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Abstract

We consider convex constrained optimization problems, and we enhance the classical Fritz
John optimality conditions to assert the existence of multipliers with special sensitivity properties.
In particular, we prove the existence of Fritz John multipliers that are informative in the sense
that they identify constraints whose relaxation, at rates proportional to the multipliers, strictly
improves the primal optimal value. Moreover, we show that if the set of geometric multipliers is
nonempty, then the minimum-norm vector of this set is informative, and defines the optimal rate
of cost improvement per unit constraint violation. Our assumptions are very general, and allow
for the presence of duality gap and the non-existence of optimal solutions. In particular, for the
case where there is a duality gap, we establish enhanced Fritz John conditions involving the dual
optimal value and dual optimal solutions.
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Introduction

1. INTRODUCTION

We consider the convex constrained optimization problem

minimize f(x)

subject to x ∈ X, g(x) =
(
g1(x), . . . , gr(x)

)′ ≤ 0,
(P)

where X is a nonempty convex subset of �n, and f : X → � and gj : X → � are convex

functions. Here and throughout the paper, we denote by � the real line, by �n the space of

n-dimensional real column vectors with the standard Euclidean norm, ‖ · ‖, and we denote by ′

the transpose of a vector. We say that a function f : X → � is convex (respectively, closed) if

its epigraph
{
(x, w) | x ∈ X, f(x) ≤ w

}
is convex (respectively, closed). For some of our results,

we will assume that f, g1, . . . , gr are also closed. We note that our analysis readily extends to the

case where there are affine equality constraints by replacing each affine equality constraint with

two affine inequality constraints.

We refer to problem (P) as the primal problem and we consider the dual problem

maximize q(µ)

subject to µ ≥ 0,
(D)

where q is the dual function:

q(µ) = inf
x∈X

{
f(x) + µ′g(x)

}
, µ ∈ �r.

We denote by f∗ and q∗ the optimal values of (P) and (D), respectively:

f∗ = inf
x∈X, g(x)≤0

f(x), q∗ = sup
µ≥0

q(µ).

We write f∗ < ∞ or q∗ > −∞ to indicate that (P) or (D), respectively, has at least one feasible

solution. The weak duality theorem states that q∗ ≤ f∗. If q∗ = f∗, we say that there is no

duality gap.

An important result, attributed to Fritz John [Joh48], is that there exist a scalar µ∗
0 and a

vector µ∗ = (µ∗
1, . . . , µ

∗
r)′ satisfying the following conditions:

(i) µ∗
0f

∗ = infx∈X

{
µ∗

0f(x) + µ∗′g(x)
}
.

(ii) µ∗
j ≥ 0 for all j = 0, 1, . . . , r.

(iii) µ∗
0, µ

∗
1, . . . , µ

∗
r are not all equal to 0.

We call such a pair (µ∗
0, µ

∗) a FJ-multiplier.
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If the coefficient µ∗
0 of a FJ-multiplier is nonzero, by normalization one can obtain a FJ-

multiplier of the form (1, µ∗), and we have

µ∗ ≥ 0, f∗ = q(µ∗). (1.1)

A vector µ∗ thus obtained is called a geometric multiplier. It is well known and readily seen from

the weak duality theorem that µ∗ is a geometric multiplier if and only if there is no duality gap

and µ∗ is an optimal solution of the dual problem. It is further known that the set of geometric

multipliers is closed and coincides with the negative of the subdifferential of the perturbation

function

p(u) = inf
x∈X, g(x)≤u

f(x)

at u = 0, provided that p is convex, proper, and p(0) is finite [Roc70, Theorem 29.1], [BNO03,

Prop. 6.5.8]. If in addition the origin is in the relative interior of dom(p) (a constraint qualification

that guarantees that the set of geometric multipliers is nonempty), and µ∗ is the geometric

multiplier of minimum norm, then either µ∗ = 0, in which case 0 ∈ ∂p(0) and u = 0 is a global

minimum of p, or else µ∗ �= 0, in which case µ∗ is a direction of steepest descent for p at u = 0.

More specifically, if µ∗ �= 0, the directional derivative p′(0; d) of p at 0 in the direction d satisfies

inf
‖d‖=1

p′(0; d) = p′
(
0;µ∗/‖µ∗‖

)
= −‖µ∗‖ < 0. (1.2)

based on the calculation

inf
‖d‖=1

p′(0; d) = inf
‖d‖=1

sup
v∈∂p(0)

d′v = sup
v∈∂p(0)

inf
‖d‖=1

d′v = sup
v∈∂p(0)

{−‖v‖} = −‖µ∗‖.

Thus, the minimum-norm geometric multiplier provides useful sensitivity information, namely,

relaxing the inequality constraints at rates equal to the components of µ∗/‖µ∗‖ yields a decrease

of the optimal value at the optimal rate, which is equal to ‖µ∗‖.

On the other hand, if the origin is not a relative interior point of dom(p) [the effective

domain {u | p(u) < ∞} of p], there may be no direction of steepest descent, because the directional

derivative function p′(0; ·) is discontinuous, and the infimum over ‖d‖ = 1 in Eq. (1.2) may not be

attained. This can happen even if there is no duality gap and there exists a geometric multiplier.

As an example, consider the following two-dimensional problem:

minimize −x2

subject to x ∈ X = {x | x2
2 ≤ x1}, g1(x) = x1 ≤ 0, g2(x) = x2 ≤ 0.

It can be verified that

dom(p) = {u | u2
2 ≤ u1} + {u | u ≥ 0},
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and

p(u) =

⎧⎪⎨
⎪⎩

−u2 if u2
2 ≤ u1,

−√
u1 if u1 ≤ u2

2, u1 ≥ 0, u2 ≥ 0,

∞ otherwise,

while

q(µ) =

⎧⎪⎪⎨
⎪⎪⎩

− (µ2−1)2

4µ1
if µ1 > 0,

0 if µ1 = 0, µ2 = 1,

−∞ otherwise.
We have f∗ = q∗ = 0, and the set of geometric multipliers is

{µ ≥ 0 | µ2 = 1}.

However, the geometric multiplier of minimum norm, µ∗ = (0, 1), is not a direction of steepest

descent, since starting at u = 0 and going along the direction (0, 1), p(u) is equal to 0, so

p′(0;µ∗) = 0.

In fact p has no direction of steepest descent at u = 0, because p′(0; ·) is not continuous. To see

this, note that directions of descent d = (d1, d2) are those for which d1 > 0 and d2 > 0, and that

along any such direction, we have

p′(0; d) = −d2.

It follows that

inf
‖d‖=1

p′(0; d) = −1 = −‖µ∗‖,

but there is no direction of descent that attains the infimum above. On the other hand, there are

sequences {uk} ⊂ dom(p) and {xk} ⊂ X of infeasible points [in fact, the sequences uk = xk =

(1/k2, 1/k)] such that

lim
k→∞

p(0) − p(uk)
‖uk+‖

= lim
k→∞

f∗ − f(xk)
‖g+(xk)‖ = ‖µ∗‖ = 1,

where we denote

u+
j = max{0, uj}, u+ = (u+

1 , . . . , u+
r )′, g+

j (x) = max
{
0, gj(x)

}
, g+(x) =

(
g+
1 (x), . . . , g+

r (x)
)′

.

Thus, the minimum norm of geometric multipliers can still be interpreted as the optimal rate of

improvement of the cost per unit constraint violation. However, this rate of improvement cannot

be obtained by approaching 0 along a straight line, but only by approaching it along a curve.

In this paper, we derive more powerful versions of the Fritz John conditions, which provide

sensitivity information like the one discussed above. In particular, in addition to conditions (i)-

(iii) above, we obtain an additional necessary condition [e.g., condition (CV) of Prop. 2.1 in the
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next section] that narrows down the set of candidates for optimality. Furthermore, our conditions

also apply in the exceptional case where the set of geometric multipliers is empty. In this case,

we will show that a certain degenerate FJ-multiplier, i.e., one of the form (0, µ∗) with µ∗ �= 0 and

0 = infx∈X µ∗′g(x), provides sensitivity information analogous to that provided by the minimum-

norm geometric multiplier. In particular, there exists a FJ-multiplier (0, µ∗) such that by relaxing

the inequality constraints at rates proportional to the components of µ∗/‖µ∗‖, we can strictly

improve the primal optimal value. Furthermore, ‖µ∗‖ is the optimal rate of improvement per unit

constraint violation. In the case where there is a duality gap, we also prove dual versions of these

results, involving the dual optimal value, and dual FJ-multipliers. To our knowledge, except

for a preliminary version of our work that appeared in the book [BNO03], these are the first

results that provide enhanced, sensitivity-related Fritz John conditions for convex programming,

and also derive the optimal sensitivity rate under very general assumptions, i.e., without any

constraint qualification and even in the presence of a duality gap.

This paper is organized as follows. In Section 2, we present enhanced Fritz John conditions

for convex problems that have optimal solutions. In Section 3, we present analogous results

for convex problems that have dual optimal solutions. In particular, we show that the dual

optimal solution of minimum norm provides useful sensitivity information, even in the presence

of a duality gap. In Section 4, we present Fritz John conditions for problems that may not have

optimal solutions, we introduce the notion of pseudonormality, and we discuss its connections to

classical constraint qualifications. We also prove dual versions of these conditions involving the

dual optimal value.

2. ENHANCED FRITZ JOHN CONDITIONS

The existence of FJ-multipliers is often used as the starting point for the analysis of the existence

of geometric multipliers. Unfortunately, these conditions in their classical form are not sufficient

to deduce the existence of geometric multipliers under some of the standard constraint qualifi-

cations, such as when X = �n and the constraint functions gj are affine. Recently, the classical

Fritz John conditions have been enhanced through the addition of an extra necessary condition,

and their effectiveness has been significantly improved (see Hestenes [Hes75] for the case X = �n,

Bertsekas [Ber99], Prop. 3.3.11, for the case where X is a closed convex set, and Bertsekas and

Ozdaglar [BeO02] for the case where X is a closed set). All of these results assume that an

optimal solution exists, and that the cost and the constraint functions are smooth (but possibly
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nonconvex). In this section, we retain the assumption of existence of an optimal solution, and

instead of smoothness we assume the following.

Assumption 2.1: (Closedness) The functions f and g1, . . . , gr are closed.

We note that f and g1, . . . , gr are closed if and only if they are lower semicontinuous on X,

i.e., for each x̄ ∈ X, we have

f(x̄) ≤ lim inf
x∈X, x→x̄

f(x), gj(x̄) ≤ lim inf
x∈X, x→x̄

gj(x), j = 1, . . . , r,

(see e.g., [BNO03], Prop. 1.2.2). Under the preceding assumption, we prove the following version

of the enhanced Fritz John conditions. Because we assume that f and g1, . . . , gr are convex over

X rather than over �n, the lines of proof from the preceding references (based on the use of

gradients or subgradients) break down. We use a different line of proof, which is based instead

on minimax arguments. The proof also uses the following lemma.

Lemma 2.1: Consider the convex problem (P) and assume that −∞ < q∗. If µ∗ is a dual

optimal solution, then

q∗ − f(x)
‖g+(x)‖ ≤ ‖µ∗‖, for all x ∈ X that are infeasible.

