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Convexification Procedures and Decomposition
Methods for Nonconvex Optimization Problems'
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Communicated by D. G. Luenberger

Abstract. In order for primal-dual methods to be applicable to a
constrained minimization problem, it is necessary that restrictive con-
vexity conditions are satisfied. In this paper, we consider a procedure by
means of which a nonconvex problem is convexified and transformed
into one which can be solved with the aid of primal-dual methods.
Under this transformation, separability of the type necessary for appli-
cation of decomposition algorithms is preserved. This feature extends
the range of applicability of such algorithms to nonconvex problems.
Relations with multiplier methods are explored with the aid of a local
version of the notion of a conjugate convex function.
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decomposition methods, multiplier methods, local convex conjugate
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1. Introduction

Consider a constrained minimization problem of the form

minimize f(x),
1
subjectto  h{x)=0, 0
where f: R" > R, h: R" > R"™ are given functions. Among several possible
methods, one may attempt a numerical solution of this problem by means of
a primal-dual method (see, e.g., Ref. 1, Chapter 13). In such methods, one
forms the Lagrangian function L: R" X R™ —» R defined by

L(x, ) =f(x)+A'h(x).
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Subsequently, a dual functional g is defined [perhaps, locally in a neigh-
borhood of a Lagrange multiplier A* of problem (1)] by means of

g(Ay=min L{x, A), 2)

where the minimization is perhaps understood to be local in a neighborhood
of a local minimum x* of problem (1). Then, one may employ a steepest
ascent iteration of the form

w1 = Ae Fa ValAe), (3)
where a; >0 is a scalar stepsize, or a Newton iteration of the form
Aeer =M —[V2q(0)] Vg Ai) 4)

in order to maximize the dual functional ¢. The gradient Vg (A, ) and Hessian
V?g(A) under suitable assumptions exist and may be obtained via mini-
mization of L{ -, Ax) (see Ref. 1). Related methods may be constructed for
problems of the form

minimize f(x), )
5
subjectto xeX, gi{x)=0,7=1,...,1,
where g;: R” > R and X is a subset of R" (see, e.g. Refs. 2, 3, 4).
Methods of the type described above are particularly useful in separ-
able problems having, for example, the form

minimize i fi(&),
i=1

subjectto Y hi(&)=0,
i=1

where
X = (fl, PP 6,1),.

In such problems, the minimization of the Lagrangian is decomposed into n
one-dimensional minimizations

n

min L0x, &) = £ {min ilg-+ A €]
x i=1 |
with considerable simplification resulting. This decomposition approach has
been pioneered by Everett (Ref. 5) and has found considerable application
in the solution of large-scale problems with separable structure.
One of the major drawbacks of primal-dual methods, which limits
considerably their range of applicability, lies in the fact that the problem
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must have a convex structure (at least locally—near a solution), for other-
wise it is either impossible to define a dual functional by means of (2) or else
the maximal value of the dual functional is not equal to the optimal value of
the original problem (i.e., a duality gap is present). Thus, in local versions of
the theory for problem (1) (see Ref. 1), one needs the assumption that a local
minimum-Lagrange multiplier pair (x*, A*) satisfies the second-order
sufficiency conditions as well as the local convexity assumption

Z'V2L(x*, A%)z >0, Vz #0.

In global versions of the theory for problem (5), itis necessary to assume that
X is a convex set and f and g; are convex functions over X, and to make
additional assumptions which ensure that there is no duality gap and that the
dual functional is sufficiently differentiable in order for gradient-type
methods to be applicable.

Now, it is possible to convexify problem (1) by considering the
equivalent problem

minimize  f(x)+(c/2)|h(x),

: (6)
subjectto  h(x)=0,

where ¢ > 0 is a scalar penalty parameter and | - | denotes the usual Euclid-
ean norm. It is well known that, for ¢ sufficiently large, problem (6) has a
locally convex structure provided (x*, A*) satisfy the second-order
sufficiency assumptions. This follows from a lemma due to Debreu (Ref. 6).
The well-known methods of multipliers may be viewed as primal-dual
iterations of the form (3) or (4) applied to problem (6). We refer to Refs. 7
and 8 for analysis related to this viewpoint. While the convexification
procedure described above has led to very useful generai-purpose
algorithms, it has the drawback that it precludes the straightforward appli-
cation of decomposition algorithms for solving the corresponding dual
problem, since the penalty term (c/2)|h(x)]> does not have a separable
structure even if the constraint function h is separable. We mention, however,
that the convexification procedure described above has been utilized in a
recent paper by Stephanopoulos and Westerberg (Ref. 9) to construct a
primal-dual method for separable nonconvex problems. No specific con-
vergence and rate of convergence results have been given for the algorithm

proposed in Ref. 9.
The purpose of this paper is to consider and analyze a different
convexification procedure than the one above, which has the advantage that
it preserves separable structure whenever it is already present. A simple way
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to describe our procedure for the case of the problem

minimize f(x), 7
subjectto h(x)=0,g(x)=0,

is as follows.
We consider the problem

minimize  f(x)+(1/2¢)ly —x|%,
subjectto h{(x)=0,g(x)=0,xeR", yeR", (8)

where ¢ >0 is some fixed scalar and y represents a vector of additional
variables. Clearly, a vector x™ is a local minimum of the original problem (7)
iff (x*, x*) is a local minimum for problem (8). Now we may write problem
(8) as

minimize ¢.(y),
subjectto yeR",

where the function ¢, is defined by

¢c(y) = min {f(x)+(1/2¢)ly —x[*} ©)
s0=0

and the minimization above is understood to be local in a neighborhood of a
local minimum x* of problem (7). It is easy to show that the minimization
problem in (9) has a locally convex structure for ¢ small enough provided
suitable second-order sufficiency conditions are satisfied at x*. Thus, prob-
lem (9) may be solved by primal-dual methods. Furthermore, if the original
problem (7) has separable structure, the same is true for the problem (9). Now,
the function ¢, of (9) has x™ as a local minimum and may be minimized by
means of a steepest descent method, such as

