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Abstract. Naive implementations of Newton's method for uncon- 
strained N-stage discrete-time optimal control problems with Bolza 
objective functions tend to increase in cost like N 3 as N increases. 
However, if the inherent recursive structure of the Bolza problem is 
properly exploited, the cost of computing a Newton step will increase 
only linearly with N. The efficient Newton implementation scheme 
proposed here is similar to Mayne's DDP (differential dynamic progra/h- 
ming) method but produces the Newton step exactly, even when the 
dynamical equations are nonlinear. The proposed scheme is also related 
to a Riccati treatment of the linear, two-point boundary-value problems 
that characterize optimal solutions. For discrete-time problems, the 
dynamic programming approach and the Riccati substitution differ in 
an interesting way; however, these differences essentially vanish in the 
continuous-time limit. 

Key Words. Unconstrained optimal control, Newton's method, 
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I. Introduction 

Assume that  J is a twice con t inuous ly  differentiable real-valued func- 
t ion  defined on an open  set in a real Hilber t  space f~ with inner  p roduc t  
( . . - ) ,  and  let VJ (u )  and  V2 j (u )  denote  the cor responding  gradient  vector 
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and Hessian operator at u e f~ (with respect to (-, .)). By definition, ¢ is an 
extremal of J iff 

VJ(~) =0, (1) 

and an extremal ~ is nonsingular iff V2J(~ :) is one-to-one and onto. Near 
a nonsingular extremal, Newton's map is well defined by 

u ~ u + 8u, (2a) 

with 

V2J(u) 8u = -V J( u ). (2b) 

Moreover, the iterates of this map converge rapidly (in fact, superlinearly) 
to ~ for all nearby starting points (Ref. 1). 

In general, the rapid convergence rate of Newton's method is at least 
partially offset by the cost of computing 6u at each iteration, particularly 
when 12 is finite-dimensional and d ~ dim 1] is large, e.g., it may require as 
many as O ( d  3) multiplications to obtain 6u from (2b) by Gaussian reduc- 
tion, over and above those calculations entailed in the construction of matrix 
representors for VJ(u) and V2j(u). On the other hand, for certain specially 
structured objective functions J, the O ( d  3) estimate is much too conservative 
and (2) may actually rival or surpass the standard quasi-Newton methods 
(Ref. 2) in computational efficiency. In the present paper, this point is 
developed for unconstrained discrete-time and continuous-time optimal 
control problems with Bolza objective functions. 

The N-stage discrete-time optimal control problems treated in Section 
2 have objective functions J defined by 

N 
J ( u )  = P(xN+I)+  Y~ l,(x,, u,), (3a) 

i=1 

xl = a, (3b) 

xi+l = f ( x , ,  ul), i < i < - N,  (3c) 

where x~ and ui lie in real Hilbert spaces ~ and q/ with m = dim og < oo, 
and where the domain of J lies in the N-fold direct sum 

f~= °/t@. • .@q/ (N-times), (4a) 

with elements u = ( u l , . . . ,  uN), v = (vl,.  • . ,  vN), etc., and dim f~ = d = Nm. 
The inner product in 0//is denoted by (- , -) ,  and the corresponding inner 
product in O is given by 

N 
(u, v )=  Z (ui, v,). (4b) 

i=1 
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For simplicity, the inner product in X is also denoted by ( . , , ) ,  and all 
norms are represented by the common symbol i[" I[. If  the initial vector a 
is given, if P and l~ are real-valued C2-maps defined on all of  05 and ~ x  °l 4 
respectively, and if the f ' s  are C2-maps from ~ x q / t o  ~, then formula (3) 
defines a real-valued C2-map J on all of  12. Under somewhat stronger 
conditions on 12 and J, Murray and Yakowitz (Ref. 3) have recently shown 
that Mayne's second-order differential dynamic programming (DDP) 
method developed in Refs. 4 and 6 produces iterates that converge quadrati- 
cally to nonsingular local minimizers ¢ = (¢1, • • •, ~N) and are asymptotically 
like Newton iterates. In the same reference, it is claimed that the DDP 
algorithm is far less expensive to implement than Newton's method because 
the former scheme exploits the recursive structure inherent in (3), while the 
latter scheme cannot (see the remarks on pp. 398 and 400 in Ref. 3). However, 
in Section 2, it is shown that Newton's method actually does have its own 
comparably efficient dynamic programming implementation scheme for (3). 

