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Abstract. In order for primal-dual methods to be applicable to a 
constrained minimization problem, it is necessary that restrictive con- 
vexity conditions are satisfied. In this paper, we consider a procedure by 
means of which a nonconvex problem is convexified and transformed 
into one which can be solved with the aid of primal-dual  methods. 
Under this transformation, separability of the type necessary for appli- 
cation of decomposition algorithms is preserved. This feature extends 
the range of applicability of such algorithms to nonconvex problems. 
Relations with multiplier methods are explored with the aid of a local 
version of the notion of a conjugate convex function. 
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1. Introduction 

C o n s i d e r  a cons t r a ined  min imiza t ion  p r o b l e m  of the  fo rm 

min imize  f(x), 
(1) 

sub jec t  to  h(x) =0, 

w h e r e  f :  R n ~ R,  h : R n ~ R "~ are  given funct ions .  A m o n g  severa l  poss ib le  

me thods ,  one  m a y  a t t e m p t  a numer i ca l  so lu t ion  of this p r o b l e m  by m e a n s  of  
a p r i m a l - d u a l  m e t h o d  (see, e.g.,  Ref .  1, C h a p t e r  13). In  such m e t h o d s ,  one  
forms  the  Lag rang i an  func t ion  L :  R n x R m ~  R def ined  by 

L(x, A) = f ( x )  + A ' h ( x ) .  
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Subsequently, a dual functional q is defined [perhaps, locally in a neigh- 
borhood of a Lagrange multiplier a* of problem (1)] by means of 

q (h) = min L(x, h), (2) 
x 

where the minimization is perhaps understood to be local in a neighborhood 
of a local minimum x* of problem (1). Then, one may employ a steepest 
ascent iferation of the form 

hk+l = hk + akVq(hk), (3) 

where ak > 0 is a scalar stepsize, or a Newton iteration of the form 

X k + I  = A k  --[V2q(Ak)]-lVq(ak) (4) 

in order to maximize the dual functional q. The gradient Vq(itk) and Hessian 
V2q(ak) under suitable assumptions exist and may be obtained via mini- 
mization of L ( . ,  hk) (see Ref. 1). Related methods may be constructed for 
problems of the form 

minimize f(x), (5) 

subject to x ~X ,  g,(x)<-O,j = 1 . . . . .  r, 

where &: R n ~ R  and X is a subset of R ~ (see, e.g. Refs. 2, 3, 4). 
Methods of the type described above are particularly useful in separ- 

able problems having, for example, the form 

minimize ~ /;. (~;), 
i = 1  

subject to ~ hi(,~i) = O, 
i = 1  

where 

x = (¢1 . . . . .  & ) ' .  

In such problems, the minimization of the Lagrangian is decomposed into n 
one-dimensional minimizations 

minL(x ,  hk)= ~ /minfi[~i+h~hi(~/)]] 
x i = 1  / ~:i 

with considerable simplification resulting. This decomposition approach has 
been pioneered by Everett (Ref. 5) and has found considerable application 
in the solution of large-scale problems with separable structure. 

One of the major drawbacks of primal-dual methods, which limits 
considerably their range of applicability, lies in the fact that the problem 
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must have a convex structure (at least locally--near a solution), for other- 
wise it is either impossible to define a dual functional by means of (2) or else 
the maximal value of the dual functional is not equal to the optimal value of 
the original problem (i.e., a duality gap is present). Thus, in local versions of 
the theory for problem (1) (see Ref. 1), one needs the assumption that a local 
minimum-Lagrange multiplier pair (x*,A*) satisfies the second-order 
sufficiency conditions as well as the local convexity assumption 

z'V2L(x *, A *)z > O, VZ ~ O. 

In global versions of the theory for problem (5), it is necessary to assume that 
X is a convex set and f and gi are convex functions over X, and to make 
additional assumptions which ensure that there is no duality gap and that the 
dual functional is sufficiently differentiable in order for gradient-type 
methods to be applicable. 

Now, it is possible to convexify problem (1) by considering the 
equivalent problem 

minimize f(x)+(c/2)Jh(x)l  2, 

subject to h(x) = O, 
(6) 

where c > 0 is a scalar penalty parameter and [ • ] denotes the usual Euclid- 
ean norm. It is well known that, for c sufficiently large, problem (6) has a 
locally convex structure provided (x*,)t*) satisfy the second-order 
sufficiency assumptions. This follows from a lemma due to Debreu (Ref. 6). 
The well-known methods of multipliers may be viewed as primal-dual 
iterations of the form (3) or (4) applied to problem (6). We refer to Refs. 7 
and 8 for analysis related to this viewpoint. While the convexification 
procedure described above has led to very useful general-purpose 
algorithms, it has the drawback that it precludes the straightforward appli- 
cation of decomposition algorithms for solving the corresponding dual 
problem, since the penalty term (c/2)lh(x)l 2 does not have a separable 
structure even if the constraint function h is separable. We mention, however, 
that the convexification procedure described above has been utilized in a 
recent paper by Stephanopoulos and Westerberg (Ref. 9) to construct a 
primal-dual method for separable nonconvex problems. No specific con- 
vergence and rate of convergence results have been given for the algorithm 
proposed in Ref. 9. 

The purpose of this paper is to consider and analyze a different 
convexification procedure than the one above, which has the advantage that 
it preserves separable structure whenever it is already present. A simple way 
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to describe our procedure for the case of the problem 

minimize f(x),  (7) 

subject to  h(x) =0 ,  g(x)<-O, 

is as follows. 
We consider the problem 

minimize f ( x ) + ( 1 / 2 c ) l y - x l  2, 

subject to h ( x ) = O , g ( x ) < - O , x ~ R  '~, y ~ R  ~, (8) 

where c > 0 is some fixed scalar and y represents a vector of additional 
variables. Clearly, a vector x* is a local minimum of the original problem (7) 
iff (x*, x*) is a local minimum for problem (8). Now we may write problem 
(8) as 

minimize pc(y), 

subject to y ~ R~, 

where the function (¢c is defined by 

q~(y)= min { f (x)+(1/2c) ly-x l2} ,  (9) 
h(x)=O 
g(x)~--O 

and the minimization above is understood to be local in a neighborhood of a 
local minimum x* of problem (7). It is easy to show that the minimization 
problem in (9) has a locally convex structure for c small enough provided 
suitable second-order sufficiency conditions are satisfied at x*. Thus, prob- 
lem (9) may be solved by primal-dual methods. Furthermore,  if the original 
problem (7) has separable structure, the same is true for the problem (9). Now, 
the function ~c of (9) has x* as a local minimum and may be minimized by 
means of a steepest descent method, such as 

Yk+l = Yk -- O~k Vq~c (Yk), (10) 

where ak is a stepsize parameter,  or by means of Newton's method 

Yk+~ = Yk -- [V2~c (Yk)]-lV¢~ (Yk). (11) 

