore, every limit point of xt is a stationary point of f .

Proof. We formulate the incremental gradient method as a gradient method
with errors that are proportional to the stepsize and then apply Proposition 1. For
simplicity we will assume that there are only two functions fi, that is, m = 2. The
proof is similar when m > 2. We have

ψ1 = xt − γt∇f1(xt),

xt+1 = ψ1 − γt∇f2(ψ1).

By adding these two relations, we obtain

xt+1 = xt + γt
�
−∇f(xt) + wt

�
,

where

wt = ∇f2(xt)−∇f2(ψ1).

We have

�wt� ≤ L�xt − ψ1� = γtL�∇f1(xt)� ≤ γt
�
LC + LD�∇f(xt)�

�
.

Thus Proposition 1 applies.
Condition (3.6) is guaranteed to hold if each fk is of the form

fk(x) = x�Qkx+ g
�
kx+ hk,

where each Qk is a positive semidefinite matrix, each gk is a vector, and each hk is a
scalar. (This is the generic situation encountered in linear least squares problems.) If�K

k=1Qk is positive definite, there exists a unique minimum to which the algorithm
must converge. In the absence of positive definiteness, we obtain ∇f(xt) → 0 if the
optimal cost is finite. If, on the other hand, the optimal cost is −∞, it can be shown
that �∇f(x)� ≥ α for some α > 0 and for all x. This implies that f(x) → −∞ and
that �x� → ∞.
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4. Stochastic gradient methods. In this section, we study stochastic gradient
methods. Our main result is similar to Proposition 1 except that we let the noise
term wt be of a stochastic nature. Once more, we will prove that f(xt) converges
and, if the limit is finite, ∇f(xt) converges to 0. We comment on the technical issues
that arise in establishing such a result. The sequence f(xt) can be shown to be
approximately a supermartingale. The variance of the underlying noise is allowed to
grow with �∇f(xt)� and therefore can be unbounded. While such unboundedness has
been successfully handled in past works on related methods, new complications arise
because no lower bound on f(xt) is assumed. For that reason, the supermartingale
convergence theorem cannot be used in a simple manner. Our approach is to show
that whenever �∇f(xt)� is large, it remains so for a sufficiently long time interval,
guaranteeing a decrease in the value of f(xt) which is significant and dominates the
noise effects.

Proposition 3. Let xt be a sequence generated by the method

xt+1 = xt + γt(st + wt),

where γt is a deterministic positive stepsize, st is a descent direction, and wt is a
random noise term. Let Ft be an increasing sequence of σ-fields. We assume the
following:

(a) xt and st are Ft-measurable.

(b) There exist positive scalars c1 and c2 such that

(4.1) c1�∇f(xt)�2 ≤ −∇f(xt)�st, �st� ≤ c2(1 + �∇f(xt)�) ∀ t.

(c) We have, for all t and with probability 1,

(4.2) E[wt | Ft] = 0,

(4.3) E[�wt�2 | Ft] ≤ A(1 + �∇f(xt)�2),

where A is a positive deterministic constant.

(d) We have

∞�

t=0

γt = ∞,

∞�

t=0

γ
2
t <∞.

Then, either f(xt) → −∞ or else f(xt) converges to a finite value and limt→∞
∇f(xt) = 0. Furthermore, every limit point of xt is a stationary point of f .

Remarks. (a) The σ-field Ft should be interpreted as the history of the algorithm
up to time t, just before wt is generated. In particular, conditioning on Ft can be
thought of as conditioning on x0, s0, w0, . . . , xt−1, st−1, wt−1, xt, st.

(b) Strictly speaking, the conclusions of the proposition only hold “with prob-
ability 1.” For simplicity, an explicit statement of this qualification often will be
omitted.