Proof: For any x ∈ X that is infeasible, we have from the definition of the dual function that

q∗ = q(µ∗) ≤ f(x) + µ∗′g(x) ≤ f(x) + µ∗′g+(x) ≤ f(x) + ‖µ∗‖‖g+(x)‖.

Q.E.D.

Note that the preceding lemma shows that the minimum distance to the set of dual op-

timal solutions is an upper bound for the cost improvement/constraint violation ratio
(
q∗ −

f(x)
)
/‖g+(x)‖. The next proposition shows that, under certain assumptions including the ab-

sence of a duality gap, this upper bound is sharp, and is asymptotically attained by an appropriate

sequence {xk} ⊂ X. The same fact will also be shown in Section 3, but under considerably more

general assumptions (see Prop. 3.3).
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Proposition 2.1: Consider the convex problem (P) under Assumption 2.1 (Closedness),

and assume that x∗ is an optimal solution. Then there exists a FJ-multiplier (µ∗
0, µ

∗) satis-

fying the following condition (CV). Moreover, if µ∗
0 �= 0, then µ∗/µ∗

0 must be the geometric

multiplier of minimum norm.

(CV) If µ∗ �= 0, then there exists a sequence {xk} ⊂ X of infeasible points that converges to

x∗ and satisfies

f(xk) → f∗, g+(xk) → 0, (2.1)

f∗ − f(xk)
‖g+(xk)‖ →

{
‖µ∗‖/µ∗

0 if µ∗
0 �= 0,

∞ if µ∗
0 = 0,

(2.2)

g+(xk)
‖g+(xk)‖ → µ∗

‖µ∗‖ . (2.3)

Proof: For positive integers k and m, we consider the saddle function

Lk,m(x, ξ) = f(x) +
1
k3

‖x − x∗‖2 + ξ′g(x) − 1
2m

‖ξ‖2.

We note that, for fixed ξ ≥ 0, Lk,m(x, ξ), viewed as a function from X to �, is closed and convex,

because of the Closedness Assumption. Furthermore, for a fixed x, Lk,m(x, ξ) is negative definite

quadratic in ξ. For each k, we consider the set

Xk = X ∩
{
x | ‖x − x∗‖ ≤ k

}
.

Since f and gj are closed and convex when restricted to X, they are closed, convex, and coercive

when restricted to Xk. Thus, we can use the Saddle Point Theorem (e.g., [BNO03, Prop. 2.6.9])

to assert that Lk,m has a saddle point over x ∈ Xk and ξ ≥ 0. This saddle point is denoted by

(xk,m, ξk,m).

The infimum of Lk,m(x, ξk,m) over x ∈ Xk is attained at xk,m, implying that

f(xk,m) +
1
k3

‖xk,m − x∗‖2 + ξk,m′g(xk,m)

= inf
x∈Xk

{
f(x) +

1
k3

‖x − x∗‖2 + ξk,m′g(x)
}

≤ inf
x∈Xk, g(x)≤0

{
f(x) +

1
k3

‖x − x∗‖2 + ξk,m′g(x)
}

≤ inf
x∈Xk, g(x)≤0

{
f(x) +

1
k3

‖x − x∗‖2

}
= f(x∗).

(2.4)
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Hence, we have

Lk,m(xk,m, ξk,m) = f(xk,m) +
1
k3

‖xk,m − x∗‖2 + ξk,m′g(xk,m) − 1
2m

‖ξk,m‖2

≤ f(xk,m) +
1
k3

‖xk,m − x∗‖2 + ξk,m′g(xk,m)

≤ f(x∗).

(2.5)

Since Lk,m(xk,m, ξ) is quadratic in ξ, the supremum of Lk,m(xk,m, ξ) over ξ ≥ 0 is attained at

ξk,m = mg+(xk,m). (2.6)

This implies that

Lk,m(xk,m, ξk,m) = f(xk,m) +
1
k3

‖xk,m − x∗‖2 +
m

2
‖g+(xk,m)‖2

≥ f(xk,m) +
1
k3

‖xk,m − x∗‖2

≥ f(xk,m).

(2.7)

From Eqs. (2.5) and (2.7), we see that the sequence {xk,m}, with k fixed, belongs to the

set
{
x ∈ Xk | f(x) ≤ f(x∗)

}
, which is compact. Hence, {xk,m} has a cluster point (as m → ∞),

denoted by xk, which belongs to
{
x ∈ Xk | f(x) ≤ f(x∗)

}
. By passing to a subsequence if

necessary, we can assume without loss of generality that {xk,m} converges to xk as m → ∞.

For each k, the sequence
{
f(xk,m)

}
is bounded from below by infx∈Xk f(x), which is finite by

Weierstrass’ Theorem since f is closed and coercive when restricted to Xk. Also, for each k,

Lk,m(xk,m, ξk,m) is bounded from above by f(x∗) [cf. Eq. (2.5)], so the equality in Eq. (2.7)

implies that

lim sup
m→∞

gj(xk,m) ≤ 0, ∀ j = 1, . . . , r.

Therefore, by using the lower semicontinuity of gj , we obtain g(xk) ≤ 0, implying that xk is a

feasible solution of problem (P), so that f(xk) ≥ f(x∗). Using Eqs. (2.5) and (2.7) together with

the lower semicontinuity of f , we also have

f(xk) ≤ lim inf
m→∞

f(xk,m) ≤ lim sup
m→∞

f(xk,m) ≤ f(x∗),

thereby showing that for each k,

lim
m→∞

f(xk,m) = f(x∗).

Together with Eqs. (2.5) and (2.7), this also implies that for each k,

lim
m→∞

xk,m = x∗.
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Combining the preceding relations with Eqs. (2.5) and (2.7), for each k, we obtain

lim
m→∞

(
f(xk,m) − f(x∗) + ξk,m′

g(xk,m)
)

= 0. (2.8)

Denote

δk,m =
√

1 + ‖ξk,m‖2, µk,m
0 =

1
δk,m

, µk,m =
ξk,m

δk,m
. (2.9)

Since δk,m is bounded from below by 1, by dividing Eq. (2.8) by δk,m, we obtain

lim
m→∞

(
µk,m

0 f(xk,m) − µk,m
0 f(x∗) + µk,m′

g(xk,m)
)

= 0.

By the preceding relations, for each k we can find a sufficiently large integer mk such that

∣∣∣µk,mk
0 f(xk,mk) − µ

k,mk
0 f(x∗) + µk,mk

′
g(xk,mk)

∣∣∣ ≤ 1
k

, (2.10)

and

‖xk,mk − x∗‖ ≤ 1
k

, |f(xk,mk) − f(x∗)| ≤ 1
k

, ‖g+(xk,mk)‖ ≤ 1
k

. (2.11)

Dividing both sides of the first relation in Eq. (2.4) by δk,mk , we obtain

µ
k,mk
0 f(xk,mk) +

1
k3δk,mk

‖xk,mk − x∗‖2 + µk,mk
′
g(xk,mk)

≤ µ
k,mk
0 f(x) + µk,mk

′
g(x) +

1
kδk,mk

, ∀ x ∈ Xk,

where we also use the fact that ‖x − x∗‖ ≤ k for all x ∈ Xk (see the definition of Xk). Since

the sequence
{
(µk,mk

0 , µk,mk)
}

is bounded, it has a cluster point, denoted by (µ∗
0, µ

∗), which

satisfies conditions (ii), (iii) in the definition of a FJ-multiplier. For any x ∈ X, we have x ∈ Xk

for all k sufficiently large. Without loss of generality, we will assume that the entire sequence{
(µk,mk

0 , µk,mk)
}

converges to (µ∗
0, µ

∗). Taking the limit as k → ∞, and using Eq. (2.10), we

obtain

µ∗
0f(x∗) ≤ µ∗

0f(x) + µ∗′g(x), ∀ x ∈ X.

Since µ∗ ≥ 0, this implies that

µ∗
0f(x∗) ≤ inf

x∈X

{
µ∗

0f(x) + µ∗′g(x)
}

≤ inf
x∈X, g(x)≤0

{
µ∗

0f(x) + µ∗′g(x)
}

≤ inf
x∈X, g(x)≤0

µ∗
0f(x)

= µ∗
0f(x∗).

Thus we have

µ∗
0f(x∗) = inf

x∈X

{
µ∗

0f(x) + µ∗′g(x)
}
,
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so that (µ∗
0, µ

∗) also satisfies condition (i) in the definition of a FJ-multiplier.

If µ∗ = 0, then µ∗
0 �= 0, (CV) is automatically satisfied, and µ∗/µ∗

0 = 0 has minimum norm.

Moreover, condition (i) yields f∗ = infx∈X f(x), so that (CV) [in particular, Eq. (2.2)] is satisfied

by only µ∗ = 0.

Assume now that µ∗ �= 0, so that the index set J = {j �= 0 | µ∗
j > 0} is nonempty. Then,

for sufficiently large k, we have ξ
k,mk
j > 0 and hence gj(xk,mk) > 0 for all j ∈ J . Thus, for each

k, we can choose the index mk to further satisfy xk,mk �= x∗, in addition to Eqs. (2.10), (2.11).

Using Eqs. (2.6), (2.9) and the fact that µk,mk → µ∗, we obtain

g+(xk,mk)
‖g+(xk,mk)‖ =

µk,mk

‖µk,mk‖ → µ∗

‖µ∗‖ .

Using also Eq. (2.5) and f(x∗) = f∗, we have that

f∗ − f(xk,mk)
‖g+(xk,mk)‖ ≥ ξk,mk

′
g(xk,mk)

‖g+(xk,mk)‖ = ‖ξk,mk‖ =
‖µk,mk‖
µ

k,mk
0

. (2.12)

If µ∗
0 = 0, then µ

k,mk
0 → 0, so Eq. (2.12) together with ‖µk,mk‖ → ‖µ∗‖ > 0 yields

f∗ − f(xk,mk)
‖g+(xk,mk)‖ → ∞.

If µ∗
0 �= 0, then Eq. (2.12) together with µ

k,mk
0 → µ∗

0 and ‖µk,mk‖ → ‖µ∗‖ yields

lim inf
k→∞

f∗ − f(xk,mk)
‖g+(xk,mk)‖ ≥ ‖µ∗‖

µ∗
0

.

Since µ∗/µ∗
0 is a geometric multiplier and f∗ = q∗, Lemma 2.1 implies that in fact µ∗/µ∗

0 is of

minimum norm and the inequality holds with equality. From Eq. (2.11), we have f(xk,mk) →
f(x∗), g+(xk,mk) → 0, and xk,mk → x∗. Hence, the sequence {xk,mk} also satisfies conditions

(2.1)-(2.3) of the proposition, concluding the proof. Q.E.D.

Note that Eq. (2.3) implies that, for all k sufficiently large,

gj(xk) > 0, ∀ j ∈ J, g+
j (xk) = o

(
min
j∈J

g+
j (xk)

)
, ∀ j /∈ J,

where J = {j �= 0 | µ∗
j > 0}. Thus, the (CV) condition (Complementarity Violation) in Prop.

2.1 refines that used in [BNO03, Sec. 5.7] by also estimating the rate of cost improvement. As

an illustration of Prop. 2.1, consider the 2-dimensional example of Duffin:

minimize x2

subject to x = (x1, x2)′ ∈ �2, ‖x‖ − x1 ≤ 0.
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Here f∗ = 0 and x∗ = (x∗
1, 0) is an optimal solution for any x∗

1 ≥ 0. Also, q(µ) = −∞ for

all µ ≥ 0, so q∗ = −∞ and there is duality gap. It can be seen that µ∗
0 = 0, µ∗ = 1 form a

FJ-multiplier and, together with xk = (x∗
1,−1/k)′, satisfy condition (CV).