The discrete-time Bolza objective function (3) has a continuous-time 
counterpart,  

J(u) = P(x(1))  + l(t, x(t), u(t)) dt, (5a) 

x(0)  = a, (Sb) 

dx/dt =f ( t ,  x, u(t)), 0 <- t-< 1, (5c) 

where u: [0, 1]--> ~ lies in some appropriate Hilbert space fL e.g., 

f~ = 3?2([0, 1], o//), (6a) 

with inner product 

Io' (u, v)= (u(t), v(t)) dt. (6b) 

The initial vector a a ~ is supposed to be given, the functions P and I are 
real-valued C2-maps defined on ~ and R I x ~ x  °l 4 a n d f i s  a C2-map from 
R 1 x ~ × 0// to ~. However, these conditions alone are no longer sufficient 
for J to be C 2, or even well-defined near u ~ fL Other restrictions are needed 
to ensure that the initial-value problem (5b)-(5c) has a unique solution on 
[0, 1] for every u in some open subset of fL Furthermore, for all such u, 
for every v ~ f~, and for all sufficiently small real s, the unique solution 
x( ';  u+sv) of 

x(0) = a, (7a) 

dx/dt=f(t ,x ,u(t)+sv(t)) ,  0 - t - < l ,  (7b) 



26 JOTA: VOL. 63, NO. 1, OCTOBER 1989 

must have first and second s-derivatives that satisfy standard linear 
equations of variation associated with (5b)-(5c). These conditions produce 
tractable integral representations for the first and second differentials of J 
and lead to a simple procedure for approximating the Newton increment 
6u for J. Section 3 is concerned mainly with the formal aspects of this 
procedure, and the (admittedly important) technical issues just raised are 
largely set aside. Formally, the continuous-time dynamic programming 
implementation amounts to an unrelaxed version of Merriam's second- 
variation method (Ref. 14), and is also closely related to Mitter's Riccati 
implementation of quasilinearization (Ref. 15). 

In passing, let us note that, while ~ and q/ are typically R ~ and R" 
with the standard unweighted inner products, there is little to be gained by 
imposing this restriction at the outset. On the contrary, a number of interest- 
ing control problems are either complicated or excluded in this way, and 
the mathematical presentation is severely burdened by unwieldy subscript 
notation and irrelevant formulas for inner products, norms, differentials, 
and the like. Let it also be noted that no generality is lost by confining the 
following development to minimization problems. 

2. Discrete-Time Optimal Control Problems 

Near a nonsingular local minimizer, the Hessian operator ~72j(u) is 
positive-definite and it follows that Newton's increment 6u is the unique 
minimizer of the quadratic function 

6(v) = (7J(u) ,  v)+ (1/2)(v, 72J(u)v), (8a) 

i.e., 

{ru} = arg min qb(v). (8b) 

It will now be shown that, if J is defined by (3), then ~b(v) is itself an 
objective function for a related discrete-time linear-quadratic optimal con- 
trol problem and 6u can be found with the standard dynamic programming 
embedding technique for such problems. The second-order DDP method 
(Ref. 6) for (3) is properly viewed as an approximate version of the recursive 
procedure developed here, and the two schemes actually coincide when the 
difference equations (3c) are affine in (xi, ui). 

If J is defined by (3), the chain rule then yields 

(VJ(u), v) = (d/ds)J(u + sv)ls=o 
N 

=(VP, yn,+,)+ 2 [(V~li, yi)+(V,l~, vl)], (9a) 
i = l  
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where it is understood that the gradient VP and the partial gradients Vxi~ 
and Vul~ are evaluated at xN+l and (x~, ui), respectively, and where 

Y, a= ( d /  ds)x,(u + sv)ls=o, (9b) 

with 

Xl(U+SV)=a,  

x,+ ~ ( u + sv  ) = f , (  x , (  u + sv  ),  u, + sv , ) ,  

for all real s. It follows easily from (9b)-(9d) that 

Yl = 0, 

Yi+l = Aiyi + Biv. 1 <- i <- N, 

with 

(9c) 

1 - i - N,  (9d) 

(10a) 

(10b) 

A, =ofJOx, Bi =c3f~/c3u, (10c) 

where it is once again understood that the partial Fr~chet differentials in 
(10c) are evaluated at (x .  u~). 