(c) Our assumptions on wt are of the same type as those considered in [PoT73].
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Proof of Proposition 3. We apply (2.4) with x = xt and z = γt(st + wt). We
obtain

(4.4)

f(xt+1) ≤ f(xt) + γt∇f(xt)�(st + wt) +
γ

2
tL

2
�st + wt�2

≤ f(xt)− γtc1�∇f(xt)�2 + γt∇f(xt)�wt + γ
2
tL(�st�2 + �wt�2)

≤ f(xt)− γtc1�∇f(xt)�2 + γt∇f(xt)�wt + γ
2
t 2Lc

2
2

+ γ
2
t 2Lc

2
2�∇f(xt)�2 + γ

2
tL�wt�2

≤ f(xt)− γt
c1

2
�∇f(xt)�2 + γt∇f(xt)�wt + γ

2
t 2Lc

2
2 + γ

2
tL�wt�2,

where the last inequality is valid only when t is large enough so that γt2Lc22 ≤ c1/2.
Without loss of generality, we will assume that this is the case for all t ≥ 0.

Let δ > 0 be an arbitrary positive number that will be kept constant until the
very end of this proof. Let η be a positive constant defined, in terms of δ, by

(4.5) ηc2

�
1

δ
+ 2

�
+ η =

1

2L
.

We will partition the set of all times t (the nonnegative integers) into a set S of times
at which �∇f(xt)� is “small” and intervals Ik = {τk, τk + 1, . . . , τ �k} during which
�∇f(xt)� stays “large.” The definition of the times τk and τ

�
k is recursive and is

initialized by letting τ
�
0 = −1. We then let, for k = 1, 2, . . .,

τk = min
�
t > τ

�
k−1

�� �∇f(xt)� ≥ δ
�
.

(We leave τk undefined if �∇f(xt)� < δ for all t > τ
�
k−1.) We also let

τ
�
k = max

�
t ≥ τk

���
t�

i=τk

γi ≤ η, and

�∇f(xτk)�
2

≤ �∇f(xr)� ≤ 2�∇f(xτk)� ∀ r with τk ≤ r ≤ t

�
.

We say that the interval Ik is full if
�τ �k+1

t=τk
γt > η. Let S be the set of all times that

do not belong to any of the intervals Ik.
We define a sequence Gt, used to scale the noise terms wt, by

Gt =

�
δ if t ∈ S,
�∇f(xτk)� = Hk if t ∈ Ik,

where the last equality should be taken as the definition of Hk. In particular, Gt is
constant during an interval It. Note that Gt ≥ δ for all t.

We now collect a few observations that are direct consequences of our definitions.
(P1) For all t ∈ S, we have �∇f(xt)� < δ = Gt.
(P2) For all t ∈ Ik, we have

Gt

2
=
Hk

2
≤ �∇f(xt)� ≤ 2Hk = 2Gt.

Combining this with (P1), we also see that the ratio �∇f(xt)�/Gt is bounded above
by 2.
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(P3) If τk is defined and Ik is a full interval, then

(4.6)
η

2
≤ η − γτ �k+1 <

τ �k�

t=τk

γt ≤ η,

where the leftmost inequality holds when k is large enough so that γτ �k+1 ≤ η/2.
Without loss of generality, we will assume that this condition actually holds for all k.

(P4) The value of Gt is completely determined by x0, x1, . . . , xt and is therefore
Ft-measurable. Similarly, the indicator function

χt =
�

1 if t ∈ S,
0 otherwise

is also Ft-measurable.
Lemma 2. Let rt be a sequence of random variables with each rt being Ft+1-

measurable, and suppose that E[rt | Ft] = 0 and E[�rt�2 | Ft] ≤ B, where B is some
deterministic constant. Then, the sequences

T�

t=0

γtrt and
T�

t=0

γ
2
t �rt�2, T = 0, 1, . . . ,

converge to finite limits (with probability 1).