The proof of Prop. 2.1 can be explained in terms of the construction shown in Fig. 2.1.

Consider the function Lk,m introduced in the proof,

Lk,m(x, ξ) = f(x) +
1
k3

‖x − x∗‖2 + ξ′g(x) − 1
2m

‖ξ‖2.

Note that the term (1/k3)‖x − x∗‖2 ensures that x∗ is a strict local minimum of the function

f(x) + (1/k3)‖x − x∗‖2. To simplify the following discussion, let us assume that f is strictly

convex, so that this term can be omitted from the definition of Lk,m. This assumption is satisfied

by the above example if its cost function is changed to ex, for which f∗ = 1 and q∗ = 0.

For any nonnegative vector u ∈ �r, let pk(u) denote the optimal value of the problem

minimize f(x)

subject to g(x) ≤ u,

x ∈ Xk = X ∩
{
x

∣∣ ‖x − x∗‖ ≤ k
}

.

(2.13)

For each k and m, the saddle point of the function Lk,m(x, ξ), denoted by (xk,m, ξk,m), can be

characterized in terms of pk(u) as follows.

The maximization of Lk,m(x, ξ) over ξ ≥ 0 for any fixed x ∈ Xk yields

ξ = mg+(x), (2.14)

so that we have

Lk,m(xk,m, ξk,m) = inf
x∈Xk

sup
ξ≥0

{
f(x) + ξ′g(x) − 1

2m
‖ξ‖2

}

= inf
x∈Xk

{
f(x) +

m

2
‖g+(x)‖2

}
.

This minimization can also be written as

Lk,m(xk,m, ξk,m) = inf
x∈Xk

inf
u∈	r, g(x)≤u

{
f(x) +

m

2
‖u+‖2

}
= inf

u∈	r
inf

x∈Xk, g(x)≤u

{
f(x) +

m

2
‖u+‖2

}
= inf

u∈	r

{
pk(u) +

m

2
‖u+‖2

}
.

(2.15)

The vector uk,m = g(xk,m) attains the infimum in the preceding relation. This minimization can

be visualized geometrically as in Fig. 2.1. The point of contact of the graphs of the functions pk(u)

11
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Lk,m(xk,m, ξk,m)

0 u

pk(u)

uk,m = g(xk,m)

slope = - ξk,m

  - m/2 ||u+||2 + Lk,m(xk,m, ξk,m)

Figure 2.1. Illustration of the saddle point of the function Lk,m(x, ξ) over x ∈ Xk and ξ ≥ 0

in terms of the function pk(u), which is the optimal value of problem (2.13) as a function of u.

and Lk,m(xk,m, ξk,m) − (m/2)‖u+‖2 corresponds to the vector uk,m that attains the infimum in

Eq. (2.15). A similar compactification-regularization technique is used in [Roc93, Sec. 9].

We can also interpret ξk,m in terms of the function pk. In particular, the infimum of

Lk,m(x, ξk,m) over x ∈ Xk is attained at xk,m, implying that

f(xk,m) + ξk,m′
g(xk,m) = inf

x∈Xk

{
f(x) + ξk,m′

g(x)
}

= inf
u∈	r

{
pk(u) + ξk,m′

u
}
.

Replacing g(xk,m) by uk,m in the preceding relation, and using the fact that xk,m is feasible for

problem (2.13) with u = uk,m, we obtain

pk(uk,m) ≤ f(xk,m) = inf
u∈	r

{
pk(u) + ξk,m′(u − uk,m)

}
.

Thus, we see that

pk(uk,m) ≤ pk(u) + ξk,m′(u − uk,m), ∀ u ∈ �r,

which, by the definition of the subgradient of a convex function, implies that

−ξk,m ∈ ∂pk(uk,m)

(cf. Fig. 2.1). It can be seen from this interpretation that the limit of Lk,m(xk,m, ξk,m) as m → ∞
is equal to pk(0), which is equal to f(x∗) for each k. The limit of the normalized sequence{

(1, ξk,mk)√
1 + ‖ξk,mk‖2

}

as k → ∞ yields the FJ-multiplier (µ∗
0, µ

∗), and the sequence {xk,mk} is used to construct the

sequence that satisfies condition (CV) of the proposition.

12
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3. MINIMUM-NORM DUAL OPTIMAL SOLUTIONS

In the preceding section we focussed on the case where a primal optimal solution exists and we

showed that the geometric multiplier of minimum norm is informative. Notice that a geometric

multiplier is automatically a dual optimal solution. When there is duality gap, there exists no

geometric multiplier, even if there is a dual optimal solution. In this section we focus on the case

where a dual optimal solution exists and we will see that, analogously, the dual optimal solution

of minimum norm is informative. In particular, it satisfies a condition analogous to condition

(CV), with primal optimal value f∗ replaced by q∗. Consistent with our analysis in Section 2,

we call such a dual optimal solution informative [BNO03, Section 6.6.2], since it indicates the

constraints to relax and the rate of relaxation in order to obtain a primal cost reduction by an

amount that is strictly greater than the size of the duality gap f∗ − q∗.

We begin with the following proposition, which is a classical result and requires no additional

assumptions on (P). It will be used to prove Lemma 3.1. We provide its proof for completeness.

Proposition 3.1: (Fritz John Conditions) Consider the convex problem (P), and

assume that f∗ < ∞. Then there exists a FJ-multiplier (µ∗
0, µ

∗).

Proof: If f∗ = −∞, then µ∗
0 = 1 and µ∗ = 0 form a FJ-multiplier. We may thus assume that

f∗ is finite. Consider the subset of �r+1 given by

M =
{
(u1, . . . , ur, w) | there exists x ∈ X such that

gj(x) ≤ uj , j = 1, . . . , r, f(x) ≤ w
}

(cf. Fig. 3.1). We first show that M is convex. To this end, we consider vectors (u, w) ∈ M and

(ũ, w̃) ∈ M , and we show that their convex combinations lie in M . The definition of M implies

that for some x ∈ X and x̃ ∈ X, we have

f(x) ≤ w, gj(x) ≤ uj , j = 1, . . . , r,

f(x̃) ≤ w̃, gj(x̃) ≤ ũj , j = 1, . . . , r.

For any α ∈ [0, 1], we multiply these relations with α and 1− α, respectively, and add them. By

using the convexity of f and gj , we obtain

f
(
αx + (1 − α)x̃

)
≤ αf(x) + (1 − α)f(x̃) ≤ αw + (1 − α)w̃,

gj

(
αx + (1 − α)x̃

)
≤ αgj(x) + (1 − α)gj(x̃) ≤ αuj + (1 − α)ũj , j = 1, . . . , r.

13
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(0,f*)

(µ∗,µ0
∗)

w

u

M = {(u,w) | there is an x ∈ X such that g(x) ≤ u, f(x) ≤ w}

S = {(g(x),f(x)) | x ∈ X}

Figure 3.1. Illustration of the set

S =
{(

g(x), f(x)
)
| x ∈ X

}
and the set

M =
{

(u, w) | there exists x ∈ X such that g(x) ≤ u, f(x) ≤ w
}

used in the proof of Prop. 3.1. The idea of the proof is to show that M is convex and that (0, f∗)

is not an interior point of M . A hyperplane passing through (0, f∗) and supporting M is used to

define the FJ-multipliers.

In view of the convexity of X, we have αx + (1 − α)x̃ ∈ X, so these inequalities imply that the

convex combination of (u, w) and (ũ, w̃), i.e.,
(
αu+(1−α)ũ, αw+(1−α)w̃

)
, belongs to M . This

proves the convexity of M .

We next observe that (0, f∗) is not an interior point of M ; otherwise, for some ε > 0,

the point (0, f∗ − ε) would belong to M , contradicting the definition of f∗ as the optimal value.

Therefore, there exists a hyperplane passing through (0, f∗) and containing M in one of its closed

halfspaces, i.e., there exists a vector (µ∗, µ∗
0) �= (0, 0) such that

µ∗
0f

∗ ≤ µ∗
0w + µ∗′u, ∀ (u, w) ∈ M. (3.1)

This relation implies that

µ∗
0 ≥ 0, µ∗

j ≥ 0, ∀ j = 1, . . . , r,

since for each (u, w) ∈ M , we have that (u, w + γ) ∈ M and (u1, . . . , uj + γ, . . . , ur, w) ∈ M for

all γ > 0 and j.

Finally, since for all x ∈ X, we have
(
g(x), f(x)

)
∈ M , Eq. (3.1) implies that

µ∗
0f

∗ ≤ µ∗
0f(x) + µ∗′g(x), ∀ x ∈ X.

14
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Taking the infimum over all x ∈ X, it follows that

µ∗
0f

∗ ≤ inf
x∈X

{
µ∗

0f(x) + µ∗′g(x)
}

≤ inf
x∈X, g(x)≤0

{
µ∗

0f(x) + µ∗′g(x)
}

≤ inf
x∈X, g(x)≤0

µ∗
0f(x)

= µ∗
0f

∗.

Hence, equality holds throughout above, proving the desired result. Q.E.D.

If the scalar µ∗
0 in the preceding proposition can be proved to be positive, then µ∗/µ∗

0 is

a geometric multiplier for problem (P). This can be used to show the existence of a geometric

multiplier in the case where the Slater condition holds, i.e., there exists a vector x ∈ X such that

g(x) < 0. Indeed, in this case the scalar µ∗
0 cannot be 0, since if it were, then according to the

proposition, we would have

0 = inf
x∈X

µ∗′g(x)

for some vector µ∗ ≥ 0 with µ∗ �= 0, while for this vector, we would also have µ∗′g(x) < 0, a

contradiction.

Using Prop. 3.1, we have the following lemma which will be used to prove the next propo-

sition, as well as Prop. 4.3 in the next section.

Lemma 3.1: Consider the convex problem (P), and assume that f∗ < ∞. For each δ > 0,

let

fδ = inf
x∈X

gj(x)≤δ, j=1,...,r

f(x). (3.2)

Then the dual optimal value q∗ satisfies fδ ≤ q∗ for all δ > 0 and

q∗ = lim
δ↓0

fδ.

Proof: We first note that either limδ↓0 fδ exists and is finite, or else limδ↓0 fδ = −∞, since fδ

is monotonically nondecreasing as δ ↓ 0, and fδ ≤ f∗ for all δ > 0. Since f∗ < ∞, there exists

some x ∈ X such that g(x) ≤ 0. Thus, for each δ > 0 such that fδ > −∞, the Slater condition is

satisfied for problem (3.2), and by Prop. 3.1 and the subsequent discussion, there exists a µδ ≥ 0

satisfying

fδ = inf
x∈X

⎧⎨
⎩f(x) + µδ′g(x) − δ

r∑
j=1

µδ
j

⎫⎬
⎭
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≤ inf
x∈X

{
f(x) + µδ′g(x)

}
= q(µδ)

≤ q∗.

For each δ > 0 such that fδ = −∞, we also have fδ ≤ q∗, so that

fδ ≤ q∗, ∀ δ > 0.

