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Preface

The area of Lagrange multiplier methods for constrained minimization
has undergone a radical transformation starting with the introduction of
augmented Lagrangian functions and methods of multipliers in 1968 by
Hestenes and Powell. The initial success of these methods in computational
practice motivated further efforts aimed at understanding and improving
their properties. At the same time their discovery provided impetus and a
new perspective for reexamination of Lagrange multiplier methods proposed
and nearly abandoned several years earlier. These efforts, aided by fresh
ideas based on exact penalty functions, have resulted in a variety of interest-
ing methods utilizing Lagrange multiplier iterations and competing with
each other for solution of different classes of problems.

This monograph is the outgrowth of the author’s research involvement in
the area of Lagrange multiplier methods over a nine-year period beginning
in early 1972. It is aimed primarily toward researchers and practitioners of
mathematical programming algorithms, with a solid background in intro-
ductory linear algebra and real analysis.

Considerable emphasis is placed on the method of multipliers which,
together with its many variations, may be viewed as a primary subject of the
monograph. Chapters 2, 3, and 5 are devoted to this method. A large portion
of Chapter 1 is devoted to unconstrained minimization algorithms on which
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xii PREFACE

the method relies. The developments on methods of multipliers serve as a
good introduction to other Lagrange multiplier methods examined in
Chapter 4.

Several results and algorithms were developed as the monograph was
being written and have not as yet been published in journals. These include
the algorithm for minimization subject to simple constraints (Section 1.5),
the improved convergence and rate-of-convergence results of Chapter 2, the
first stepsize rule of Section 2.3.1, the unification of the exact penalty methods
of DiPillo and Grippo, and Fletcher, and their relationship with Newton’s
method (Section 4.3), the globally convergent Newton and quasi-Newton
methods based on differentiable exact penalty functions (Section 4.5.2), and
the methodology for solving large-scale separable integer programming
problems of Section 5.6.

The line of development of the monograph is based on the author’s
conviction that solving practical nonlinear optimization problems effi-
ciently (or at all) is typically a challenging undertaking and can be accom-
plished only through a thorough understanding of the underlying theory.
This is true even if a polished packaged optimization program is used, but
more so when the problem is large enough or important enough to warrant
the development of a specialized algorithm. Furthermore, it is quite common
in practice that methods are modified, combined, and extended in order to
construct an algorithm that matches best the features of the particular
problem at hand, and such modifications require a full understanding of
the theoretical foundations of the method utilized. For these reasons, we
place primary emphasis on the principles underlying various methods and
the analysis of their convergence and rate-of-convergence properties. We
also provide extensive guidance on the merits of various types of methods
but, with a few exceptions, do not provide any algorithms that are specified
to the last level of detail.

The monograph is based on the collective works of many researchers as
well as my own. Of those people whose work had a substantial influence on
my thinking and contributed in an important way to the monograph I
would like to mention J. D. Buys, G. DiPillo, L. Dixon, R. Fletcher, T. Glad,
L. Grippo, M. Hestenes, D. Luenberger, O. Mangasarian, D. Q. Mayne,
E. Polak, B. T. Poljak, M. J. D. Powell, B. Pschenichny, R. T. Rockafellar,
and R. Tapia. My research on methods of multipliers began at Stanford
University. My interaction there with Daniel Gabay, Barry Kort, and
David Luenberger had a lasting influence on my subsequent work on the
subject. The material of Chapter 5 in particular is largely based on the
results of my direct collaboration with Barry Kort. The material of Sec-
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tion 5.6 is based on work on electric power system scheduling at Alphatech,
Inc. where I collaborated with Greg Lauer, Tom Posbergh, and Nils R.
Sandell, Jr.

Finally, I wish to acknowledge gratefully the research support of the
National Science Foundation, and the expert typing of Margaret Flaherty,
Leni Gross, and Rosalie J. Bialy.






Chapter 1

Introduction

1.1 General Remarks

Two classical nonlinear programming problems are the equality con-
strained problem

(ECP) minimize f(x)
subject to  h(x) =0

and its inequality constrained version

(ICP) minimize f(x)
subject to  g(x) < 0,

where f* R" — R, h: R" —» R™, g: R" — R" are given functions. Computational
methods for solving these problems became the subject of intensive investiga-
tion during the late fifties and early sixties. We discuss three of the approaches
that were pursued.

The first approach was based on the idea of iterative descent within
the confines of the constraint set. Given a feasible point x,, a direction d,
was chosen satisfying the descent condition Vf(x,)'d, < 0 and the condition

1



2 1. INTRODUCTION

X, + od, : feasible for all « positive and sufficiently small. A search along the
line {x, + adi|a > 0} produced a new feasible point x,., = x; + o.d;
satisfying f(x;+,) < f(x;). This led to various classes of feasible direction
methods with which the names of Frank—Wolfe, Zoutendijk, Rosen, Goldstein,
and Levitin-Poljak are commonly associated. These methods, together with
their more sophisticated versions, enjoyed considerable success and still
continue to be very popular for problems with linear constraints. On the
other hand, feasible direction methods by their very nature were unable to
handle problems with nonlinear equality constraints, and some of them
were inapplicable or otherwise not well suited for handling nonlinear
inequality constraints as well. A number of modifications were proposed for
treating nonlinear equality constraints, but these involved considerable
complexity and detracted substantially from the appeal of the descent idea.

A second approach was based on the possibility of solving the system of
equations and (possibly) inequalities which constitute necessary conditions
for optimality for the optimization problem. For (ECP), these conditions are

(1a) V.L(x, ) = Vf(x) + Vh(x)A = 0,
(1b) V,L(x,4) = h(x) = 0,
where L is the (ordinary) Lagrangian function

L(x, A) = f(x) + Ah(x).

A distinguishing feature of this approach is that the Lagrange multiplier
A is treated on an equal basis with the vector x. Iterations are carried out
simultaneously on x and 4, by contrast with the descent approach where
only x is iterated upon and the Lagrange multiplier plays no direct role.
For this reason algorithms of this type are sometimes called Lagrangian
methods. Several methods of this type were considered in Arrow et al. (1958).
In addition to Newton’s method for solving system (1), a gradient method
was also proposed under the condition that the local convexity assumption

) V2, L(x*, 1*) > 0

holds at a solution (x*, A*). It was noted, however, by Arrow and Solow
(1958) that if the local convexity assumption did not hold, then (ECP) could
be replaced by the equivalent problem

3) minimize f(x) + 3c|h(x)|?
subject to  h(x) = 0,

where ¢ is a scalar and |-| denotes Euclidean norm. If ¢ is taken sufficiently
large, then the local convexity condition can be shown to hold for problem (3)
under fairly mild conditions. The idea of focusing attention on the necessary
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conditions rather than the original problem also attracted considerable
attention in optimal control where the necessary conditions can often be
formulated as a two-point boundary value problem. However, it quickly
became evident that the approach had some fundamental limitations,
mainly the lack of a good mechanism to enforce convergence when far from a
solution, and the difficulty of some of the methods to distinguish between
local minima and local maxima.

A third approach was based on elimination of constraints through the
use of penalty functions. For example the quadratic penalty function method
(Fiacco and McCormick, 1968) for (ECP) consists of sequential uncon-
strained minimization of the form

%) minimize f(x) + 3cx|h(x)|?

subjectto xeR",

where {c,} is a positive scalar sequence with ¢, < Cx+1 for all k and ¢; — 0.
The sequential minimization process yields

Q) lim inf {f(x) + 3cilh(x)[*}.

cx— o0 xeR™

On the other hand, the optimal value of (ECP) can be written as

(©) inf lim {f(x) + el ()}

x€R™ ¢ 0

and hence the success of the penalty method hinges on the equality of the
expressions (5) and (6), ie., the validity of interchanging “lim” and “inf.”
This interchange is indeed valid under mild assumptions (basically con-
tinuity of f and h—see Chapter 2). Lagrange multipliers play no direct role
in this method but it can be shown under rather mild assumptions that the
sequence {c,h(x,)}, where x, solves problem (4), converges to a Lagrange
multiplier of the problem. Despite their considerable disadvantages [mainly
slow convergence and ill-conditioning when solving problem (4) for large
values of ¢, ], penalty methods were widely accepted in practice. The reasons
can be traced to the simplicity of the approach, its ability to handle nonlinear
constraints, as well as the availability of very powerful unconstrained
minimization methods for solving problem (4).

The main idea of the descent approach also made its appearance in a
dual context whereby an ascent method is used to maximize the dual func-
tional for (ECP) given by

d(A) = inf{f(x) + Xh(x)} = inf L(x, ).
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In the simplest such method one minimizes L(-, 4,) (perhaps in a local
sense) over x for a sequence of multiplier vectors {4,}. This sequence is
generated by

@) A1 = A + ah(xy),

where x, is a minimizing point of L(-, 4,) and « is a stepsize scalar parameter.
It is possible to show under the appropriate assumptions (see Section 2.6)
that h(x,) = Vd(4,), so (7) is actually a steepest ascent iteration for maxi-
mizing the dual functional d. Such methods have been called primal-dual
methods. Actually the dual functional and the method itself make sense only
under fairly restrictive conditions including either the local convexity
assumption (2) or other types of convexity conditions. The method is also
often hampered by slow convergence. Furthermore in many cases it is diffi-
cult to know a priori an appropriate range for the stepsize o. For this reason
primal-dual methods of the type just described initially found application
only in the limited class of convex or locally convex problems where mini-
mization of L(-, 4,) can be carried out very efficiently due to special structure
involving, for example, separable objective and constraint functions (Everett,
1963).

Starting around 1968, a number of researchers have proposed a new
class of methods, called methods of multipliers, in which the penalty idea is
merged with the primal-dual and Lagrangian philosophy. In the original
method of multipliers, proposed by Hestenes (1969) and Powell (1969), the
quadratic penalty term is added not to the objective function f of (ECP)
but rather to the Lagrangian function L = f + A'h thus forming the aug-
mented Lagrangian function

@® L(x,4) = f(x) + A'h(x) + c|h(x)[*.
A sequence of minimizations of the form
©) minimize L, (x, 4;)

subject to xeR"

is performed where {c,} is a sequence of positive penalty parameters. The
multiplier sequence {4,} is generated by the iteration

(10) Aevr = A + ch(xy),

where x, is a solution of problem (9). The initial vector A, is selected a priori,
and the sequence {c,} may be either preselected or generated during the
computation according to some scheme.

One may view the method just described within the context of penalty
function methods. If ¢, — oo and the generated sequence {4,} turns out to
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be bounded, then the method is guaranteed to yield in the limit the optimal
value of (ECP), provided sufficient assumptions are satisfied which guarantee
the validity of interchange of “lim” and “inf ” in the expression

lim inf{f(x) + A h(x) + %ci|h(x)|*},
similarly as for the penalty method considered earlier.
Another point of view (see Chapter 2) is based on the fact that iteration
(10) is a steepest ascent iteration for maximizing the dual functional

d, () = inf {f(x) + Yh(x) + 3| h(x)[*},

which corresponds to the problem
minimize f(x) + 3¢, |h(x)|?
subjectto  h(x) = 0.

As noted earlier, if ¢, is sufficiently large, this problem has locally convex
structure, so the primal-dual viewpoint is applicable.

It turns out that, by combining features of the penalty and the primal-
dual approach, the method of multipliers actually moderates the dis-
advantages of both. As we shall see in the next chapter, convergence in
the method of multipliers can usually be attained without the need to increase
¢, to infinity thereby alleviating the ill-conditioning problem that plagues
the penalty method. In addition the multiplier iteration (10) tends to converge
to a Lagrange multiplier vector much faster than iteration (7) of the primal-
dual method, or the sequence {c, h(x,)} in the penalty method. Because of these
attractive characteristics, the method of multipliers and its subsequently
developed variations have emerged as a very important class of constrained
minimization methods. A great deal of research has been directed toward
their analysis and understanding. Furthermore their discovery provided
impetus for reexamination of Lagrangian methods proposed and nearly
abandoned many years ago. These efforts aided by fresh ideas based on
penalty functions and duality have resulted in a variety of interesting methods
utilizing Lagrange multiplier iterations and competing with each other for
solution of different classes of problems.

The purpose of this monograph is to provide a rather thorough analysis
of these Lagrange multiplier methods starting with the quadratic method of
multipliers for (ECP) just described. This method is the subject of Chapter 2.
In Chapter 3, the method is extended to handle problems with both equality
and inequality constraints. In addition the Lagrange multiplier approach is
utilized to construct algorithms for solution of nondifferentiable and minimax
problems. In Chapter 4, we consider a variety of Lagrangian methods and
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analyze their local and global convergence properties. Finally, in Chapter 5,
we explore the possibility of using a penalty function other than quadratic,
and we analyze multiplier methods as applied to convex programming
problems.

1.2 Notation and Mathematical Background

The purpose of this section is to provide a selective list of mathematical
definitions, notations, and results that will be frequently used. For detailed
expositions, the reader should consult texts on linear algebra and real
analysis.

Algebraic Notions

We denote by R the real line and by R” the space of all n-dimensional
vectors. Intervals of real numbers or extended real numbers are denoted
as usual by bracket-parentheses notation. For example forae Rora = — o0
and beR or b = + 0 we write (a,b] = {x|a < x < b}. Given any subset
§ <= R which is bounded above (below), we denote by sup S (inf S) the least
upper bound (greatest lower bound) of S. If S is unbounded above (below)
we write sup S = oo (inf S = —o0). In our notation, every vector is con-
sidered to be a column vector. The transpose of an m x n matrix A is denoted
A'. A vector x € R" will be treated as an n x 1 matrix, and thus x’ denotes a

1 x n matrix or row vector. If x,, ..., x, are the coordinates of a vector
x € R", we write x = (x4, X5, ..., X,). We also write

x>0 if x>0, i=1,...,n,

x<0 if x,<0, i=1,...,n

A symmetric n x n matrix 4 will be said to be positive semidefinite
if x’Ax > O for all x € R". In this case we write

A=0.
We say that A is positive definite if x’Ax > 0 for all x # 0, and write
A>0.

When we say that A is positive (semi)definite we implicitly assume that
it is symmetric. A symmetric n X n matrix 4 has n real eigenvalues y,,
Y25 ---»> ¥» @and n nonzero real eigenvectors ey, e,, . .., e, which are mutually
orthogonal. It can be shown that

) Px'x < x'Ax < I'x'x VYV xeR",
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where
y = min{')]h R Yn}a r = maX{YI’ M y"}

For x equal to the eigenvector corresponding to I' (), the inequality on the
right (left) in (1) becomes equality. It follows that 4 > 0(A4 > 0), if and only
if the eigenvalues of A are positive (nonnegative).