Expressions (9)-(10) for (VJ(u), v) can be simplified by introducing 
new adjoint variables 6~ • ~F satisfying 

6N+1 = VP, (1 la) 

6~=A*6~+l+Vxli, N>- i>- l ,  ( l lb)  

where A* : ~--> ~ is the adjoint of the bounded linear operator A ~ : ~  ~. 
By construction, 

(6i+1, Y'+I) = (~/'~+1, Aiyi + B,v,) 

= (A'6,+1, y,) + (6,+1, B,v,), 

and therefore 

(6,+1, Y,+1) - ( 6 , ,  Y,)+ (Vx/,, y,) = (6,+1, B,v,). (12) 

Now, put 

H~(6, x, u) = ( 6 , f ( x ,  u)) + I. (13a) 

and observe that 

VuHi( 6i+l , xi, ui) ---- (B/*6i+1)q-Vuli. (13b) 

By summing expressions (12) for 1 - i -  N. and applying (9a), (10a), (1 l a), 
and (13), one gets 

N 
(VJ(u),  v)= Y. (r~, vi), (14a) 

i=l  
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with 

r~ = V uni( ~bi+ l , x,, ui ). (14b) 

The second-order term on the right in (8a) also can be expressed 
succinctly in terms of the Hamiltonians Hi and the adjoint variables 0~ 
when J is defined by (3). Once again, the chain rule yields 

(v, V2j(u)/3) = (dZ/d$2)j(u + sO)Is= 0 

N 

= (VP, ZN+,) + (YN+I. V2PyN+,) + Z [(Vfl,, z,) 
i=1 

V..l,v,)], (15a) + (y,, Vxxl, V,xl, 2 

where y~ is defined as before, and 

zi = ( d2/ ds2)xi( u + sv)l,=o. (15b) 

In view of (9c)-(9d), the vectors z~ ~ X are recursively generated by 

zl = 0, (16a) 

z~+~ = A,zi + ( C~y~)y, + 2( D~yi)v~ + ( E~v~)v~, (16b) 

for 1 --- i -< N, with 

C, = O2f/Ox 2, D, = 02f/OuOx. Ei = o2f/ou z, (16c) 

where the second Fr6chet differentials are evaluated at (x~, u~). Notice that 
Ci ~ BL( ~, ~ )  ), C~y~ ~ BL( ~, ~),  etc., where BL( ~, ~)  denotes the space 
of bounded linear operators from ~ to o~. Equations (1 lb) and (16b) easily 
produce 

(I//i+1 , Z i + I )  -- ( ~¢i, Zi) "~ (V xli, Zi) 

= (1~i+1 , (Ciyi)Yi)+2(l[li_el, (DiYi)l)i)q-(l~i+l, (Eivi)l)i). ( 1 7 )  

By summing these expressions, and using ( l la) ,  (13a), (15a), and (16a), 
one now obtains 

(v, V2J(u)v) = (YN+I, QN+lYN+O 

N 
+ E [(Y~, Q~, yi)+2(y,, R,v,)+(v,, S~v,)], (18a) 

i=1 

with 

QN+~ = v2P(xN+l) (18b) 
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and 

= V~xH~(tP,+l, x~, ui), (18c) Q~ 2 

Ri = 2 V.~H,(¢i+t, x,. u,). (18d) 

s, = VLH~(0~+I. x ,  u,). (18e) 

Notice that the auxiliary variables z~ do not appear in (18). 
The results obtained thus far are collected in the following theorem. 