By taking the limit as δ ↓ 0, we obtain

lim
δ↓0

fδ ≤ q∗.

To show the reverse inequality, we consider two cases: (1) fδ > −∞ for all δ > 0 that are

sufficiently small, and (2) fδ = −∞ for all δ > 0. In case (1), for each δ > 0 with fδ > −∞,

choose xδ ∈ X such that gj(xδ) ≤ δ for all j and f(xδ) ≤ fδ + δ. Then, for any µ ≥ 0,

q(µ) = inf
x∈X

{
f(x) + µ′g(x)

}
≤ f(xδ) + µ′g(xδ) ≤ fδ + δ + δ

r∑
j=1

µj .

Taking the limit as δ ↓ 0, we obtain

q(µ) ≤ lim
δ↓0

fδ,

so that q∗ ≤ limδ↓0 fδ. In case (2), choose xδ ∈ X such that gj(xδ) ≤ δ for all j and f(xδ) ≤ −1/δ.

Then, similarly, for any µ ≥ 0, we have

q(µ) ≤ f(xδ) + µ′g(xδ) ≤ −1
δ

+ δ

r∑
j=1

µj ,

so by taking δ ↓ 0, we obtain q(µ) = −∞ for all µ ≥ 0, and hence also q∗ = −∞ = lim↓0 fδ.

Q.E.D.

Using Lemmas 2.1 and 3.1, we prove below the main result of this section, which shows

under very general assumptions that the minimum-norm dual optimal solution is informative.
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Proposition 3.2: (Existence of Informative Dual Optimal Solution) Consider

the convex problem (P) under Assumption 2.1 (Closedness), and assume that f∗ < ∞ and

−∞ < q∗. If there exists a dual optimal solution, then the dual optimal solution µ∗ of

minimum norm satisfies the following condition (dCV). Moreover, it is the only dual optimal

solution that satisfies this condition.

(dCV) If µ∗ �= 0, then there exists a sequence {xk} ⊂ X of infeasible points that satisfies

f(xk) → q∗, g+(xk) → 0, (3.3)

q∗ − f(xk)
‖g+(xk)‖ → ‖µ∗‖, (3.4)

g+(xk)
‖g+(xk)‖ → µ∗

‖µ∗‖ . (3.5)

Proof: Let µ∗ be the dual optimal solution of minimum norm. Assume that µ∗ �= 0. For

k = 1, 2, . . ., consider the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 1
k4

, k = 1, . . . , r.

By Lemma 3.1, for each k, the optimal value of this problem is less than or equal to q∗. Since

q∗ is finite (in view of the assumptions −∞ < q∗ and f∗ < ∞, and the weak duality relation

q∗ ≤ f∗), we may select for each k, a vector x̃k ∈ X that satisfies

f(x̃k) ≤ q∗ +
1
k2

, gj(x̃k) ≤ 1
k4

, j = 1, . . . , r.

Consider also the problem

minimize f(x)

subject to gj(x) ≤ 1
k4

, j = 1, . . . , r,

x ∈ X̃k = X ∩
{

x
∣∣∣ ‖x‖ ≤ k

(
max
1≤i≤k

‖x̃i‖ + 1
)}

.

By the Closedness Assumption, f and gj are closed and convex when restricted to X, so they are

closed, convex, and coercive when restricted to X̃k. Thus, the problem has an optimal solution,

which we denote by xk. Note that since x̃k belongs to the feasible solution set of this problem,

we have

f(xk) ≤ f(x̃k) ≤ q∗ +
1
k2

. (3.6)
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For each k, we consider the saddle function

Lk(x, µ) = f(x) + µ′g(x) − ‖µ‖2

2k
,

and the set

Xk = X̃k ∩
{
x | gj(x) ≤ k, j = 1, . . . , r

}
.

We note that Lk(x, µ), for fixed µ ≥ 0, is closed, convex, and coercive in x, when restricted to

Xk, and negative definite quadratic in µ for fixed x. Hence, using the Saddle Point Theorem

(e.g., [BNO03, Prop. 2.6.9]), we can assert that Lk has a saddle point over x ∈ Xk and µ ≥ 0,

denoted by (xk, µk).

Since Lk is quadratic in µ, the supremum of Lk(xk, µ) over µ ≥ 0 is attained at

µk = kg+(xk). (3.7)

Similarly, the infimum in infx∈Xk Lk(x, µk) is attained at xk, implying that

f(xk) + µk′
g(xk) = inf

x∈Xk

{
f(x) + µk′

g(x)
}

= inf
x∈Xk

{
f(x) + kg+(xk)′g(x)

}

≤ inf
x∈Xk, gj(x)≤ 1

k4 , j=1,...,r

⎧⎨
⎩f(x) + k

r∑
j=1

g+
j (xk)′gj(x)

⎫⎬
⎭

≤ inf
x∈Xk, gj(x)≤ 1

k4 , j=1,...,r

{
f(x) +

r

k2

}

= f(xk) +
r

k2

≤ q∗ +
r + 1
k2

,

(3.8)

where the second inequality holds in view of the fact xk ∈ Xk, implying that g+
j (xk) ≤ k,

j = 1, ..., r, and the third inequality follows from Eq. (3.6).

We also have
Lk(xk, µk)= sup

µ≥0
inf

x∈Xk
Lk(x, µ)

≥ sup
µ≥0

inf
x∈X

Lk(x, µ)

= sup
µ≥0

{
inf

x∈X

{
f(x) + µ′g(x)

}
− ‖µ‖2

2k

}

= sup
µ≥0

{
q(µ) − ‖µ‖2

2k

}

≥ q(µ∗) − ‖µ∗‖2

2k

= q∗ − ‖µ∗‖2

2k
,

(3.9)
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where we recall that µ∗ is the dual optimal solution with the minimum norm.

Combining Eqs. (3.9) and (3.8), we obtain

q∗ − 1
2k

‖µ∗‖2 ≤ Lk(xk, µk)

= f(xk) + µk′
g(xk) − 1

2k
‖µk‖2

≤ q∗ +
r + 1
k2

− 1
2k

‖µk‖2.

(3.10)

This relation shows that ‖µk‖2 ≤ ‖µ∗‖2 + 2(r + 1)/k, so the sequence {µk} is bounded. Let µ

be a cluster point of {µk}. Without loss of generality, we assume that the entire sequence {µk}
converges to µ. We also have from Eq. (3.10) that

lim
k→∞

{
f(xk) + µk′

g(xk)
}

= q∗.

Hence, taking the limit as k → ∞ in Eq. (3.8) yields

q∗ ≤ inf
x∈X

{
f(x) + µ′g(x)

}
= q(µ) ≤ q∗.

Hence µ is a dual optimal solution, and since ‖µ‖ ≤ ‖µ∗‖ [which follows by taking the limit in

Eq. (3.10)], by using the minimum norm property of µ∗, we conclude that any cluster point µ of

µk must be equal to µ∗. Thus µk → µ∗, and using Eq. (3.10), we obtain

lim
k→∞

k
(
Lk(xk, µk) − q∗

)
= −1

2
‖µ∗‖2. (3.11)

Using Eq. (3.7), it follows that

Lk(xk, µk) = sup
µ≥0

Lk(xk, µ) = f(xk) +
1
2k

‖µk‖2,

which combined with Eq. (3.11) yields

lim
k→∞

k
(
f(xk) − q∗

)
= −‖µ∗‖2,

implying that f(xk) < q∗ for all sufficiently large k, since µ∗ �= 0. Since, µk → µ∗, Eq. (3.7) also

implies that

lim
k→∞

kg+(xk) = µ∗.

It follows that the sequence {xk} satisfies Eqs. (3.3), (3.4), and (3.5). Moreover, Lemma 2.1

shows that {xk} satisfies (3.4) only when µ∗ is the dual optimal solution of minimum norm. This

completes the proof. Q.E.D.

Our final result of this section shows that Assumption 2.1 in Prop. 3.2 can in fact be relaxed.

We denote by f the closure of f , i.e., the function whose epigraph is the closure of f . Similarly,
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for each j, we denote by gj the closure of gj . A key fact we use is that replacing f and gj by their

closures, does not affect the closure of the primal function, and hence also the dual function. This

is based on the following lemma on the closedness of functions generated by partial minimization.

Lemma 3.2: Consider a function F : �n+r �→ (−∞,∞] and the function p : �n �→
[−∞,∞] defined by

p(u) = inf
x∈	n

F (x, u).

Then the following hold:

(a)

P
(
epi(F )

)
⊂ epi(p) ⊂ cl

(
P

(
epi(F )

))
, (3.12)

P
(
cl

(
epi(F )

))
⊂ cl

(
epi(p)

)
, (3.13)

where P (·) denotes projection on the space of (u, w), i.e., P (x, u, w) = (u, w).

(b) If F is the closure of F and p is defined by

p(u) = inf
x∈	n

F (x, u),

then the closures of p and p coincide.

Proof: (a) The left-hand side of Eq. (3.12) follows from the definition

epi(p) =
{

(u, w)
∣∣∣ inf

x∈	n
F (x, u) ≤ w

}
.

To show the right-hand side of Eq. (3.12), note that for any (u, w) ∈ epi(p) and every integer

k ≥ 1, there exists an xk such that (xk, u, w + 1/k) ∈ epi(F ), so that (u, w + 1/k) ∈ P
(
epi(F )

)
and (u, w) ∈ cl

(
P

(
epi(F )

))
.

To show Eq. (3.13), let (u, w) belong to P
(
cl

(
epi(F )

))
. Then there exists x such that

(x, u, w) ∈ cl
(
epi(F )

)
, and hence there is a sequence (xk, uk, wk) ∈ epi(F ) such that xk → x,

uk → u, and wk → w. Thus we have p(uk) ≤ F (xk, uk) ≤ wk, implying that (uk, wk) ∈ epi(p)

for all k. It follows that (u, w) ∈ cl
(
epi(p)

)
.

(b) By taking closure in Eq. (3.12), we see that

cl
(
epi(p)

)
= cl

(
P

(
epi(F )

))
, (3.14)

and by replacing F with F , we also have

cl
(
epi(p)

)
= cl

(
P

(
epi(F )

))
. (3.15)
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On the other hand, by taking closure in Eq. (3.13), we have

cl
(
P

(
epi(F )

))
⊂ cl

(
P

(
epi(F )

))
,

which implies that

cl
(
P

(
epi(F )

))
= cl

(
P

(
epi(F )

))
. (3.16)

By combining Eqs. (3.14)-(3.16), we see that

cl
(
epi(p)

)
= cl

(
epi(p)

)
.

Q.E.D.

Using Lemmas 2.1 and 3.2, we now prove the last main result of this section.

Proposition 3.3: (Relaxing Closedness Assumption in Prop. 3.2) Consider the

convex problem (P), and assume that f∗ < ∞, −∞ < q∗, and dom(f) = dom(gj), j = 1, ..., r.

If µ∗ is the dual optimal solution of minimum norm, then it satisfies condition (dCV) of Prop.