Vi+1 = Vi — Ve (Vi ), (10)

where « is a stepsize parameter, or by means of Newton’s method

Yier1 = Vi = [V (y)] Voo (yi). (11)

It turns out that, under second-order sufficiency assumptions for x*, both
V. and V¢, exist within a sphere centered at x* for every ¢ > 0. Further-
more, this sphere can be made arbitrarily large by taking c sufficiently large.
These facts will be shown in the next section. At the same time, we will
obtain convergence and rate of convergence results for iterations such as
(10) and (11).
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It is important to note that our approach bears a close relation to the
method of multipliers. This relation is direct and easy to obtain whenever the
function ¢: R" » (—00, +o0] defined by

fx),  ifh(x)=0,g(x)=0,
+00, otherwise,

éo(x}={

is convex and lower semicontinuous. Under these circumstances, ¢ may be
viewed as the ordinary dual functional of the concave programming problem

maximize —¢*(u),
(12)
subjectto —u=0,

where @™ is the conjugate convex function of ¢ given by

e*(u)y=sup{x'u—x)}.

By applying Fenchel’s duality theorem and using (9), (12), it is easy to show
that

e.(y) =inf{e(x)+(1/2¢)ly — x|’} =sup{— o*(u) + y'u ~ (c/2)|u*}

= —inf{e*(u)—y'u +(c/2)|ul’}.

Thus ¢, is the penalized dual functional which is optimized in the quadratic
method of multipliers (see Refs. 10, 11) applied to problem (12). Further-
more, iterations (10) and (11) are first-order and second-order multiplier
iterations (see Refs. 7, 8, 12) for solving problem (12), or equivalently for
minimizing ¢.. The special case of iteration (10), where a = c, is the original
method of multipliers proposed by Hestenes and Powell. It has been
analyzed exhaustively for the convex case by Rockafellar and Kort and
Bertsekas (see Refs. 10, 11, 13), and more recently by Rockafellar (Refs. 14,
15) as a special case of the proximal point algorithm. The more general case,
where the stepsize «, is any scalar in the interval [, 2¢ — 8], where 8 >0 is
some arbitrarily small scalar, has been analyzed by the author in Ref. 12.

In the ponconvex case considered in this paper, the results available for
multiplier methods cannot be directly invoked, since we do not have a
conjugate convex function ¢* and problem (12) to work with. We bypass
this difficulty by introducing in the Appendix the notion of a local
conjugate convex function. Using this notion, we construct a problem similar
to (12). Our algorithms are then shown to be multiplier methods for this
problem, and their convergence properties follow from known results for
these methods.
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The analysis throughout the paper is conducted in n-dimensional
Euclidean space, denoted by R”, and equipped with the usual norm,
denoted by |- |, i.e.,

N 1/2
M=(L5])  forx=(n...x)eR"
i=1

In our notation, all vectors will be considered as column vectors. A prime
denotes transposition. For € >0 and x € R", we denote by S(x; €) the open
space centered at x with radius e. For any function h: R™ » R, we denote by
Vh and V7h the gradient and Hessian matrix of . For h: R"->R™, h=
(h1,..., h,), we denote by Vi the n X m matrix having as columns the
gradients Vhy, ..., Vh,. For any x € R", the notation x =0 or x <0 means
that all coordinates of x are nonnegative or nonpositive, respectively. We
referto (x, A, ) as a local minimum-Lagrange multiplier pair of a problem of
the form (7) if x is a local minimum and, together with A, u, satisfies the
first-order Kuhn~Tucker conditions for optimality (see Assumption 2.2 in
the next section).

2. Convergence Analysis

Let x* be a local minimum of the problem
minimize f(x),
(13)
subjectto  h{x)=0, g(x)=0,

where f:R"-»R, h:R"->R", h=(hi,...,h,), g R">R', g=
(g1, - - . &) Throughout the paper, we employ the following second-order
sufficiency assumptions.

Assumption 2.1. The functions f, h, g are twice continuously
differentiable within an open sphere centered at x*.

Assumption 2.2. The gradients Vi;(x®), i=1,...,m, Vgi(x™), je
A(x™), where

A(x*)={jlgi(x*)=07f=17' .- ’r}

are linearly independent, and hence there exist unique Lagrange multiplier
vectors

A*z(AT"--9)‘§cn),€Rm> ,Ul*z(/";ky---yl‘b:‘k)leRr’
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such that the following Kuhn—-Tucker conditions hold:
VAx®+Vh{x*)A*+Vg(xFu*=0

w =0, wfg(x*=0, j=1,...,r

Assumption 2.3. Strict complementarity holds, i.e.,

uf>0 iff g(x*)=0, i=1,...,rn
Assumption 2.4. There holds

Z'[sz(x*)+ Y ARV R+ Y ,u}kvzgj(x*)}z >0
i=1 i=1
for all z€R" such that z #0, Vi,(x*)2=0, i=1,...,m, Vg (x*)z =0,
je A(x*).
For any fixed y e R" and ¢ >0, consider the problem

minimize  f(x)+(1/2¢)y —x[,

subjectto h(x)=0, g(x)=<0. (14)
The necessary conditions for optimality for this problem are
Vi) +(1/c)x —y)+Vh(x)A +Vg(x)u =0, (15)
hix)=10, g(x)=0, w=0, migi(x) =0, i=1,....r
(16)

and may be viewed as a set of relations in x, A, u continuously parametrized
by y. For y = x*, we have the solution

x=x% A =A% w=p*

Consider the Jacobian matrix
m r { {
V) + L NI Vh() 4 T wf Vg +(1/e) | VA 1 G|
je=1 =1