If A is positive definite, there exists a unique positive definite matrix the
square of which equals 4. This is the matrix that has the same eigenvectors
as A and has as eigenvalues the square roots of the eigenvalues of A. We
denote this matrix by 42

Let 4 and B be square matrices and C be a matrix of appropriate dimen-
sion. The very useful equation

(A+ CBC) ' =A4"'—A"'CB™' + cCA™'0)"cA™?

holds provided all the inverses appearing above exist. The equation can
be verified by multiplying the right-hand side by (4 + CBC") and showing
that the product is the identity.

Consider a partitioned square matrix M of the form

M=[g ﬁ]

M—l — Q _QBD—1
_D-'CQ D'+ D-'COBD™'[

There holds

where
Q=(4-BD'O)7,

provided all the inverses appearing above exist. The proof is obtained by
multiplying M with the expression for M~ ! given above and verifying that
the product yields the identity matrix.

Topological Notions

We shall use throughout the standard Euclidean norm in R denoted |-|;
i.e., for a vector x € R", we write

x| = /X'x.

The Euclidean norm of an m x n matrix 4 will be denoted also |-|.
It is given by

|A| = max = max
x%0 |X] x#0

| Ax| XA Ax
JX'x '



8 1. INTRODUCTION

In view of (1), we have

|[A] = \/ max eigenvalue(A4'A).

If A is symmetric, then if 4,, ..., 4, are its (real) eigenvalues, the eigenvalues
of A% are A%, ..., A%, and we obtain

|4 = max{|4;], ..., |4.[}.

A sequence of vectors xg, Xy, ..., X, - .., 10 R" denoted {x,}, is said to
converge to a limit vector x if |x, — x| —0 as k— oo (that is, if given ¢ > 0,
there is an N such that for all k > N we have |x, — x| < ¢). If {x;} con-
verges to x we write x, — x or lim,_, ., x, = x. Similarly for a sequence of
m X n matrices {4,}, we write 4, - A4 or lim,_ A4, = A if |4, — A]| >0
as k — oo. Convergence of both vector and matrix sequences is equivalent
to convergence of each of the sequences of their coordinates or elements.

Given a sequence {x,}, the subsequence {x,|k € K} corresponding to an
infinite index set K is denoted {x,}x. A vector x is said to be a limit point
of a sequence {x,} if there is a subsequence {x,}x which converges to x.

A sequence of real numbers {r,} which is monotonically nondecreasing
(nonincreasing), i.e., satisfies r, < ryq (re = 1y q) for all k, must either
converge to a real number or be unbounded above (below) in which case we
write limy_, o r, = + 00 (limy., , 7, = —00). Given any bounded sequence
of real numbers {r,}, we may consider the sequence {s,} where s, =
sup{r;|i > k}. Since this sequence is monotonically nonincreasing and
bounded, it must have a limit called the limit superior of {r,} and denoted by
lim sup, ., 1. We define similarly the limit inferior of {r,} and denote it by
lim inf,_,  r,. If {r;} is unbounded above, we write lim sup;_, o, r, = + 00,
and if it is unbounded below, we write lim inf,_, , r, = — c0.

Open, Closed, and Compact Sets

For a vector x € R" and a scalar ¢ > 0, we denote the open sphere cen-
tered at x with radius ¢ > 0 by S(x; ¢); i.e.,

@ S(x;8) = {z]lz — x| < &}.

Forasubset X — R"and ascalare > 0, we write by extension of the preceding
notation

3) S(X;e) = {z]|lz — x| < eforsome x € X}.

A subset S of R" is said to be open, if for every vector x € S one can find an
& > 0 such that S(x;¢) = S. If S is open and x €S, then S is said to be a
neighborhood of x. The interior of a set S = R" is the set of all x € S for which
there exists ¢ > 0 such that S(x;¢) = S. A set S is closed if and only if its
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complement in R" is open. Equivalently S is closed if and only if every
convergent sequence {x,} with elements in S converges to a point which also
belongs to S. A subset S of R" is said to be compact if and only if it is both
closed and bounded (i.e., it is closed and for some M > 0 we have |x| < M
for all xeS). A set S is compact if and only if every sequence {x,} with
elements in S has at least one limit point which belongs to S. Another impor-
tant fact is that if Sy, Sy, ..., Sk, ... is a sequence of nonempty compact
sets in R" such that S, o Sy, for all k then the intersection (Vo Sk is a
nonempty and compact set.

Continuous Functions

A function f mapping a set S; = R" into a set S, < R™ is denoted by
f:8, = S,. The function f is said to be continuous at x € S, if f(x) = f(x)
whenever x, — x. Equivalently f is continuous at x if given & > 0 there
is a >0 such that |y — x| <& and yeS, implies |f(y) — f(x)| <e.
The function f'is said to be continuous over S, (or simply continuous) if it is
continuous at every point xe §,. If S;, S,, and S5 are sets and f;:S; = S,
and f,:S, — S; are functions, the function f,- f;:8; — S defined by
(f> - f1)(x) = fo[ f1(x)] is called the composition of f; and f,. If f;:R"—R"™
and f,: R™ — RP are continuous, then f, - f is also continuous.

Differentiable Functions

A real-valued function f: X — R where X = R" is an open set is said to
be continuously differentiable if the partial derivatives of (x)/0x, . . ., Of (x)/0x,
exist for each x € X and are continuous functions of x over X. In this case
we write fe C! over X. More generally we write fe C” over X for a function
f:X — R, where X < R" is an open set if all partial derivatives of order p
exist and are continuous as functions of x over X. If fe C? over R", we
simply write f€ C?. If fe C* on X, the gradient of fat a point x € X is defined
to be the column vector

o)

0x4
v =| |
o)
0x,,

If fe C? over X, the Hessian of f at x is defined to be the symmetric n X n
matrix having 02/ (x)/dx; éx; as the ijth element
o*f (X)]

Vi) = [6x~6x» '
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If f: X — R™ where X < R”, then f will be alternatively represented by

the column vector of its component functions f;, f5, . . ., f
f1(x)
fx)=1 :
Jon%)

If X is open, we write fe CP on X if f, € C?, f, € C? ...,f,€CPon X. We
shall use the notation

Vi(x) = [Vi(x) - - - V()]

Thus, the n x m matrix Vf has as columns the gradients Vf;(x), ..., Vf,(x)
and is the transpose of the Jacobian matrix of the function f.

On occasion we shall need to consider gradients of functions with
respect to some of the variables only. The notation will be as follows:

If f: R"*" — R is a real-valued function of (x, y) where x = (x, ..., x,) €
Ry =y, ..., y,)ER", wewrite
9 (x,y) of (x, )
0x, oy,
V. f(x,y) = S Yy = |
I (x, y) o (x, y)
0x, ay,
R ACR) )
Vxxf(-x’ y) - I:Taxj]’ nyf(x7 y) = I:axi ayj >
| (x,y)
Vyyf(x, y) - I:@y, ayj ]

Iff:R"™" > R™ f= (fi,fas---»fom), WeE Write
fo(xa y) = [fol(x> y) e fom(x’ .V)]’
Vo 1%, 9) = [V, fi(x, p) - -V, fiulx, Y]

For h:R" — R™and g: R" — R’, consider the function f: R" — R™ defined
by

f () = hlg(x)].

Then if h e C? and g € C?, we also have f'e C?. The chain rule of differentiation
is stated in terms of our notation as

Vf(x) = Vg(x)Vh[g(x)].
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Mean Value Theorems and Taylor Series Expansions

Let /2 X — R, and fe C! over the open set X — R" Assume that X
contains the line segment connecting two points x, y € X. The mean value
theorem states that there exists a scalar o with 0 < a < 1 such that

fO) =) + Vf[x + oy = )G — x).

If in addition fe C?, then there exists a scalar « with 0 < « < 1 such that
) =f() + V(X = x) + 3 =)'V [x + oy = )y — x).

Letf: X — R™andfe C! onthe openset X — R". Assume that X contains
the line segment connecting two points x, y € X. The first-order Taylor series
expansion of f around x is given by the equation

1
fO) =)+ L Vilx + oy — x)]'(y — x) do.

If in addition feC? on X, then we have the second-order Taylor series
expansion

fO) =) + VfX)(y — x)
1 4
+ J (J (v — x)Vf[x + oy — x)](y — x) doz) dé.
0 \Jo

Implicit Function Theorems
Consider a system of n equations in m + n variables
h(xa y) =0,

where h: R"*" — R" x € R™, and y € R". Implicit function theorems address
the question whether one may solve the system of equations for the vector
y in terms of the vector x, i.e., whether there exists a function ¢, called the
implicit function, such that h[x, ¢(x)] = 0. The following classical implicit
function theorem asserts that this is possible in a local sense, i.., in a neigh-
borhood of a solution (X, 7), provided the gradient matrix of h with respect
to y is nonsingular.

Implicit Function Theorem 1: Let S be an open subset of R™*" and
h:S — R" be a function such that for some p > 0, h € C? over S, and assume
that V,h(x, y) exists and is continuous on S. Let (X, y) € S be a vector such
that h(X, 7) = 0 and the matrix V,h(X, y) is nonsingular. Then there exist
scalars ¢ > 0 and & > 0 and a function ¢: S(x; &) — S(j; 6) such that ¢ € C*
over S(X;¢), 7 = $(X), and h[x, ¢(x)] = 0 for all x € S(x;¢). The function
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¢ is unique in the sense that if x € S(X; ¢), y € S(y; 0), and h(x, y) = 0, then
y = ¢(x). Furthermore, if p > 1, then for all x € S(X; ¢)

Vé(x) = — V. hlx, ¢(x)I[V,hlx, p(x)]]17 "
We shall also need the following implicit function theorem. It is a special

case of a more general theorem found in Hestenes (1966). The notation (3)
is used in the statement of the theorem.

Implicit Function Theorem 2: Let S be an open subset of R™*", X be a
compact subset of R™, and h:S — R" be a function such that for some
p =0, he C” on S. Assume that V h(x, y) exists and is continuous on S.
Assume that j € R" is a vector such that (X, y) € S, h(X, ) = 0, and the matrix
V,h(x, y) is nonsingular for all X e X. Then there exist scalars ¢ > 0, § > 0,
and a function ¢:S(X;e) — S(7; 6) such that ¢ € C? on S(X;¢), § = ¢(X)
for all X € X, and h[x, ¢(x)] = O for all x € S(X; ¢). The function ¢ is unique
in the sense that if x e S(X;¢), ye S(¥;6), and h(x, y) = 0, then y = ¢(x).
Furthermore, if p > 1, then for all x e S(X ; ¢)

Vé(x) = — V. hlx, ¢(x)I[V,hlx, p(x)]]7 .
When X consists of a single vector X, the two implicit function theorems

coincide.

Convexity

Aset S < R"is said to be convex if for every x, y € S and o € [0, 1] we have
ax + (1 — )y e S. A function f: S — R is said to be convex over the convex
set S if for every x, y € S and « € [0, 1] we have

flox + (1 =yl < of (x) + (1 — ) f ().

If fis convex and f'e C! over an open convex set S, then

“4) ) =f)+ Vfx)(y —x) Vx,yeSs.
If in addition fe C? over S, then V?f(x) > 0 for all xeS. Conversely, if

fe C*! over S and (4) holds, or if fe C? over S and V*f(x) > 0 for all xe S,
then fis convex over S.

Rate of Convergence Concepts

In minimization algorithms we are often interested in the speed with
which various algorithms converge to a limit. Given a sequence {x,} = R"
with x, — x*, the typical approach is to measure speed of convergence in
terms of an error function e: R" — R satisfying e(x) > 0 for all x e R" and
e(x*) = 0. Typical choices are

ex) =[x —x*|,  e(x)=]f(x)=fF)],
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where fis the objective function of the problem. The sequence {e(x;)} is then
compared with standard sequences. In our case, we compare {e(x;)} with
geometric progressions of the form

ry = qﬁka
where ¢ > 0 and B €(0, 1) are some scalars, and with sequences of the form
Iy = qﬂpk’

where g > 0, B€(0, 1), and p > 1 are some scalars. There is no reason for
selecting these particular sequences for comparison other than the fact
that they represent a sufficiently wide class which is adequate and convenient
for our purposes. Our approach has much in common with that of Ortega
and Rheinboldt (1970), except that we do not emphasize the distinction
between Q and R linear or superlinear convergence.

Let us introduce some terminology:

Definition: Given two scalar sequences {e;} and {r,} with
OSek, OSrk, ek_)09 rk_.)O?

we say that {e,} converges faster than {r,} if there exists an index k > 0 such
that

0<e<r, Vk>k

We say that {e,} converges slower than {r.} if there exists an index k > 0
such that

0<rn<e Vk=>k

Definition: Consider a scalar sequence {e,} with ¢, > 0, ¢, —» 0. The
sequence {e,} is said to converge at least linearly with convergence ratio B,
where 0 < B < 1, if it converges faster than all geometric progressions of
the form gp* where g > 0, Be (B, 1). It is said to converge at most linearly
with convergence ratio 8, where 0 < 8 < 1, if it converges slower than all
geometric progressions of the form gf*, where g > 0, B (0, f). It is said to
converge linearly with convergence ratio f, where 0 < f < 1, if it converges
both at least and at most linearly with convergence ratio . It is said to
converge superlinearly or sublinearly if it converges faster or slower, respec-
tively, then every sequence of the form gB¥, where g > 0, f € (0, 1).

Examples: (1) The following sequences all converge linearly with
convergence ratio f3:

k lk lk k + (1/k)
qﬁ,qﬁ+;,qﬁ—z,qﬁ ,
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where ¢ > 0 and fe(0,1). This fact follows either by straightforward
verification of the definition or by making use of Proposition 1.1 below.
(2) Let0 < B; < B, < 1, and consider the sequence {e,} defined by

e = Bif5, ex+1 = Py 165
Then clearly {e,} converges at least linearly with convergence ratio 8, and
at most linearly with convergence ratio f,. Actually {e,} can be shown to
converge linearly with convergence ratio ./f,f, a fact that can be proved
by making use of the next proposition.
(3) The sequence {1/k} converges sublinearly and every sequence
of the form gB”, where g > 0, (0, 1), p > 1, can be shown to converge

superlinearly. Again these facts follow by making use of the proposition
below.