3.2. Moreover, it is the only dual optimal solution that satisfies this condition.

Proof: We apply Lemma 3.2 to the primal function p(u), which is defined by partial minimiza-

tion over x ∈ �n of the extended real-valued function

F (x, u) =
{

f(x) if x ∈ X, g(x) ≤ u,

∞ otherwise.
Note that the closure of F is

F (x, u) =

{
f(x) if x ∈ X, g(x) ≤ u,

∞ otherwise,

where g = (g1, . . . , gr)′ and X = dom(f) = dom(gj), j = 1, ..., r.4 Thus, by Lemma 3.2, replacing

X, f and g with X, f and g does not change the closure of the primal function, and therefore

does not change the dual function.

4 Why? By definition of the closure of F , F (x, u) = lim inf(xk,uk)→(x,u) F (xk, uk). Suppose

F (x, u) < ∞. Then there exist xk ∈ X and uk such that (xk, uk) → (x, u), f(xk) → F (x, u)

and g(xk) ≤ uk for all k = 1, 2, ... Passing to the limit yields f(x) ≤ F (x, u) and g(x) ≤ u.

Conversely, suppose f(x) < ∞ and g(x) ≤ u. Fix any x ∈ ri(X), and let xε = (1 − ε)x + εx,

uε = (1− ε)u + εu, where u = g(x). Then xε ∈ ri(X) = ri(X) and g(xε) ≤ uε for ε ∈ (0, 1). Since

f coincide with f on ri(X) and f is continuous along any line segment in X, this implies

lim
ε→0

f(xε) = lim
ε→0

f(xε) = f(x).

Thus limε→0 F (xε, uε) = f(x), implying F (x, u) ≤ f(x).
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Assume µ∗ �= 0. By Prop. 3.2, there exists a sequence {xk} ⊂ X of infeasible points that

satisfies

q∗ − f(xk)
‖g+(xk)‖ → ‖µ∗‖, g+(xk)

‖g+(xk)‖ → µ∗

‖µ∗‖ , ‖g+(xk)‖ → 0.

We will now perturb the sequence {xk} so that it lies in ri(X), while it still satisfies the preceding

relations. Indeed, fix any x ∈ ri(X). For each k, we can choose a sufficiently small ε ∈ (0, 1)

such that f(εx+(1− ε)xk) and ‖g+(εx+(1− ε)xk)‖ are arbitrarily close to f(xk) and ‖g+(xk)‖,
respectively. This is possible because f , g1, ..., gr are closed and hence continuous along the

line segment that connects xk and x. Thus, for each k, we can choose εk ∈ (0, 1) so that the

corresponding vector xk = εkx + (1 − εk)xk satisfies

∣∣∣∣∣q
∗ − f(xk)
‖g+(xk)‖ − q∗ − f(xk)

‖g+(xk)‖

∣∣∣∣∣ ≤ 1
k

,

∣∣∣∣∣ g+(xk)
‖g+(xk)‖ − g+(xk)

‖g+(xk)‖

∣∣∣∣∣ ≤ 1
k

, ‖g+(xk)‖ → 0.

Since x lies in ri(X) = ri(X), every point in the open line segment that connects xk and x,

including xk, lies in ri(X), so that f(xk) = f(xk) and g(xk) = g(xk). We thus obtain a sequence

{xk} in the relative interior of X satisfying

q∗ − f(xk)
‖g+(xk)‖

→ ‖µ∗‖, g+(xk)
‖g+(xk)‖

→ µ∗

‖µ∗‖ , ‖g+(xk)‖ → 0.

The first and the third relations imply f(xk) → q∗. Thus µ∗ satisfies condition (dCV) of Prop.

3.2. By Lemma 2.1, µ∗ is the only dual optimal solution that satisfies this condition. Q.E.D.

Fritz John Conditions and Constraint Qualifications

We close this section by discussing the connection of the Fritz John conditions with classical

constraint qualifications that guarantee the existence of a geometric multiplier (and hence also the

existence of a dual optimal solution, which makes the analysis of the present section applicable).

As mentioned earlier in this section, the classical Fritz John conditions of Prop. 3.1 can be used

to assert the existence of a geometric multiplier when the Slater condition holds. However, Prop.

3.1 is insufficient to show that a geometric multiplier exists in the case of affine constraints. The

following proposition strengthens the Fritz John conditions for this case, so that they suffice for

the proof of the corresponding existence result.
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Proposition 3.4: (Fritz John Conditions for Affine Constraints) Consider the

convex problem (P), and assume that the functions g1, . . . , gr are affine, and f∗ < ∞. Then

there exists a FJ-multiplier (µ∗
0, µ

∗) satisfying the following condition:

(CV’) If µ∗ �= 0, then there exists a vector x̃ ∈ X satisfying

f(x̃) < f∗, µ∗′g(x̃) > 0.

Proof: If infx∈X f(x) = f∗, then µ∗
0 = 1 and µ∗ = 0 form a FJ-multiplier, and condition (CV’)

is automatically satisfied. We will thus assume that infx∈X f(x) < f∗, which also implies that

f∗ is finite.

Let the affine constraint function be represented as

g(x) = Ax − b,

for some real matrix A and vector b. Consider the nonempty convex sets

C1 =
{
(x, w) | there is a vector x ∈ X such that f(x) < w

}
,

C2 =
{
(x, f∗) | Ax − b ≤ 0

}
.

Note that C1 and C2 are disjoint. The reason is that if (x, f∗) ∈ C1 ∩ C2, then we must have

x ∈ X, Ax − b ≤ 0, and f(x) < f∗, contradicting the fact that f∗ is the optimal value of the

problem.

Since C2 is polyhedral, by the Polyhedral Proper Separation Theorem (see [Roc70], Th.

20.2, or Prop. 3.5.1 of [BNO03]), there exists a hyperplane that separates C1 and C2 and does

not contain C1, i.e., there exists a vector (ξ, µ∗
0) such that

µ∗
0f

∗ + ξ′z ≤ µ∗
0w + ξ′x, ∀ x ∈ X, w, z with f(x) < w, Az − b ≤ 0, (3.17)

inf
(x,w)∈C1

{µ∗
0w + ξ′x} < sup

(x,w)∈C1

{µ∗
0w + ξ′x}.

These relations imply that

µ∗
0f

∗ + sup
Az−b≤0

ξ′z ≤ inf
(x,w)∈C1

{µ∗
0w + ξ′x} < sup

(x,w)∈C1

{µ∗
0w + ξ′x}, (3.18)

and that µ∗
0 ≥ 0 [since w can be taken arbitrarily large in Eq. (3.17)].
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Consider the linear program in Eq. (3.18):

maximize ξ′z

subject to Az − b ≤ 0.

By Eq. (3.18), this program is bounded and therefore it has an optimal solution, which we denote

by z∗. The dual of this program is

minimize b′µ

subject to ξ = A′µ, µ ≥ 0.

By linear programming duality, it follows that this problem has a dual optimal solution µ∗ ≥ 0

satisfying

sup
Az−b≤0

ξ′z = ξ′z∗ = µ∗′b, ξ = A′µ∗. (3.19)

Note that µ∗
0 and µ∗ satisfy the nonnegativity condition (ii). Furthermore, we cannot have both

µ∗
0 = 0 and µ∗ = 0, since then by Eq. (3.19), we would also have ξ = 0, and Eq. (3.18) would be

violated. Thus, µ∗
0 and µ∗ also satisfy condition (iii) in the definition of a FJ-multiplier.

From Eq. (3.18), we have

µ∗
0f

∗ + sup
Az−b≤0

ξ′z ≤ µ∗
0w + ξ′x, ∀ x ∈ X with f(x) < w,

which together with Eq. (3.19), implies that

µ∗
0f

∗ + µ∗′b ≤ µ∗
0w + µ∗′Ax, ∀ x ∈ X with f(x) < w,

or

µ∗
0f

∗ ≤ inf
x∈X, f(x)<w

{
µ∗

0w + µ∗′(Ax − b)
}
. (3.20)

Similarly, from Eqs. (3.18) and (3.19), we have

µ∗
0f

∗ < sup
x∈X, f(x)<w

{
µ∗

0w + µ∗′(Ax − b)
}
. (3.21)

Using Eq. (3.20), we obtain

µ∗
0f

∗ ≤ inf
x∈X

{
µ∗

0f(x) + µ∗′(Ax − b)
}

≤ inf
x∈X, Ax−b≤0

{
µ∗

0f(x) + µ∗′(Ax − b)
}

≤ inf
x∈X, Ax−b≤0

µ∗
0f(x)

= µ∗
0f

∗.

Hence, equality holds throughout above, which proves condition (i) in the definition of FJ-

multiplier.

24



Minimum-Norm Dual Optimal Solutions

We will now show that the vector µ∗ also satisfies condition (CV’). To this end, we consider

separately the cases where µ∗
0 > 0 and µ∗

0 = 0.

If µ∗
0 > 0, let x̃ ∈ X be such that f(x̃) < f∗ [based on our earlier assumption that

infx∈X f(x) < f∗]. Then condition (i) yields

µ∗
0f

∗ ≤ µ∗
0f(x̃) + µ∗′(Ax̃ − b),

implying that 0 < µ∗
0

(
f∗ − f(x̃)

)
≤ µ∗′(Ax̃ − b), and showing condition (CV’).

If µ∗
0 = 0, condition (i) together with Eq. (3.21) yields

0 = inf
x∈X

µ∗′(Ax − b) < sup
x∈X

µ∗′(Ax − b). (3.22)

The above relation implies the existence of a vector x̂ ∈ X such that µ∗′(Ax̂− b) > 0. Let x ∈ X

be such that f(x) < f∗, and consider a vector of the form

x̃ = αx̂ + (1 − α)x,

where α ∈ (0, 1). Note that x̃ ∈ X for all α ∈ (0, 1), since X is convex. From Eq. (3.22), we have

µ∗′(Ax − b) ≥ 0, which combined with the inequality µ∗′(Ax̂ − b) > 0, implies that

µ∗′(Ax̃ − b) = αµ∗′(Ax̂ − b) + (1 − α)µ∗′(Ax − b) > 0, ∀ α ∈ (0, 1). (3.23)

Furthermore, since f is convex, we have

f(x̃) ≤ αf(x̂) + (1 − α)f(x) = f∗ +
(
f(x) − f∗

)
+ α

(
f(x̂) − f(x)

)
, ∀ α ∈ (0, 1).

Thus, for α small enough so that α
(
f(x̂) − f(x)

)
< f∗ − f(x), we have f(x̃) < f∗ as well as

µ∗′(Ax̃ − b) > 0 [cf. Eq. (3.23)]. Q.E.D.

We now introduce the following constraint qualification, which is analogous to one intro-

duced for nonconvex problems by Bertsekas and Ozdaglar [BeO02].

Definition 3.1: The constraint set of the convex problem (P) is said to be pseudonormal

if one cannot find a vector µ ≥ 0 and a vector x̃ ∈ X satisfying the following conditions:

(i) 0 = infx∈X µ′g(x).

(ii) µ′g(x̃) > 0.
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To provide a geometric interpretation of pseudonormality, let us introduce the set

G =
{
g(x) | x ∈ X

}
and consider hyperplanes that support this set and pass through 0. As Fig. 3.2 illustrates,

pseudonormality means that there is no hyperplane with a normal µ ≥ 0 that properly separates

the sets {0} and G, and contains G in its positive halfspace.