i=

where G(x*) is the matrix having as columns Vg, (x*), j€ A(x*), and [ is the
# X n identity matrix. It is easy to show that Assumptions 2.1-2.4 imply that
this matrix is invertible for each ¢ > 0. It follows from the implicit function
theorem that the system (15}, (16) has a unique solution x(y, ¢), A(y, ¢),
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w(y, ¢), such that
glx(y,c)]=0, VjeAx™), glx(y,0)]<0, VigAx®,
I“Li(y, C)>0a VjEA(X*)9 Mf(ya C):O’ V]EA(X*)a

for each fixed ¢ >0 and each y in a sufficiently small neighborhood of x*,
This neighborhood depends on ¢. Furthermore, for y sufficiently close to x*,
it can be seen that the vectors x(y, ¢), A(y, ¢), u(y, ¢) satisfy second-order
sufficiency conditions for optimality for problem (14), and hence x(y, ¢) is a
strict local minimum for problem {14). Thus, we may define for y € §(x*; ¢),
where € >0 is some scalar, the function

e (y)=flx(y, )1+ (1/20)ly —x(y, o)
) N a7
=, min {f(x)+(1/20)ly —x[%},

g(x)=0

where the minimization is local in the sense described above. The vector x*
is clearly a local minimum of ¢.. Furthermore, we will show in Propositions
2.1 and 2.2 which follow that ¢. is twice continuously differentiable in
S(x*; €) and that Ve, V2¢. can be expressed in closed form in terms of
x(y, ¢), y, c. Thus, one may employ the steepest descent iteration

Vier1 = Vi — @ Ve (Vi) (18)

where o, >0 is a scalar stepsize parameter, or Newton’s iteration

Yi+15 Vi —[Vz‘Pc(Yk)]_lvﬂpc(Yk) (19)

for minimizing ¢, locally within a neighborhood of the local minimum
y=x*

It is possible to show that iterations (18) and (19) yield in the limit the
vector x* provided the starting point y, is sufficiently close to x* and (in the
case of steepest descent) the stepsize a; is sufficiently small. These proper-
ties follow from well-known facts on gradient-type algorithms for uncon-
strained minimization and provide justification for employment of iterations
{18) and (19). However, we can obtain considerably stronger algorithms and
results by broadening our framework to include the possibility of changing
the parameter ¢ from one iteration to the next and by allowing starting
points y, which are arbitrarily far from x*. The main results are described in
the following two propositions, the proofs of which will be given in the next
section. In each proposition, the function ¢. of (17) is redefined appro-
priately. Since we essentially deal with the same function in each prop-
osition, we shall use a common notation for ¢, and x(y, ¢). Hopefully, this
will not create any confusion to the reader.
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Proposition 2.1. Let vy, y; be any two scalars with 0 <y < y,. Then,
there exists an € >0 (depending on v, vy2) such that, for all ¢ and y with

yi<c=<y, |y—x¥<e

problem (14) has a unique local minimum-Lagrange multiplier pair,
denoted by [x(y, ¢), A(y, ¢), u(y, ¢)], within some open sphere centered at
(x*, ¥, u™®). The active constraints at x(y, ¢) are the same as those at x*, i.e.,
gilx(y, ¢)]=0, iff je A(x*). Furthermore, € is such that the following hold
true:

{i) The function ¢.: S{x*; €}~ R defined for each ¢ €[v1, y2] by

ec(y)=flx(y, )1+ (1/20)y —x(y, o)f (20)

is twice continuously differentiable in S(x*; €) and has x* as its unique
minimum. The gradient of ¢, is given by

Ve (y)=(1/c)ly —x(y, ¢)]. (21)
The Hessian of ¢, is the positive-definite matrix given by
Ve(y)=[cI+P(y,c)] ", (22)

where [ is the n X n identity and P(y, ¢) is the positive-semidefinite matrix
given by

P(y,c)=N"'-NT'F(F'N'F)'FN (23)

The matrix F above is the matrix having as columns the vectors Vi, [x(y, ¢)],
i=1,...,m,Vglx(y, c)], je A(x*). The matrix N equals

L(y, )= Vflx(y, )+ 5 Ay OV hlx(, 1+ T (3, g0y, )]
(24

whenever L(y, ¢) is invertible. Otherwise, N equals any invertible matrix L
such that

Liy,c)z=Lz
for all z such that

Vhlx(y,z)z=0, i=1,...,m,  Vglx(y,c)Iz=0, jeA(x™.

Note that, as shown in the proof, the matrix P(y, ¢) is unigely defined in this
way.

(i) Let{ci} be a sequence satisfying v, = ¢x < v, for all k, and let § be
any scalar such that 0 <& = 1. Consider the steepest descent iteration

Vier1 = Vi — i Ve, (Yio), (25)
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where «y satisfies for all k

Scr=sa,=2-8)c.

Then, for every starting point yo € S{x™; €), the sequence {y,} generated by
(25) satisfies for all k

|Viers = %" = rielyee —x*, (26)
where
re= sup )§1~ak/[ck+ei(y,ck)]l<l, 27)
yeS{x*; e
i=1,., n

and ey, c) denotes the ith eigenvalue of P(y, ¢;). Furthermore, {yi}
converges to x ¥,

(iii) Let {cc} be any sequence satisfying y;=c, <y, for all k, and
consider the Newton iteration

Ye+1= Yk ‘[Vzwck()’k)]_lv%k()’k)- (28)

Then, there exists a scalar €, with 0<é=¢, such that, for every ys€

S§(x*; &), the sequence {v;} generated by (28) remdins in $(x*; €) and

converges to x*, If, in addition, v, Vh,i=1,...,m, Vzgj, je A(x™), are

Lipschitz continuous in $(x*; €), then there exists a B >0 such that for all ¥
|yer1—x*| < Blye —x*.