Theorem 2.1. Let f~ be the N-fold direct sum (4a), let J be the 
discrete-time Bolza objective function defined by (3), and suppose that the 
functions P, l~, and f are twice continuously differentiable. Furthermore, 
let s ¢ be a nonsingular local minimizer of J in 12. Then, for each u sufficiently 
near ~: in ~ ,  the Hessian V2J(u) is positive definite and the corresponding 
Newton increment ~u = -V2 j (u ) - lV j (u )  is the unique minimizing solution 
of the discrete-time, linear-quadratic optimal control problem with Bolza 
objective function 

0(v)  =½(YN+,, QN+,YN+O 
N 

+ ~ [(ri, v,)+l/2(y~, Qy~)+(y,, R , v )+l /2 (v ,  S~vi)], (19a) 
i = 1  

where 

yl -- 0, (19b) 

yi+l=Aiy~+BdJi, l<-i<-N, (19c) 

and where the vectors r~ and the operators A~, B ,  Qi, R~, and S~ are obtained 
from (13a), (14b), and (18b)-(18e) by first finding x~ , . . . ,  XN+~ with (3b)- 
(3c), and then finding tbN+~,... ,  ~P~ with (11). 

The linear-quadratic control problem in Theorem 2.1 can be solved by 
dynamic programming. Since the procedure is well known (Ref. 5), a brief 
summary should suffice here. To start with, one embeds the N-stage objective 
function 0(v)  in a family of similar objectives, 

N 

Ok(Y, l ) k , ' ' ' ,  DN) = 1/2(yN+I, QN+~YN+I)+ ~ qi(YJ, Vi) ,  (20a) 
i~k  

with 

q~(Yi, vi)= (r~, v~)+ l/2(y,, Q~yl)+ (y~, Rivi)+ 1/2(v~, S~v~), (20b) 

yk = Y, (20C) 

y~+~ = A~y~ + B~v~, k <- i <- N, (20d) 

where y is an arbitrary vector in ~ and k = N, N -  1 . . . . .  
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It is known that 

~b°(y) = inf ¢b,(y;v, . . . .  ,VN),  i < - - N , y ~ ,  (21) 
vjEql 

i < j ~ N  

if  and only if 

~b°(y) = inf [q,(y, v)+cb°+~(A~y+B,v)], i<_ N, y ~ ,  (22a) 
yea// 

with 

~b°+,(y) = (1/2)(y, QN+lY). (22b) 

Furthermore, suppose that ~b°(y) is generated by (22) for i -< N, and consider 
the set of control vectors 

v,(y ) = arg min [ q,(y, v) + c~ °+ l( A iy  + B~v ) ]. (23) 
v ~ all 

Then, 

C~g(y; r / k , . . . ,  r/N) = ~b°(Y), 

if and only if 

r/i E l.)O(yl), k <- i <- N, 

where 

yk = y, 

Y '+  I = A i y i  q- B i ' q i ,  

Observe now that 

k<_i<_N. 

(24) 

(25a) 

(25b) 

(25c) 

linear operators 0i: ~ ~ and F,: ~ q/, such that, for 1 - i_< N, 

¢b °(y ) = a, + (fl,, y)  + ½(y, O,y ), (27a) 

S, + B*O,÷IB~ is positive definite, (27b) 

v°(y)  = {3/, + F,y}, (27c) 

3/, = - (S, + B*O,+IB,)-I(r, + B~*fl,+l), (27d) 

F, = - ( S, + B*~ O,+IB,)-~( R * + B* O,+~A,), (27e) 

r/, = 3/, + F,y,, (27f) 

~b(v) = ~b,(0; v , , . . . ,  VN), (26) 

by construction. Hence, the minimizers r / = ( r / 1 , . . . ,  r/N) of ~b can be 
obtained by solving (22) backward for ~b°+ l (y ) , . . . ,  ~b°(y), constructing 
the sets v ° ( y ) , . . . ,  v°(y) in the process, and then generating all possible 
solutions of  (25), with k = 1 and y = 0. In particular, it can be seen that the 
quadratic function ~b(v) has a unique minimizer 7/= (r/1 . . . .  , r/N) in 1"~ if 
and only if there are scalars a,, vectors / t ie ~ and y, ~ q/, and bounded 
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with 

~ N + I  ~--" O, 

fl~=F*ri+(Ai+B~F~)*~+~, N>- i>- l ,  

ON+I = QN+I, 

O~ = Qi + A~* Oi+lAi +(R,* + B~* Oi+~A~) * F~, 

Yl =0,  

Yi+l = (Ai + BiFi)yi + Bi3'~, 1 <- i <- N. 