Proposition 1.1: Let {¢,} be a scalar sequence with ¢, > 0, ¢, — 0.
Then the following hold true:

(a) The sequence {e;} converges at least linearly with convergence
ratio f € (0, 1) if and only if

®) lim sup el’* < B.

k=
It converges at most linearly with convergence ratio f € (0, 1) if and only if

6) lim inf e!* > B.

k= ©
It converges linearly with convergence ratio f € (0, 1) if and only if

@ lim ef* = B.
k= oc
(b) If {e} converges faster (slower) than some geometric progression of
the form gB* q > 0, Be(0, 1), then it converges at least (at most) linearly
with convergence ratio S.
(c) Assume that ¢, # O for all k, and denote

. . €k+1
By = limin , B, = lim sup =1

ko €k k- €k

fek+l

If 0 < B, < B, < 1, then {e,} converges at least linearly with convergence
ratio 8, and at most linearly with convergence ratio f3,.
(d) Assume that ¢, # O for all k and that

. €kt
lim = 6.
k= €k
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If0 < B < 1, then {e;} converges linearly with convergence ratio B. If f = 0,
then {e;} converges superlinearly. If § = 1, then {e,} converges sublinearly.

Proof: (a) If (5) holds, then for every B € (B, 1) there exists a k>0
suchthate, < f*forallk > k.Since {B*} converges faster than every sequence
of the form g, with ¢ > 0, f € (B, 1), the same is true for {e;}. Since B can be
taken arbitrarily close to f, it follows that {e,} converges at least linearly
with convergence ratio f. Conversely if {e;} converges at least linearly with
convergence ratio B, we have for every B € (8, 1), ¢, < p* for all k sufficiently
large. Hence, lim sup,., e;* < . Since B can be taken arbitrarily close
to B, (5) follows. An entirely similar argument proves the statement con-
cerning (6). The statement regarding (7) is obtained by combining the two
statements concerning (5) and (6).

(b) If ¢ < (=)gp* for all k sufficiently large then etk < (=)q**B
and lim supy o, (lim inf, . . Je’* < (=)B. Hence, by part (a), {e,} converges
at least (at most) linearly with convergence ratio f.

(c) For every B, € (B, 1), there exists k > 0 such that

ek+1/ek < Bz Vk > E.

Hence, ej.,, < Pregand et/®rm < pr/t+mel/k+m Taking the limit superior

as m — o0, we obtain
lim sup e < B,.
k= o0

Since j, can be taken arbitrarily close to §, we obtain lim sup. el* < B,,
and the result follows by part (a). Similarly we prove the result relating to B;-

(d) If 0 < B < 1, the result follows directly from part ©. If =0,
then for any Be(0,1) we have, for some k >0, ;43 < Bey for all k > k.
From this, it follows that {e,} converges faster than {B*}, and since j can be
taken arbitrarily close to zero, {e,} converges superlinearly. Similarly we
prove the result concerning sublinear convergence. Q.E.D.

When {e,} satisfies lim sup; o, ex+1/ex = f <1 as in Proposition 1.1d,
we also say that {e,} converges at least quotient-linearly (or Q-linearly) with
convergence ratio p. If B = 0, then we say that {e,} converges Q-superlinearly.

Most optimization algorithms which are of interest in practice produce
sequences converging either linearly or superlinearly. Linear convergence
is quite satisfactory for optimization algorithms provided the convergence
ratio f is not very close to unity. Algorithms which may produce sequences
having sublinear convergence rates are excluded from consideration in
most optimization problems as computationally inefficient. Several optimiza-
tion algorithms possess superlinear convergence for particular classes of
problems. For this reason, it is necessary to quantify further the notion of
superlinear convergence.
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Definition: Consider a scalar sequence {e,} with ¢, > 0 converging
superlinearly to zero. Then {e,} is said to converge at least superlinearly
with order p, where 1 < p, if it converges faster than all sequences of the
form gp?*, where g > 0, fe(0,1), and pe(l,p). It is said to converge at
most superlinearly with order p, where 1 < p, if it converges slower than all
sequences of the form g7, where g > 0, f€(0, 1), and p > p. It is said to
converge superlinearly with order p, where p > 1, if it converges both at least
and at most superlinearly with order p.

We have the following proposition, the proof of which is similar to the
one of Proposition 1.1 and is left as an exercise to the reader.

Proposition 1.2: Let {¢,} be a scalar sequence with ¢, > 0 and ¢, — 0.
Then the following hold true:

(a) The sequence {¢,} converges at least superlinearly with order
p > lifand only if
lime!” =0 Vpe(,p)

k— o

It converges at most superlinearly with order p > 1 if and only if

lim e}/P* = 1 Yp>p.

k= oo

(b) If {e,} converges faster (slower) than some sequence of the form
qp”, where ¢ > 0, (0, 1), and p > 1, then it converges at least (at most)
superlinearly with order p.

(c) Assume that ¢, # O for all k. If for some p > 1, we have

. €k +1
lim sup —

k= o €x

< o0,

then {e,} converges at least superlinearly with order p. If

.. s
lim inf !
k— €y

>0,

then {e,} converges at most superlinearly with order p.
If

€+ 1
ex

lim sup < o0,

k—

as in Proposition 1.2c, then we say that {e,} converges at least Q-super-
linearly with order p.
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Cholesky Factorization

Let A = [a;;] be an n x n positive definite matrix and let us denote
by A; the leading principal submatrix of A of order i,i = 1, ..., n, where

air Qi 0t A4y

Azy Qzz - 4y
Ai = . . .l .

a4y Gz - Gy

It is easy to show that each of the submatrices 4; is a positive definite matrix.
Indeed for any y € R, y # 0, we have by positive definiteness of 4

VAy =1y OJA[g] > 0,

which implies that A; is positive definite.
The matrices A; satisfy

Ay = [ay4],
A._ .
®) Ai=[‘,‘ “‘], =2
% Gy
where «; is the column vector in R'™ ! given by
ayi
©) &% = :
Ai—1,i

We now show that A can be written as
A=LL,

where L is a unique lower triangular matrix and L' is the transpose of L—an
upper triangular matrix. This factorization of A4 is called the Cholesky
factorization.

The Cholesky factorization may be obtained by successively factoring
the principal submatrices A4; as

(10) A; = L;L;, i=12,...,n
We have
A, = L,Lj, L, = [\/011]-
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Direct calculation using (8) yields that if 4;_; = L;_,L;_,, then we also
have A; = L;L;, where

an Li= [ " lﬁ],
(12) li= Li_—llaia
(13) Ai = ai — Ll

and «; is given by (9). Thus, to show that the factorization given above is
valid, it will be sufficient to show that

a;; — l:ll > 0,

and thus 1; is well defined as a real number from (13). Indeed define b =
A% o;. Then because 4; is positive definite, we have

b

0 < [bl - l]Al[—l:l = b,Ai—lb - 2b,ai + a;;
= b'ai - 2b'tx,~ + a; = a;; — b'a,-

= a; — wA; Yoy = a; — OCE(Li—lL:‘-J—l“i
= a4 — (Li_-llai)l(Li_—llai) = a; — Ll

Thus, A; as defined by (13) is well defined as a positive real number. In order
to show uniqueness of the factorization, a similar induction argument may
be used. The matrix 4, has a unique factorization, and if 4;_, has a unique
factorization A;_, = L;_,L}_,, then L; is uniquely determined by the
requirement A; = L;L; and Egs. (8)-(13).

In practice the Cholesky factorization is computed via the algorithm
(10)-(13) or some other essentially equivalent algorithm. Naturally the
vectors [; in (12) are computed by solving the triangular system

Li_ili=o

rather than by inverting the matrix L;_,. For large n the process requires
approximately n3/6 multiplications.

1.3 Unconstrained Minimization

We provide an overview of analytical and computational methods for
solution of the problem
(UP) minimize f(x)

subject to xeR",
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where f: R" — R is a given function. We say that a vector x* is a local minimum
for (UP) if there exists an ¢ > 0 such that

f(x*) < f(x) V xeS(x*;e).
It is a strict local minimum if there exists an ¢ > 0 such that
f(x*) < f(x) VxeS(x*;¢e), x # x*

We have the following well-known optimality conditions. Proofs may be
found, for example, in Luenberger (1973).

Proposition 1.3: Assume that x* is a local minimum for (UP) and, for
some ¢ > 0, fe C! over S(x*; ¢). Then

Vf(x*) = 0.
If in addition fe C? over S(x*; ¢), then
V3 (x*) > 0.

In what follows, we refer to a vector x* satisfying Vf(x*) = 0 as a critical
point.

Proposition 1.4:  Let x* be such that, for some ¢ > 0, fe C?over S(x*; &)
and

VIGx*) =0, V3(x*) > 0.

Then x* is a strict local minimum for (UP). In fact, there exist scalars y > 0
and 6 > 0 such that

f(X) = f(x*) + y]x — x*|>  VxeS(x*;d).

When x* satisfies the assumptions of Proposition 1.4 we say that it
is a strong local minimum for (UP).
We say that x* is a global minimum for (UP) if

fOx*) < f(x) vV xeR"

Under convexity assumptions on f, we have the following necessary and
sufficient condition:

Proposition 1.5:  Assume that fe C' and is convex over R". Then a
vector x* is a global minimum for (UP) if and only if

Vi (x*) = 0.

Existence of global minima can be guaranteed under the assumptions
of the following proposition which is a direct consequence of Weierstrass’
theorem (a continuous function attains a global minimum over a compact
set).
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Proposition 1.6: If f is continuous over R" and f(x;) = o for every
sequence {x,} such that |x,| — oo, or, more generally, if the set {x| f(x) < o}
is nonempty and compact for some o € R, then there exists a global minimum
for (UP).

1.3.1 Convergence Analysis of Gradient Methods

We assume, without further mention throughout the remainder of Section
1.3, that fe C* over R". The reader can easily make appropriate adjustments
if fe C*! over an open subset of R" only.

Most of the known iterative algorithms for solving (UP) take the form

Xpe1 = Xk + o4 dy,
where if Vf (x;) # O, d, is a descent direction, i.e., satisfies
dVf(x) <0 if Vi(x) #0,
d,=0 if Vf(x) =0.

The scalar «, is a positive stepsize parameter. We refer to such an algorithm
as a generalized gradient method (or simply gradient method). Specific
gradient methods that we shall consider include the method of steepest
descent [d, = —Vf(x,)] and scaled versions of it, Newton’s method, the
conjugate gradient method, quasi-Newton methods, and variations thereof.
We shall examine several such methods in this section. For the time being,
we focus on the convergence behavior of gradient methods. Rate of con-
vergence issues will be addressed in the next subsection.

Stepsize Selection and Global Convergence

There are a number of rules for choosing the stepsize a; [assuming
Vf(x,) # 0]. We list some that are used widely in practice:

(a) Minimization rule: Here a, is chosen so that
f(x + o4dy) = min f(x;, + ody).
a0
(b) Limited minimization rule: A fixed number s > 0 is selected and o,
is chosen so that
f(xk + akdk) = min f(xk + adk)'
ael0.s]
(c) Armijo rule: Fixed scalars s, , and ¢ with s >0, f€(0, 1), and
o €(0,2) are selected, and we set o = f™s, where my is the first nonnegative
integer m for which

fo) —fGa + Bsdy) = —af"sVf (xi) di,
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ie,m=0,1,...are tried successively until the inequality above is satisfied
for m = m,. (A variation of this rule is to use, instead of a fixed initial stepsize
s, a sequence {s,} with s, > 0 for all k. But this case can be reduced to the
case of a fixed stepsize s by redefining the direction d, to be d, = (s/s)dy.)

(d) Goldstein rule: A fixed scalar ¢ € (0, 1) is selected, and «, is chosen to
satisfy

SO+ aedy) — f(xi)
ST a4, ST

It is possibleto show that if f is bounded below there exists an interval of
stepsizes o, for which the relation above is satisfied, and there are fairly
simple algorithms for finding such a stepsize through a finite number of
arithmetic operations. However the Goldstein rule is primarily used in
practice in conjunction with minimization rules in a scheme whereby an
initial trial stepsize is chosen and tested to determine whether it satisfies
the relation above. If it does, it is accepted. If not, a (perhaps approximate)
line minimization is performed.
(e) Constant stepsize: Here a fixed stepsize s > 0 is selected and

Otk=S Vk

The minimization and limited minimization rules must be implemented
with the aid of one-dimensional line search algorithms (see, e.g., Luenberger,
1973; Avriel, 1976). In general, one cannot compute exactly the minimizing
stepsize, and in practice, the line search is stopped once a stepsize o, satisfying
some termination criterion is obtained. An example of such a criterion is
that o, satisfies simultaneously

Y] fa) = O + oedy) = — o0, Vf (x,) dy
and
2 IVf (i + adi)'die| < BIVF(xi)dil,

where ¢ and f are some scalars with ¢ € (0, 3) and S € (o, 1). If o, is indeed a
minimizing stepsize then Vf(x; + o.dp)'d, = of (x, + o4 d)/0x = 0, so (2) is
in effect a test on the accuracy of the minimization. Relation (1), in view of
Vf(x,)d, < 0, guarantees a function decrease. Usually ¢ is chosen very
close to zero, for example ¢ € [107°,107 1], but trial and error must be
relied upon for the choice of f. Sometimes (2) is replaced by the less stringent
condition

©)) Vi (xi + aedi)'dy = BV (xi)'d.

The following lemma shows that under mild assumptions there is an interval
of stepsizes o satisfying (1), (2) or (1), (3).
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Lemma 1.7: Assume that there is a scalar M such that f(x) > M for all
xeR" let 6e(0,1) and fe(s,1), and assume that Vf(x,)d, <O. There
exists an interval [c,,c,] with 0 < ¢; < c,, such that every a€[cy,c,]
satisfies (1) and (2) [and hence also (1) and (3)].

Proof: Define g(«) = f (x; + ad,). Note that dg(a)/do = Vf (x; + odi) dy.
Let B be such that ¢ < < f, and consider the set A defined by

{ >0’ ﬁag(O) dg(e) <0}

“oa
Since g(«) is bounded below and dg(0)/da = Vf(x,)'d) < Oitis easily seen that
A is nonempty. Let
& = min{o|a € A}.
Clearly & > 0 and it is easy to see using the fact § < B that
og(@) _ » 59(0)

@ < pgE<0, Vaeldl
and there exists a scalar ¢, € (0, &) such that
ag(a
WO 197 (o + Y] < BV 1
- ﬁ’ag(o) . Voae[@—0.,8+ 5]
O
We have from (4)
0 s
g(a)—g(0)+f B0 e < g0) + B2 < 40) + 025,
or equivalently

fOa) — f(x + Gdy) > — 08Vf (x,) dy.
Hence there exists a scalar 6, € (0, &) such that
fGa) = fCu + ady) = —ooVf (x)dy,  Vae[s — 05,8+ 5]

Take 6 = min{d,, d,}. Then for all « in the interval [& — J, & + &] both
inequalities (1) and (2) are satisfied. Q.ED.