It turns out that, under second-order sufficiency assumptions for x*, both 
V~oc and vaq~c exist within a sphere centered at x* for every c > 0. Further- 
more, this sphere can be made arbitrarily large by taking c sufficiently large. 
These facts will be shown in the next section. At  the same time, we will 
obtain convergence and rate of convergence results for iterations such as 
(10) and (11). 
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It is important  to note that our  approach bears a close relation to the 
method of multipliers. This relation is direct and easy to obtain whenever the 
function q~ : R"  -* ( -  c~, + oo] defined by 

~ ( x ) _ l f ( x ) ,  i f h ( x ) = O , g ( x )  <-0, 
- t + co, otherwise, 

is convex and lower semicontinuous. Under  these circumstances, ~p may be 
viewed as the ordinary dual functional of the concave programming problem 

maximize - ~*(u), 
(12) 

subject to - u = 0 ,  

where ~p* is the conjugate convex function of ~0 given by 

~*(u) = sup{x'u - ~p (x)}. 

By applying Fenchel's duality theorem and using (9), (12), it is easy to show 
that 

Co(y) = inf{q~ (x) + (1/2c)1y - x l  2} = sup{ - ~p*(u) + y'u - (c/2)tu ]2} 
x u 

= - inf{~*(u)  - y'u + (c/2)Iu I:}. 
U 

Thus ¢c is the penalized dual functional which is optimized in the quadratic 
method of multipliers (see Refs. 10, 11) applied to problem (12). Further-  
more, iterations (10) and (11) are first-order and second-order multiplier 
iterations (see Refs. 7, 8, 12) for solving problem (12), or equivalently for 
minimizing ¢c. The special case of iteration (10), where a = c, is the original 
method of multipliers proposed by Hestenes and Powell. It has been 
analyzed exhaustively for the convex case by Rockafellar and Kort  and 
Bertsekas (see Refs. 10, 11, 13), and more recently by Rockafellar (Refs. 14, 
15) as a special case of the proximal point algorithm. The more general case, 
where the stepsize ak is any scalar in the interval [6, 2c - 6 ] ,  where t; > 0 is 
some arbitrarily small scalar, has been analyzed by the author in Ref. 12. 

In the nonconvex case considered in this paper, the results available for 
multiplier methods cannot be directly invoked, since we do not have a 
conjugate convex function ¢* and problem (12) to work with. We bypass 
this difficulty by introducing in the Appendix the notion of a local 
conjugate convex function. Using this notion, we construct a problem similar 
to (12). Our algorithms are then shown to be multiplier methods for this 
problem, and their convergence properties follow from known results for 
these methods. 
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The  analysis throughout the paper  is conducted in n-dimensional  
Euclidean space, denoted by R ~, and equipped with the usual norm, 
denoted by I" I, i.e., 

for x = (xl . . . . .  x , ) ' ~  R n. 

In our notation, all vectors will be considered as column vectors. A prime 
denotes transposition. For E > 0 and x ~ R",  we denote by S(x; e) the open 
space centered at x with radius ~. For any function h: R "  ~ R, we denote by 
Vh and V2h the gradient and Hessian matrix of h. For h: R "  ~ R  m, h = 
(h~ . . . . .  hm)', we denote by Vh the n x m matrix having as columns the 
gradients ~7h l , . . . ,  Vhm. For any x ~ R ~, the notation x - -0  or x - 0  means 
that all coordinates of x are nonnegative or nonpositive, respectively. We 
refer to (x, A, ~ )  as a local minimum-Lagrange multiplier pair of a problem of 
the form (7) if x is a local minimum and, together  with A, ~, satisfies the 
first-order Kuhn-Tucker  conditions for optimality (see Assumption 2.2 in 
the next section). 

2. Convergence Analysis 

Let x* be a local minimum of the problem 

minimize f ( x ) , 
(13) 

sub jec t to  h(x) = 0 ,  g(x)<-O, 

where f : R "  ~ R ,  h : R ~ R  m, h=(h~ . . . . .  hm)', g : R " ~ R  r, g= 
(gl . . . . .  gr)'. Throughout  the paper,  we employ the following second-order  
sufficiency assumptions. 

Assumption 2.1. The functions f, h, g are twice continuously 
differentiable within an open sphere centered at x*. 

Assumption 2.2. The gradients ~Th~(x*), i =  1 . . . . .  m, Vgj(x*), j ~  
A(x*),  where 

A ( x  *) = {/Igj(x*) = O,/= 1 . . . . .  r} 

are linearly independent,  and hence there exist unique Lagrange multiplier 
vectors 

A* = (** . . . . .  , k*) '~R m , ~z* = (/z* . . . . .  /x*) ' s  R ~ , 
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such that the following Kuhn-Tucker  conditions hold: 

W(x*) + v h (x*)a * + Vg (x*)/x * = 0 

tx*->O, /x*g,(x*) = 0, / = t  . . . . .  r. 

Assumption 2.3. Strict complementarity holds, i.e., 

~,* > 0 iff g A x * )  = O, / = 1 . . . . .  r. 

Assumption 2.4. There  holds 

i=1 j = l  

for all z ~ R "  such that z#O, Vhi(x*)'z=O, i =  1 . . . . .  m, V&(x*)'z =O, 
]~A(x*). 

For any fixed y ~ R n and c > O, consider the problem 

minimize f(x)+(1/2c)ly-xt  2, 
(14) 

subject to h(x) = O, g(x) <- O. 

The necessary conditions for optimality for this problem are 

W(x) + ( 1 / c ) ( x  - y) + Vh (x)a + Vg(x)/x = o, (15) 

h(x)=O,  g(x)_< O, /x_>O, /xj&(x) = O, j = l  . . . . .  r, 
(16) 

and may be viewed as a set of relations in x, A,/X continuously parametrized 
by y. For y = x*, we have the solution 

x=x*,  A=A*,  /x =/X*. 