(27g) 

(27h) 

(27i) 

N -  i - 1, (27j) 

(27k) 

(27/) 

Notice that, since dim 0//< oo, the negation of (27b) for some i would imply 
that, for all y, the sets v°(y) are either empty or contain infinitely many 
elements; in this case, it is not difficult to seethat ~b would have no minimizer 
or infinitely many minimizers. Furthermore, since dim l~ < o0, the quadratic 
function ~b has a unique (global) minimizer ~7 if and only if ~/is a nonsingular 
(local) minimizer of oh. Consequently, ~b has a positive-definite Hessian j f  
and only if conditions (27) hold. 

Our recursive procedure for computing the Newton increment 6u may 
now be summarized as foUows. 4 

Algorithm A1 
Step 1. Given u~Ft ,  construct xl . . . .  , XN+I with (3b)-(3c) and 

ON+I . . . .  ,01 with (11). 

Step 2. Compute the vectors rl and the operators Ai, B~, Q~, R~, and 
S~ with (13a), (14b), and (18b)-(18e). 

Step 3. Solve (27g)-(27j) backward for 0~ and /3~, and compute yi 
and Fi with (27d)-(27e). 

Step 4. Solve (27k)-(271) forward for y~, and compute ~7~ with (270. 

Step 5. SetSu=77. 

Note 2.1. When u is sufficiently near a nonsingutar minimizer ~ of J 
in (3), the function ~b(v) has a unique minimizer, condition (27b) is 
automatically satisfied, and Algorithm A1 is well posed; moreover, the 
resulting Newton increment 6u provides a descent direction for J at u. 
Elsewhere, if (27b) fails at certain stages k in the implementation of 
(27g)-(27j), a simple alteration of the algorithm will at least yield a descent 
direction for J ;  e.g., one merely replaces Sk by Sk+Ak!, where Ak is a 

4Note added in proof. Pantoja has published an independent and substantially different 
derivation of Algorithm A1 in Ref. 16. 
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positive scalar large enough to make Sk +)tkl4-B* Ok+lB k positive definite, 
The resulting vector r/= (~1 , . . . ,  ~7N) then minimizes 

where 

(VJ(u), v) + 1/2(v, (V2J(u) + A(u))v), (28a) 

A(u)v = (Alvl, •. •, ANVN). (28b) 

By construction, V2j(u)+A(u) is positive definite, and 

71 = - (V2J(u) + A(u))-lVJ(u) (29) 

is a descent direction for J at u; furthermore, when dim qJ is small, the 
most negative eigenvalue of Sk + B*Ok+IBk is easily estimated and a s*uitable 
value for Ak is readily found. A similar procedure is described in Ref. 6 for 
the second-order DDP method. 

Note 2.2. When q /=  R" and Y~= •" with the standard unweighted 
inner products, Algorithm A1 is implemented by replacing vectors with 
column matrices, operators with matrix representors, operator composition 
with matrix multiplication, and operator adjoints with matrix transposes. 

Note 2.3. If the computational cost associated with the evaluation of 
the functions f ,  I~ and their differentials is roughly the same at each stage 
i, then the overall cost of implementing Algorithm A1 is directly proportional 
to the number of stages N. On the other hand, if m = dim 0//, the cost of 
the linear equation solver in a standard quasi-Newton method for (3) will 
vary like (Nm) 3 in the first iteration, and like (Arm) 2 in subsequent iterations 
(Ref. 2). 

Note 2.4. The recursions in (27a) are similar but not equivalent to 
those obtained in Ref. 7 by treating the quasilinearization boundary-value 
problem for (3) with a Riccati substitution. More specifically, the latter 
approach requires inverses for certain operators (e.g., S~) that actually need 
not be invertible, even when u is near a nonsingular minimizer. In contrast, 
condition (27b) always holds near such a minimizer. 