It is evident (see also Fig. 3.2) that pseudonormality holds under the Slater condition,

i.e., if there exists an x̄ ∈ X such that g(x̄) < 0. Prop. 3.4 also shows that if f∗ < ∞, the

constraint functions g1, . . . , gr are affine, and the constraint set is pseudonormal, then there

exists a geometric multiplier satisfying the special condition (CV’) of Prop. 3.4. As illustrated

also in Fig. 3.2, the constraint set is pseudonormal if X is an affine set and gj , j = 1, . . . , r,

are affine functions. In conclusion, if f∗ < ∞, and either the Slater condition holds, or X

and g1, . . . , gr are affine, then the constraint set is pseudonormal, and a geometric multiplier is

guaranteed to exist . Since in this case there is no duality gap, Prop. 3.3 guarantees the existence of

a geometric multiplier (the one of minimum norm) that satisfies the corresponding (CV) condition

and sensitivity properties.

Finally, consider the question of pseudonormality and existence of geometric multipliers in

the case where X is the intersection of a polyhedral set and a convex set C, and there exists

a feasible solution that belongs to the relative interior of C. Then, the constraint set need

not be pseudonormal, as Fig. 3.2(a) illustrates. However, it is pseudonormal in the extended

representation (i.e., when the affine inequalities that represent the polyhedral part are lumped

with the remaining affine inequality constraints), and it follows that there exists a geometric

multiplier in the extended representation. From this, it follows that there exists a geometric

multiplier in the original representation as well (see Exercise 6.2 of [BNO03]).

4. FRITZ JOHN CONDITIONS WHEN THERE IS NO OPTIMAL SOLUTION

In the preceding sections, we studied sensitivity properties of the geometric multiplier or dual

optimal solution of minimum norm in the case where there exists a primal optimal solution or a

dual optimal solution. In this section, we allow the problem to have neither a primal nor a dual

optimal solution, and we develop several analogous results.

The Fritz John conditions of Props. 3.1 and 3.4 are weaker than Prop. 2.1 in that they do

not include conditions analogous to condition (CV). Unfortunately, such a condition does not

26



Fritz John Conditions When There is No Optimal Solution

G = {g(x) | x ∈ X}

0

µ

 Not Pseudonormal

Pseudonormal (Slater Condition)

G = {g(x) | x ∈ X}

H

µ

0

  Pseudonormal (Linear Constraints)

G = {g(x) | x ∈ X}

µ

0

X = Rn

(b) (c)

(a)

H

H

Figure 3.2. Geometric multiplier interpretation of pseudonormality. Consider the set

G =
{

g(x) | x ∈ X
}

and hyperplanes that support this set. For feasibility, G should intersect the nonpositive orthant

{z | z ≤ 0}. The first condition [0 = infx∈X µ′g(x)] in the definition of pseudonormality means

that there is a hyperplane H with normal µ ≥ 0, which passes through 0, supports G, and contains

G in its positive halfspace [note that, as illustrated in figure (b), this cannot happen if G intersects

the interior of the nonpositive orthant; cf. the Slater criterion]. The second condition means that

H does not fully contain G [cf. figures (a) and (c)]. If the Slater criterion holds, the first condition

cannot be satisfied. If the linearity criterion holds, the set G is an affine set and the second

condition cannot be satisfied (this depends critically on X being an affine set rather than X being

a general polyhedron).

hold in the absence of additional assumptions, as can be seen from the following example.

Example 4.1

Consider the one-dimensional problem

minimize f(x)

subject to g(x) = x ≤ 0, x ∈ X = {x | x ≥ 0},

27



Fritz John Conditions When There is No Optimal Solution

where

f(x) =

⎧⎨
⎩

−1 if x > 0,

0 if x = 0,

1 if x < 0.

Then f is convex over X, and the assumptions of Props. 3.1 and 3.4 are satisfied. Indeed, each

FJ-multiplier must have the form µ∗
0 = 0 and µ∗ > 0 (cf. Fig. 4.1). However, here we have f∗ = 0,

and for all x with g(x) > 0, we have x > 0 and f(x) = −1. Thus, there is no sequence {xk} ⊂ X

satisfying (2.1)-(2.3).

S={(g(x),f(x)) | x  ∈ X}

f*

u

w

(µ∗,µ0∗)

Figure 4.1. Illustration of the set S =
{(

g(x), f(x)
)
| x ∈ X

}
in Example 4.1. Even though

µ∗ > 0, there is no sequence {xk} ⊂ X such that g(xk) > 0 for all k, and f(xk) → f∗.

The following proposition imposes the stronger Closedness Assumption in order to derive

an enhanced set of Fritz John conditions analogous to those in Prop. 2.1. The proof uses ideas

that are similar to the ones of the proof of Prop. 2.1, but is more complicated because an optimal

solution of (P) may not exist. In particular, we approximate X by a sequence of expanding

bounded convex subsets and we work with an optimal solution of the corresponding problem.

Proposition 4.1: (Enhanced Fritz John Conditions) Consider the convex problem

(P) under Assumption 2.1 (Closedness), and assume that f∗ < ∞. Then there exists a FJ-

multiplier (µ∗
0, µ

∗) satisfying the following condition (CV). Moreover, if µ∗
0 �= 0, then µ∗/µ∗

0

must be the geometric multiplier of minimum norm.

(CV) If µ∗ �= 0, then there exists a sequence {xk} ⊂ X of infeasible points that satisfies Eqs.

(2.1), (2.2), (2.3).
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Proof: If f(x) ≥ f∗ for all x ∈ X, then µ∗
0 = 1 and µ∗ = 0 form a FJ-multiplier, and condition

(CV) is satisfied. Moreover, (CV) (in particular, Eq. (2.2)) is satisfied by only µ∗ = 0. We will

thus assume that there exists some x ∈ X such that f(x) < f∗. In this case, f∗ is finite. Consider

the problem

minimize f(x)

subject to x ∈ Xk, g(x) ≤ 0,
(4.1)

where

Xk = X ∩
{

x
∣∣∣ ‖x‖ ≤ βk

}
, k = 1, 2, . . . ,

and β is a scalar that is large enough so that for all k, the constraint set
{
x ∈ Xk | g(x) ≤ 0

}
is

nonempty. Since f and gj are closed and convex when restricted to X, they are closed, convex,

and coercive when restricted to Xk. Hence, problem (4.1) has an optimal solution, which we

denote by xk. Since this is a more constrained problem than the original, we have f∗ ≤ f(xk)

and f(xk) ↓ f∗ as k → ∞. Let

γk = f(xk) − f∗.

Note that if γk = 0 for some k, then xk is an optimal solution for problem (P), and the result

follows from Prop. 2.1 on enhanced Fritz John conditions for convex problems with an optimal

solution. Therefore, we assume that γk > 0 for all k.

For positive integers k and positive scalars m, we consider the saddle function

Lk,m(x, ξ) = f(x) +
(γk)2

4k2
‖x − xk‖2 + ξ′g(x) − ‖ξ‖2

2m
.

We note that Lk,m(x, ξ), viewed as a function from Xk to �, for fixed ξ ≥ 0, is closed, convex,

and coercive, in view of the Closedness Assumption. Furthermore, Lk,m(x, ξ) is negative definite

quadratic in ξ, for fixed x. Hence, we can use the Saddle Point Theorem (e.g., [BNO03, Prop.

2.6.9]) to assert that Lk,m has a saddle point over x ∈ Xk and ξ ≥ 0, which we denote by

(xk,m, ξk,m).

We now derive several properties of the saddle points (xk,m, ξk,m), which set the stage for

the main argument. The first of these properties is

f(xk,m) ≤ Lk,m(xk,m, ξk,m) ≤ f(xk),

which is shown in the next paragraph.
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The infimum of Lk,m(x, ξk,m) over x ∈ Xk is attained at xk,m, implying that

f(xk,m) +
(γk)2

4k2
‖xk,m − xk‖2 + ξk,m′g(xk,m)

= inf
x∈Xk

{
f(x) +

(γk)2

4k2
‖x − xk‖2 + ξk,m′g(x)

}

≤ inf
x∈Xk, g(x)≤0

{
f(x) +

(γk)2

4k2
‖x − xk‖2 + ξk,m′g(x)

}

≤ inf
x∈Xk, g(x)≤0

{
f(x) +

(γk)2

4k2
‖x − xk‖2

}
= f(xk).

(4.2)

Hence, we have

Lk,m(xk,m, ξk,m) = f(xk,m) +
(γk)2

4k2
‖xk,m − xk‖2 + ξk,m′g(xk,m) − 1

2m
‖ξk,m‖2

≤ f(xk,m) +
(γk)2

4k2
‖xk,m − xk‖2 + ξk,m′g(xk,m)

≤ f(xk).

(4.3)

Since Lk,m is quadratic in ξ, the supremum of Lk,m(xk,m, ξ) over ξ ≥ 0 is attained at

ξk,m = mg+(xk,m). (4.4)

This implies that

Lk,m(xk,m, ξk,m) = f(xk,m) +
(γk)2

4k2
‖xk,m − xk‖2 +

m

2
‖g+(xk,m)‖2

≥ f(xk,m).
(4.5)

We next show another property of the saddle points (xk,m, ξk,m), namely that for each k,

we have

lim
m→∞

f(xk,m) = f(xk) = f∗ + γk. (4.6)

For a fixed k and any sequence of integers m that tends to ∞, consider the corresponding sequence

{xk,m}. From Eqs. (4.3) and (4.5), we see that {xk,m} belongs to the set
{
x ∈ Xk | f(x) ≤ f(xk)

}
,

which is compact, since f is closed. Hence, {xk,m} has a cluster point, denoted by x̂k, which

belongs to
{
x ∈ Xk | f(x) ≤ f(xk)

}
. By passing to a subsequence if necessary, we can assume

without loss of generality that {xk,m} converges to x̂k. We claim that x̂k is feasible for problem

(4.1), i.e., x̂k ∈ Xk and g(x̂k) ≤ 0. Indeed, the sequence
{
f(xk,m)

}
is bounded from below

by infx∈Xk f(x), which is finite by Weierstrass’ Theorem since f is closed and coercive when

restricted to Xk. Also, for each k, Lk,m(xk,m, ξk,m) is bounded from above by f(xk) [cf. Eq.

(4.3)], so Eq. (4.5) implies that

lim sup
m→∞

gj(xk,m) ≤ 0, ∀ j = 1, . . . , r.
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Therefore, by using the closedness of gj , we obtain g(x̂k) ≤ 0, implying that x̂k is a feasible

solution of problem (4.1). Thus, f(x̂k) ≥ f(xk). Using Eqs. (4.3) and (4.5) together with the

closedness of f , we also have

f(x̂k) ≤ lim inf
m→∞

f(xk,m) ≤ lim sup
m→∞

f(xk,m) ≤ f(xk),

thereby showing Eq. (4.6).

The next step in the proof is given in the following lemma:

Lemma 4.1: For all sufficiently large k, and for all scalars m ≤ 1/
√

γk, we have

f(xk,m) ≤ f∗ − γk

2
. (4.7)

Furthermore, there exists a scalar mk ≥ 1/
√

γk such that

f(xk,mk) = f∗ − γk

2
. (4.8)

Proof: Let γ = f∗ − f(x), where x was defined earlier as the vector in X such that f(x) < f∗.