Proof. It is seen that
�T

t=0 γtrt is a martingale whose variance is bounded by
B
�∞

t=0 γ
2
t . It must therefore converge by the martingale convergence theorem. Fur-

thermore,

E

� ∞�

t=0

γ
2
t �rt�2

�
≤ B

∞�

t=0

γ
2
t <∞,

which shows that
�∞

t=0 γ
2
t �rt�2 is finite with probability 1. This establishes conver-

gence of the second sequence.
Using Lemma 2, we obtain the following.
Lemma 3. The following sequences converge (with probability 1):

(a)
T�

t=0

χtγt∇f(xt)�wt;

(b)
T�

t=0

γt
wt

Gt
;

(c)
T�

t=0

γt
∇f(xt)�wt

G
2
t

;

(d)
T�

t=0

γ
2
t
�wt�2
G

2
t

;

(e)
T�

t=0

γ
2
t χt�wt�2.

Proof. (a) Let rt = χt∇f(xt)�wt. Since χt and ∇f(xt) are Ft-measurable and
E[wt | Ft] = 0, we obtain E[rt | Ft] = 0. Whenever χt = 1, we have �∇f(xt)� ≤ δ
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and E[�wt�2 | Ft] ≤ A(1 + δ2). It follows easily that E[|rt|2 | Ft] is bounded. The
result follows from Lemma 2.

(b) Let rt = wt/Gt. Since Gt is Ft-measurable and E[wt | Ft] = 0, we obtain
E[rt | Ft] = 0. Furthermore,

E[�rt�2 | Ft] ≤
A(1 + �∇f(xt)�2)

G
2
t

.

Since the ratio �∇f(xt)�/Gt is bounded above [cf. observation (P2)], Lemma 2 applies
and establishes the desired convergence result.

(c) Let rt = ∇f(xt)�wt/G
2
t . Note that

∇f(xt)�wt

G
2
t

≤ �∇f(xt)� · �wt�
G

2
t

≤ 2
�wt�
Gt

.

The ratio in the left-hand side has bounded conditional second moment, by the same
argument as in the proof of part (b). The desired result follows from Lemma 2.

(d) This follows again from Lemma 2. The needed assumptions have already been
verified while proving part (b).

(e) This follows from Lemma 2 because χtwt has bounded conditional second
moment, by an argument similar to the one used in the proof of part (a).

We now assume that we have removed the zero probability set of sample paths
for which the series in Lemma 3 does not converge. For the remainder of the proof,
we will concentrate on a single sample path outside this zero probability set. Let � be
a positive constant that satisfies

(4.7) � ≤ η, 2� + 2L� ≤ c1η

48
, 4Lc22� ≤

c1δ
2η

48
.

Let us choose some t0 after which all of the series in Lemma 3, as well as the series�T
t=0 γ

2
t , stay within � from their limits.

Lemma 4. Let t0 be as above. If τk is defined and is larger than t0, then the
interval Ik is full.

Proof. Recall that for t ∈ Ik = {τk, . . . , τ �k} we have Gt = Hk = �∇f(xτk)� ≥ δ

and �st� ≤ c2(1 + �∇f(xt)�) ≤ c2(1 + 2Hk). Therefore,

�xτ �k+1 − xτk� ≤
τ �k�

t=τk

γt�st�+

������

τ �k�

t=τk

γtwt

������

=

τ �k�

t=τk

γt�st�+Hk

������

τ �k�

t=τk

γt
wt

Gt

������

≤ ηc2(1 + 2Hk) +Hk�

≤ ηc2Hk

�
1

δ
+ 2

�
+ ηHk

=
Hk

2L
,

where the last equality follows from our choice of η (cf. (4.5)). Thus,

�∇f(xτ �k+1)−∇f(xτk)� ≤ L�xτ �k+1 − xτk� ≤
Hk

2
=
�∇f(xτk)�

2
,



GRADIENT CONVERGENCE IN GRADIENT METHODS WITH ERRORS 639

which implies that

1

2
�∇f(xτk)� ≤ �∇f(xτ �k+1)� ≤ 2�∇f(xτk)�.

If we also had
�τ �k+1

t=τk
γt ≤ η, then τ

�
k + 1 should be an element of Ik, which it isn’t.

This shows that
�τ �k+1

t=τk
γt > η and that Ik is a full interval.