Consider the Jacobian matrix 

%2f(x*)+ 2 a~*V2h,(x*)+ 2 / x ~ ? V 2 g ~ ( x * ) + ( 1 / o ) I  ', Vh(x*) ', G(x*)- 
i = 1  j = l  [ I 

i J 
7 T . . . .  
i 0 ] 0 Vh(x*)' I 

G ( x * ) '  I I 0 ~1 0 .j 

where G(x*) is the matrix having as columns V&(x*), j ~ A(x*), and I is the 
n × n identity matrix. It is easy to show that Assumptions 2.1-2.4 imply that 
this matrix is invertible for each c > 0. It follows from the implicit function 
theorem that the system (15), (16) has a unique solution x(y, c), h(y, c), 
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~z(y, c), such that 

gj[x(y, c)] = 0, Vj~A(x*),  gj[x(y, c)] < 0, Vj~A(x*), 

/zj(y, c ) > 0 ,  Vj~A(x*),  /~i(Y, c ) = 0 ,  Vj~A(x*), 

for each fixed c > 0 and each y in a sufficiently small neighborhood of x*. 
This neighborhood depends on c. Furthermore,  for y sufficiently close to x*, 
it can be seen that the vectors x(y, c), h(y, c) , /z(y,  c) satisfy second-order 
sufficiency conditions for optimality for problem (14), and hence x(y, c) is a 
strict local minimum for problem (14). Thus, we may define for y ~ S(x*; e), 
where • > 0 is some scalar, the function 

g¥(y) - - f ix  (y, c)] + (1/2c)b, - x ( y ,  c)t 2 

(17) 
= min {f(x)+(1/2c)ly-xl2}, 

h(x)=0 
g(x)~O 

where the minimization is local in the sense described above. The vector x* 
is clearly a local minimum of ¢~. Furthermore,  we will show in Propositions 
2.1 and 2.2 which follow that ¢c is twice continuously differentiable in 
S(x*; •) and that V~c, V2q~c can be expressed in closed form in terms of 
x(y, c), y, c. Thus, one may employ the steepest descent iteration 

Yk÷l = yk - akV~c(Yk), (18) 

where ak > 0 is a scalar stepsize parameter,  or Newton's iteration 

Yk41 = Yk -- [V2¢c(Yk)]-IV~(Yk) (19) 

for minimizing ~c locally within a neighborhood of the local minimum 
y=x*.  

It is possible to show that iterations (18) and (19) yield in the limit the 
vector x* provided the starting point yo is sufficiently close to x* and (in the 
case of steepest descent) the stepsize ak is sufficiently small. These proper-  
ties follow from well-known facts on gradient-type algorithms for uncon- 
strained minimization and provide justification for employment  of iterations 
(18) and (19). However,  we can obtain considerably stronger algorithms and 
results by broadening our framework to include the possibility of changing 
the parameter  c from one iteration to the next and by allowing starting 
points y0 which are arbitrarily far from x*. The main results are described in 
the following two propositions, the proofs of which will be given in the next 
section. In each proposition, the function ~pc of (17) is redefined appro- 
priately. Since we essentially deal with the same function in each prop- 
osition, we shall use a common notation for ¢~ and x(y, c). Hopefully, this 
will not create any confusion to the reader. 
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Proposition 2.1. Let Yl, y2 be any two scalars with 0 < yl - y2. Then, 
there exists an e > 0 (depending oil yl,  "/2) such that, for all c and y with 

"/1 -< c -< " /2 ,  l y - x * t < e ,  

problem (14) has a unique local minimum-Lagrange multiplier pair, 
denoted by Ix(y, c), a(y, c), ~(y, c)], within some open sphere centered at 
(x*, A *,/~*). The active constraints at x(y, c) are the same as those at x*, i.e., 
gj[x(y, c)] = 0, iff j ~ A ( x * ) .  Furthermore, e is such that the following hold 
true: 

(i) The function ¢¢: S(x*; E ) ~ R  defined for each c ~[yl ,  y2] by 

~pc(y) =/ [x(y ,  c)]+ (1/2c)ly - x ( y ,  C)f 2 (20) 

is twice continuously differentiable in S(x*; e) and has x* as its unique 
minimum. The gradient of ~pc is given by 

v~c(y) = (1/c)[y -x(y ,  c)]. (21) 

The Hessian of ¢~ is the positive-definite matrix given by 

V2¢~ (y) = [ d  + P(y, c)] -1, (22) 

where I is the n × n identity and P(y, c) is the positive-semidefinite matrix 
given by 

P(y, c) = N -1 - N - 1 F ( F ' N - 1 F ) - I F ' N  -1. (23) 

The matrix F above is the matrix having as columns the vectors Vhi[x(y ,  c)], 
i = 1 . . . .  , m, Vg~[x(y, c ) ] , / cA(x* ) .  The matrix N equals 

L(y, c ) =  V2f[x(y, c)]+ ~ Ai(y, c)V2h~[x(y, c)]+ i /xi(y, c)V2&[x(y,  c)] 
i=1  i = 1  

(24) 

whenever L(y ,  c) is invertible. Otherwise, N equals any invertible matrix 
such that 

L(y, c ) z  = L z  

for all z such that 

Vhi[x(y, z)] ' z  = O, i = 1 . . . . .  m, Vgi[x(y, c)]'z = O, j c A ( x * ) .  

Note that, as shown in the proof, the matrix P(y,  c) is uniqely defined in this 
way. 

(ii) Let {ck} be a sequence satisfying yl -< Ck --< "Y2 for all k, and let 6 be 
any scalar such that 0 < ~ - 1. Consider the steepest descent iteration 

Yk+l = Yk -- akV~ck (yk), (25) 
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where o~k satisfies for all k 

6ck -< a k  -< (2 - 8)ck.  

Then, for every starting point Y0 ~ S(x*; e), the sequence {yk} generated by 
(25) satisfies for all k 

]yk+l-x*]-< rklYk -x*],  (26) 

where 

rk = sup tl--olk/[ck+ei(y, ck)]]<l, (27) 
y e S ( x * ;  e) 

i = l , . . . , n  

and edy, ck) denotes the ith eigenvalue of P(y, ck). Furthermore, {yk} 
converges to x*. 

(iii) Let {ck} be any sequence satisfying ]/1 ~-~ Ck ~ ]/2 for all k, and 
consider the Newton iteration 

yk+l  = yk - [v2,pck (Yk) ] - lv 'pck  (Yk). (28)  

Then, there exists a scalar G with 0 < g -  <e ,  such that, for every y0c 
S(x*; g), the sequence {Yk} generated by (28) remains in S(x*; g) and 

/ , 
converges to x*. If, in addition, V2f, V2h~, i = t . . . . .  m, V2gj, j ~ A t x  ), are 
Lipschitz continuous in S(x*; g), then there exists a B > 0 such that for all k 

lYk+I--X*]--<BIyk--X*] 2. 