Proposition 2.2. Let Y be any open sphere centered at x™, and
assume that V£, VZh, i=1,...,m, Vzg,-, j€ A(x¥), are Lipschitz continuous
within a neighborhood of x*. Then, there exists a scalar y =0 (depending on
Y) such that, for all ¢>y and ye Y, problem (14) has a unique local
minimum-Lagrange multiplier pair, denoted by [x(y,¢), A(y, ¢), (¥, ¢)],
within some open sphere centered at (x*, A*, u*). The active constraints at
x(y, ¢) are the same as those 2t x*, i.e.,

gilx(y, c)]=0

iff j € A(x™). Furthermore, v is such that the following hold true:
(i) The function ¢.: Y - R defined for each ¢ >y by

@c(y) = flx(y, )1+ (1/20)ly —x(y, )

is twice continuously differentiable in Y and has x* as its unique minimum.
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The gradient and Hessian matrix of ¢, are given by (21)-(23).
(ii) There exist scalars M; >0, M, >0, such that, forall¢ >y, ye Y,
a >0, there holds

[x(y, ¢)—x¥=(1/c)Myly - x*|, (29)
ly —aVe (y)—x*|=(1/c)(|c —al+(a/c)Mi)|y —x*|, (30)
ly = [V ()] ' Ve (y) = x*=(1/*)Moly — x*[. 31

Propositions 2.1 and 2.2 provide related but different sets of results. In
Proposition 2.1, essentially no restriction is made on the choice of the
parameter ¢, since y; and vy, are arbitrary positive scalars. However, the
construction of ¢, and the algorithmic results are local in nature, since y is
restricted within the sphere S(x*;€) or S(x*; &), the radius of which
depends on the choice of ¢. In Proposition 2.2, the situation is reversed. The
domain of definition of ¢, is the set ¥ which can be taken arbitrarily large.
However, both the construction of ¢, and the algorithmic estimates (29)-
(31) are valid only for ¢ greater than the threshold value y which depends on
the set Y.

Proposition 2.1 yields local convergence and rate of convergence
results for the steepest descent and Newton iterations [parts (ii) and (iii)].
These results are valid for any sequence {c,} bounded above and bounded
away from zero. In particular, {c,} can be taken so that problem (14) has a
locally convex structure for every k. On the other hand, the iterations need
not converge to x* if a starting point y, sufficiently close to x* is not
available.

Part (ii) of Proposition 2.2 yields global convergence and rate of
convergence results for both steepest descent and Newton iterations. Thus,
the iteration

Vier1 = X (Vi Ck) (32)

converges to x* for an arbitrary starting point y, € Y, provided ¢, = ¥ for all
k, where v is some scalar with

¥ >max{M;, v}.

This follows immediately from (30). Furthermore, the rate of convergence is
superlinear if c, - 0. Notice that iteration (32) is the same as the steepest
descent iteration (24) with a; = ¢, [compare (21}, (25), and (32)]. From
estimate (31), we obtain a similar global convergence result for the Newton
iteration. The convergence rate is at least superlinear with order 2.
Concerning the general steepest descent iteration

Yie+1 = Yk “akvﬁock()’k),
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the reader may verify by using (30) that it is convergent from an arbitrary
starting point yp€ Y provided we have, for all &,

Sc=ar= (2 "6)Ck
for some & € (0, 1] and ¢, = ¥, where
¥ >max{(2—-8)M,/8, v}.

Thus, the region of convergence for both steepest descent and Newton’s
method can be arbitrarily enlarged at the cost of having to take c sufficiently
large. This cost may be significant indeed, since, in order to convexify
problem (14), small values of ¢ may be needed.

The conclusions from our results may be summarized by saying loosely
that, if the amount of convexification induced is increased (i.e., ¢ is reduced),
the region of convergence of iterations (25) and (28) becomes smaller. The
estimates (26), (27), (29)-(31) show also that the rate of convergence
deteriorates as c is decreased. On the other hand, one can see that the
conditioning of problem (14) is improved for small values of ¢. Thus, problem
(14) becomes easier to solve algorithmically as ¢ is decreased. The con-
vergence behavior described above is reminiscent of the method of multi-
pliers and has been verified in several computational examples, some of
which will be presented in Section 4.

3. Proofs of the Propositions

In order to simplify the presentation of the proofs, we restrict ourselves
to the case where there are no inequality constraints and the problem is of
the form

minimize f(x),
(33)
subjectto  h(x)=0.
The modifications required to prove the results for the general case are
simple and are left to the reader.

We first note that, by Assumptions 2.1-2.4 and Definition 5.1 (see the
Appendix), f is h-locally convex at x*, Let p be the h-local conjugate of f at
(x*, A*). Then, p is defined in a sphere §(0; 8), 6 >0, and has the properties
specified in Proposition 5.1. We have from the definition of p [see (55)] that,
for all u € $(0; 8),

u~Vflx(w)]-Va[x(w)A(u)=0,  hlx(u)]=0, (34-1)

z’[sz[x(u)]+ § /\i(u)Vzh,-[x(u)]]z>0, Vz #0, Vhix{(u)]lz' =0,
i=1

(34-2)
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and x(u), A(u) are unique vectors satisfying the above relations within
S{x*; o) and S(A¥; o), respectively, where ¢ >0 is some scalar, Further-
more,

x(0)=x*, A(0) =A%, (35)
plu)y=u'x(u)—flx(u)l, YueS(0;5), (36)
Vplu)=x{(u}, YueS(0;8). 37

Consider the problem
minimize {u),
’ (38)
subjectto —u=0, ueS0;8).

By (35) and (36}, the optimal value of this problem is —f(x*); and by (35)
and (37), the associated Lagrange multiplier is

Vp(0)=x{0)=x*.
We will show that the algorithms proposed are multiplier methods for
solving problem (38), of the type considered in Refs. 7, 8, 16. The following
lemma plays a key role in this respect.