For sufficiently large k, we have x ∈ Xk and γk < γ. Consider the vector

zk =
(

1 − 2γk

γk + γ

)
xk +

2γk

γk + γ
x,

which belongs to Xk for sufficiently large k [by the convexity of Xk and the fact that 2γk/(γk +

γ) < 1]. By the convexity of f , we have

f(zk) ≤
(

1 − 2γk

γk + γ

)
f(xk) +

2γk

γk + γ
f(x)

=
(

1 − 2γk

γk + γ

)
(f∗ + γk) +

2γk

γk + γ
(f∗ − γ)

= f∗ − γk.

(4.9)

Similarly, by the convexity of gj , we have

gj(zk) ≤
(

1 − 2γk

γk + γ

)
gj(xk) +

2γk

γk + γ
gj(x) ≤ 2γk

γk + γ
gj(x). (4.10)

Using Eq. (4.5), we obtain

f(xk,m) ≤ Lk,m(xk,m, ξk,m)

= inf
x∈Xk

sup
ξ≥0

Lk,m(x, ξ)

= inf
x∈Xk

{
f(x) +

(γk)2

4k2
‖x − x̄k‖2 +

m

2
‖g+(x)‖2

}

≤ f(x) + (βγk)2 +
m

2
‖g+(x)‖2, ∀ x ∈ Xk,
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where in the last inequality we also use the definition of Xk so that ‖x − x̄k‖ ≤ 2βk for all

x ∈ Xk. Substituting x = zk in the preceding relation, and using Eqs. (4.9) and (4.10), we see

that for large k,

f(xk,m) ≤ f∗ − γk + (βγk)2 +
2m(γk)2

(γk + γ)2
‖g+(x)‖2.

Since γk → 0, this implies that for sufficiently large k and for all scalars m ≤ 1/
√

γk, we have

f(xk,m) ≤ f∗ − γk

2
,

i.e., Eq. (4.7) holds.

We next show that there exists a scalar mk ≥ 1/
√

γk such that Eq. (4.8) holds. In the

process, we show that, for fixed k, Lk,m(xk,m, ξk,m) changes continuously with m, i.e, for all

m > 0, we have Lk,m(xk,m, ξk,m) → Lk,m(xk,m, ξk,m) as m → m. [By this we mean, for every

sequence {mt} that converges to m, the corresponding sequence Lk,mt(xk,mt
, ξk,mt) converges to

Lk,m(xk,m, ξk,m).] Denote

fk(x) = f(x) +
(γk)2

4k2
‖x − xk‖2.

From Eq. (4.5), we have

Lk,m(xk,m, ξk,m) = f̄(xk,m) +
m

2
‖g+(xk,m)‖2 = inf

x∈Xk

{
f̄(x) +

m

2
‖g+(x)‖2

}
,

so that for all m ≥ m, we obtain

Lk,m(xk,m, ξk,m) = fk(xk,m) +
m

2
‖g+(xk,m)‖2

≤ fk(xk,m) +
m

2
‖g+(xk,m)‖2

≤ fk(xk,m) +
m

2
‖g+(xk,m)‖2

≤ fk(xk,m) +
m

2
‖g+(xk,m)‖2.

It follows that Lk,m(xk,m, ξk,m) → Lk,m(xk,m, ξk,m) as m ↓ m. Similarly, we have for all m ≤ m,

fk(xk,m) +
m

2
‖g+(xk,m)‖2 ≤ fk(xk,m) +

m

2
‖g+(xk,m)‖2

≤ fk(xk,m) +
m

2
‖g+(xk,m)‖2

= fk(xk,m) +
m

2
‖g+(xk,m)‖2 +

m − m

2
‖g+(xk,m)‖2

≤ fk(xk,m) +
m

2
‖g+(xk,m)‖2 +

m − m

2
‖g+(xk,m)‖2.

For each k, f(xk,m) is bounded from below by infx∈Xk f(x), which is finite by Weierstrass’

Theorem since f is closed and coercive when restricted to Xk. Since, by Eqs. (4.3) and (4.5),

f(xk,m) +
m

2
‖g+(xk,m)‖2 ≤ f(xk),
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we see that m‖g+(xk,m)‖2 is bounded from above as m ↑ m > 0, so that (m−m)‖g+(xk,m)‖2 → 0.

Therefore, we have from the preceding relation that Lk,m(xk,m, ξk,m) → Lk,m(xk,m, ξk,m) as

m ↑ m, which shows that Lk,m(xk,m, ξk,m) changes continuously with m.

Next, we show that, for fixed k, xk,m → xk,m as m → m. Since, for each k, xk,m belongs to

the compact set
{
x ∈ Xk | f(x) ≤ f(xk)

}
, it has a cluster point as m → m. Let x̂ be a cluster

point of xk,m. Using the continuity of Lk,m(xk,m, ξk,m) in m, and the closedness of fk and gj ,

we obtain
Lk,m(xk,m, ξk,m) = lim

m→m̄
Lk,m(xk,m, ξk,m)

= lim
m→m

{
fk(xk,m) +

m

2
‖g+(xk,m)‖2

}
≥ fk(x̂) +

m

2
‖g+(x̂)‖2

≥ inf
x∈Xk

{
fk(x) +

m

2
‖g+(x)‖2

}
= Lk,m(xk,m, ξk,m).

This shows that x̂ attains the infimum of fk(x) + m
2 ‖g+(x)‖2 over x ∈ Xk. Since this function

is strictly convex, it has a unique optimal solution, showing that x̂ = xk,m.

Finally, we show that f(xk,m) → f(xk,m) as m → m. Since f is lower semicontinu-

ous at xk,m, we have f(xk,m) ≤ lim infm→m f(xk,m). Thus it suffices to show that f(xk,m) ≥
lim supm→m f(xk,m). Assume that f(xk,m) < lim supm→m f(xk,m). Using the continuity of

Lk,m(xk,m, ξk,m) in m and the fact that xk,m → xk,m as m → m, we have

fk(xk,m) + lim inf
m→m

‖g+(xk,m)‖2 < lim sup
m→m

Lk,m(xk,m, ξk,m)

= Lk,m(xk,m, ξk,m)

= fk(xk,m) + ‖g+(xk,m)‖2.

This contradicts the lower semicontinuity of gj , so that f(xk,m) ≥ lim supm→m f(xk,m). Thus

f(xk,m) is continuous in m.

From Eqs. (4.6), (4.7), and the continuity of f(xk,m) in m, we see that there exists some

scalar mk ≥ 1/
√

γk such that Eq. (4.8) holds. Q.E.D.

We are now ready to construct FJ-multipliers with the desired properties. By combining

Eqs. (4.8), (4.3), and (4.5) (for m = mk), together with the facts that f(xk) → f∗ and γk → 0

as k → ∞, we obtain

lim
k→∞

(
f(xk,mk) − f∗ +

(γk)2

4k2
‖xk,mk − xk‖2 + ξk,m′

kg(xk,mk)
)

= 0. (4.11)

Denote

δk =
√

1 + ‖ξk,mk‖2, µk
0 =

1
δk

, µk =
ξk,mk

δk
. (4.12)
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Since δk is bounded from below by 1, Eq. (4.11) yields

lim
k→∞

(
µk

0f(xk,mk) − µk
0f∗ +

(γk)2

4k2δk
‖xk,mk − xk‖2 + µk′

g(xk,mk)
)

= 0. (4.13)

Substituting m = mk in the first relation of Eq. (4.2) and dividing by δk, we obtain

µk
0f(xk,mk) +

(γk)2

4k2δk
‖xk,mk − xk‖2 + µk′

g(xk,mk)

≤ µk
0f(x) + µk′

g(x) +
(βγk)2

δk
, ∀ x ∈ Xk,

where we also use the fact that ‖x − x̄k‖ ≤ 2βk for all x ∈ Xk (cf. the definition of Xk). Since

the sequence
{
(µk

0 , µk)
}

is bounded, it has a cluster point, denoted by (µ∗
0, µ

∗), which satisfies

conditions (ii) and (iii) in the definition of FJ-multiplier. Without loss of generality, we will

assume that the entire sequence
{
(µk

0 , µk)
}

converges to (µ∗
0, µ

∗). For any x ∈ X, we have

x ∈ Xk for all k sufficiently large. Taking the limit as k → ∞ in the preceding relation, and

using Eq. (4.13) and γk → 0, yields

µ∗
0f

∗ ≤ µ∗
0f(x) + µ∗′g(x), ∀ x ∈ X,

which implies that
µ∗

0f
∗ ≤ inf

x∈X

{
µ∗

0f(x) + µ∗′g(x)
}

≤ inf
x∈X, g(x)≤0

{
µ∗

0f(x) + µ∗′g(x)
}

≤ inf
x∈X, g(x)≤0

µ∗
0f(x)

= µ∗
0f

∗.

Thus we have

µ∗
0f

∗ = inf
x∈X

{
µ∗

0f(x) + µ∗′g(x)
}
,

so that µ∗
0, µ

∗ satisfy condition (i) in the definition of FJ-multiplier. Note that the existence of

x ∈ X such that f(x) < f∗, together with condition (i), imply that µ∗ �= 0.

Finally, we establish condition (CV). Using Eqs. (4.4), (4.12) and the fact that µk → µ∗,

we obtain
g+(xk,mk)

‖g+(xk,mk)‖ =
µk,mk

‖µk,mk‖ → µ∗

‖µ∗‖ .

We have from Eq. (4.8) and γk → 0 that f(xk,mk) → f∗. We also have from Eqs. (4.3), (4.5)

with m = mk, and (4.8) that

mk

2
‖g+(xk,mk)‖2 ≤ f(x̄k) − f(xk,mk) =

3
2
γk,

where the equality uses Eqs. (4.4), (4.12). Since γk → 0 and mk ≥ 1/
√

γk → ∞, this yields

g+(xk,mk) → 0. Moreover, combining the above inequality with Eq. (4.8) yields

f∗ − f(xk,mk)
‖g+(xk,mk)‖ =

γk

2‖g+(xk,mk)‖ ≥ mk‖g+(xk,mk)‖
6

=
‖µk,mk‖
6µ

k,mk
0

. (4.14)
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If µ∗
0 = 0, then µ

k,mk
0 → 0, so Eq. (4.14) together with ‖µk,mk‖ → ‖µ∗‖ > 0 yields

f∗ − f(xk,mk)
‖g+(xk,mk)‖ → ∞.

It follows that the sequence {xk,mk} satisfies condition (CV) of the proposition. If µ∗
0 �= 0, then

µ∗/µ∗
0 is a geometric multiplier and f∗ = q∗, so that µ∗/µ∗

0 is also a dual optimal solution. Thus

the set of dual optimal solutions is nonempty and coincides with the set of geometric multipliers.

Then, the vector (1, µ̄), where µ̄ is the dual optimal solution of minimum norm, is a FJ-multiplier

and, by Prop. 3.2 and the fact f∗ = q∗, it satisfies condition (CV) and is the only dual optimal

solution that satisfies this condition. This completes the proof. Q.E.D.

The FJ-multipliers of Props. 3.1, 3.4, 4.1 define a hyperplane with normal (µ∗, µ∗
0) that

supports the set of constraint-cost pairs (i.e., the set M of Fig. 3.1) at (0, f∗). On the other

hand, it is possible to construct a hyperplane that supports the set M at the point (0, q∗), where

q∗ is the dual optimal value, while asserting the existence of a sequence that satisfies a condition

analogous to condition (CV) of Prop. 4.1. This is the subject of the next proposition. Its proof

uses Lemmas 2.1 and 3.1.