Proposition 2.2. Let Y be any open sphere centered at x*, and 
assume that V2 f, V2 hi, i = 1 , . . . ,  m, 72gj, j E A (x *), are Lipschitz continuous 
within a neighborhood of x*. Then, there exists a scalar 3/-> 0 (depending on 
Y) such that, for all c > ]/ and y ~ Y, problem (14) has a unique local 
minimum-Lagrange multiplier pair, denoted by Ix(y, c), ~ (y, c),/x (y, c)], 
within some open sphere centered at (x*, 2t *, Ix*). The active constraints at 
x(y, c) are the same as those at x*, i.e., 

g , [ x ( y ,  c ) ]  = 0 

iff j ~ A(x*).  Furthermore, y is such that the following hold true: 
(i) The function q~c: Y -> R defined for each c > ] /by 

q~(y) =f ix(y ,  c)]+(1/2c)]y--x(y,  c)l 2 

is twice continuously differentiable in Y and has x* as its unique minimum. 
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The gradient and Hessian matrix of q~c are given by (21)-(23). 
(ii) There  exist scalars Mt > 0, M2 > 0, such that, for all c > 3", y ~ Y, 

a > 0, there holds 

Ix(y, c) - x*[-< ( l /c)Ml[y  - x*[, (29) 

Jy-o~Vq~c(y)-x*J~(1/c)( lc-o~l+(a/c)M1)]y-x*],  (30) 

ly -[V2~(y)]- lVq~c(y)-x*t<-(1/c2)Maty-x*l  2. (31) 

Propositions 2.1 and 2.2 provide related but different sets of results. In 
Proposition 2.1, essentially no restriction is made on the choice of the 
parameter  c, since 71 and 3'2 are arbitrary positive scalars. However,  the 
construction of ¢c and the algorithmic results are local in nature, since y is 
restricted within the sphere S(x*; e) or S (x* ; f ) ,  the radius of which 
depends on the choice of c. In Proposition 2.2, the situation is reversed. The 
domain of definition of q~c is the set Y which can be taken arbitrarily large. 
However,  both the construction of (¢c and the algorithmic estimates (29)- 
(31) are valid only for c greater than the threshold value 3" which depends on 
the set Y. 

Proposition 2.1 yields local convergence and rate of convergence 
results for the steepest descent and Newton iterations [parts (ii) and (iii)]. 
These results are valid for any sequence {ck} bounded above and bounded 
away from zero. In particular, {ck} can be taken so that problem (14) has a 
locally convex structure for every k. On the other hand, the iterations need 
not converge to x* if a starting point y0 sufficiently close to x* is not 
available. 

Part (ii) of Proposition 2.2 yields global convergence and rate of 
convergence results for both steepest descent and Newton iterations. Thus, 
the iteration 

yk+l = x(yk, ck) (32) 

converges to x* for an arbitrary starting point y0 ~ Y, provided ck ~ ~ for all 
k, where ~ is some scalar with 

"2 > max{M1, 3'}. 

This follows immediately from (30). Furthermore,  the rate of convergence is 
superlinear if ck -~ oe. Notice that iteration (32) is the same as the steepest 
descent iteration (24) with ak = ck [compare (21), (25), and (32)]. From 
estimate (31), we obtain a similar global convergence result for the Newton 
iteration. The convergence rate is at least superlinear with order  2. 
Concerning the general steepest descent iteration 
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the reader may verify by using (30) that it is convergent from an arbitrary 
starting point y0 s Y provided we have, for all k, 

~ck -< o~k - (2 - 6 ) ck  

for some 6 ~ (0, 1] and Ck >-- 9, where 

? > max{(2 - 8)M1/6 ,  3/}. 

Thus, the region of convergence for both steepest descent and Newton's 
method can be arbitrarily enlarged at the cost of having to take c sufficiently 
large. This cost may be significant indeed, since, in order to convexify 
problem (14), small values of c may be needed. 

The conclusions from our results may be summarized by saying loosely 
that, if  the amount  of  convexification induced is increased (i.e., c is reduced), 
the region of convergence of  iterations (25) and (28) becomes smaller. The 
estimates (26), (27), (29)-(31) show also that the rate of  convergence 
deteriorates as c is decreased. On the other hand, one can see that the 
conditioning of problem (14) is improved for small values of c. Thus, problem 
(14) becomes easier to solve algorithmicaIly as c is decreased. The con- 
vergence behavior described above is reminiscent of the method of multi- 
pliers and has been verified in several computational examples, some of 
which will be presented in Section 4. 

3. Proofs of the Propositions 

In order to simplify the presentation of the proofs, we restrict ourselves 
to the case where there are no inequality constraints and the problem is of 
the form 

minimize f ( x ) , 
(33) 

subject to h(x) = 0. 

The modifications required to prove the results for the general case are 
simple and are left to the reader. 

We first note that, by Assumptions 2.1-2.4 and Definition 5.1 (see the 
Appendix), f is h -locally convex at x*. Let  p be the h-local conjugate of f at 
(x*, A *). Then, p is defined in a sphere S(0; 6), 6 > 0, and has the properties 
specified in Proposition 5.1. We have from the definition of p [see (55)] that, 
for all u c S(0; 8), 

u - V f [ x ( u ) ] - V h [ x ( u ) ] A ( u )  = O, 

Z'[V2f[x(u)] + ~ Ai(u)V2hi[x(u)]]z ?>O, 
i = 1  

h[x(u)]  = 0, (34-1) 

Vz  ~ O, VhEx(u)]z '  = O, 

(34-2) 
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and x(u), A(u) are unique vectors satisfying the above relations within 
S(x*; o') and S(Z*; o-), respectively, where cr>O is some scalar. Further- 
more, 

x(0)=x*, A(0)=h*, (35) 

p(u)=u'x(u)-f[x(u)], Vu~S(O;8), (36) 

Vp(u) = x(u), Vu ~ S(0; 8). (37) 

Consider the problem 

minimize p(u), (38) 

subject to - u = 0 ,  u~S(0;8) .  

By (35) and (36), the optimal value of this problem is - f (x*) ;  and by (35) 
and (37), the associated Lagrange multiplier is 

Vp(0) = x(0) = x*. 

We will show that the algorithms proposed are multiplier methods for 
solving problem (38), of the type considered in Refs. 7, 8, 16. The following 
lemma plays a key role in this respect. 

Lemma 3.1. If the problem 

minimize p(u)-y 'u  +(c/2)]u] 2, 

subject to u ~S(0; 8), (39) 

has a unique minimizing point, denoted by u(y, c), then the problem 

minimize f(x)+(1/2c)Iy-xl  2, 
(40) 

subjectto h(x)=O, x~S(x*;o-), 

has a unique minimizing point, denoted by x(y, c), and we have 

x(y, c ) = y - c u ( y ,  c), (41) 

p[u(y, c)]--y'u(y, c)+ (c/2)lu(y , C)I 2= - f ix (y ,  c ) ] -  (1/2c)ly -x(y ,  c)t 2. 

(42) 

Proof. Using (34), define 

x(y, c) = x[u(y, e)], 
Then, 

We have 

x(y, c) E S(x*; o-), 

a(y, c ) =  a[u(y,  c)]. 

;t(y, c)~ S(A*; ~r). 