Lemma 3.1. If the problem

minimize  p(u)—y'u +(c/2)|ul?,

subjectto u < S(0; 8), (39)
has a unique minimizing point, denoted by u(y, ¢), then the problem
minimize  f(x)+{1/2¢)|y —x[, (40)
subjectto h{(x)=0, xeS8E*; o),
has a unique minimizing point, denoted by x(y, ¢), and we have
x(y, c)=y—culy,c), (41)
pluly, o)1= y'uly, )+ (c/Dluly, o)’ = ~ flx(y, )1= (1/2¢)ly = x(y, o).
{42)

Proof. Using (34), define

x(y,c)=x[u(y, c)l,  Aly,c)=Aluly, )]
Then,
x{y,c)eS(x*; o), Aly, c)e S(A*; o).
We have
Vplu(y, c)]—y +culy, ¢)=0;
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and, using (37) and (43), we obtain (41). A straightforward calculation using
(36), (41), (43) also yields (42). From (34), (41), (43), we obtain

Vilx(y, )]+ 1/ e)x(y, )= y]+Valx(y, c)A(y, ) =0,

from which it follows that x(y, ¢} is a minimizing point of problem (40). Itisa
unique minimizing point, in view of the uniqueness of x{u) and A (u) within
S(x*; o) and S(A*; o) satisfying (34-1). O

The proofs of Propositions 2.1 and 2.2 follow by straightforward
application of Lemma 3.1, Proposition 5.1, and known results on multiplier
methods given in Ref. 7 (Propositions 1, 2, 5 and Corollary 2.1), Ref. 8
(Proposition 6), and Ref. 16 (Proposition 1). The details are left to the
reader.

4. Computational Aspects and Results

We now consider a number of topics of computational nature related to
our methods.

Stepsize Selection for Steepest Descent. Asshown in Propositions 2.1
and 2.2, the steepest descent iteration takes the form

Vier1 = Yie — e/ c)[ye = x (yio )] = [(ew — i)/ ciclyr + (] ci)x (yi, ci)-
(43)

The stepsize ay can take values in [8cy, (2—8)c], where §€(0, 1] is an
arbitrarily small scalar. In particular, when « = ¢, and the iteration takes
the form yi+1 = x(yi, cr), convergence is assured as shown in Propositions
2.1 and 2.2. On the other hand, one would like to select the stepsize in a way
that accelerates convergence of the method. Ideally, one would like to find
the stepsize which minimizes ¢, (y) along the direction of search. It is
possible to show that the minimizing stepsize is always greater or equal
to ¢. To see this, consider the first derivative of the scalar function ®,
defined by

q)k (a) = (pck[Yk - av‘Pck (yk)]

at the point cx. We have, from the chain rule,

d®ilcr)/da = =V, (y) Voo [x(yi ci)l. (44)
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By using Taylor’s theorem and Egs. (21), (22), we obtain

i
Voo lx (Vi ci)1= Ve, (yi) + J. V20 [yic + 11X (Vo ) — yie ] dtlx (v, €6) = yic]

1
{1-a | Veuln+txte co -yl de]To,
0

1

= {I—j (I +(1/c)Plye + tx{yio ci) — yidy e 17 dt}

X Ve, (yi)- (45)

Since the matrix P is positive semidefinite, it follows that the matrix within
braces above is also positive semidefinite. Hence, from (44), (45), we obtain

dq)k(ck)/da =0.
Since @, («) is also convex within the region of its definition and
d®,(0)/da <0,

it follows that the stepsize «; which minimizes ®.{«) is always greater or
equal to ¢;. We note that a similar result has been proved for multiplier
methods (see Ref. 7, Section 5). Since it is computaticnally inconvenient to
perform a one-dimensional minimization of ¢.(y) along the steepest descent
direction, an alternative is to minimize f over the set of points which
correspond to stepsizes in the interval [cg, 2¢, — 8] and in addition are
feasible. In other words, we propose to determine ay from

f[ykwakV‘Pck(yk)}: m?} f[)’k"“aV(Pck(}’k)}, (46)

where My is the subset of the real line given by
My ={ela €lcw, (2—8)eed, Ay ~aVe., (v:)1=0, glye —aVe, ()] =0k
(47)
Notice that M, always contains ¢, since we have
Ve~ Ve (Vi €)= X (Yi, Ci)
and
hx(ye c)1=0,  glx(ye c)]=0.

The minimization in {46) is simplified greatly when the feasible set
{x[h{x)=0, g(x)=0} is convex, in which case the set M, of {47) is a closed

interval. It is also possible to perform the minimization in (46) approxi-
mately by means, for example, of a few iterations of a quadratic or cubic
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interpolation procedure. Similar procedures for choosing the stepsize have
been proposed for the method of multipliers by the author in Refs. 7,12, and
encouraging computational results have been given. We provide below
some examples which demonstrate the convergence properties of the
steepest descent method and show that choosing the stepsize via (46), (47)
can result in significant computational savings.

Example 4.1. Consider the problem
minimize ~—& &,
subjectto &;+4&-1=0,

with optimal solution

=05, & =0.125.

The optimal solution of the problem
minimize  —&é&+(1/2cf{lys— & +y2 - &),
subjectto £;+4&—-1=0,
is given by
&y, c)=(dc+1+16y,—4y,)/(8c+17),
&y, c)=(c+4—4y,+v,)/(8c +17).

We provide in Table 1 the results of the steepest descent iteration

it =aG05 ),  viT =605 ),

corresponding to the stepwise ax = ¢ for the cases where ¢, =1 and ¢, =10.

In Table 2, we show the results of the steepest descent iteration, where
the stepsize ;. was chosen via the minimization rule of (69), (70), where
5=107% These results are considerably more favorable than those of
Table 1. We note however that, when the feasible set is a one-dimensional
manifold, as it is in this problem, the minimization stepsize rule is much more
effective than in problems where the feasible set is of dimension greater than
one, Our next example is of this type.