3. Continuous-Time Optimal Control Problems 

The continuous-time Bolza objective function (5) may be viewed as a 
"limit" of N-stage discrete-time counterparts, in which integrals are replaced 
by Riemann sums and differential equations are replaced by their Euler 
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difference approximations. More precisely, let At = 1/N, and construct the 
mesh 

with 

0 = t 1 < t 2 < " " " < tN+ 1 = 1, (30a) 

with 

where 

with 

xi = a, (30d) 

Xi+l = fi(xi,  u,), (30e) 

li(x, u) = l( ti, x, u)ht ,  (30f) 

f i (x ,  u) = x + f ( t i ,  x, u)At.  (30g) 

A straightforward application of the results in Section 2 establishes that the 
quadratic function (8) associated with (30) has the Bolza representation 

N 

q~(V) =½(YN+a ,  Q N + I Y N + I )  + E q , ( Y , ,  V,) ,  ( 3 1 a )  
i=1 

q,(y,, vi)= [(r,, vi)+ (1/2)(yi, Q,y,) 

+ (y,, R,v,) + (1/2)(v, ,  S,v,)]At, 

Yl =0, 

y~+~ = ( I  + A~At)y, + ( B, At)v, ,  

Ai =Of /ox (h ,  xi, ui), Bi =3f /Ou( t i ,  xi, ui), 

ri = V.Hi(~i+l, x,, ui), 

QN+I = V2p(xN+I),  

= V x x H i ( O i + l ,  x i ,  ui ) ,  Qi 2 

R i  2 = V uxHi(~+, ,  x,, u,), 

Si 2 = V uuH/(~bi+l, xi, u,), 

H~(@, x; u) = (6, f ( t , ,  x, u ) ) ÷  l(t,, x, u), 

6N+I = VP(XN+1), 

~ = ( I + A*At)tp,+~ + V fl( t~, x,, u,)At. 

(31b) 

(31c) 

(31d) 

(31e) 

(31f) 

(31g) 

(31h) 

(31i) 

(31j) 

(31k) 

(31C) 

(31m) 

ti+t - ti = At. (30b) 

In place of (5), consider the associated discrete-time objective 
N 

J(u.) = P(XN+,)+ E l,(xi, u,), (30c) 
i=1 
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By passing to the limit as At + 0, one now guesses that the quadratic function 
(8) associated with the underlying continuous-time objective (5) has the 
Bolza representation 

Io' ~b(v) = (1/2)(y(1), V2p(x(1))y(1))+ q(t, y(t),  v(t)) dt, (32a) 

with 

q(t, y, v)= (r(t), v)+l(y,  Q(t)y) 

+(y, R( t )v)+(1/2)(v ,  S( t)v), (32b) 

y(O) = o, (32c) 

dy/ dt = A( t)y + B( t)v(t), (32d) 

A(t)  = (Of/ox)(t, x(t),  u(t)), B(t) = (of/ou)(t, x(t),  u(t)), (32e) 

r( t) = 7 . n (  t, 6( t), x( t), u( t)), (32f) 

O( t) = V2xxH( t, ~b( t), x( t), u( t)), (32g) 

R( t) = V2xH( t, ~b( t), x( t), u( t)), (32h) 

= V~uH(t, ~b(t), x(t),  u(t)), (32i) S ( t )  2 

H(t,  ~b, x, u) = (~b,f(t, x, u))+ E(t, x, u), (32j) 

~b(1) = V P(x(1)), (32k) 

d~/  dt = - A (  t)*tp-Vxl(  t, x( t), u( t) ). (32~ a) 

While this guess is fundamentally sound, it is by no means always correct; 
in fact, the initial-value problem (5b)-(5c) may have no solution on [0, 1]; 
when this happens, the objective (5) and the corresponding quadratic 
function ~b are undefined at u( . ) .  A rigorous derivation of (32) requires 
existence, uniqueness, and dependence-on-parameters theorems for the 
initial-value problem (5b)-(5c). For a further discussion of formula (32) 
and related analysis, see Refs. 7 and 8. 