Our next lemma shows that after a certain time, f(xt) is guaranteed to decrease
by at least a constant amount during full intervals.

Lemma 5. Let t0 be the same as earlier. If τk is defined and larger than t0, then

f(xτ �k+1) ≤ f(xτk)− h,

where h is a positive constant that depends only on δ.
Proof. Note that Ik is a full interval by Lemma 4. Using (4.4), we have

f(xt+1)− f(xt) ≤ −γt
c1

2
�∇f(xt)�2 + γt∇f(xt)�wt + γ

2
t 2Lc

2
2 + γ

2
tL�wt�2.

We will sum (from τk to τ
�
k) the terms in the right-hand side of the above inequality

and provide suitable upper bounds. Recall that for t ∈ Ik, we have �∇f(xt)� ≥ Hk/2.
Thus, also using (4.6),

(4.8) −
τ �k�

t=τk

γt
c1

2
�∇f(xt)�2 ≤ −

c1H
2
k

8

τ �k�

t=τk

γt ≤ −
c1H

2
kη

16
.

Furthermore,

(4.9)

τ �k�

t=τk

γt∇f(xt)�wt ≤ 2H2
k�,

which follows from the convergence of the series in Lemma 3(c) and the assumption
that after time t0 the series is within � of its limit. By a similar argument based on
Lemma 3(d), we also have

(4.10) L

τ �k�

t=τk

γ
2
t �wt�2 ≤ 2LH2

k�.

Finally,

(4.11) 2Lc22

τ �k�

t=τk

γ
2
t ≤ 4Lc22�.

We add (4.8)–(4.11) and obtain

f(xτ �k+1) ≤f(xτk)−
c1ηH

2
k

16
+ (2� + 2L�)H2

k + 4Lc22�

≤f(xτk)−
2c1ηH2

k

48
+
c1ηδ

2

48

≤f(xτk)−
c1ηδ

2

48
.

The second inequality made use of (4.7); the third made use of Hk ≥ δ.
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Lemma 6. For almost every sample path, f(xt) converges to a finite value or to
−∞. If limt→∞ f(xt) �= −∞, then lim supt→∞ �∇f(xt)� ≤ δ.

Proof. Suppose that there are only finitely many intervals Ik and, in particular,

lim sup
t→∞

�∇f(xt)� ≤ δ.

Let t∗ be some time such that t ∈ S for all t ≥ t∗. We then have χt = 1 for all t ≥ t∗.
We use (4.4) to obtain

f(xt+1) ≤ f(xt) + γtχt∇f(xt)�wt + γ
2
t 2Lc

2
2 + χtγ

2
tL�wt�2

= f(xt) + Zt for t ≥ t∗,

where the last equality can be taken as the definition of Zt. Using parts (a) and (e)
of Lemma 3, the series

�
t Zt converges. Lemma 1 then implies that f(xt) converges

to a finite value or to −∞. This proves Lemma 6 for the case where there are finitely
many intervals.

We consider next the case where there are infinitely many intervals. We will prove
that f(xt) converges to −∞. We first establish such convergence along a particular
subsequence. Let T = S ∪ {τ1, τ2, . . .}. We will show that the sequence {f(xt)}t∈T
converges to −∞. To see why this must be the case, notice that whenever t ∈ S,
we have f(xt+1) ≤ f(xt) + Zt, where Zt is as in the preceding paragraph and is
summable. Also, whenever t ∈ T but t /∈ S, then t = τk for some k, and the next
element of T is the time τ

�
k + 1. Using Lemma 5, f(xt) decreases by at least h during

this interval (for k large enough). We are now in the situation captured by Lemma
1, with Wt = h whenever t = τk. The convergence of the subsequence {f(xt)}t∈T
follows. Furthermore, since Wt = h infinitely often, the limit can be only −∞.