In analogy with a FJ-multiplier, we consider a scalar µ∗
0 and a vector µ∗ = (µ∗

1, . . . , µ
∗
r)′,

satisfying the following conditions:

(i) µ∗
0q

∗ = infx∈X

{
µ∗

0f(x) + µ∗′g(x)
}
.

(ii) µ∗
j ≥ 0 for all j = 0, 1, . . . , r.

(iii) µ∗
0, µ

∗
1, . . . , µ

∗
r are not all equal to 0.

We call such a pair (µ∗
0, µ

∗) a dual FJ-multiplier. If µ∗
0 �= 0, then µ∗/µ∗

0 is a dual optimal solution;

otherwise µ∗
0 = 0 and µ∗ �= 0.
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Proposition 4.2: (Enhanced Dual Fritz John Conditions) Consider the convex

problem (P) under Assumption 2.1 (Closedness), and assume that f∗ < ∞ and −∞ < q∗.

Then there exists a dual FJ-multiplier (µ∗
0, µ

∗) satisfying the following condition (dCV).

Moreover, if µ∗
0 �= 0, then µ∗/µ∗

0 must be the dual optimal solution of minimum norm.

(dCV) If µ∗ �= 0, then there exists a sequence {xk} ⊂ X of infeasible points that satisfies

f(xk) → q∗, g+(xk) → 0, (4.15)

q∗ − f(xk)
‖g+(xk)‖ →

{
‖µ∗‖/µ∗

0 if µ∗
0 �= 0,

∞ if µ∗
0 = 0,

(4.16)

g+(xk)
‖g+(xk)‖ → µ∗

‖µ∗‖ . (4.17)

Proof: Since by assumption, we have −∞ < q∗ and f∗ < ∞, it follows from the weak duality

relation q∗ ≤ f∗ that both q∗ and f∗ are finite. For k = 1, 2, . . ., consider the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 1
k4

, j = 1, . . . , r.

By Lemma 3.1, for each k, the optimal value of this problem is less than or equal to q∗. Then,

for each k, there exists a vector x̃k ∈ X that satisfies

f(x̃k) ≤ q∗ +
1
k2

, gj(x̃k) ≤ 1
k4

, j = 1, . . . , r.

Consider also the problem

minimize f(x)

subject to gj(x) ≤ 1
k2

, j = 1, . . . , r,

x ∈ X̃k = X ∩
{

x
∣∣∣ ‖x‖ ≤ k

(
max
1≤i≤k

‖x̃i‖ + 1
)}

.

(4.18)

Since f and gj are closed and convex when restricted to X, they are closed, convex, and coercive

when restricted to X̃k. Hence, problem (4.18) has an optimal solution, which we denote by xk.

Note that since x̃k belongs to the feasible solution set of this problem, we have

f(xk) ≤ f(x̃k) ≤ q∗ +
1
k2

. (4.19)

For each k, we consider the saddle function

Lk(x, ξ) = f(x) + ξ′g(x) − ‖ξ‖2

2k
,
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and the set

Xk = X̃k ∩
{
x | gj(x) ≤ k, j = 1, . . . , r

}
. (4.20)

We note that Lk(x, ξ), for fixed ξ ≥ 0, is closed, convex, and coercive in x, when restricted to

Xk, and negative definite quadratic in ξ for fixed x. Hence, using the Saddle Point Theorem

(e.g., [BNO03], Prop. 2.6.9), we can assert that Lk has a saddle point over x ∈ Xk and ξ ≥ 0,

denoted by (xk, ξk).

Since Lk is quadratic in ξ, the supremum of Lk(xk, ξ) over ξ ≥ 0 is attained at

ξk = kg+(xk). (4.21)

Similarly, the infimum of Lk(x, ξk) over x ∈ Xk is attained at xk, implying that

f(xk) + ξk′
g(xk)= inf

x∈Xk

{
f(x) + ξk′

g(x)
}

= inf
x∈Xk

{
f(x) + kg+(xk)′g(x)

}

≤ inf
x∈Xk, gj(x)≤ 1

k4 , j=1,...,r

⎧⎨
⎩f(x) + k

r∑
j=1

g+
j (xk)′gj(x)

⎫⎬
⎭

≤ inf
x∈Xk, gj(x)≤ 1

k4 , j=1,...,r

{
f(x) +

r

k2

}

= f(xk) +
r

k2

≤ q∗ +
r + 1
k2

,

(4.22)

where the second inequality follows using the fact g+
j (xk) ≤ k, j = 1, . . . , r [cf. Eq. (4.20)], and

the third inequality follows from Eq. (4.19).

Since q∗ is finite, we may select a nonnegative sequence {ζk} such that

q(ζk) → q∗,
‖ζk‖2

2k
→ 0. (4.23)

[For example, we can take ζk to be any maximizer of q(ζ) subject to ζ ≥ 0 and ‖ζ‖ ≤ k1/3.]

Then, we have for all k,

Lk(xk, ξk)= sup
ξ≥0

inf
x∈Xk

Lk(x, ξ)

≥ sup
ξ≥0

inf
x∈X

Lk(x, ξ)

= sup
ξ≥0

{
inf

x∈X

{
f(x) + ξ′g(x)

}
− ‖ξ‖2

2k

}

= sup
ξ≥0

{
q(ξ) − ‖ξ‖2

2k

}

≥ q(ζk) − ‖ζk‖2

2k
.

(4.24)
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Combining Eqs. (4.24) and (4.22), we obtain

q(ζk) − ‖ζk‖2

2k
≤ Lk(xk, ξk)

= f(xk) + ξk′
g(xk) − ‖ξk‖2

2k

≤ f(xk) + ξk′
g(xk)

≤ q∗ +
r + 1
k2

.

(4.25)

Taking the limit in the preceding relation, and using Eq. (4.23), we obtain

lim
k→∞

{
f(xk) − q∗ + ξk′

g(xk)
}

= 0. (4.26)

Denote

δk =
√

1 + ‖ξk‖2, µk
0 =

1
δk

, µk =
ξk

δk
. (4.27)

Since δk is bounded from below by 1, Eq. (4.26) yields

lim
k→∞

{
µk

0

(
f(xk) − q∗

)
+ µk′

g(xk)
}

= 0. (4.28)

Dividing both sides of the first relation in Eq. (4.22) by δk, we get

µk
0f(xk) + µk′

g(xk) ≤ µk
0f(x) + µk′

g(x), ∀ x ∈ Xk.

Since the sequence
{
(µk

0 , µk)
}

is bounded, it has a cluster point (µ∗
0, µ

∗). This cluster point

satisfies conditions (ii) and (iii) of the proposition. Without loss of generality, we assume that

the entire sequence converges. For any x ∈ X, we have x ∈ Xk for all k sufficiently large. Taking

the limit as k → ∞ in the preceding relation and using Eq. (4.28) yields

µ∗
0q

∗ ≤ µ∗
0f(x) + µ∗′gj(x), ∀ x ∈ X.

We consider separately the two cases, µ∗
0 > 0 and µ∗

0 = 0, in the above relation to show that

(µ∗
0, µ

∗) satisfy condition (i) of the proposition. Indeed, if µ∗
0 > 0, by dividing with µ∗

0, we have

q∗ ≤ inf
x∈X

{
f(x) +

µ∗′

µ∗
0

g(x)
}

= q

(
µ∗

µ∗
0

)
≤ q∗.

Similarly, if µ∗
0 = 0, it can be seen that

0 = inf
x∈X

µ∗′g(x)

[since f∗ < ∞, so that there exists an x ∈ X such that g(x) ≤ 0 and µ∗′g(x) ≤ 0]. Hence, in

both cases, we have

µ∗
0q

∗ = inf
x∈X

{
µ∗

0f(x) + µ∗′g(x)
}

,
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thus showing condition (i) in the definition of dual FJ-multiplier.

If µ∗ = 0, then µ∗
0 �= 0, (dCV) is automatically satisfied, and µ∗/µ∗

0 = 0 has minimum

norm. Assume now that µ∗ �= 0. Using Eqs. (4.21), (4.27) and the fact that µk → µ∗, we obtain

g+(xk)
‖g+(xk)‖ =

µk

‖µk‖ → µ∗

‖µ∗‖ .

This proves (4.17). Also, we have from Eq. (4.25) that

k
(
f(xk) − q∗

)
+ ξk′

kg(xk) ≤ r + 1
k

, ∀ k = 1, 2, . . . .

Using Eq. (4.21), this yields

k
(
f(xk) − q∗

)
+ ‖ξk‖2 ≤ r + 1

k
.

Dividing both sides by ‖ξk‖ = k‖g+(xk)‖ and using Eq. (4.27) yields

q∗ − f(xk)
‖g+(xk)‖ ≥ ‖ξk‖ − r + 1

k‖ξk‖ =
‖µk‖
µk

0

− r + 1
k‖µk‖/µk

0

. (4.29)

If µ∗
0 = 0, then µk

0 → 0, so Eq. (4.29) together with ‖µk‖ → ‖µ∗‖ > 0 yields

q∗ − f(xk)
‖g+(xk)‖ → ∞.

If µ∗
0 �= 0, then Eq. (4.29) together with µk

0 → µ∗
0 and ‖µk‖ → ‖µ∗‖ yields

lim inf
k→∞

q∗ − f(xk)
‖g+(xk)‖ ≥ ‖µ∗‖

µ∗
0

.

Since µ∗/µ∗
0 is a dual optimal solution, Lemma 2.1 shows that in fact µ∗/µ∗

0 is of minimum norm

and the inequality holds with equality.

We finally show that f(xk) → q∗ and g+(xk) → 0. By Eqs. (4.25) and (4.23), we have

lim
k→∞

‖ξk‖2

2k
= 0. (4.30)

By Eq. (4.21), we have

ξk′g(xk) =
1
k
‖ξk‖2,

so using also Eqs. (4.25) and (4.23), we obtain

lim
k→∞

f(xk) +
‖ξk‖2

2k
= q∗,

which together with Eq. (4.30) shows that f(xk) → q∗. Moreover, Eqs. (4.30) and (4.21) imply

that

lim
k→∞

k‖g+(xk)‖2 = 0,
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showing that g+(xk) → 0. Therefore, the sequence {xk} satisfies condition (dCV) of the propo-

sition, completing the proof. Q.E.D.

Note that the proof of Prop. 4.2 is similar to the proof of Prop. 2.1. The idea is to generate

saddle points of the function

Lk(x, ξ) = f(x) + ξ′g(x) − ‖ξ‖2

2k
,

over x ∈ Xk [cf. Eq. (4.20)] and ξ ≥ 0. It can be shown that

Lk(xk, ξk) = inf
u∈	r

{
pk(u) +

k

2
‖u+‖2

}
,

where pk(u) is the optimal value of the problem

minimize f(x)

subject to g(x) ≤ u, x ∈ Xk,
(4.31)

(see the discussion following the proof of Prop. 2.1). For each k, the value Lk(xk, ξk) can be

visualized geometrically as in Fig. 2.1. However, here the rate at which Xk approaches X is

chosen high enough so that Lk(xk, ξk) converges to q∗ as k → ∞ [cf. Eq. (4.25)], and not to f∗,

as in the proof of Props. 2.1 or 4.1.
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