Assuming that (32) does give the correct Bolza representation for the 
quadratic part of (5), a plausible formula for the corresponding Newton 
increment 8u may be obtained in a similar fashion [i.e., by adapting Eqs. 
(27) of Section 2 to the discrete-time objective function (31) and then passing 
to the limit as At-> 0]. In this way, one guesses that the quadratic function 
~b in (32) has a unique minimizer ~7(" ) if and only if 

S(t) is positive-definite a.e. in [0, 1], (33a) 
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and there are vector-valued functions/3(. ) : [0, 1] ~ ~ and y(. ) : [0, 1] ~ q/ 
and operator-valued functions 8(. ): [0, 1]-~ BL(~, ~)  and F(. ) : [0, 1] 
BL(~, q/), such that 

~(t) = y(t)+F(t)y(t),  

y(t) = -S-l( t)[r(t)  + B*(t)/3(t)], 

r ( t )  = -S- ' ( t )[R*(t)  + B*(t)O(t)], 

/3(1) =0, 

d/3( t)/ dt = -A*(  t )/3( t) - JR( t )  + O( t)B( t) ]T( t), 

8(1) = V2P(x(1)), 

dO( t)/ dt = -Q(  t) - [  A*( t)O( t) + O( t)A( t) ] 

- [ R ( t ) +  O( t)B( t) ]F( t), 

y(0) -- 0, 

dy(t)/dt = [A(t) + B(t)F(t)]y(t) + B(t)r(t),  

(33b) 

(33c) 

(33d) 

(33e) 

(33f) 

(33g) 

(33h) 

(33i) 

(33j) 

a.e. in [0, 1]. Furthermore, when u(- ) is sufficiently near a nonsingular local 
minimizer of (5), the corresponding Newton increment 8u is the unique 
minimizer of ~b. Hence, it is plausible that the following algorithm is well 
posed near a nonsingular minimizer of J and will actually provide the 
Newton increment 6u. 

Algorithm A2 
Step 1. Given u(. ) ~ ~,  solve the forward and backward initial-value 

problems (5b)-(5c) and (32k)-(321) for x(-) and 6 ( ' )  on [0, 1]. 

Step 2. Compute the functions r(-),  A(.),  B(-), Q(.),  R(.) ,  and 
S(-) with (32e)-(32j). 

Step 3. Solve the backward initial-value problems (33e)-(33f) and 
(33g)-(33h) for/3( .)  and 0(.)  on [0, 1], and compute 3'(') and F(-) with 
(33c)-(33d). 

Step 4. Solve the forward initial-value problem (33i)-(33j) for y( . ) ,  
and compute 7/(.) with (33b). 

Step 5. Set 8u(-) = ~7('). 

Once again, a rigorous justification for this algorithm is nontrivial and 
requires the construction of a smooth field of extremals with an associated 
Hamilton-Jacobi equation [i.e., a continuous-time analog of the dynamic 
programming equation (22); see Refs. 8 and 9]. In fact, Merriam treats the 
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accessory minimum problem for (32) directly with the Hamilton-Jacobi 
equation and obtains formal solutions with Equations (33) (Ref. 14). 

Note 3.1. When the so-called strengthened Legendre-Clebsch condi- 
tion (33a) does not hold, a simple modification of Algorithm A2 will still 
produce useful descent directions for the objective J (see Note 2.1). 

Note 3.2. In most cases, the nonlinear initial-value problems in 
Algorithm A2 will have to be solved numerically (e.g., by finite-difference 
methods). The Euler difference scheme that helped us to guess the con- 
tinuous-time equations (33) can also be used to compute their solutions 
approximately on a mesh (30a); however, it is generally more etfcient to use 
a higher-order finite difference method (e.g., the 4th order Runge-Kutta 
method). The overall cost of such a scheme will typically increase in direct 
proportion with the number N of subintervals in the net (30a). On the other 
hand, the cost of implementing a standard quasi-Newton method for (5) 
will increase like (Nm) 3 in the first iteration and (Nm) 2 in subsequent 
iterations (see Note 2.3). Furthermore, the convergence rates of quasi- 
Newton methods may deteriorate substantially with increasing N, even if 
the iterations start quite close to a nonsingutar minimizer of (5); see Refs. 
10 and 11. 

If (32) correctly represents the quadratic part of (5) at u(. ), and if the 
operators S(t) are invertible a.e. in [0, 1], then the corresponding Newton 
increment can be also obtained by putting g u ( . ) =  ~7('), where ~?(.) is 
derived from the solution of the following linear two-point boundary-value 
problem: 

dy/ dt = A( t)y + B( t)n( t), 

dp/ dt = A*( t)p - Q( t ) y -  R( t)~( t), 

y(0) =0, 

p(1) = v2e(x(1))y(1), 

where 

S( t)~7( t) = -[  R*(t)y( t) + B*( t)p( t ) + r(t)]. 