Vp[u (y, c)] - y + cu(y, c) = 0; 
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and, using (37) and (43), we obtain (41). A straightforward calculation using 
(36), (41), (43) also yields (42). From (34), (41), (43), we obtain 

Vf[x (y, c)] + (1/c)[x (y, c) - y] + Vh [x (y, c)]a (y, c) = O, 

from which it follows that x (y, c) is a minimizing point of problem (40). It is a 
unique minimizing point, in view of the uniqueness of x(u) and A (u) within 
S(x*; o-) and S(A*; o-) satisfying (34-1). D 

The proofs of Propositions 2.1 and 2.2 follow by straightforward 
application of Lemma 3.1, Proposition 5.1, and known results on multiplier 
methods given in Ref. 7 (Propositions 1, 2, 5 and Corollary 2.1), Ref. 8 
(Proposition 6), and Ref. 16 (Proposition 1). The details are left to the 
reader. 

4. Computational Aspects and Results 

We now consider a number of topics of computational nature related to 
our methods. 

Stepsize Selection for Steepest Descent. As shown in Propositions 2.1 
and 2,2, the steepest descent iteration takes the form 

yk+l = y k -  (~k/ck)[yk --x(y~, ck)] = [ ( c k -  ~k)/ck]yk + (ak/C~)X(y~, C~). 
(43) 

The stepsize ak can take values in [6ck, (2--8)Ck], where 6 s (0, 1] is an 
arbitrarily small scalar. In particular, when ak = Ck and the iteration takes 
the form yk+l = x(yk, Ck), convergence is assured as shown in Propositions 
2.1 and 2.2. On the other hand, one would like to select the stepsize in a way 
that accelerates convergence of the method. Ideally, one would like to find 
the stepsize which minimizes q~ck(y) along the direction of search. It is 
possible to show that the minimizing stepsize is always greater or equal 
to Ck. To see this, consider the first derivative of the scalar function qbk 
defined by 

~k (a) = q~¢k [Yk -- a Vq~ck (Yk)] 

at the point Ck. We have, from the chain rule, 

dc~k(Ck)/da = --Vq~(yk) 'V~[x(yk,  ck)]. (44) 
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By using Taylor's theorem and Eqs. (2t), (22), we obtain 
1 

I0 V2~ck[Yk Vqock[X(yk, Ck)] = Vg~ck(Yk) + + t[x(yk, Ck)-- yk]] dt[x(yk, Ck)-- yk] 

= { I--Ck jil V2~c~[Yk + t[x(yk, ck)-- Yk]] dt}V~k 'k) 

1 

= { ' - f o  [I + (1/ck )P[Yk + I[X (yk' Ck ) -- Yk ]' Ck ]] t dr} 

x V ~ ( y k ) .  (45) 

Since the matrix P is positive semidefinite, it follows that the matrix within 
braces above is also positive semidefinite. Hence, from (44), (45), we obtain 

d~k(ck) /da <-0. 

Since ~k (ce) is also convex within the region of its definition and 

d~k(O)/da <- O, 

it follows that the stepsize ~k which minimizes d~k (a) is always greater or 
equal to ck. We note that a similar result has been proved for multiplier 
methods (see Ref. 7, Section 5). Since it is computationally inconvenient to 
perform a one-dimensional minimization of q~c (Y) along the steepest descent 
direction, an alternative is to minimize f over the set of points which 
correspond to stepsizes in the interval [ck, 2 c k - 8 ]  and in addition are 
feasible. In other words, we propose to determine ak from 

f[Yk -- O!kVq~k (yk)] = min f[Yk - a Vq~c~ (Yk)], (46) 
c ~ M k  

where Mk is the subset of the real line given by 

Mk = {~ Ice ~ [ck, (2 - 8)ck ], h [Yk -- C~ Vq~k (Yk)] = O, g[Yk -- O~ Vq~,, (Yk)] ----- 0}. 

(47) 

Notice that Mk always contains ck, since we have 

yk - C k V ~ ( y k ,  Ck)= x(yk, Ck) 

and 

h[x(y~, ck)] = 0, g[x(yk, ck)]-< 0. 

The minimization in (46) is simplified greatly when the feasible set 
{x i h(x) = O, g(x) <- 0} is convex, in which case the set Mk of (47) is a closed 
interval. It is also possible to perform the minimization in (46) approxi- 
mately by means, for example, of a few iterations of a quadratic or cubic 
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interpolation procedure. Similar procedures for choosing the stepsize have 
been proposed for the method of multipliers by the author in Refs. 7, 12, and 
encouraging computational results have been given. We provide below 
some examples which demonstrate the convergence properties of the 
steepest descent method and show that choosing the stepsize via (46), (47) 
can result in significant computational savings. 

Example 4.1. Consider the problem 

minimize - ~1sc2, 

subject to ~1 + 4 ~ 2  - -  1 = O, 

with optimal solution 

(1" = 0.5, ~* = 0.125. 

The optimal solution of the problem 

minimize - ~:1~2 + (1/2c){lyl - ~:112 + ly2-  ~212}, 

subject to sol +4sc2 - 1 = 0, 

is given by 

~I(Y, c) = (4c + 1 + 1 6 y l -  4y2)/(8C + 17), 

~2(Y, c) = (c + 4 - 4 y 1 +  y2)/(8c + 17). 

We provide in Table 1 the results of the steepest descent iteration 

y l  k + l  = ~l(y k, Ck), y 2  k + l  = ~2(y k, Ck), 

corresponding to the stepwise ak = Ck for the cases where ck - 1 and Ck =-- 10. 
In Table 2, we show the results of the steepest descent iteration, where 

the stepsize ak was chosen via the minimization rule of (69), (70), where 
6 = 10 -s. These results are considerably more favorable than those of 
Table 1. We note however that, when the feasible set is a one-dimensional 
manifold, as it is in this problem, the minimization stepsize rule is much more 
effective than in problems where the feasible set is of dimension greater than 
one. Our next example is of this type. 

Example 4.2. This problem was designed specifically to test the 
effectiveness of the minimization stepsize rule (46), (47) versus the stepsize 
ak = Ck. The problem is 

minimize  f ( x ) = ( 1 / 2 )  ~ ix~, 
i=1  
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Table 1. Steepest descent with stepsize ak = ck. 

ck---1 ck---10 

k y~ y~ yf y~ 

0 0.00000 0.00000 0.00000 0.00000 
1 0.20000 0.20000 0.42268 0.14432 
2 0.29600 0.17600 0.48645 0.12838 
3 0.36128 0.15968 0.49762 0.12559 
4 0.40567 0.14858 0.49958 0.12510 
5 0.43585 0.14103 0.49992 0.12501 
6 0.45638 0.13590 0.49999 0.12500 
7 0.47034 0.13241 
8 0.47983 0.13004 
9 0.48628 0.12842 

10 0.49067 0.12733 
I1 0.49366 0.12658 

sub jec t  to  x ~ R'~. This  p r o b l e m  is uncons t ra ined .  O u r  resul ts  howeve r  apply ,  
with tr ivial  no t a t i ona l  changes ,  to such a p r o b l e m  as well.  By s t r a igh t fo rward  
ca lcula t ion ,  one  ob ta ins  tha t  the  s teepes t  descen t  i t e ra t ion  is given by 

i 
Yk+l = {[i(Ck - - a k ) +  1]/(iCk + 1)}y~, i = 1 . . . . .  n. 

