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ABSTRACT

We derive some estimates of the duality gap for sep-
arable constrained optimization problems involving non-
convex, possibly discontinuous, objective functions, and
nonconvex, possibly discrete, constraint sets. The main
result is that as the number of separable terms in-
creases to infinity the duality gap as a fraction of the
optimal cost decreases to zero. The analysis is related
to the one of Aubin and Ekeland [1], and is based on the
Shapley-Folkman theorem., Our assumptions are different
and our estimates are sharper and more convenient for
integer programming problems.

1. INTRODUCTION

Dual methods are often useful for large-scale optimi-
zation problems particularly when the objective function
and the constraints have a separable and decomposable
structure., However, when applying dual methods to non-
convex problems one must find a way to deal with the
potential discrepancy between the optimal values of the
dual problem and the original primal problem (i.e., the
duality gap). Fortunately for many large problems the
duality gap tends to be small as has been observed for
linear programming problems by Lasdon [2], and estab-
lished in a more general context by Aubin and Ekeland
[3]. It is thus possible to solve many nonconvex prob-
lems to within satisfactory accuracy by essentially
treating them as if they were convex and without having
to resort to time consuming branch and bound techniques.

The present paper is related to our recent work on
solution of large-scale power system scheduling problems
[4]1,[5], where the small relative size of the duality
gap played a key role in the solution methodology. Our
purpose is to quantify the size of the duality gap in a
manner which is similar to Aubin and Ekeland, but is
sharper and more convenient for problems where the con-
straint set is nonconvex and discrete. Our sharper
analysis is based on a new and often satisfied in prac-
tice assumption (Assumption A3, in the next section).
Without this assumption the results of Aubin and Ekeland
are very cumbersome to use for the case where the con-
straint functions are nonlinear and/or the constraint
set is nonconvex as they involve the solution of certain
perturbed optimization problems (see page 231 of that
reference). Even for the case where the constraint
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functions are linear and the constraint set is convex
there are problems where our estimate is sharper than
that of Aubin and Ekeland [1]. For example, for the
simple scalar problem min{f(x)|x<b, xe[0,b]} where f is
a strictly concave monotonically increasing function on
the interval [0,b], Theorem A of Aubin and Ekeland [1]
estimates a positive duality gap but our estimate of the
next section shows that there is no duality gap.

2. AN ESTIMATE OF THE DUALITY GAP

Consider the following problem:
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where I is a positive integer, b is a given vector in R
(m is a positive integer), Xj is a subset of RPi (py is
a positive integer for each i), and fj:conv(Xj)>R and
hi:conv(Xi)+R® are given functions defined on the con-
vex hull of Xj denoted conv(Xj). The vector inequality
in the constraint of (P) is meant to be for each compo-
nent, and all subsequent vector inequalities should be
interpreted likewise. We assume the following.

There exists at least one
feasible solution of
problem (P).

(P)

Assumption Al:

For each i, the subset of
RPitm+l

{(xi,hi(xi),fi(xi))]xisxi}

Assumption A2:

is compact.

Assumption A2 implies that Xj is compact. It is
satisfied whenever Xj is compact and both fj and hj are
continuous on X4. Note that no convexity assumptions
are made on fj, hi, or Xj.

For each i, define the function f;:conv(Xj)+R by

£,
pitl . . pitl Py . .
= inf{ I ajfi(xJ) Xx= I ajxj,xJaXi, b aJ=l,anp
j=1 3=1 i=1
for all x ¢ conv(xi) @)
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The function fi may be viewed as a "convexified" version
of fi on conv(Xji)._ Figure 1 shows an example of fj and
the corresponding f4, where Xi consists of the union of
an interval and a single point. Similarly, define the
function hji:conv(Xi)+RM by

h, (%)
pitl . <l pitl | pitl i
= inf‘ L aJhi(xJ) x= I aJxJ,xJEXi, z aJ=l,ajsz
(j=l j=1 j=1 ‘
for all x € conv(Xi) , (2)

where the infimum is taken separately for each of the m
coordinates of the function hy. Note that if fj is a
convex function on conv(Xj), then fi = f§. A similar
statement can be made concerning hi and Ei.

fitx) _|

Tilx)

Figure 1

Our third assumption is:
Assumption A3: For each i, given any
vector X in conv(Xi),

there exists xeXj such
that hi(X)ifli(gti).

Note that Assumption A3 is satisfied if X, is convex
and each component of H; is convex on X; for in this
case we have hi(x)=ﬁi(x) for all xeXi. On the other
hand, Assumption A3 can be expected to be satisfied for
many other problems of practical interest — for example,
if hy is a linear real-valued function (compare with
Figs. 2 through 5 that follow and refs. [4],[5]).
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Figure 2. hi(x) = -x,pi>0 Figure 3. hi(x) = x,pi=0

Pi

Figure 4. hi(x) = —x,pi>0 Figure 5. hi(x) = x,pi>0
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Define for each i the function fi:conv(X{)*R by

B ) = inf{f, ()b (x) < B G),xex ]

for all x ¢ conv(Xi) . (3)

Note that, by Assumption A3, the constraint set for the
minimization indicated in Eq. 3 is nonempty. Our esti-
mate of the duality gap is given in terms of the scalars

oy = sup{fi(xj - fi(x)ixeconv(xi)} . (4)