Having shown that f(xτk) converges to −∞, it now remains to show that the
fluctuations of f(xt) during intervals Ik cannot be too large. Because the technical
steps involved here are very similar to those given earlier, we provide only an outline.
In order to carry out this argument, we consider the events that immediately precede
an interval Ik.

Let us first consider the case where Ik is preceded by an element of S, i.e., τk −
1 ∈ S. By replicating the first half of the proof of Lemma 4, we can show that
xt − xτk−1 for t ∈ Ik is bounded by a constant multiple of δ (for k large enough).
Since �∇f(xτk−1)� ≤ δ, this leads to a cδ2 bound on the difference f(xt)− f(xτk−1),
where c is some absolute constant. Since f(xτk−1) → −∞, the same must be true for
f(xt), t ∈ Ik.

Let us now consider the case where Ik is immediately preceded by an interval
Ik−1. By replicating the proof of Lemma 5 (with a somewhat smaller choice of �), we
can show that (for k large enough) we will have f(xt) ≤ f(xτk−1) for all t ∈ Ik. Once
more, since f(xτk−1) converges to −∞, the same must be true for f(xt), t ∈ Ik.

According to Lemma 6, f(xt) converges and if

lim
t→∞

f(xt) �= −∞,

then lim supt→∞ �∇f(xt)� ≤ δ. Since this has been proved for an arbitrary δ > 0,
we conclude that if limt→∞ f(xt) �= −∞, then lim supt→∞ �∇f(xt)� = 0, that is,
∇f(xt) → 0.

Finally, if x∗ is a limit point of xt, this implies that f(xt) has a subsequence that
converges to f(x∗). Therefore, the limit of the entire sequence f(xt), which we have
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shown to exist, must be finite and equal to f(x∗). We have shown that in this case
∇f(xt) converges to zero. By taking the limit of ∇f(xt) along a sequence of times
such that xt converges to x∗, we conclude that ∇f(x∗) = 0.

5. The incremental gradient method revisited. We now provide an alter-
native view of the incremental gradient method that was discussed in section 4.

Consider again a cost function f of the form

f(x) =
1

m

m�

i=1

fi(x),

where each fi is a function from �n into � that satisfies the Lipschitz condition
(4.1). In contrast to the setting of section 4, we now assume that each update is
based on a single component function fi, chosen at random. More specifically, let
k(t), t = 1, 2, . . ., be a sequence of independent random variables, each distributed
uniformly over the set {1, . . . ,m}. The algorithm under consideration is

(5.1) xt+1 = xt − γt∇fk(t)(xt),

where γt is a nonnegative scalar stepsize. We claim that this is a special case of the
stochastic gradient algorithm. Indeed, the algorithm (5.1) can be rewritten as

xt+1 = xt −
γt

m

m�

i=1

∇fi(xt)− γt

�
∇fk(t)(xt)−

1

m

m�

i=1

∇fi(xt)
�
,

which is of the form

xt+1 = xt − γt∇f(xt)− γtwt,

where

wt = ∇fk(t)(xt)−
1

m

m�

i=1

∇fi(xt).

We now verify that wt satisfies the assumptions of Proposition 3. Due to the way
that k(t) is chosen, we have

E
�
∇fk(t)(xt) | Ft

�
=

1

m

m�

i=1

∇fi(xt),

from which it follows that E[wt | Ft] = 0. We also have

E
�
�wt�2 | Ft] = E

���∇fk(t)(rt)
��2 | Ft

�
−
��E

�
∇fk(t)(rt) | Ft

���2

≤ E
���∇fk(t)(rt)

��2 | Ft
�
,

which yields

E
�
�wt�2 | Ft

�
≤ max

k

��∇fk(xt)
��2
.

Let us assume that there exist constants C and D such that

(5.2)
��∇fi(x)

�� ≤ C +D
��∇f(x)

�� ∀ i, x
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(cf. the assumption of Proposition 2). It follows that

E
�
�wt�2 | Ft

�
≤ 2C2 + 2D2

��∇f(xt)
��2

so that condition (4.3) is satisfied and the assertion of Proposition 3 holds.
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