In practice a line search procedure may have to be equipped with various
mechanisms that guarantee that a stepsize satisfying the termination criteria
will indeed be obtained. We refer the reader to more specific literature for
details. In all cases, it is important to have a reasonably good initial stepsize
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(or equivalently to scale the direction d, in a reasonable manner). We discuss
this in the next paragraph within the context of the Armijo rule.

The Armijo rule is very easy to implement and requires only one gradient
evaluation per iteration. The process by which o, is determined is shown in
Fig. 1.1. We start with the trial point (x; + sd,) and continue with (x, + fsd,),
(xx + B3sdy), ... until the first time that f™s falls within the set of stepsizes «
satisfying the desired inequality. While this set need not be an interval, it
will always contain an interval of the form [0, §] with 6 > 0, provided
Vf(x,)d, <0. For this reason the stepsize «, chosen by the Armijo rule is
well defined and will be found after a finite number of trial evaluations of
the value of f at the points (x; + sdy), (xx + Bsdy), ... . Usually ¢ is chosen
close to zero, for example, o € [107°, 107 1]. The scalar § is usually chosen
from 1 to 10~ ! depending on the confidence we have on the quality of the
initial stepsize s. Actually one can always take s = 1 and multiply the
direction d, by a scaling factor. Many methods incorporate automatic
scaling of the direction d,, which makes s = 1a good stepsize choice (compare
with Proposition 1.15 and the discussion on rate of convergence later in this
section). If a suitable scaling factor for d, is not known, one may use various
ad hoc schemes to determine one. A simple possibility is to select a point &
on the line {x, + ad,|o > 0}, evaluate f(x, + &d,), and perform a quadratic

STEPSIZE a,

SET OF ACCEPTABLE / UNSUCCESSFUL TRIAL
STEPSIZES STEPSIZES
N’I
0 ¥ " N
st ' Bs S a

\{f(xk+adk)—f(xk)}

avi(x )

k

FIG. 1.1 Line search by the Armijo rule
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interpolation on the basis of f(x,), Vf(x,)d, = 0f (x; + ady)/0x],=o, and
f(xi + ady). If & minimizes the quadratic interpolation, d, is replaced by
d, = &d,, and an initial stepsize s = 1 is used.

The constant stepsize rule is the simplest. It is useful in problems where
evaluation of the objective function is expensive and an appropriate constant
stepsize value is known or can be determined fairly easily. Interestingly
enough, this is the case in the method of multipliers as we shall explain in the
next chapter.

We now introduce a condition on the directions d, of a gradient method.

Definition: Let {x,} be a sequence generated by a gradient method
Xp+1 = X + od,. We say that the sequence {d,} is uniformly gradient
related to {x,} if for every convergent subsequence {x,}x for which

) lim Vf(x,) # 0
ek
there holds
6) 0 < lim inf | Vf(x,)'d, ]|, lim sup|d,| < oo.
k— k—
keK ke K

In words, {d,} is uniformly gradient related if whenever a subsequence
{Vf(x,)}x tends to a nonzero vector, the corresponding subsequence of
directions d is bounded and does not tend to be orthogonal to Vf(xy).
Another way of putting it is that (5) and (6) require that d, does not become
“too small” or “too large” relative to Vf(x,) and the angle between d, and
Vf (x,) does not get “too close” to /2. Two examples of simple conditions
that, if satisfied for some scalars ¢; > 0,¢, > 0, p; > 0,and p, > Oand all k,
guarantee that {d,} is uniformly gradient related are

@) il < VDI, eIV < =V (x)'dy;
(®) di = —DVf (x),
with D, a positive definite symmetric matrix satisfying
IV (xo)lP |z < 2Dyz < | Vf () I2|z]> Y zeR™

For example, in the method of steepest descent where D, = I, this condition
is satisfied if we take ¢; = ¢, = 1,p; = p, =0.
We have the following convergence result:

Proposition 1.8: Let {x,} be a sequence generated by a gradient method
Xx+1 = X + o d, and assume that {d,} is uniformly gradient related and
o, is chosen by the minimization rule, or the limited minimization rule,
or the Armijo rule. Then every limit point of {x,} is a critical point.
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Proof: Consider first the Armijo rule. Assume the contrary, ie., that
% is a limit point with Vf(X) # 0. Then since {f(x,)} is monotonically
decreasing and f is continuous, it follows that {f(x,)} converges to f(X).
Hence,

[f () — f(+1)] = 0.

By the definition of the Armijo rule, we have

f) = f(esr 1) = — o Vf (x) dy.
Hence, o,Vf(x,)d, — 0. Let {x,}x be the subsequence converging to X.
Since {d,} is uniformly gradient related, we have

lim inf | Vf (x;)'d,] > O,
k— o
keK

and hence,
{ox — 0.

Hence, by the definition of the Armijo rule, we must have for some index
k>0

(D ) =S+ @/Pdi] < —o(/PVf(x)de  YkeK, k=k;

i.e., the initial stepsize s will be reduced at least once for all ke K, k > k.
Denote

px = di/|dxl, & = oy |dy|/P.

Since {d,} is uniformly gradient related, we have lim supy_. o, xex |di| < 0,
and it follows that

{4}k = 0.

Since |p;| = 1 for all k € K, there exists a subsequence {p;}z of {px}x such
that {p,}zx — P where p is some vector with |p| = 1. From (7), we have

F(x0) _fExk + % Pr) <
Ay

—O'Vf(xk)’[)k Vk € I_{, k 2 E

®

Taking limits in (8) we obtain
—Vf(x)p < —aVf(X)Pp or 0< (1 —aVf(X)p.
Since ¢ < 1, we obtain
(€] 0 < Vi(x)P.
On the other hand, we have

=V pe = —Vf (xi)di/1dyc]-
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By taking the limit as ke K, k — o,

lim inf | Vf () d|

: 0,
imsup|d,]

-VfX)p =

which contradicts (9). This proves the result for the Armijo rule.

Consider now the minimization rule, and let {x,}, converge to X with
Vf(x) # 0. Again we have that {f(x,)} decreases monotonically to f(x).
Let X, ., be the point generated from x, via the Armijo rule, and let &, be
the corresponding stepsize. We have

SO = fae1) 2 f(x) = f(Kis 1) = —0&Vf (x)dy.

By simply replacing o, by &, and repeating the arguments of the earlier
proof, we obtain a contradiction. In fact the line of argument just used
establishes that any stepsize rule that gives a larger reduction in objective
function value at each step than the Armijo rule inherits its convergence
properties. This proves also the proposition for the limited minimization
rule. Q.E.D.

Similarly the following proposition can be shown to be true. Its proof
is left to the reader.

Proposition 1.9: The conclusions of Proposition 1.8 hold if {d,} is
uniformly gradient related and ¢ is chosen by the Goldstein rule or satisfies
(1) and (2) for all k.

The next proposition establishes, among other things, convergence for
the case of a constant stepsize.

Proposition 1.10: Let {x,} be a sequence generated by a gradient
method x, ,, = x;, + o d,, where {d,} is uniformly gradient related. Assume
that for some constant L > 0, we have

(10) IV/(x) = Vf(WI < L|x —y| Vx,yeR’,
and that there exists a scalar ¢ such that for all k we have d, # 0 and

2 — & |Vf(xy)dy|
L ldl®

(11) O<e<o<

Then every limit point of {x,} is a critical point of f.

Note: If {d;} is such that there exist ¢,, ¢, > 0 such that for all k we
have

(12) “Vi()de 2 ¢ IVf(x) %, el V(3 = [del,
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then (11) is satisfied if for all k we have
(13) 0<e<a <(2—¢c/Le,.

For steepest descent [d, = — Vf(x,)] in particular, we can takec; =c, =1,
and the condition on the stepsize becomes

O<e<o <(2-—¢)L

Proof: We have the following equality for o > 0,

fOa + ady) = f(a) + aVf (x)di + J:[Vf (% + tdi) — Vf(x)]'dy .
By using (10), we obtain

fa + ady) — f(xi) < aVf (x)'dy + J:Wf(’% + tdy) — Vf(xi)| || dt

< aVf(x)dy + J tL|d,|* dt
0

= o[ — |V (x)'de| + 3oL |di|?].

From (11), we have o, > ¢ and 2o L|d, > — |Vf(x)'di] < —3&|Vf (xi)'del.
Using these relations in the inequality above, we obtain

F0) — f o+ o) = 4621V (x) d]

Now if a subsequence {x,}x converges to a noncritical point X, the above
relation implies that |Vf(x,)d;| — 0. But this contradicts the fact that
{d,} is uniformly gradient related. Hence, every limit point of {x,} is critical.
Q.E.D.

Note that when d, = —D,Vf(x,) with D, positive definite symmetric,
relation (12) holds with

= 172
¢ =7 cZ=r’

if the eigenvalues of D, lie in the interval [, I'] for all k. It is also possible to
show that (10) is satisfied for some L > 0, if fe C* and the Hessian V3fis
bounded over R". Unfortunately, however, it is difficult in general to obtain
an estimate of L and thus in most cases the interval of stepsizes in (11) or
(13) which guarantees convergence is not known a priori. Thus, experi-
mentation with the problem at hand is necessary in order to obtain a range
of stepsize values which lead to convergence. We note, however, that in the
method of multipliers, it is possible to obtain a satisfactory estimate of L
as will be explained in Chapter 2.
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Gradient Convergence

The convergence results given so far are concerned with limit points
of the sequence {x,}. It can also be easily seen that the corresponding sequence
{f(x)} will converge to some value whenever {x,} has at least one limit
point and there holds f(x;+,) < f(x,) for all k. Concerning the sequence
{Vf(x1)}, we have by continuity of Vf that if a subsequence {x,}x converges
to some point X then {Vf(x,)}x — Vf(X). If X is critical, then {Vf(x;)}x — O.
More generally, we have the following result:

Proposition 1.11: Let {x,} be a sequence generated by a gradient
method x, . ; = X, + o d,, which is convergent in the sense that every limit
point of sequences that it generates is a critical point of f. Then if {x,} is a
bounded sequence, we have Vf(x,) — 0.

Proof: Assume the contrary, i.e., that there exists a subsequence {x;}x
and an ¢ > 0 such that |Vf(x,)| > ¢ for all ke K. Since {x;}x is bounded,
it has at least one limit point X and we must have |Vf(X)| > e. But this
contradicts our hypothesis which implies that X must be critical. Q.E.D.

The proposition above forms the basis for terminating the iterations
of gradient methods. Thus, computation is stopped when a point x;z is ob-
tained with

(14 IVf(xpl <,

where ¢ is a small positive scalar. The point x; is considered for practical
purposes to be a critical point. Sometimes one terminates computation
when the norm of the direction d, becomes too small; i.c.,

(15) ld;| < e.
If d, satisfies
e VI Pt < lde] < el VF(x) 172

for some positive scalars ¢y, ¢,, py, p,, and all k, then the termination cri-
terion (15) is of the same nature as (14). Unfortunately, it is not known a
priori how small one should take ¢ in order to guarantee that the final point
xg is a “good” approximation to a stationary point. For this reason it is
necessary to conduct some experimentation prior to settling on a reasonable
termination criterion for a given problem, unless bounds are known (or
can be estimated) for the Hessian matrix of f (see the following exercise).

Exercise: Let x* be a local minimum of f and assume that for all x
in a sphere S(x*; d) we have, for some m > 0and M > 0,

m|z|* < ZV*f(x)z < M|z]* VzeR™
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Then every x € S(x*; 8) satisfying | Vf(x)| < ¢ also satisfies
Ix — x*| < ¢g/m,  f(x) = f(x*) < Me?/2m?.

Local Convergence

A weakness of the convergence results of the preceding subsection is
that they do not guarantee that convergence (to a single point) of the gen-
erated sequence {x,} will occur. Thus, the sequence {x,} may have one,
more than one, or no limit points at all. It is not infrequent for a gradient
method to generate an unbounded sequence {x;}. This will typically occur
if the function f has no critical point or if f decreases monotonically as
|x| = oo along some directions. However {x,} will have at least one limit
point if the set {x| f(x) < f(xo)} is bounded or more generally if {x;} is a
bounded sequence.

On the other hand, practical experience suggests that a sequence gener-
ated by a gradient method will rarely have more than one critical limit
point. This is not very surprising since the generated sequence of function
values {f(x,)} is monotonically nonincreasing and will always converge to
a finite value whenever {x,} has at least one limit point. Hence, any two
critical limit points, say X and %, of the sequence {x,} must simultaneously
satisfy Vf(X) = Vf(%) = 0 and f(X) = (%) = lim_, £ (x;)- These relations
are unlikely to hold if the critical points of f are “jsolated” points. One may
also prove that if f has a finite number of critical points and the Armijo
rule or the limited minimization rule is used in connection with a gradient
method with uniformly gradient-related direction sequence {d,}, then the
generated sequence {x,} will converge to a unique critical point provided
that {x,} is a bounded sequence. We leave this as an exercise for the reader.

The following proposition may also help to explain to some extent why
sequences generated by gradient methods tend to have unique limit points.
It states that strong local minima tend to attract gradient methods.

Proposition 1.12:  Let fe C* and {x,} be a sequence satisfying f (X +1) <
f(x;) for all k and generated by a gradient method x4 ; = X + %ds which
is convergent in the sense that every limit point of sequences that it generates
is a critical point of f. Assume that there exist scalars s > 0 and ¢ > 0 such
that for all k there holds «, < s and |d,| < ¢|Vf(x,)|. Then for every local
minimum x* of f with V2f(x*) > 0, there exists an open set L containing
x* such that if x; € L for some k > 0 then x, € L for all k > k and {x;}—x*.
Furthermore, given any scalar & > 0, the set L can be chosen so that
L <= S(x*;¢).

Note: The condition &, < s is satisfied for the Armijo rule and the
limited minimization rule. The condition |di| < c|Vf(x;)| is satisfied if
d, = —D,Vf(x,) with the eigenvalues of D uniformly bounded from above.
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Proof: Let x* be a local minimum with V2f(x*) positive definite. Then
there exists & > 0 such that for all x with |x — x*| < &, the matrix V3f(x)
is also positive definite. Denote

y= min z’V3f(x)z, T = max zV*f(x)z.
s i
We have y > O and I' > 0. Consider the open set
L = {x]lx — x*| <& f(x) <f(x*) + $y[E/(1 + sc)]?}.