T h e  min imiz ing  s teps ize  can be  ca lcu la t ed  to be  

ak = (tyk ~ (iy [i/(ick + 1)]. 
i 1 i = 1  

F o r  the  va lues  of  Ck and  Y0 used,  the re  holds  ak ~ [Ck, 1.9Ck]. Tab les  3 and  4 
b e l o w  show the  s equences  {f(Yk)} g e n e r a t e d  for  ck --= 1, ck --  10, n = 3, 10, 

Table 2. Steepest descent with minimizing stepsize [see (46), (47)]. 

ck ~ l Ck~-- l O 

0 0.00000 0,00000 
1 0.20000 0.20000 
2 0.39200 0,15200 
3 0.46112 0.13472 
4 0.48600 0.12850 
5 0.49496 0.12626 
6 0.49818 0.12545 

0,00000 0.00000 
0.42268 0.14432 
0.50000 0.12500 
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50, o~k -= ck, and ak chosen by minimization (min c~k). The initial vector yo 
w a s  

yo = (1, 1 . . . . .  1)'. 

Very similar results were also obtained for 

Yo = (1, 1/2 . . . . .  1/n)'. 

Newton Iteration for Separable Problems. Since a primary motiva- 
tion of our  algorithms has been the solution of large-scale separable 
problems, it is worthwhile to point out that the Newton iteration for such 
problems can often be carried out in a computationally efficient manner. 
Indeed, consider the separable problem 

minimize i fi(xi), 
i= l  

subject to ~ hi(xi)=O, 
i= l  

(48) 

where 

x = ( x l  . . . . .  x n ) '  

and, for each i, fi: R -~R, hi: R ~ R  "~. The Newton iteration (28) takes the 
form 

Yk+l = Yk - [ I +  (1/ck)e(yk, Ck)][yk -- X (yk, Ck)], (49) 

where P(y, c) is given by (23)-(25), i.e., 

P(y, c) = N -1 - N - 1 F ( F ' N - 1 F ) - I F ' N  -1. 

The matrix N can be taken to be equal to L(y, c), the Hessian of the 
Lagrangian function, whenever L(y, c) is invertible. Let us assume that 
L(y, c) is indeed invertible. Then, the computation in (49) is greatly facili- 
tated, since L(y, c) is diagonal, and hence N -1 is immediately available. The 
main computational difficulty in (49) is to compute 

dk = (F 'N-~F)- IF 'N-I[yk  - x (yk, ck)]. 

This can be done by solving the system of m linear equations 

(F'N-1F)dk = F ' N -  l[yk - x(yk, ck)]. 

The dimension of this system is m and is often small, even if the dimension n of 
the problem is very large. 
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Frequently separable problems are of the form 

minimize ~ f(x/), 
i=1 

subject to ~ h i ( x i ) = O ,  (50) 
i=1 

Ogi ~ Xi ~ [3i, i = l ,  . . . , n. 

During the algorithm, we generate sequences {Yk} and {x (yk, ck)}. According 
to Propositions 2.1 and 2.2, the inequality constraints that are active at 
x(yk, Ck) are the same as those that are active at x*. Let A [ x ( y k ,  Ck)] be the 
set of indices of coordinates of x (Yk, ck) which equal either the correspond- 
ing lower bound or the corresponding upper bound, i.e., 

A [ X ( y k ,  ck)] = {i Ixi(Yk, Ck) = ai o r  Xi(Yk, Ck) = [3i}. 

Then, it is possible to prove that the rows and columns of P(yk, ck) cor- 
responding to indices in A[x(yk, Ck)] are zero. Thus, if indices are reordered 
so that, for some index s, we have 

A [ X ( y k ,  ck)] = {ils + 1 --< i<--n}, 

then P(yk, Ck) has the form 

e(yk, ck)=[ 0 7-oJ' 

where _N represents the Hessian of the Lagrangian with respect to the first s 
coordinates of x and _fi is the s x n matrix with (i,/')th element equal to 

Oh{[x~(yk, ck)]/Oxi, i = 1 . . . .  , s, j = 1 . . . . .  m ,  

where hi = (h~ . . . .  , h ~ ) ' .  

In view of these facts, it can be seen that the Newton iteration (49) can be 
carried out quite easily and involves again the solution of a system of m 
linear equations (rather than n), where m is the number of equality 
constraints in problem (50). Similar simplifications occur when problem (50) 
involves in addition separable inequality constraints of the form 

gi (Xi) ~ O. 
i=i  

In conclusion, if L(y, c) is invertible, the N e w t o n  i teration for  prob lem 

(49) or (50) requires the solut ion o f  a s y s t em  o f  l inear  equat ions  o f  d i m e n s i o n  
m (the n u m b e r  o f  equal i t y  cons tra in ts ) ,  rather than n. 
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Inexact Minimization. In our analysis and algorithms, we require that 
the exact value of the local minimum x(y ,  c) of the problem 

minimize f ( x ) + ( 1 / 2 c ) l y - x l  2, 

subject to  h ( x ) = 0 ,  g ( x ) - 0 ,  

be available. In practice, the minimization above will be carried out only 
approximately. Not only will the algorithm become computationally 
implementable in this way, but, if experience with the method of multipliers 
can serve as a guide, one expects that inexact minimization should result in 
considerable computational savings. A possible scheme is to determine at 
the kth iteration, in place of x(yk, ck), A(yk, ck), /x(yk, ck), a vector xk 
satsifying, together with the Lagrange multiplier vectors ),k and /zk, the 
relations 

IVf(xk) + (1/Ck)(Xk -- Yk) + Vh (xk)Ak + Vg(xk)/xk] --< (~/dck) min{lxk - yk I, 1}, 

max {Ihi(xk)l, g~(Xk)} <-- (yk/ck)min{Ixk -- yk I, 1}, 
i=l,...,m 
j=l,...,r 

max Itz~,gj(xk)I-- (Tk/ck)min{lxk -- Ykl, 1}, 
]=l,.,.,r 

where {'/k} is a nonincreasing nonnegative sequence converging to zero. In 
this way, the minimization is inexact, but becomes progressively more 
accurate. While we expect that algorithms employing a judicious scheme for 
inexact minimization should be computationalty more efficient than 
algorithms with exact minimization, we have conducted no computational 
experiments to test this conjecture. 