Since we have, for all xsconv(Xi),
fi(x) i_sup{fi(xi)ixiexi} s fi(x) 3_inf{fi(xi)!xiaxi} ,

it follows that an easily obtainable overestimate of
p, 1is
i

i - [ £
04 §_sup\fi(xi)|xiexi} inf“fi(xi)lxi'xi}

Figures 2 through 5 show the scalar p; for the X; con-
sisting of the union of an interval and a single point,
and for specific cases of fi and hy. For examp}e, for the
cases shown in both Figs. 2 and 3 the function f; has the
form shown in Fig. 1. In the case of Fig. 2 where

Xi = {O}U[ai,Bi] s conv(Xi) = [O,Ei] s hi(x) = -x
we have using Eq. 3

) £,G) if oy <x < By

fi(i) = £, if 0« x < Ay

fi(O) if x=0

Therefore the scalar Py of Eq.
to

4 is positive and equal

py = £y - £,(0)

as shown in Fig. 2. 1In the case of Fig. 3, fj, Xy, and
conv(Xi) are the same as in Fig. 2 but now hi(x) = x.
This changes the form of fi which, using Eq. 3, is now
given by

fi(x) = fi(O) , for all xE[O,Bi]

Therefore, the scalar p. of Eq. 4 is now zero.

i
Consider now the dual problem

(D) maximize

I
v = s t — .
d(u) inf .Z [fi(xi)+u hi(xi)] L'b
xi e X3 i=1
i=1,...,1I
subject to u > 0

Let inf(P) and sup(D) denote the optimal values of the
primal and dual problems respectively. We have the
following result.

Proposition:
there holds

Under Assumption Al through A3

inf (P) - sup(D) < (w+1)E , (&)
where

E = max{pi§i=1,...,1} . (6)
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m+l

Proof: Consider the subsets of R
vyo= {yylyg=lh e, £ D xgeX b, d51,..0,T
(7
and their vector sum
Y=Y, 4, +. Y (8)

In view of Assumption A2, Y, conv(Y), and Yj, conv(Y¥;),
i=1l,...,I, are all compact sets. By definition of Y,
we have

inf (P) = min{w%there exists(z,w)eY with z<b} . 9)

By using Assumptions Al and A2, and a standard duality
argument [6],[7] we can also show that

sup(D) = min{wlthere exists(z,w)econv(Y) with z<b}
(10)
We now use the following theorem ([3] Appendix I).

Shapley-Folkman Theorem: Let Yj, i=l,...,I, be a
collection of subsets of R+l, Then for every
ysconv(2£=l Yi), there exists a subset I(y)C{l,...,I}
containing at most (wtl) indices such that

y e { I Y, + I conv(Yi)] .
i¢I(y) ieI(y)
Now let (E}G}econv(Y) be such that (compare with
£q. 10)

w=oswp®d , z<b . (11)
By applying the Shapley~Folkman theorem to the set
Y=Z£=l Y; given by Egs. 7 and 8, we have that there
exists a subset IC{1,...,I}, with at most (m+l) in-
dices, and vectors
(E;,;i)econv(Yi) , ieT s
;iexi , 1T,
such that (compare with Eq. 11)
I h,&)+ L b, =2<b , 12)
1T 1Y g7
E__fi(xi) + I_ vy = sup(D) . (13)

i¢I iel

Using the Caratheodory theorem for representing elements
of_the convex hull of a set, we have that, for each

ieI, there must exist vectors Xj,...,Xj zeXi, and
scalars aj,...,aj - such that
n+2 .
z ai =1 , ai >0 , j=1,...,m¥2
i=1
N T A PR
bi = ‘Z aihi(xi) > Wy = ‘E aifi(xi)
j=1 j=1

Using the definition of fi, hi, and og (compare with

Egs. 1 through 4), we have
_ L fork2 J J
by > hy| T oajx;) (14)
j=1
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_ . [m+2 i3 m+2 i3
Wy z-fi ‘Z ayxy z_fi 'Z ayx; ) - ey (15)
j=1 j=1
By combining Eqs. 12 through 15, we obtain
Lomt2 L
i_b &)+ IR I alxi) <
1¢T iel j=1 (16)
. fm+2
I_f,G) + £t ag,_xi._ <sup®) + I_p, .
14T ieT j=1 iel (17)

Given any £>0 and ieI, we can find (using Assumption A3)
a vector xjeX; such that (compare with Eq. 13)

_ Am+233 _ ~m+2jj
fi(xi) < fl I +c hi(xi) < hyl jil aixi)

3=1
These relations together with Eqs. 16 and 17 yield

I
Ion G b, (18)
i=1
I p—
Iof(xy) < supD) + I_ (pyte) (19
=1 * 1 iel

Since by Eq. 18, (xl,...,x )_1is a feasible vector for
(P), we have 1nf(P)<Zi =1 £} (xi), and Eq. 19 yields

inf(P) < sup(D) + I_
iel

(ogte) 20)

Since ¢ is arbitrary, I contains at most (m+l) elements,
and E = max{pi\i =1,...,1}, Eq. 20 proves the desired
estimate, Q.E.D.

The significance of the proposition lies in the fact
that the estimate (m+l)E depends only on m and E but not

on I. Thus if we consider instead of problem (P), the
problem
1 I
minimize I .E fi(xi)
i=1
I
subject to xiaXi , iil hi(xi> <b ,

the objective function of which represents ''average cost

per term," the duality gap estimate becomes

inf(P) - sup(D) < E%L E .

Thus the duality gap goes to zero as I»», Otherwise
stated, if the optimal value of problem (P) is propor-
tional to I, the ratio of the duality gap over the opti-
mal value goes to zero as I+,

Experimental validation of the results of the Propo-
sition may be found in refs. [4],[5], and [8].
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