We claim that if x; € L for some k > 0 then x, € L for all k > k and further-
more x; — x*.
Indeed if x; € L then by using Taylor’s theorem, we have

W xe — x* 2 < f(xp) — f(x*) < B/ + scT)]?
from which we obtain
(16) |xg — x*| < &/(1 + csI).
On the other hand, we have
Ixge1 — X*| =[xz — x* + odz| < |xg — x*| + agldg]
<|xz — x*| + sc|Vf(xp)|.

By using Taylor’s theorem, we have |Vf(xg)| < I'|xg — x*| and substituting
in the inequality above, we obtain

[Xg41 — X*] < (1 + scD)|xzp — x*|.
By combining this relation with (16), we obtain
[Xg+q1 — x*| < &
Furthermore, using the hypothesis /' (x, ;) < f(x,) for all k, we have
e 1) < fOx) < fOx*) + [E/(1 + seD)]2

It follows from the above two inequalities that xz.; €L and similarly
x; € L for all k > k. Let L be the closure of L. Since L is a compact set, the
sequence {x;} will have at least one limit point which by assumption must
be a critical point of . Now the only critical point of f within L is the point x*
(since fis strictly convex within L). Hence x; — x*. Finally given any ¢ > 0,
we can choose & < ¢ in which case L < S(x*; ¢). Q.E.D.

Rate of Convergence—Quadratic Objective Function

The second major question relating to the behavior of a gradient method
concerns the speed (or rate) of convergence of generated sequences {x,}.
The mere fact that x, converges to a critical point x* will be of little value in



1.3 UNCONSTRAINED MINIMIZATION 31

practice unless the points x; are reasonably close to x* after relatively few
iterations. Thus, the study of the rate of convergence of an algorithm or a
class of algorithms not only provides useful information regarding compu-
tational efficiency, but also delineates what in most cases are the dominant
criteria for selecting one algorithm in favor of others for solving a particular
problem.

Most of the important characteristics of gradient methods are revealed
by investigation of the case where the objective function is quadratic. Indeed,
assume that a gradient method is applied to minimization of a function
f:R" - R, fe C?, and it generates a sequence {x,} converging to a strong
local minimum x* where

Vf(x*) = 0, V3f(x*) > 0.
Then we have, by Taylor’s Theorem,
F(x) = f(x¥) + Hx — x¥Y VA (x*)x — x*) + o(lx — x* %),

where o(|x — x*|?)/|x — x*|* > 0 as x — x*. This implies that f can be
accurately approximated near x* by the quadratic function

¥ + 5(x = x*)VH () = x5).
We thus expect that rate-of-convergence results obtained through analysis
of the case where the objective function is the quadratic function above
have direct analogs to the general case. The validity of this conjecture can
indeed be established by rigorous analysis and has been substantiated by

extensive numerical experimentation.
Consider the quadratic function

f(x) = 5(x — x*YQ(x — x*)
and the gradient method

an Xp+1 = Xk — oD,
where
(18) g = Vf(x) = Q(x — x*).

We assume that Q and D, are positive definite and symmetric. Let
M, = max eigenvalue of (Di’?QD;'?),
m, = min eigenvalue of (D{*QD;"?).

We have the following proposition:

Proposition 1.13:  Consider iteration (17), and assume that o is chosen
according to the minimization rule

[ — o, Dygi) = min [ — oDy gi)-

a=0
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Then
19) S+ 1) < (Mk ) S Gx)-

Proof: The result clearly holds if g, = 0, so we assume g, # 0. We
first compute the minimizing stepsize «,. We have

(d/do) f (x; — aDygi) = —gi D Q(xx — aDygy — x*)
= —giDrgi + 29i D, QD gy
Hence, by setting this derivative equal to zero, we obtain

(20) % = 9iDigi/gi D ODy G-
We have, using (17) and (20),

f v 1) = f — ouDigi) = 3(x, — x* — %Dy gi) Q(xic — x* — a Dyegy)
= 3% — x*)Y Q0 — x*) + 3029 D, OD, gi — %94 D O — X*)
= f(x) + 34¢9. D ODygx — % gi Dy,

and finally

1 (ngkgk)2
21 ‘1 _ -
(21) SOr1) = f0a) 29.D:0Dyds’

Also we have
(22) f(x) = 3% — x*)Q(x, — x*)
= 3(q — x*)QD{*(Di*QDY*) "' DI Q(x, — x*)
= 29:.Di"*(D;*QD/*)~'Di/%g,
Setting y, = D;’g,, L, = D}/>QD}/?, and using (21) and (22), we obtain

(y;‘}’k)z
23 k+ = - —1
@ TOns) =100 = G i T
Oive)? ]
=11 - 3
[ GiLeyo0i L o | ¥

We shall now need the following lemma, a proof of which can be found in
Luenberger (1973, p. 151).

Lemma (Kantorovich Inequality): Let L be a positive definite symmetric
n x n matrix. Then for any vector y € R", y # 0, there holds

Oy 4Mm
L)L)~ (M + m)*
where M and m are the largest and smallest eigenvalues of L.
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Returning to the proof of the proposition, we have by using Kantorovich’s
inequality in (23)

aM M, — m\?
f o) < [1 - Mf%]ﬂxk) - (M—+—Z> fGx).  QED.

From (19), we obtain, assuming g, # 0 for all k,

. f(xk+1) . <Mk - mk)2
lim sup ——=* < lim sup | —/—— £ 8
k—»oop fx0) k—-oop M, + my 4

If B < 1 (as will be the case if {m/M .} is bounded away from zero), it follows
that {f(x,)} converges at least Q-linearly with convergence ratio f (see
Section 1.2). If = 0, then the convergence rate is superlinear. If p < 1, then
the sequence {f(x;+1)} 18 majorized for all k sufficiently large by any geo-
metric progression of the form gB*, where ¢ >0, B > B (see Section 1.2).
If y is the minimum eigenvalue of Q, we have

Plxe = x*12 < f(x)

so the same conclusion can be drawn for the sequence {1% — x* |2}. Relation
(19) also indicates that the iteration x4, = Xx — 0% Dygx yields a large
relative reduction in objective function value if My/my ~ 1. This shows that
in order to achieve fast convergence, one should select Dy so that the eigen-
values of DL/2QD}/? are close together, such as when D ~ Q™ 1, and this is
the main motivation for introducing the matrix D instead of taking D, = I.
If in particular D, = Q™', then we obtain M, = m, = 1 and, from (19),
f(x¢+1) = 0 which implies x,,; = x*; i.e., convergence to the minimum is
attained in a single iteration.

When the ratio M,/m, is much larger than unity, then (19) indicates that
convergence can be very slow. Actually, the speed of convergence of {x;}
depends strongly on the starting point x,. However, if Dy is constant, it is
possible to show that there always exist “worst” starting points for which
(19) is satisfied with equality for all k. [The reader may wish to verify this by
considering the case D, = I, f(x) = IS yx,where0 <y, <y, < =
7,, and the starting point xo = (y7 ', 0, ..., 0, 7 H.]

Similar convergence rate results can be obtained for the case of the limited
minimization rule. For example, notice that from (20), we obtain

o = Yiy/y Di*ODi i
where y, = Di'?g,. Hence, we have o < 1/my, and (19) also holds when o
is chosen by the limited minimization rule

[l — o D gi) = min f(x, — aDygy)

O0<a<s
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provided that
s> 1/my, k=0,1,....

Qualitatively, similar results are also obtained when other stepsize rules
are used, such as a constant stepsize. We have the following proposition:

Proposition 1.14: Consider the iteration x,,, = x, — oDy gy For all
o > 0 and k, we have

Q4 Oy — X*)D (X y — x*)

< max{| 1 — oem|%, |1 — o M| }(x, — x*) D}, — x*).
Furthermore, the right-hand side of (24) is minimized when
(25) % = 2/(my + M,),
and with this choice of «,, we obtain
(26)  (xker — x*YD Moy — x¥) < (H)Z(xk = x*) D (% — x*).

Proof: We have ‘
X1 — X* = — x* — o4 Dygp = x; — x* — o D, Q(x; — x¥).
A straightforward calculation yields
(ke1 = X*Y D Mgy — x¥)
= (s = x*)'Dy V(I = %, DY2QDI)D; 2, — x*).
Hence,
ey = XD (X1 — x¥) < AR5 — x*) Dy (g — x¥),

where A, is the maximum eigenvalue of G, = (I — o, D}?QD}?). The
eigenvalues of G, are 1 — oy e,(D;/>QD}/?),i = 1,..., n, where e(D}/>QD}/?)
is the ith eigenvalue of D;/2QD;". From this we obtain by an elementary
calculation

[Ag| = max{|1 — amy|, |1 — o, M, |},

and (24) follows. The verification of the fact that o, as given by (25) minimizes
the right-hand side of (24) is elementary and is left to the reader. Q.E.D.
The result shows that if D, = D for all k where D is positive definite and
lim sup max{|1 — qm|? |1 — o, M|?} = B,
k— o0

where m, M are the smallest and largest eigenvalues of (D/2QD'/?), then
{(xi = x*)D™!(x, — x*)} converges at least linearly with convergence
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ratio B provided 0 < f < 1.If ¢ > 0 is the smallest eigenvalue of D™ ' and I’
is the largest eigenvalue of 0, we have

(/D) f(xi) < Felxy = x* < 306 — x*YD ™ (xx — x*).

Hence, if0 < f < 1, we have that { f(x,)} and {|x, — x*|*} will also converge
faster than linearly with convergence ratio f. The important point is that

[compare with (26)]
_ 2
(M m) <8
M+m

and hence if M/m is much larger than unity, again the convergence rate can
be very slow even if the optimal stepsize o, = 2/(m, + M) (which is generally
unknown) were to be utilized. From this, it follows again that D, should
be chosen as close as possible to Q™! so that M, ~ m; ~ 1. Notice that
if D, has indeed been so chosen, then (25) shows that the stepsize o, = 1
is a good choice. This fact also follows from (20), which shows that when
D, ~ Q™! then the minimizing stepsize is near unity.

Rate of Convergence—Nonquadratic Objective Function

One can show that our main conclusions on rate of convergence carry over
to the nonquadratic case for sequences converging to strong local minima.
Let fe C? and consider the gradient method

(27) X1 = X — D V(%)

where D, is positive definite symmetric. Consider a generated sequence
{x,} and assume that

(28) X = x%, Vf(x*) =0, V2f(x*) > 0,

and that x, # x* for all k. Then it is possible to show the following:

(a) If a, is chosen by the line minimization rule there holds

. e 1) = f(x¥) : M, — m\?
@ imap G D <t ([

where M, and m, are the largest and smallest eigenvalues of Dy/?Vf (x*)D;/>.
(b) There holds

lim sup (cx+1 — x*)YDy l(xk+1 — x*)
koo (o — X*Y D (X — x¥)

< lim sup max{|1 — om|?, |1 — o M, |*}.
k— o0
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The proof of these facts involves essentially a repetition of the proofs of
Propositions 1.13 and 1.14. However, the details are somewhat more tech-
nical and will not be given.

When D, — V?f(x*)~!, then (29) shows that the convergence rate of
{f(xx) — f(x*)} is superlinear. A somewhat more general version of this
result for the case of the Armijo rule is given by the following proposition:

Proposition 1.15: Consider a sequence {x;} generated by (27) and
satisfying (28). Assume further that Vf(x,) # O for all k and
Dy = VA (x*) IV (x|
30 lim = 0.
) o VAl
Then if «, is chosen by means of the Armijo rule with initial stepsize s = 1,
we have

. x — x*
1lmLi=0,

koo Xk — X¥|

and hence {|x, — x*|} converges superlinearly. Furthermore, there exists
an integer k > 0 such that we have o = 1 for all k > k (i.e., eventually no
reduction of the initial stepsize will be taking place).

Proof: We first prove that there exists a k > 0 such that for all k > k
we have o, = 1. By the mean value theorem we have

£ = fTx — DV ()] = VF (i) DiVf () — VS () DiV2f () DiVS (%10,

where X, is a point on the line segment joining x; and x, — D, Vf(xy). It
will be sufficient to show that for k sufficiently large we have

VI (x)' DiVf (i) — %Vf (-xk),DkVZf (XD Vf (x) = aVf (x) D VS (i)
or equivalently, by defining p, = Vf(x.)/|Vf (x)1,
(31) (1 = O)piDiPe = 3Pk DiVf (X)Dycpic-

From (28), (30), we obtain D,Vf(x,) — 0. Hence, x,, — D, Vf(x;) — x*, and it
follows that X, — x* and V3£ () — V2f(x*). Now (30) is written as

Dypi = [V (x*)] 'px + Br

where {f;} denotes a vector sequence with f, — 0. By using the above
relation and the fact that V3f(X,) — V3f(x*), we may write (31) as

(1 = )PV ()] o = 2oV )17 P + e
where {y,} is some scalar sequence with y, — 0. Thus (31) is equivalent to
3 = OV ] P = i
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Since £ — ¢ > 0, |px| = 1, and V?f(x*) > 0, the above relation holds for k
sufficiently large, and we have o, = 1 for k > k where k is some index.
To show superlinear convergence we write, for k > k,

(32) Xpr1 — X* =X, — x* = D Vf(x).
We have, from (30) and for some sequence {§,} with 5, — 0,
(33) DYVf () = VA (x*)71Vf (%) + [V (%) 0
From Taylor’s theorem we obtain

Vi (x) = V2 (x*)(x — x*) + o(|x; — x*|)
from which

[V (x*)]7'Vf () = X — x* + o(]x, — x*]),
VI (x| = O(x, — x*|).
Using the above two relations in (33), we obtain
DVf (x) = x;, — x* + o(|x — x*[)
and (32) becomes
Xp+1 — X* = o(|x;, — x*|),

from which
X — x¥| . o(]x, — x*[)
Im ————— = lim ——==0. Q.E.D.
I b el koo Xk — X*|

We note that one can prove that Eq. (30) is equivalent to

(34) lim 12" = VY DI ()l _

k= oo | D Vf (x|
assuming (28) holds. Equation (34) has been used by Dennis and Moré (1974)
in the analysis of quasi-Newton methods and is sometimes called the Dennis-
Moré condition (see also McCormick and Ritter, 1972).

A slight modification of the proof of Proposition 1.15 shows also that
its conclusion holds if o, is chosen by means of the Goldstein rule with
initial trial stepsize equal to unity. Furthermore for all k sufficiently large,
we shall have o, = 1 (i.e., the initial stepsize will be acceptable after a certain
index).