5. Appendix: Local Conjugate Convex Functions 

Definition 5.1. Given a function f: R"  ~ R and a mapping h : R"  -* 
R'n, h = (hi . . . . .  h,n)', we say that f is h-locally convex at a point £ ~ R ~ if 
h (£) = 0, f and h are twice continuously differentiable in a neighborhood of 
2, the gradients Vhl(£) . . . . .  Vh,~($) are linearly independent,  and there 
exists a vector R = (,~1 . . . . .  Am)'~ R m such that 

Z'[V2f(J~)+ ~ £iV2hi(2)]>O, VZ # 0 ,  Vh(2)'z =0 .  (51) 
i=1 

Let  f be h-locally convex at g ~ R ~, let ~ satisfy (51), and consider the 
vector 

~/= Vf(2) + Vh (2)£. (52) 
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Consider also, for fixed u, the problem 

maximize u'x - f(x ), 
(53) 

subject to h(x) = 0, 

The standard second-order sufficiency conditions for this problem (see 
Ref. 1, p. 226) are 

u - V f ( x ) - V h ( x ) A  =0 ,  h(x) = 0, (54-1) 

z'[V2f(x)+ ~ A,V2hi(x)]z>O, Vz tO,  Vh(x)'z=O. 
i=1 

(54-2) 

The vectors a, 2, ,( satisfy conditions (54). From the implicit function 
theorem, it follows that there exist scalars 6 > 0 and o-> 0 such that, for 
every u ~ S(a;  6), problem (53) has a unique local maximum within a sphere 
S(£; o-), denoted by x(u), and a unique associated Lagrange multiplier 
vector within S(/Q cr), denoted by A (u), and satisfying, for all u s S(~; 6), 

u -Vf[x(u)]-Vh[x(u)]A(u) = O, h[x(u)] = 0, (55-1) 

z'[V~f[x(u)]+ ~ Ai(u)VZh,[x(u)]]z>O, V z # 0 ,  Vh[x(u)]'z=O. 
i=1 

(55-2) 

Furthermore,  the vectors Vhi[x (u)], i = 1 , . . . ,  m, are linearly independent 
for all u c S(~; 8). We define the h-local convex conjugate o f f  at (if, A) by 

p(u) = u'x(u)- f ix(u)] ,  Vu ~ S(~; 6). (56) 

In order to gain better  understanding of the nature of the local convex 
conjugate function, consider the set S of alI u ~ R n around which a con- 
jugate can be defined locally: 

{ u t u = Vf(x) + Vh (x)h for some (x, h ) with h (x) = O, S 

z'[V2f(xt+  iV2hi(x)]z>0,Vz 0, vh(x/'z -- 0, 
i=1 

Vhl(x) . . . . .  Vhm(x) linearly independent}. a n d  

We first observe that S is an open set. This can be seen from the fact that, if 
~7 ~ S and an h-local convex conjugate at (Y, ,0  is defined with S(8; 6), 
then for every u s S(t~; 6) the vectors x(u), A(u) satisfy (55), and hence 
S(ti; 6) C S. Now, to each vector u s S there may correspond more than one 
pair (x, A) satisfying (55), and the value of the conjugate p at u will depend 
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on the cor responding  pair  (x, a).3 Thus,  a pe rhaps  m o r e  appropr i a t e  nota-  
t ion for  p, and indeed an a l ternat ive  (and equivalent)  definition, would  be  to 
set  

p(u; x, a ) =  u'x - f ( x ) ,  (57) 

for  all u e & and (x,)t)  satisfying (54). This  comple te ly  specifies the local 
con juga te  for  all points  where  it can be  defined. In our  definit ion (56), the 
d e p e n d e n c e  on (x, 9~) is suppressed ,  since p is def ined only locally within 
S(t7; 3), r a ther  than  over  the  whole  set  & In the  case whe re  to each  u ~ $ 
there  cor responds  a unique pair [x(u),  A (u)] satisfying (55), we have  

p(u)  = u 'x (u) - f iX(U)] ,  Vu 6 S, 

and specification of u de te rmines  x(u) ,  and hence  also p(u).  W e  give two 
examples  that  may  be  helpful  in clarifying this si tuation.  

Example 5.1. For  n = 2, let 

f (x )  = O, h(x)  = h(xl ,  x2) = (1 /3 )x~-x2 .  

Le t  $ = (21, x2)' be  any vec tor  satisfying 

(1/3)2~ = ~2. 

Then ,  for  z = (zl,  z2)', (51) is wri t ten as 

2£21z~ > 0, Vz # 0 ,  -2 XlZ1--z2=O. 

T h e  above  re la t ion is satisfied for  all (Y, £)  with £ ~ 1 > 0 .  The  h- local  
con juga te  of  f can be  def ined locally at each  point  z7 of the  fo rm 

= [X2~] with X2t > O, (1/3)23 = 22. 
a 1_ - i J '  

Hence ,  the doma in  of definit ion of p is the set 

S = {(Ul, u2) l u l > 0 ,  u 2 <  0}w{(u, ,  u2)]/gl < 0 ,  U 2 > 0  }. 

Not ice  that  this set  is nonconvex  and disconnected.  To  each u e S, there  
cor responds  a unique pair  (x, dr) satisfying (55). S t ra ight forward  calculat ion 
yields 

I(2/3)(Ul)3/Z/(--U2) 1/2 , if u l > O ,  u2<O,  

P(U)=[(2/3)(--Ul)3/2/(u2)l/2,  if U l < 0 ,  U2>0 .  

3 If Ma is the set of pairs (x, it) corresponding to t2 ~ S as in (57), then for any (f, ,~) ~ Ma there 
exists a sphere S[($, aS); ~7], ~ > 0, such that S[(2, aS); @] c~ M~ = {(£ ,~)}. This follows from the 
implicit function theorem and implies that Ma is a countable set. To see this, pick a vector 
f~R "+m ~vith rational coordinates in each S[(f,~);~] and establish a one-one cor- 
respondence of Ma with a countable subset of R ~*", 
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Example 5.2. For,  n = 2 let 

f(x)=f(xI, x2)=Xl+X2, h(x)=cosxl-x2, fo r  Ix21_< 1. 

Le t  Y = (£'1, 22)' be any vec tor  satisfying 

COS 3~1 = 22. 
Then,  (51) is wri t ten as 

- -A COS 2 1 2 2 > 0 ,  V Z ~ 0 ,  Zl s in )~1+ Z2 = 0. 

The  above  relat ion is satisfied for  

cos ~i < 0, 

and a conjuga te  can be def ined locally at each point  ti of  the form 

= _ ~ , with h cos xl < 0, cos ~1 = x2. (58) 

Thus,  a local conjugate  can be defined at any point  in the set 

S = {(ul, u2)1 l u l -  11 < l u 2 -  11}. 

However ,  to each u e S, there  cor responds  more  than one  pair  (2, h) 
satisfying (58). For  example ,  if a = (1/2,  2), then (58) is satisfied for 

= - 1, 21 = 2k~r - ~-/6, k = integer,  2z = ~/3/2. 