Example 4.2. This problem was designed specifically to test the
effectiveness of the minimization stepsize rule (46), (47) versus the stepsize
ai = cr. The problem is

minimize f(x)=(1/2) i ix?,
i=1
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Table 1. Steepest descent with stepsize o, = ¢;.
=1 =10

k vk vs i vs
0 0.00000 0.00000 0.00000 0.00000
1 0.20000 0.20000 0.42268 0.14432
2 0.29600 0.17600 0.48645 0.12838
3 0.36128 0.15968 0.49762 0.12559
4 0.40567 0.14858 0.49958 0.12510
5 (.43585 0.14103 0.49992 0.12501
6 0.45638 0.13590 0.49999 0.12500
7 0.47034 0.13241
8 0.47983 0.13004
9 0.48628 0.12842

10 0.49067 0.12733

11 .49366 0.12658

subject to x € R”. This problem is unconstrained. QOur results however apply,
with trivial notational changes, to such a problem as well. By straightforward
calculation, one obtains that the steepest descent iteration is given by

Vier ={li(ck—a) + 1/ Ge + Dive,  i=1,...,n

The minimizing stepsize can be calculated to be

ae=| £ 2]/ £ @it 1)

For the values of ¢, and y, used, there holds oy €[cx, 1.9¢,]. Tables 3 and 4
below show the sequences {f(y;)} generated for ¢, =1, ¢, =10, n =3, 10,

Table 2. Steepest descent with minimizing stepsize [see (46), (47)1.

=1 =10

k ¥4 v5 yi y5

0 0.060000 0.00000 0.00000 0.00000
1 0.20000 0.20000 0.42268 0.14432
2 0.39200 0.15200 0.50000 0.12500
3 0.46112 0.13472

4 0.48600 0.12850

5 0.49496 0.12626

6 0.49818 0.12545
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50, ar =ci, and o, chosen by minimization (min «;). The initial vector yo
was

yO:(l, 1, ey 1)’.
Very similar results were also obtained for

yo=(1,1/2,...,1/nY.

Newton Iteration for Separable Problems. Since a primary motiva-
tion of our algorithms has been the solution of large-scale separable
probiems, it is worthwhile to point out that the Newton iteration for such
problems can often be carried out in a computationally efficient manner.
Indeed, consider the separable problem

minimize Y, fi(x:),

i=1

) (48)
subjectto Y h;i(x;) =0,

=1

where
x=(x1,...,%,)
and, for each /, fi: R—> R, h;: R> R™. The Newton iteration (28) takes the
form
YVierr = Vi — I+ (1/c)P(yx, c)llye —x (i, el (49)
where P(y, ¢) is given by (23)-(25), i.e.,
P(y,c)=N"'-NT'F(F'N'F)'F'N".

The matrix N can be taken to be equal to L(y, ¢), the Hessian of the
Lagrangian function, whenever L(y, ¢) is invertible. Let us assume that
L(y, ¢) is indeed invertible. Then, the computation in (49) is greatly facili-
tated, since L(y, ¢) is diagonal, and hence N ~! jsimmediately available. The
main computational difficulty in (49) is to compute

di =(F'N7'F) '"F'N Yy = x(yi ci)].
This can be done by solving the system of m linear equations
(F'NT'F)di = F'N [ye — x(yi, c)].

The dimension of this system is m and is ofter small, even if the dimension n of
the problem is very large.



JOTA: VOL. 29, NO. 2, OCTOBER 1979 189

Frequently separable problems are of the form

n
minimize Y, f(x),
i=1

subjectto Y. Ai{x;)=0, (50)
i=1

ainiSﬁi, l‘_—‘l,...,i’l'

During the algorithm, we generate sequences {y; } and {x{ys, ¢ )}. According
to Propositions 2.1 and 2.2, the inequality constraints that are active at
x (vi, ¢ ) are the same as those that are active at x*. Let A[x(yi, ¢ )] be the
set of indices of coordinates of x (yi, ¢x) which equal either the correspond-
ing lower bound or the corresponding upper bound, i.e.,

Alx(ye c)]={i §Xi()’k, cr) = a; of XYk, Cx) = Bi}

Then, it is possible to prove that the rows and columns of P(y, ¢x) cor-
responding to indices in A[x(ys, ¢x)] are zero. Thus, if indices are reordered
so that, for some index s, we have

Alx(ye, c)]={ils+1=i=n},

then P(yy, cx) has the form

N 7 Tt
Py 00 = [ F--2Y FEL D R 1)

where N represents the Hessian of the Lagrangian with respect to the first s
coordinates of x and F is the s X n matrix with (j, f)th element equal to

ahi[xz(yk’ Ck):l/axb 3.:17"”3‘7 jzla"'ama
where h; = (hi,..., h"Y.

In view of these facts, it can be seen that the Newton iteration (49) can be
carried out quite easily and involves again the solution of a system of m
linear equations (rather than »), where m is the number of equality
constraints in problem (50). Similar simplifications occur when problem (50)
involves in addition separable inequality constraints of the form

;} gi(x:)=0.
In conclusion, if L(y, ¢) is invertible, the Newton iteration for problem

(49) or (50) requires the solution of a system of linear equations of dimension
m (the number of equality constraints), rather than n.
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Inexact Minimization. In our analysis and algorithms, we require that
the exact value of the local minimum x(y, ¢) of the problem

minimize  f(x)+(1/2¢)ly —x[?,
subjectto  h(x)=0, g(x)=0,

be available. In practice, the minimization above will be carried out only
approximately. Not only will the algorithm become computationally
implementable in this way, but, if experience with the method of multipliers
can serve as a guide, one expects that inexact minimization should result in
considerable computational savings. A possible scheme is to determine at
the kth iteration, in place of x(yi, ¢}, A(Vi, Ci)y, m(Vi» Ci), @ vector x
satsifying, together with the Lagrange multiplier vectors A, and w,, the
relations

IVF(xi) +(1/ i)t = yie) + VA (i) A + Vg () pie] = (vie/ i) min{|xe — yeel, 1},

max {{h;(x)l, g(xe)} = (vi/ ciomin{lxe = yil. 1},

i=1,..., m

jlfiaxr l1eegi (il = (ya/ e )mind]xe — yi|, 1},
where {yi} is a nonincreasing nonnegative sequence converging to zero. In
this way, the minimization is inexact, but becomes progressively more
accurate. While we expect that algorithms employing a judicious scheme for
inexact minimization should be computationally more efficient than
algorithms with exact minimization, we have conducted no computational
experiments to test this conjecture.