Several additional results relating to the convergence rate of gradient
methods are possible. The main guideline which consistently emerges from
this analysis (and which has been supported by extensive numerical ex-
perience) is that in order to achieve fast convergence of the iteration

X1 = Xx — % DEV(x),

0
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one should try to choose the matrices Dy as close as possible to [V*f(x*)]™* so
that the corresponding maximum and minimum eigenvalues of D{/*V*f (x*)D;/?
satisfy M, ~ 1 and m ~ 1. This fact holds true for all stepsize rules that we
have examined. Furthermore, when M, ~ 1 and m, ~ 1, the initial stepsize
s = 1isagood choice for the Armijo rule and other related rules or as a starting
point for one-dimensional minimization procedures in minimization stepsize
rules.

Spacer Steps in Descent Algorithms

Often in optimization problems, we utilize complex descent algorithms
in which the rule used to determine the next point may depend on several
previous points or on the iteration index k. Some of the conjugate direction
algorithms to be examined in the next chapter are of this type. Other al-
gorithms may represent a combination of different methods and switch
from one method to the other in a manner which may either be prespecified
or may depend on the progress of the algorithm. Such combinations are
usually introduced in order to improve speed of convergence or reliability.
However, their convergence analysis can become extremely complicated.
It is thus often of value to know that if in such algorithms one inserts, perhaps
irregularly but infinitely often, an iteration of a convergent algorithm such
as steepest descent, then the theoretical convergence properties of the overall
algorithm are quite satisfactory. Such an iteration will be referred to as a
spacer step. The related convergence result is given in the following proposi-
tion. The only requirement imposed on the iterations of the algorithm other
than the spacer steps is that they do not increase the value of the objective
function.

Proposition1.16:  Consider a sequence {x,} such that

fCae) <fC) VYk=0.1,....

Assume that there exists an infinite set K of nonnegative integers for which
we have

Xk+1 =xk+akdk VkGK,

where {d, } ¢ is uniformly gradient related and o, is chosen by the minimization
rule, or the limited minimization rule, or the Armijo rule. Then every limit
point of the subsequence {x,} is a critical point.

The proof requires a simple modification of the proof of Proposition
1.8 and is left to the reader. Notice that if f is a convex function, it is possible
to strengthen the conclusion of the proposition and assert that every limit
point of the whole sequence {x,} is a global minimum of f.
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1.3.2 Steepest Descent and Scaling

Consider the steepest descent method
Xe+1 = X — 4V (xi),

and assume that fe C2. We saw in the previous section that the convergence
rate depends on the eigenvalue structure of the Hessian matrix V2. This
structure in turn depends strongly on the particular choice of variables x
used to define the problem. A different choice may change substantially the
convergence rate.

Let T be an invertible n x n matrix. We can then represent points in
R" either by the vector x which enters in the objective function f(x), or by
the vector y, where

(35 Ty = x.
Then the problem of minimizing f'is equivalent to the problem
(36) minimize h(y) £ f(Ty)
subject to yeR"
If y* is a local minimum of h, the vector x* = Ty* is a local minimum of f.
Now steepest descent for problem (36) takes the form
(37 V1 = Vi — aVh(yi) = yi — o0 T'Vf (Typ).
Multiplying both sides by T and using (35) we obtain the iteration in terms
of the x variables
Xe+1 = X — 04 TT'Vf(xy).
Setting D = TT’, we obtain the following scaled version of steepest descent
(38) Xe+1 = X — o4 DVF(x)

with D being a positive definite symmetric matrix. The convergence rate
of (37) or equivalently (38), however, is governed by the eigenvalue structure
of V2h rather than of V. We have V?h(y) = T'V*f(Ty)T, and if T is sym-
metric and positive definite, then T = D*/? and

V2h(y) = DY2V3f(x)D*2,

When D ~ [V3f(x)]~!, we obtain V2h(y) ~ I, and the problem of mini-
mizing h becomes well scaled and can be solved efficiently by steepest
descent. This is consistent with the rate of convergence results of the previous
section.

The more general iteration

Xee1 = Xk — %DV (x)
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with D, positive definite may be viewed as a scaled version of the steepest
descent method where at each iteration we use different scaling for the
variables. Good scaling is obtained when D, ~ [V3f(x*)]~?!, where x* is a
local minimum to which the method is assumed to converge ultimately.
Since V3f(x*) is unavailable, often we use D, = [V*f(x,)]~! or D =
[V3f(xo)]™ !, where these matrices are positive definite. This type of scaling
results in modified forms of Newton’s method. A less complicated form of
scaling is obtained when D is chosen to be diagonal of the form

d’l
with
d' ~ [ (x0)/(0x)* 17, i=1,...,m;

Le., the Hessian matrix is approximated by a diagonal matrix. The approxi-
mate inverse second derivatives d' are obtained either analytically or by
finite differences of first derivatives at the starting point x,,. It is also possible
to update the scaling factors d’ periodically. The scaled version of steepest
descent takes the form

Xk = xt — o d 0f (x,)/0x, i=1,...,n
While such simple scaling schemes are not guaranteed to improve the
convergence rate of steepest descent, in many cases they can result in spec-
tacular improvements. An additional advantage when using the simple
diagonal scaling device described above is that usually the initial stepsize

s =1 will work well for the Armijo rule, thus eliminating the need for
determining a range of good initial stepsize choices by experimentation.

1.3.3 Newton’s Method and Its Modifications

Newton’s method consists of the iteration
(39) Xer1 = % — %[V ()] VS (%),
assuming that [V3f(x,)] ! exists and that the Newton direction
de = — [V ()]~ 'V (x)

is a direction of descent (i.e., d;Vf(x;) < 0). This direction is obtained as the
solution of the linear system of equations

sz (i = —Vf(xy).
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As explained in the section on scaling, one may view this iteration as a
scaled version of steepest descent where the “optimal” scaling matrix
D, = [V*(x)]™ ! is utilized. It is also worth mentioning that Newton’s
method is “scale-free” in the sense that the method cannot be affected by a
change in coordinate system as is the case with steepest descent (Section 1.3.2).
Indeed if we consider a linear invertible transformation of variables x = Ty,
then Newton’s method in the space of the variables y is written as

Yek+1 = Yk — ak[Vﬁyf(Tyk)]_IVyf(Tyk) =Yk — O‘kT_IVZf(TJ’k)_ lVf(TYk),

and by applying T to both sides of this equation we recover (39).

When the Armijo rule is utilized with initial stepsize s = 1, then no
reduction of the stepsize will be necessary near convergence to a strong
minimum, as shown in Proposition 1.15. Thus, near convergence the method
takes the form

(40) Xk+1 = X — [sz ()17 1Vf (x40,

which will be referred to as the pure form of Newton’s method. A valuable
interpretation of this iteration is obtained by observing that x, ., ; as given
above minimizes the second-order Taylor’s series expansion of f around x;
given by

Julx) = (i) + V(e (x = xi) + 32(x = %'V (x)(x — x0).

Indeed by setting the derivative of f; equal to zero, we obtain

VAi(x) = Vf (xi) + Vf (e)(x — xi) = 0.

The solution of this equation is x,,, as given by Eq.(40). It follows that
when f is positive definite quadratic the pure form of Newton’s method
yields the unique minimum of f in a single iteration. Thus, one expects that
iteration (40) will have a fast rate of convergence. This is substantiated by
the following result which applies to Newton’s method for solving systems
of equations:

Proposition 1.17: Consider a mapping g: R" — R”, and let ¢ > 0 and
x* be such that geC! on S(x*;¢), g(x*) = 0, and Vg(x*) is invertible.
Then thereexistsa é > Osuch that if x, € S(x*; J), the sequence {x, } generated
by the iteration

Xe+1 = X — [Vg(x)]™ lg(xk)

is well defined, converges to x*, and satisfies x, € S(x*; 9) for all k. Further-
more, if x, # x* for all k, then

vk
41) lim LM_' =0;

k= o |xk - x*[
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ie., {|x, — x*|} converges Q-superlinearly. In addition given any r > 0, there
exists a §, > 0 such that if x, € S(x*; J,), then

(42) [xpe 1 — X*[ < rlx — x*,

(43) l9(xi+ )] < rlglxi)]-

If we assume further that for some L > 0 and M > 0, we have
(44a) [Vg(x) = Vg(y)| < L|x — y|  Vx,yeS(x*;e),
(44b) I[Vg(x)17' < M, Vx € S(x*; ¢),
then

[Xps, — x*| < ILM|x, — x*|? Vk=0,1,...,
and {|x, — x*|} converges Q-superlinearly with order at least two.

Proof: Let 6€(0,¢) and M > 0 be such that [Vg(x)] ™! exists for all
x € S(x*; 0) and

45) [[Vg(x)]1 <M V x € S(x*; 9).
If x, € S(x*; 9), we have

1
405 = L Valx* + i, — x*)] dt(x, — x*)

from which

(46)
Xpry — X* = x, — x* — [Vg(x,) ]~ "g(x,)

= [Vg(x) 1™ [Vg(a) (i — x*) — g(x)]

= [Vg(xk)']’l[Vg(xk)' - fo Vglx* + t(xe — x*)] dt](xk —x¥)

= [Vg(x1™* L {Vg(xi)' — Vglx* + 10 — x*)]'} de(x, — x*).

By continuity of Vg, we can take ¢ sufficiently small to ensure that

47) - IVg(x) — Vg(y)| <3M™1 V¥ x,yeS(x*;d).
Then from (45), (46), and (47), we obtain
(48)

1
X1 = x*| < [[Vg(x) 17 L IVg(x,) — Vglx* + 1(x, — x*)]'| dt [x; — x*
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and
|Xp1 — X*| < 3% — x*].
It follows that if x, € S(x*; 8) then x; € S(x*; &) for all k and x;, — x*. Equation

(41) then follows from (48).
We have

gix) = V&) (x — x*)  Vi=1...,n,

where %, is a vector lying in the line segment connecting x and x*. Therefore
by denoting Vg(%X) the matrix with columns Vg,(%;), we have

lg(x)* = (x — x*)'Vg(£)Vg(%) (x — x*).
Choose 9, > 0 sufficiently small so that Vg(X)Vg(X)' is positive definite
for all x with |x — x*| < J,, and let A > 0 and A > 0 be upper and lower
bounds to the eigenvalues of [Vg(%)Vg(%)']*/* for x € S(x*; 8,). Then
Ax — x*2 < (x — x*)Vg(R)Vg(R) (x — x*)
< A?|x — x*|? vV xeS(x*;0,)
Hence, we have
Ax — x*| < |g(x)| < Alx — x*| YV xeS(x*;0,).
Now from (48), it follows easily that given any r > 0, we can find a 6, € (0, 6,]
such that if x, € S(x*; 6,), then
IXpe1 — x| < (Ar/A)x — x*| < rlxg — x*,

thereby showing (42). Combining the last two inequalities we also obtain

lgCxi+ )| < rlglx)] YV xeS(x*;0,),

and (43) is proved.
If (44a) and (44b) hold, then from (48) we have

1 ML
[Xpeq1 — X[ < Mf Lt|x, — x*|dt|x;, — x*| = —2—|xk — x*|2
0
Q.E.D.

For g(x) = Vf(x), the result of the proposition applies to the pure form
of Newton’s method (40). Extensive computational experience suggests
that the fast convergence rate indicated in the proposition is indeed realized
in a practical setting. On the other hand, Newton’s method in its pure form
has several serious drawbacks. First, the inverse [V?f(x,)]~! may fail to
exist, in which case the method breaks down. This may happen, for example,
if f is linear within some region in which case V2f = 0. Second, iteration (40)
is not a descent method in the sense that it may easily happen that f (x4 ;) >
£ (). Third, the method tends to be attracted by local maxima just as much
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as it is attracted by local minima. This is evident from Proposition 1.17 where
it is assumed that Vg(x*) is invertible but not necessarily positive definite.

For these reasons, it is necessary to modify the pure form of Newton’s
method (40) in order to convert it to a reliable minimization algorithm.
There are several schemes by means of which this can be accomplished.
All these schemes convert iteration (40) into a gradient method with a uni-
formly gradient-related direction sequence, while guaranteeing that whenever
the algorithm gets sufficiently close to a point x* satisfying the second-order
sufficiency conditions, then the algorithm assumes the pure form (40) and
achieves the attendant fast convergence rate.

First Modification Scheme: This method consists of the iteration
Xk+1 = Xp + 0dy,

where o is chosen by the Armijo rule with initial stepsize unity (s = 1), and
d, is chosen by

(49) d = —[Vf ()1~ 'Vf (%),

if [V3f(x,)] ! exists and

(50) V) TV (1™ 1V (i) = eq |V (x|,
(51) e |V (x| = 1[IV ()17 'V (i) 1P

while otherwise
di = —DVf(xp).

The matrix D is some positive definite symmetric scaling matrix. The scalars
¢y, C2, P1, and p, satisfy

¢y >0, ¢y >0, p1 > 2, and p, > L

In practice ¢, should be very small, say 10~>, ¢, should be very large, say
10°, and p, and p, can be chosen equal to three and two, respectively.

It is clear, from Proposition 1.8, that a sequence {d,} generated by the
scheme above is uniformly gradient related and hence the resulting al-
gorithm is convergent in the sense that every limit point of a sequence that
it generates is a critical point of f. Now consider the algorithm near a local
minimum x* satisfying

Vi(x*) =0, V3(x*) > 0.

Then it is easy to see that for x, close enough to x*, the Hessian V3f(x,)
will be invertible and the tests (50) and (51) will be passed. Thus, d, will be
the Newton direction (49) for all x, sufficiently close to x. Furthermore,
from Propositions 1.12 and 1.15, we shall have x, — x*, and the stepsize
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o, will equal unity. Hence, if x, is sufficiently close to x*, then x,, — x*, and
the pure form of Newton’s method will be employed after some index, thus
achieving the fast convergence rate indicated in Proposition 1.17.

A variation of this modification scheme is given by the iteration

Xer1 = X + lody — (1 — 0)DVf (xi)],
where D is a positive definite matrix and d} is the Newton direction
& = —[Vf(x)]™ 'V (%),

if [V2f(x)]~ ! exists. Otherwise df = —DVf (). The stepsize o is chosen by
an Armijo-type rule with initial stepsize unity whereby «, = ™ and m,
is the first nonnegative integer m for which

S = fDx + Brdi(Bm] = —ap™Vf (el
where ¢ € (0, %), (0, 1), and
d(Bm) = rdy — (1 — B)DVS (xy)-
This is a line search along the curve of points of the form
z, = ofody — (1 — ®)DVf ()]

with a €[0,1]. For « = 1 we obtain the Newton direction, while as o — 0
the vector z,/o tends to the (scaled) steepest descent direction —DVf(x).
Assuming ¢ is chosen sufficiently small, one can prove similar convergence
and rate of convergence results as the ones stated earlier for this modified
version of Newton’s method.