We have, for  the local conjugate  at (2krr - ir /6,  x/3/2, - 1), 

p (ti) = t7'2 - f ( 2 )  = (1/2)(2kcr  - zr/6) + , J 3 -  (2kcr - 7 r / 6 ) -  ~/3/2, 
o r  

p (1 /2 ,  2) = ~/3/2 - k~r + 7r/12, 

and thus the value o f p  depends  on the integer  k, i.e., the point  (2, h), which is 
used in the local definit ion of p. 

The  following proposi t ion provides  essential character izat ions of the 
funct ion p. Par t  (ii) in part icular  shows that, by conjugation on p, one obtains 
the original function f for points near Y~ which lie on the manifold {x[h(x) = 0}. 

Propos i t ion  5.1. Le t  f be an h- local ly  convex funct ion at 2. Cons ider  a 
vec tor  h satisfying (51), and let  p be the  h- local  convex con juga te  of f at 
(2, h) def ined by (56). Then,  

(i) p is convex and twice contin.uously different iable in S(ti ;  8) where  
a is given by (52) and, for  all u ~ S ( a ;  6), we have 

Vp(u)  = x(u) ,  (59) 

V2p(u)  = [/~(/,/)]--1 __ [ ~ ( U ) ] - l V h [ x ( b / ) ]  

x{Vh[x(u)]'[£(u)]-lVh[x(u)]}-lVh[x(u)]'[I~(u)] -1, (60) 
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where/~(u)  equals any symmetric invertible matrix such that 

I~(u)z = L(u)z, Vz, Vh[x(u)]'z = 0, (61) 

L(u) = V2f[x(u)] + ~ A~(u)V2hi[x(u)]. (62) 
i=1 

Note that we show that VZp(u) is uniquely defined in this manner. In 
particular, one may take i ( u )  equal to L(u), whenever L(u) is invertible. 

(ii) Let  )~: R"  ~ R be defined by 

/~(x)= sup {x 'u-p(u)) .  

Then, there exists a 3: > 0 such that 

f (x)=f(x) ,  Vx~S(£;  y), h ( x ) = 0 .  

Proof. (i) We have, for u 6S(l i ;  6), 

u - V f i x (u ) ] -  Vh[x(u)]A (u) = O, 

h[x(u)] = O, 

Vp(u)  = x(u) +Vx(u){u - W [ x  (u)]}, 

(63) 

(64) 

(65) 

(66) 

(67) 

where the n x m  matrix Vx(u) has as columns the gradients of the co- 
ordinates of x with respect to u. From (65), we obtain 

Vx(u){u -Vf[x(u)]} = Vx(u)Vh[x(u)]A(u), (68) 

while from (66) we have by differentiation 

Vx(u)Vh[x(u)] = 0. (69) 

Combining (67)-(69), we obtain 

Vp(u) = x(y) ,  

and (59) is proved. From the above equality, we also obtain 

V2p(u) = Vx(u).  (70) 

Differentiating (65) with respect to u, we obtain 

I -  VA (u)Vh[x(u)]'-Vx(u)L(u) = 0, (71) 

where I is the n x n identity matrix, 7A (u) is the n x m matrix having as 
columns the gradients VA;(u), and L(u) is given by (62). We have 

z 'L(u)z > O, Yz  ~ O, Vh[x(u)]'z = 0. (72) 
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Let /~(u)  be any symmetric invertible matrix such that 

[,(u)z = L(u)z, Vz, Vh[x(u)]'z = 0. (73) 

For  example, we can take/~(u) = L(u), if L(u) is invertible. Another  choice 
is given by 

L(u) = L(u) + rVh[x(u)]Vh[x(u)]'. (74) 

This matrix, in view of (72), is positive definite for r > 0 sufficiently large by 
the result of Ref. 6. From (69) and (73), we have 

V x ( u ) L ( u )  = V x ( u ) £ ( u ) ,  (75)  

and we can write (71) as 

/ ' - v a  ( u ) V h [ x ( u ) ] ' -  V x ( u ) i ( u )  = O. 

Postmultiplying this relation with [L(u)]-lVh[x(u)] and using (69), we 
obtain 

[/~(u )]-lVh Ix (u)] - Va (u)Vh [x (u)]'[/~(u ) ] l V h  Ix (u)] = 0, 

form which 

V• (u) = [L,(u)]-lVh[x(u)]{Vh[x(u)]'[I~(u)]-lVh[x(u)]} -1. (76) 

Combining (70), (71), (75), (76), we obtain 

yap(u)  = [/~(u)] -1 - [£(u)]-iVh[x(u)] 

x{Vh[x(u)]'[L(u)]-lVh[x(u)]}-lVh[x(u)][£(u)] -1, (77) 

and the desired relation (60) is proved. In order to show that p is convex in 
S(~; 8), it is sufficient to show that V2p(u) is positive semidefinite. But this 
follows from (76), since/~(u) can be taken to be a positive-definite matrix 
[for example, of the form (74) for r sufficiently large], and hence V2p(u) is a 
projection matrix. 

(ii) We first observe that we have, for each u ~ S(~i; 8), 

V[x 'u  - p (u)]  = x - V p ( u )  = x - x ( u ) .  

Hence, u attains the supremum of x'u -p (u )  if x = x(u), and it follows that 

i [ x  (u) ]  = x ( u ) ' u  - p (u )  = x (u ) '  u - u' x ( u )  + f i x ( u ) ] ,  

and finally 

f i x  (u)]  = f i x ( u ) ] ,  Vu ~ s ( a ;  a) .  

Hence, in order to prove part  (ii), it will be sufficient to show that there exists 
a ~, > 0 such that, for each x s S ( / ;  ~/) with h(x) = 0, there is a u E S(~; 8) 
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such that x = x(u). The set 

{(x, h)l[Vf(x)+Vh(x)A]6S(g~; 8)} 

is clearly open and contains (Y, ,~). Take y > 0 such that (x, h ) belongs to this 
set for all x ~ S(Y; y), h e S(h; y), and 

z ' [ V ~ ( / ) +  ~. AiV2hi(x)]z>O, Vz ¢0 ,  Vh(x) 'z=O, 
i = 1  

and furthermore y -< o-, where o- is the scalar introduced in the application of 
the implicit function theorem following (54). Let  x be such that x E S(Y; 3"), 
h(x) = 0, and let h be any vector in S(h; 3'). Then, if 

u = Vf(x) + Vh (x)h, 

we clearly have u ~S(t i ;  8), and (x, ~) form a local maximum-Lagrange 
multiplier pair for problem (53). Since 3" -< o-, by the uniqueness part of the 
implicit function theorem we obtain 

x = x (u ) ,  ,~ = ,~ (u ) .  [ ]  

We note that it is possible to obtain a local version of Fenchel's duality 
theorem in terms of local conjugate convex functions. The main idea 
involved in deriving this theorem can be extracted from the proof of Lemma 
3.1. See also Ref. 17. 
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