5. Appendix: Local Conjugate Convex Functions

Definition 5.1. Given a function f: R" - R and a mapping 4: R" >
R™, h=(hi,...,h,), we say that f is h-locally convex at a point ¥ R" if
h(x)=0, f and h are twice continuously differentiable in a neighborhood of
%, the gradients Vhi(%),..., VA, (%) are linearly independent, and there
exists a vector A =(Ay, ..., A,n) € R™ such that

z’[sz(JE)+ § )C,-Vzh,.()z)] >0, Vz#0, Vh#)z=0. (51)
f=1

Let f be h-locally convex at £ < R", let A satisfy (51), and consider the
vector

i =VfE) +VAh(A. (52)
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Consider also, for fixed u, the problem
maximize u'x —f{x),
(53)
subjectto  A{x)=0,

The standard second-order sufficiency conditions for this problem (see
Ref. 1, p. 226) are

u—Vfx)—-Vh(x)A =0, hix)=0, (54-1)

z’[sz(x)J.— Y A;Vzhg(x)}z>0, Yz#0, Vh(x)z=0.
i=1
(54-2)

The vectors i, %, A satisfy conditions (54). From the implicit function
theorem, it follows that there exist scalars § >0 and o >0 such that, for
every u € §(i; 8), problem (53) has a unique local maximum within a sphere
S(x; o), denoted by x(u), and a unique associated Lagrange multiplier
vector within S(A; o), denoted by A (u), and satisfying, for all u € S(i; &),

u—-Vix(w)]—Vhlx@)A () =0, Alx(u)]=0, (55-1)

z'[vzf[x(um gm /\,—(u)\'/’zhi[x(u)]}z >0, Vz#0, Vh[x@)]z=0.
(55-2)

Furthermore, the vectors Vi, {x(u)), i=1,..., m, are linearly independent
for all u e $(ii; 8). We define the h-local convex conjugate of f at (%, ) by

pluw)=u'x{u)-flx(w)],  VueS;?s). (56)

In order to gain better understanding of the nature of the local convex
conjugate function, consider the set § of all u € R™ around which a con-
jugate can be defined locally:

8= { ulu=vf(x)+Vh(x)r for some (x, A) with 4(x) =0,
z'[sz(x)-i— ) /\,-V?‘hl-(x)]z >0,Vz#0, Vh(x)z =0,
i=1

and Vh(x), ..., Vh,{x) linearly independent}.

We first observe that § is an open set. This can be seen from the fact that, if
78 and an h-local convex conjugate at (%, A) is defined with S(i; §),
then for every v e S(iZ; §) the vectors x{u), A(u) satisfy (55), and hence
S(i; 8) CS. Now, to each vector 4 € § there may correspond more than one
pair (x, A) satisfying (55), and the value of the conjugate p at u will depend
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on the corresponding pair (x, A).” Thus, a perhaps more appropriate nota-
tion for p, and indeed an alternative (and equivalent) definition, would be to
set

plu;x, Ay=u'x - f(x), (57)

for all ue S, and (x, A) satisfying (54). This completely specifies the local
conjugate for all points where it can be defined. In our definition (56}, the
dependence on (x, A) is suppressed, since p is defined only locally within
S(i@i; 8), rather than over the whole set §. In the case where to each ue §
there corresponds a unique pair [x{u), A{u)] satisfying (55), we have

pu)=u'x(u)—-flx(w)]l, Vues,

and specification of u determines x(u), and hence also p(u). We give two
examples that may be helpful in clarifying this situation.

Example 5.1. Forn =2, let
flx)=0, h(x)=h(x1, x2)=(1/3)x7—x,.
Let ¥ = (%, %)’ be any vector satisfying
(1/3)%3 = %,.
Then, for z = (z1, z,)', (51) is written as
20%:127>0,  Vz#0, £iz,—-2,=0.

The above relation is satisfied for all (£, A) with A%;>0. The h-local
conjugate of f can be defined locally at each point i of the form

A% <
a= [ "}] with A5, >0,  (1/3)f1=%.
Hence, the domain of definition of p is the set

S ={(u, u2) |l u1>0, us <0} U{(uy, uz)|u1 <0, u, >0}

Notice that this set is nonconvex and disconnected. To each u € §, there
corresponds a unique pair (x, A) satisfying (55). Straightforward calculation
yields

_ 2/3) )’ /(—u)'"?, if u; >0, uy <0,
plu)= {(2/3)(— w)?/u)"?, fu<0,  ux>0.

*If M, is the set of pairs (x, A} corresponding to # € S as in (57), then for any (£, X) € M, there
exists a sphere S[(%, A); 71, ¥ >0, such that S[(£, A); ¥]1 M, = {(%, A)}. This follows from the
implicit function theorem and implies that M;; is a countable set. To see this, pick a vector
Fe R™"™ with rational coordinates in each S[(%, A); ¥] and establish a one—one cor-
respondence of M; with a countable subset of R"*™,
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Example 5.2. For, n =2 let
Fx)=f(x1, x2) =x1+ X0, h(x)=cos x;—x,, for x| =1.
Let ¥ = (£, X;)’ be any vector satisfying

cos X1 = Xp.
Then, (51) is written as

-A cosflzf>0, Yz #0, z18in X1 +z;,=0.
The above relation is satisfied for
A cos ¥, <0,
and a conjugate can be defined locally at each point @ of the form
1-Xsin % ]
ﬁz[l_l_\sm xl}, with A cos £, <0, cos £, = K5. (58)
Thus, a local conjugate can be defined at any point in the set
S ={(u, w)| luy~ 1] <|ur—1]}.