Second Modification Scheme: Since calculation of the Newton direction
d, involves solution of the system of linear equations

sz (xd, = —Vf(x0),

it is natural to compute d, by attempting to form the Cholesky factorization
of V?f(x,) (see the preceding section). During the factorization process,
one can detect whether V2f(x,) is either nonpositive definite or nearly
singular, in which case V2f(x,) is replaced by a positive definite matrix of
the form F, = V*f(x,) + E,, where E, is a diagonal matrix. The elements
of E, are introduced sequentially during the factorization process, so that
at the end we obtain F, in the form F, = L, L;, where L, is lower triangular.
Subsequently d, is obtained as the solution of the system of equations
L,L;d, = —Vf(x), and the next point x,,; is determined from x,,; =
x, + o.dy, where oy is chosen according to the Armijo rule. The matrix E,
is such that the sequence {d,} is uniformly gradient related. Furthermore,
E, = 0 when x, is close enough to a point x* satisfying the second-order
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sufficiency conditions for optimality. Thus, near such a point, the method
is again identical to the pure form of Newton’s method and achieves the
corresponding superlinear convergence rate. The precise mechanization
of the scheme is as follows.

Let ¢ > 0, 1 > 0, and p > 0 denote fixed scalars and let af; denote the
elements of V3f(x,). Consider the i x i lower triangular matrices L}, i =
1, ..., n,defined recursively by the following modified Cholesky factorization
process (compare with Section 1.2):

Ll — ai, ifaf; >0 and |/d}; = c|V/(x)P,
* u otherwise,

Lt 0
L;(=[';,F, l,.‘], i=2...,n,

where
K
ay;
i—1y— 1,k k .
=W Y 'a, a= .
k
ai-1,i
/& Tk : K’ 1k k Ik
/1" _ aii - l{( li lf af‘,> li li and a,~,~ - li li 2 ClVf(xk) lp,
" u otherwise.

Then the direction d, is determined from
LyLidy = —Vf(x),

where L, = Lj. The next point x, ; is determined from
Xi+1 = X + 04dy,

where o, is chosen by the Armijo rule with initial stepsize s = 1 whenever
VY (x) = Li L.

Some trial and error may be necessary in order to determine appropriate
values for c, 4, and p. Usually, one takes ¢ very small so that the Newton
direction will be modified as infrequently as possible. The value of u should
be considerably larger than that of ¢ in order that the matrix L, L; is not
nearly singular. A choice 0 < p < 1 is usually satisfactory. Sometimes one
takes p = 0, although in this case the theoretical convergence rate properties
of the algorithm depend on the value of c.

The following facts may be verified for the algorithm described above:

(a) The direction sequence {d,} is uniformly gradient related, and hence
the resulting algorithm is convergent in the sense that every limit point of
{xx} 1s a critical point of f.
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(b) For each point x* satisfying Vf(x*) =0 and V2f(x*) > 0, there
exists a scalar & > 0 such that if |x, — x*| < & then L, L; = V*f(xy); ie,
the Newton direction will not be modified, and furthermore the stepsize
will equal unity. Thus, when sufficiently close to such a point x*, the algorithm
assumes the pure form of Newton’s method and converges to x* with
superlinear convergence rate.

There is another interesting modification scheme that can be used when
V3f(x,) is indefinite. In this case one can use, instead of the direction
[V (x)]~ 1Vf(x), a descent direction which is also a direction of negative
curvature, i.., a d; such that Vf(x;)d, < 0 and 4, V?*f (x,)d, < 0. This can
be done in a numerically stable and efficient manner via a form of triangular
factorization of V3f(x,). For a detailed presentation we refer to Fletcher and
Freeman (1977), More and Sorensen (1979), and Goldfarb (1980).

Periodic Reevaluation of the Hessian

Finally, we mention that a Newton-type method, which in many cases is
considerably more efficient computationally than those described above, is
obtained if the Hessian matrix V3f is recomputed every p iterations (p > 2)
rather than at every iteration. This method in unmodified form is given by

X+1 = Xk — o Dy Vf (x4,
where
Dipsj= [sz(xip)]_l, j=0,1,...,p—1, i= 0,1,....

A significant advantage of this method when coupled with the second
modification scheme described above is that the Cholesky factorization of
V2f(x;,) is obtained at the ipth iteration and is subsequently used for a total
of p iterations in the computation of the direction of search. This reduction in
computational burden per iteration is achieved at the expense of what is
usually a small or imperceptible degradation in speed of convergence.

Approximate Newton Methods

One of the main drawbacks of Newton’s method in its pure or modified
forms is the need to solve a system of linear equations in order to obtain
the descent direction at each iteration. We have so far implicitly assumed
that this system will be solved by some version of the Gaussian elimination
method which requires a finite number of arithmetic operations [on®)].
On the other hand, if the dimension n is large, the amount of calculation
required for exact solution of the Newton system can be prohibitive and
one may have to be satisfied with only an approximate solution of this
system. This approach is often used in fact for solving large linear systems
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of equations where in some cases an adequate approximation to the solution
can be obtained by iterative methods such as successive overrelaxation
(SOR) much faster than the exact solution can be obtained by Gaussian
elimination. The fact that Gaussian elimination can solve the system in a
finite number of arithmetic operations while this is not guaranteed by SOR
methods can be quite irrelevant, since the computational cost of finding the
exact solution can be entirely prohibitive.

Another possibility is to solve the Newton system approximately by
using the conjugate gradient method to be presented in the next section.
More generally any system of the form Hd = —g, where H is a positive
definite symmetric n x n matrix and g € R" can be solved by the conjugate
gradient method by converting it to the quadratic optimization problem

minimize 3d'Hd + g'd
subjectto deR"

It will be seen in the next section that actually the conjugate gradient method
solves this problem exactly in at most n iterations. However this fact is not
particularly relevant since for the type of problems where the use of the
conjugate gradient method makes sense, the dimension 7 is very large and
the main hope is that only a few conjugate gradient steps will be necessary
in order to obtain a good approximation to the solution.

For the purposes of unconstrained optimization, an important property
of any approximate method of solving a system of the form H d = —Vf(xy),
where H, is positive definite, is that the approximate direction d obtained
is a descent direction, i.e., it satisfies Vf(x,)d < 0. This will be automatically
satisfied if the approximate method used is a descent method for solving
the quadratic optimization problem

minimize 3d'H,d + Vf(x,)d
subjectto deR",
and the starting point d, = 0 is used, for the descent property implies
2 Hyd + Vf(x)d < 3dyHydo + Vf (x)do = O,

or Vf(x,)'d < —3d'H,d < 0. As will be seen in the next section, the conjugate
gradient method has this property.

Conditions on the accuracy of the approximate solution 4 that ensure
linear or superlinear rate of convergence in connection with approximate
methods are given in Dembo et al. (1980). Generally speaking if H, —
V?f(x,) and the approximate Newton directions d, satisfy

i | Hade + V/ (5]

-0,
ke V()]
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the superlinear convergence rate property of the method to a strong local
minimum is maintained (compare with Proposition 1.15). Approximate
Newton methods based on the conjugate gradient method are applied to
large scale nonlinear multicommodity flow problems in Bertsekas and
Gafni (1981).

1.3.4 Conjugate Direction and Conjugate Gradient M ethods

Conjugate direction methods are motivated by a desire to accelerate
the convergence rate of steepest descent while avoiding the overhead and
evaluation of second derivatives associated with Newton’s method. Con-
jugate direction methods are typically analyzed for the purely quadratic
problem

(52) minimize f(x) = 3x'0x
subjectto x€R’,

where Q > 0, which they can solve in at most n iterations (see Proposition
1.18 that follows). It is then argued that the general problem can be approxi-
mated near a strong local minimum by a quadratic problem. One therefore
expects that conjugate direction methods, suitably modified, should work
well for the general problem—a conjecture that has been substantiated by
analysis as well as practical experience.

Definition: Given a positive definite n x n matrix 0, we say that a
collection of nonzero vectors dy,...,d € R" is mutually Q-conjugate if
for all i and j with i # j we have d;Qd; = 0.

It is clear that if d,, . . ., d, are mutually Q-conjugate then they are linearly
independent, since if, for example, we had for scalars oy, ..., %—1

dy = oqdy + -+ - 1dk— 15
then
4, Qd, = 0, diQdy + -+ + -1, Qdy— = 0,

which is impossible since d, # 0, and Q is positive definite.

Given a collection of mutually Q-conjugate directions doy---sdn-15
we define the corresponding conjugate direction method for solving problem
(52) by

(53) xk+1=.xk+akdk, k=0,1,...,n—1,

where x, is a given vector in R" and o, is defined by the line minimization
rule

(54) f(x + o dy) = min f(x; + ody).
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We shall employ in what follows in this and the next section the notation
9 = Vf (x) = Ox;.

We have the following result:

Proposition 1.18: If x,, x,, ..., x;, are the vectors generated by the con-
Jjugate direction method (53), we have
(55) gk+1d; =0 Vi=0,...,k

Furthermore, for k =0,1,...,n — 1,x,,, minimizes f over the linear
manifold

My = {z|z = xo + yodo + -+ + Vidy, Vo> ..., ER},
and hence x,, minimizes f over R".
Proof: By (54), we have
of (x; + o;dy)/oo = g}y ,d; = 0, i=0,...,n—1,

so we need only verify (55)fori = 0,1,...,k — 1. We have,fori =0, 1, ...,
k—1,

k ’
Gk+1d; = X4,0d; = <Xi+l + ) Z ajdj) 0d; = x;,,0d; = giy,d; = 0.

j=i+1
To show the last part of the proposition, we must show that

0f(xo + yodo + -+ + dek)/a)’i|yo=:ao= 0 Vi=0,...,k
Vi =
or
gk+14; =0 Vi=0,...,k,

which is (55). Q.E.D.

It is easy to visualize the result of Proposition 1.18 for the case where
Q = L, for in this case, the surfaces of equal cost of f are concentric spheres,
and the notion of Q-conjugacy reduces to usual orthogonality. By elementary
geometry or a simple algebraic argument, we have that minimization
along n orthogonal directions leads to the global minimum of f, ie., the
center of the spheres. The case of a general positive definite Q can actually
be reduced to the case where Q = I by means of a scaling transformation.
By setting y = Q'/?x, the problem becomes min {1|y|?|yeR"}. If w, ...,
w,_ are any set of orthogonal nonzero vectors in R", the algorithm

Yk+1 = Vi + 4 Wy, k=0,1,....,n—1,
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where o, minimizes 7|y, + ow,|* over «, terminates in at most n steps at
yn = 0. To pass back to the x-coordinate system, we multiply this equation
by Q0 '/? and obtain
Xp+1 = X + o4 dy, k=0,1,...,n—1,

where d, = Q7 !?w;. Since wjw; = 0 for i # j, we obtain d;Qd; = 0 for
i # j; i.e, the directions d,, ..., d,_; are Q-conjugate. This argument can
be reversed and shows that the collection of conjugate direction methods for
the problem min{3x'Qx|x € R"} is in one-to-one correspondence with the
set of methods for solving the problem min{|y|?|y € R"}, which consist
of successive minimization along n orthogonal directions.

Given any set of linearly independent vectors &,,..., ¢,_,, we can
construct a set of mutually Q-conjugate directions d,, ..., d,_; as follows.
Set

(56) do = &o,

andfori=1,2,...,n — 1, define successively
i—1

(57) d=¢ + Z ¢;;d;,
j=0

where the coefficients c;; are chosen so that d; is Q-conjugate to the previous
directions d;_,, ..., d,. Thiswill be so if, fork = 0,...,i — 1,

i—-1
(58) d;Qdy = &Qd, + Y. ¢;;d;Qd, = 0.
j=0
If previous coefficients were chosen so that d, ..., d;_, are Q-conjugate,
then we have d;0d, = 01if j # k, and (58) yields
(59) ¢;; = —¢i0d;/d;Qd; Vi=12...,n—1, j=0,1,...,i— 1

Thus the set of directions d,, ..., d,_; defined by (56), (57) and (59) is Q-
conjugate, and (56) and (57) show also that, for i = 0, ..., n — 1, we have

(60) (subspace spanned by do, ..., d;) = (subspace spanned by &, ..., &).

We now define the most important conjugate direction method.