(34a) 

(34b) 

(34c) 

(34d) 

(34e) 

Regardless of whether S(t) is invertible a.e., it can be shown that the 
functions 71(.) obtained in this way are precisely the extremals of the 
quadratic function defined by (32). This procedure for constructing 6u(. ) 
differs from Steps 2-5 in Algorithm A2 and is more closely related to a 
shooting method or a quasilinearization method for the nonlinear two-point 
boundary value problem that characterizes the extremals of the original 
objective (5); see Refs, 12 and 13. The costs of solving (34) "numerically" 
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with a finite difference scheme are again (essentially) proportional to N in 
(30a) when the dimension of  ~f is finite and small compared to N;  however, 
the constant of  proportionality may differ from the corresponding constant 
for Algorithm A2. Moreover, finite precision calculations with (34) and 
with Algorithm A2 may produce substantially different approximations to 
~u( . ) ,  depending on the procedure used to solve this linear two-point 
boundary-value problem. One of  the more effective procedures is actually 
equivalent to the dynamic programming scheme (33); i.e., the Riccati 
substitution p =/3 + 0~7 leads directly to the final-value problems (33e)-(33h) 
(Ref. 15); recall that this does not happen in the discrete-time case (see 
Note 2.4). 

References 

1. LUENBERGER, D. G., Optimization by Vector Space Methods, Wiley, New York, 
New York, 1969. 

2. DENNIS, J. E., JR., and SCHNABEL, R. B., Numerical Methods for Unconstrained 
Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New 
Jersey, 1983. 

3. MURRAY, D. M., and YAKOWITZ, S., Differential Dynamic Programming and 
Newton's Method for Discrete Optimal Control Problems, Journal of Optimization 
Theory and Applications, Vol. 43, pp. 395-414, 1984. 

4. MAYNE, D. Q., A Second-Order Gradient Method for Determining Optimal 
Trajectories of Nonlinear Discrete-Time Systems, International Journal on Con- 
trol, Vol. 3, pp. 85-95, 1966. 

5. BELLMAN, R. E., Dynamic Programming, Princeton University Press, Princeton, 
New Jersey, 1957. 

6. JACOBSON, D. H., and MAYNE, D. Q., Differential Dynamic Programming, 
American Elsevier, New York, New York, 1970. 

7. POLAK, E., Computational Methods in Optimization, Academic Press, New York, 
New York, 1971. 

8. BLISS, G. A., Lectures on the Calculus of Variations, University of Chicago Press, 
Chicago, Illinois, 1946. 

9. HESTENES, M., Calculus of Variations and Optimal Control, Robert E. Krieger 
Publishing Company, Huntington, New York, 1980. 

10. GRIEWANK, A., A Superlinear Convergence of Secant Methods on Mildly Non- 
linear Problems in Hilbert Space (to appear). 

11. KELLEY, C. T., and SACHS, E., A Pointwise Quasi-Newton Method for Uncon- 
strained Optimal Control Problems, Numerische Mathematik, Vol. 55, pp. 159- 
176, 1989. 

12. DREYFUS, S. E., Dynamic Programming and the Calculus of Variations, Academic 
Press, New York, New York, 1965. 

13. KELLER, H., Two-Point Boundary-Value Problems, Society for Industrial and 
Applied Mathematics, Philadelphia, Pennsylvania, 1976. 



38 JOTA: VOL. 63, NO. 1, OCTOBER 1989 

14. MERRIAM, C. W., III, An Algorithm for the Iterative Solution of a Class of 
Two-Point Boundary-Value Problems, SIAM Journal on Control and Optimiz- 
ation, Series A, Vol. 2, pp. 1-10, 1964. 

15. MITTER, S. K., Successive Approximation Methods for the Solution of Optimal 
Control Problems, Automatica, Vol. 3, pp. 135-149, 1966. 

16. PANTOJA, J., Differential Dynamic Programming and Newton's Method, Inter- 
national Journal on Control, Vol. 47, pp. 1539-1553, 1988. 