However, to each u €S, there corresponds more than one pair (%, 1)
satisfying (58). For example, if i = (1/2, 2), then (58) is satisfied for

A=-1, £=2kmw-m/6, k=integer, %,=v3/2.
We have, for the local conjugate at 2kx — /6, \/3/2, -1),
p(i)=a'% - f(F) = (1/2)2km — 7/6) +~3 — 2km —m/6) —v/3/2,
or
p(1/2,2)=vV3/2—kn+m/12,

and thus the value of p depends on the integer £, i.e., the point (£, 1), which is
used in the local definition of p.

The following proposition provides essential characterizations of the

function p. Part (ii) in particular shows that, by conjugation on p, one obtains
the original function f for points near X which lie on the manifold {x}h(x) = 0}.

Proposition 5.1. Let f be an A -locally convex function at #. Consider a
vector A satisfying (51), and let p be the %-local convex conjugate of f at
(%, A) defined by (56). Then,

(i) pisconvex and twice continuously differentiable in §(i7; §) where
7 is given by (52) and, for all u € $(i7; 8), we have

Vp(u)=x(u), (59)
Vip(u) =[L(w)] " —[L(w)] 'Vh[x(u)]
}{VALx ()T VAlx () VA I )] ™, (60)



194 JOTA: VOL. 29, NO. 2, OCTOBER 1979

where i(u) equals any symmetric invertible matrix such that

Lwz=L(wz, Yz, Vhx@)]z=0, (61)
L) =V flr(w]+ ¥ AV h{x(w)] (62)

Note that we show that sz(u) is uniquely defined in this manner. In
particular, one may take L(u) equal to L(u), whenever L(u) is invertible.
(ii) Let f: R"~> R be defined by

fx)= sup {x'u-p(u)} (63)

ucS{ii;8)

Then, there exists a y >0 such that
fy=fx), VxeS&E;y),  hx)=0. (64)

Proof. (i) We have, for u € S(iz; 8),

u—Vflx(u)]-Vh[x(u)r (u)=0, (65)
hlx(u)]=0, (66)
Vp(u)=x(u)+Vx(u)}u —Vfxw)]}, (67)

where the n Xm matrix Vx(u) has as columns the gradients of the co-
ordinates of x with respect to u. From (65), we obtain

Ve (u){u ~Vflx(u)]} = Vx@)Vh[x(@)A (), (68)
while from (66) we have by differentiation
Vx(u)Vh[x(u)}=0. (69)
Combining (67)-(69), we obtain
Vp(u) =x(y),
and (39) is proved. From the above equality, we also obtain
Vp(u)=Vx(u). {70)
Differentiating (65) with respect to u, we obtain
IT—-VA)VA[x()] —Vx(W)L(u)=0, (71)

where [ is the n X n identity matrix, VA{u) is the n X m matrix having as
columns the gradients VA (u), and L(u) is given by (62}. We have

z'L(u)z >0, Yz #0, Vhlx(u)]'z=0. (72)
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Let L(u) be any symmetric invertible matrix such that
L)z =L{u)z, Yz, Vhlx(u)lz =0. (73)

For example, we can take }f(u) = L(u), if L{u) is invertible. Another choice
is given by

L(u)=Lu)+rVhx(w)Vh[x(w)]. (74)

This matrix, in view of (72), is positive definite for » > 0 sufficiently large by
the result of Ref. 6. From (69) and (73), we have

Vx(u)L(u) =Vx(u)L(u), (75)
and we can write (71) as
I=YAW)Vhx W)} -Vx{u)L(u)=0.

Postmultiplying this relation with [L(x)]'Va[x(x)] and using (69), we
obtain

[L()] " VALx ()] = VA () VhLx ()] [L ()] Vhx(u)]=0,
form which
VA @) = L)' VA[x () UVALx L) ' VAlx @)1 (76)
Combining (70), (71), (75), (76), we obtain
Vep(u) = [L(w)] " = [L(w)] 'VAlx(w)]
}{VRLx ()] [E@)] VRl @)} VAxIL@I™,  (77)

and the desired relation (60) is proved. In order to show that p is convex in
S(ii; 8), it is sufficient to show that V’p(u) is positive semidefinite. But this
follows from (76), since L(u) can be taken to be a positive-definite matrix
{for example, of the form (74) for r sufficiently large], and hence Vzp(u) isa
projection matrix.

(ii) We first observe that we have, for each u € S(ii; 8),

Vix'u—pu)]=x~Vp(u)=x—x(u).
Hence, u attains the supremum of x'u — p(u) if x = x(u), and it follows that
Flx ()] = x(u)'u —p(u) = x(u)'u —u'x(w) + flx(w)],
and finally
flx@l=flxw),  VueS(a;s).

Hence, in order to prove part (ii), it will be sufficient to show that there exists
a y >0 such that, for each x € §(%; y) with A(x) =0, there is 3 u € $(i7; 8)
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such that x = x(u). The set
{(x, DIVFx)+Vh(x)A]e S(a; 8)}

is clearly open and contains (%, A). Take y > 0 such that (x, A) belongs to this
set for all x € S(¥; v), A € S(A; v), and

z’[sz(x)+ § Aivzki(x):iz >0, Yz #0, Vh(x)z =0,
i=1

and furthermore y = o, where o is the scalar introduced in the application of
the implicit function theorem following (54). Let x be such that x € §(x; v),
h(x)=0, and let A be any vector in S(A; v). Then, if

u=Vf(x)+Vh(x)A,

we clearly have u € S(i; 8), and (x, A) form a local maximum-Lagrange
multiplier pair for problem (53). Since y = g, by the uniqueness part of the
implicit function theorem we obtain

x =x(u), A=A(u). O

We note that it is possible to obtain a local version of Fenchel’s duality
theorem in terms of local conjugate convex functions. The main idea
involved in deriving this theorem can be extracted from the proof of Lemma
3.1. See also Ref. 17.
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