The Conjugate Gradient Method

The conjugate gradient method is obtained by the procedure described
above by taking &, = —go,..., ¢,—y = —g,_,. More specifically, starting
at xo with g, # 0, we use g, as our first conjugate direction, i.e., dy = —g,.
We find x; = x, + ayd, by line search and obtain our second direction
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d, using the procedure defined by (56), (57) and (59) with &, = —g, and
&, = —g,. This yields, from (57) and (59),

g10d,
doQd,

(61) dy = —g; + do-

By using the equation
g1 — go = Q(xy — Xxo) = 09 Qdy,
we can write (61) as

9191 — 9o)

do(91 — 90) °

By repeating the process with &, = —go, & = —gy,...,and & = —g;,
we obtain at the (k + 1)st step

dy=—g: +

k=1
9. Qd;
d = — + : Jd.
k 9k jgodedj j
from which
k=1 e
(62) dk= _gk + Z gk(g]+l g_])

=odigj+1 — 9 "
By using the fact that the subspace spanned by go, ..., gi—; is also the

subspace spanned by dy,...,d,_,; [compare with (60)] and the relation
gid; =0forj=0,...,k — 1 (Proposition 1.18), we obtain

g99; = 0, j=0,....k—1,

s0 (62) reduces to the simple formula

(63) di = —gi + Budi-1>
with
(64) ﬁk _ gk(gk - gk—l)

B di-1(gx — gk—l)‘

Note that by using the facts g,g; = g;d; =0,j=0,...,k — 1,and d; -, =
—gu—1 + Br—1dx_,, we see that the coefficient B, of (64) can also be written
as

B, = 9k — Gr-1) _ 99k
, Gk—19k-1 Gk -19k-1

An important observation from (63) and (64) is that in order to generate
the direction d, one need only know the current and previous gradients g, and

(65)
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gik—1 and the previous direction d,_,. This fact is particularly significant
when the method is extended to nonquadratic problems.
Scaled Conjugate Gradient Method

This method, also referred to as the preconditioned conjugate gradient
method, is really the conjugate gradient method implemented in a new
coordinate, system. Suppose we make a change of variables, as in Section
1.3.2, x '= Ty, where T is a symmetric invertible n x n matrix, and apply the
conjugate gradient method to the equivalent problem

minimize h(y) = f(Ty) = 3y TQTy
subjectto yeR"
The method is described by [compare with (63) and (65)]
(66) Virr = Vi + oy,

where o, is obtained by line minimization and d, is generated by

(67) dy = —Vh(yo), di= —Vh(y) + Bedy-1, k=1,2,....n,
where

Vh(y) Vh(y
68) B, = Vi) Vh(yi)

- Vh(yi- 1) Vh(y- 1)

Setting x, = Ty,, VA(y) = Tgx, di = Td,, and H = T?, we obtain from
(66)-(68) the equivalent method

(69) Xe+1 = X + %edy,
(70) dy = —Hg,, d, = —Hg, + Brdi_1, k=1,...,n

where

(71) Bx = 9« Hgi/gi - 1Hgi - 1

Since V2h(y) = TQT, we have that do, ...,d,_, are (TQT)-conjugate, and
in view of d, = Td,, we have that d,, ..., d,_, are Q-conjugate. By carrying

further this line of argument we see that
g Hg; = gd; =0 Vi=0,....,k—1,
and x, minimizes f over the linear manifold

M, = {z]z = xo + yodo + - + Vk-1dk—1,V0>-- > Vk-1 ER}
= {z]z =xo + 70Hgo + -+ + V- 1Hgi-1, Vo> ---» Te-1 ER}.
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The motivation for employing scaling typically stems from a desire to improve
the speed of convergence of the method within an n-iteration cycle (see the
following analysis). This in turn may be important even for a quadratic
problem if n is large.

Rate of Convergence of the Conjugate Gradient Method

There are a number of results relating to the convergence rate of the
conjugate gradient method applied to quadratic problems. We describe a
particular result due to Luenberger (1973).

Consider an algorithm of the form

Xy = Xo + Y0090

X, = Xo + + ,
(72) 2‘ o T Y1090 T V1191

Xk+1 = Xo + Vkogo + - + Yk Gks

where y;; are arbitrary scalars. Since g; = Qx;, we have that for suitable
scalars (,; the algorithm above can be written for all k

Xee1 = Xo + 00X + (1Q%X0 + -+ + L@ " 1xo
= [I + QP(Q)]xo,

where P, is a polynomial of degree k. Among all algorithms of the form (72),
the conjugate gradient method is optimal in the sense that for every k,
it minimizes f (x, ) over all sets of coefficients 7o, - - - , Y- It follows from
the equation above that in the conjugate gradient method we have, for everyk,

(73) [ (ke 1) = min 5x0[1 + QPUQ)]*Xo-
Py
Let A,,..., 4, be the eigenvalues of Q, and let ey, ..., e, be corresponding

orthogonal eigenvectors normalized so that |e;| = 1. Since ey, ..., e, form
a basis, any vector x, € R" can be written as

n
Xo = Z (e
i=1

for some scalars ;. Since

n n

Oxo = ZCiQei = Zgi/‘l’iei,

i=1 i=1

we have, using the orthogonality of e;, ..., e, and the fact that |e;| = 1,

1 1/ ! 12
f(xo) = szon = 2 (._ZICiei) < ICi'liei> = 2 _ZIA‘ICIZ

M=
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Applying the same process to (73), we obtain for any polynomial P, of de-
gree k

1 n
fOgs1) < 3 -21[1 + L P A)TPALE,

and it follows that
(74) fxes1) < max [1 + 4 PyA)]*f (x0) V Py, k.

One can use this relationship for different choices of polynomials P,
to obtain a number of convergence rate results. We provide one such result.

Proposition 1.19: Assume that Q has n — k eigenvalues in an interval
[a, b] with a > 0, and the remaining k eigenvalues are greater than b. Then
for every x,, the vector x,, ; generated after (k + 1) steps of the conjugate
gradient method satisfies

b — a\?

(75) fxer ) < (b—-l—a) S (xo0)-
This relation also holds for the scaled conjugate gradient method (69)-(71)
if the eigenvalues of Q are replaced by those of H>QH*'/.

Proof: Let Ay, 4, ..., 4 be the eigenvalues of Q that are greater than
b and consider the polynomial P, defined by
2 a+b
76) 1+ AP(A) = —A)Ay = A (A — A)
(76) X (a+b)llﬁ_.)_k(2 )<1 ) (i = )

Since 1 + 4;P,(1;) = 0 we have, using (74), (76), and a simple calculation,
fCsy) < max [1 4+ AP(1)]% (xo)

a<isb
< max [A — 3(a + b)] b—a

2
< e by 0 (b - a) f(x0).  QED.

An immediate consequence of the proposition is that if the eigenvalues
of Q take only k distinct values then the conjugate gradient method will
find the minimum of the quadratic function f in at most k iterations. (Simply
take a = b in the proposition.) Another interesting possibility, arising for
example in some optimal control problems, is when Q has the form

k
(77 Q=M+ Y v,
i=1
where M is positive definite symmetric, and v; are some vectors in R". We
have the following result, the proof of which we leave as an exercise for the
reader.
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Exercise: Show that if Q is of the form (77), then the vector x,,,
generated after (k + 1) steps of the conjugate gradient method satisfies

b _ 2
F(iay) < (ﬁ) (o),

where a and b are the smallest and largest eigenvalues of M. Show also
that the vector x,,, generated by the scaled conjugate gradient method
with H = M ™' minimizes /. [Hint : Use the interlocking eigenvalues lemma
of Luenberger (1973, p. 202).]

The (k + 1)-step scaled conjugate gradient method is particularly inter-
esting when Q is of the form (77), k is small relative to n, and systems of
equations involving M can be solved easily (see Bertsekas, 1974a).

We also leave the following strengthened version of Proposition 1.19
as an exercise to the reader.

Exercise (Hessian with Clustered Eigenvalues): Assume that Q has all
its eigenvalues concentrated at k intervals of the form

[Zi—éi,2i+5,~], i=1,...,k,
where we assume that 6, > 0,i = 1,...,k,0 <z, — §,,and
'0<21<ZZ<“'<Zk, Zi+5,~SZ,-+!—(5,-+1, l=1,,k—l

Show that the vector x;., generated after (k + 1) steps of the conjugate
gradient method satisfies

(X 1) < Rf(xo),

where
R = max)01 B2+ 0 = 20" 03 + 05 = 2% + 05 — 1)
= 2323 ’ 227323 ’

cey

2.2 2
21227 2%

Oz + 0 — 212+ (2 + O — zk—l)z}

The Conjugate Gradient Method Applied to Nonquadratic
Problems

The conjugate gradient method can be applied to the not necessarily
quadratic problem

minimize f(x)

subjectto x e R"™
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It takes the form
(78) xk+1 == Xk + akdk)

where o, is obtained by line search

(79 S (X + o4di) = min f(x, + ody),
and d, is generated by
(80) di = —Vf(x) + Bidi-1-
The two most common ways to compute f, are
_ V) Vf ()
& P = G I G )
and
82) B, = Vf G TVf (e — VO 1)

VI (- 1)'Vf (x- 1)

The use of (81) has been suggested by Fletcher and Reeves (1964) while the
use of (82) was proposed by Polak and Ribiere (1969), Poljak (1969a), and
Sorenson (1969). The direction d, generated by (80) will be a direction of
descent in either case. To see this, note that if Vf(x,) # 0, then

V(x)d = = V(> + BVf ()de—y = — | Vf(x)I” <0,

since Vf(x,)d,_; = 0 in view of (79). However, while these two formulas,
along with several others, are equivalent when the method is applied to a
quadratic problem, this is no more true in the general case. Extensive
computational experience has established that the use of (82) results in
much more efficient computation than the use of (81). A heuristic reason
that can be given is that due to nonquadratic terms in the objective function
and possibly inaccurate line searches, conjugacy of the generated directions
is progressively lost and a situation may be created where the method
temporarily “jams” in the sense that the generated direction d, is nearly
orthogonal to the gradient Vf(x,). When this occurs, then Vf(x;,;) ~
Vf(x,). In that case B, ,, generated by (82), will be nearly zero and the next
direction d, , ;, generated by (80), will be close to — Vf (x, + ) thereby breaking
the jam. This is not the case when (81) is used. A more detailed explanation
of this phenomenon is given by Powell (1977).

Regardless of the formula for computing the scalar f;, one must deal
with the loss of conjugacy that results from nonquadratic terms in the
objective function. The conjugate gradient method is often employed in
problems where the number of variables n is large, and it is not unusual
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for the method to start generating nonsensical and inefficient directions
of search after a few iterations. For this reason it is important to operate the
method in cycles of conjugate direction steps given by (80), with the first
step in the cycle being a steepest descent step. Some possible restarting
policies are:

(a) Restart with a steepest descent step n iterations after the preceding
restart.

(b) Restart with a steepest descent step k iterations after the preceding
restart with k < n. This is recommended when the problem has special
structure so that the resulting method has good convergence rate (compare
with Proposition 1.19 and the following discussion).

(c) Restart with a steepest descent step n iterations after the preceding
restart or if

(83) IV o' Vf = D1 > 71V G- ) 12,

where 7y is a scalar with 0 < y < 1, whichever comes first. Relation (83)
is a test on loss of conjugacy, for if the generated directions were indeed
. conjugate then we would have Vf(x,)Vf(x,-,) = 0. This procedure was
suggested by Powell (1977) who recommended the choice of y = 0.2.

Note that in all these restart procedures the steepest descent iteration
serves as a spacer step and guarantees global convergence (Proposition 1.16).
If the scaled version of the conjugate gradient method is used, then a scaled
steepest descent iteration is used to restart a cycle. The scaling matrix may
change at the beginning of a cycle but should remain unchanged during the
cycle. Another possibility, stemming from a suggestion of Beale (1972), is
to use the last direction generated in a cycle as the first direction in the new
conjugate direction cycle instead of using steepest descent. We refer to papers
by Powell (1977) and Shanno (1978a,b) for a discussion of this possibility.

An important practical issue relates to the line search accuracy that is
necessary for efficient computation. An elementary calculation shows that if
line search is carried out to the extent that

V() dy—y < |Vf (=) 1%,

then d,, generated by (80) and (81), satisfies Vf(x,)'d, < 0 and is a direction
of descent. On the other hand, a much more accurate line search may be
necessary in order to keep loss of direction conjugacy and deterioration of
rate of convergence within a reasonable level. At the same time, insisting
on a very accurate line search can be computationally expensive. Consider-
able research has been directed towards clarifying these questions, and
several implementations of the conjugate gradient method with inexact line
search have been proposed by Klessig and Polak (1972), Lenard (1973,
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1976), and Powell (1977). Among recent works, Shanno (1978a,b) suggests
a rather imprecise line search coupled with a method for computing conjugate
gradient directions which views each iteration as a memoryless quasi-
Newton step. This method appears relatively insensitive to line search errors
and yields descent directions under essentially no restriction on line search
accuracy.

1.3.5 Quasi-Newton Methods

Quasi-Newton methods are descent methods of the form
(84) Xp+1 = X + OGdy,
(85) d, = — D Vf (%),

where D, is a positive definite matrix adjusted during the course of the com-
putation in a way that (84) tends to approximate Newton’s method. The
stepsize o is determined by one of the stepsize rules of Section 1.3.1. The
popularity of the most successful of these methods stems from the fact
that they tend to exhibit a fast rate of convergence while avoiding the second
derivative calculations associated with Newton’s method.

There is a large variety of quasi-Newton methods, but we shall restrict
ourselves to the so-called Broyden class of quasi-Newton algorithms where
D, ., is obtained from D, and the vectors

(86) P = Xg+1 — Xk
(87 gk = Vf Carr) — V(X0
by means of the equation

PPk Diax kD

(88) k+1 kY 4.Deds + (i T Uk Uk

where

Pk Dy gy
89 V=5 — — ———
®9) kT Pgy Tk
(90) T = Gk Di i
the scalars {, satisfy, for all k,
91) 0<G <1,

and D, is an arbitrary positive definite matrix. If {, = 0, one obtains the
Davidon-Fletcher—Powell (DFP) method (Davidon, 1959; Fletcher and
Powell, 1963), which is historically the first quasi-Newton method. Ifg, =1,
one obtains the Broyden—Fletcher-Goldfarb-Shanno (BF GS) method
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(Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) for which
there is growing evidence that it is the best general purpose quasi-Newton
method currently available.

We first show that under a mild assumption the matrices D, generated
by (88) are positive definite. This is a most important property, since it
guarantees that the search direction d, is a direction of descent.

Proposition 1.20: If D, is positive definite, Vf(x;.;) # 0, and the
stepsize o, is chosen so that x, ., ; satisfies

€2 V(%) di < Vf (X4 1)'dy

(or equivalently p;q, > 0), then D, given by (88) is well defined and is
positive definite.

Proof:  First note that (92) implies that g, # 0 and
93) Pidi = i [Vf (Xis 1) — Vf(x)] > 0.
Thus all denominator terms in (88), (89), and (90) are nonzero, and D, is
well defined.

Now for any z # 0, we have
@p)*  (@De2)?

Pdx  GDidi

Define a = D;/’z, b = D}/?q,, and write (94) as

, lal?|b]> — (ab)*  (Z'ps)?
95 zZDy iz = ;
©3) ket [bJ? 121

From (90), (91), (93), and the Cauchy-Schwarz inequality we have that
all the terms on the right-hand side of (95) are nonnegative. In order that
Z'Dy+ 1z > 0, it will suffice to show that we cannot have simultaneously

lal*|b]* = (@b)* and  zp, = 0.

(94) Z/D,H.IZ = Z,DkZ + + Cka(U;‘Z)Z.

+ Get(vi2)®.

Indeed if [a|?|b|* = (a'b)?, we must have a = Ab for some A # 0 or z = Aq,,
so if z2'p, = 0, we must have g; p, = 0, which is impossible by (93). Q.E.D.

Note that if D, is positive definite, we have Vf(x,)'d, < 0, so in order to
satisfy condition (92), it is sufficient to carry out the line search to a point
where

IVf (e 1)l < 1Vf(x)'dy].-.

If o, is determined by the line minimization rule, then Vf(x, . 1)d, = 0 and
(92) is certainly satisfied.



1.3 UNCONSTRAINED MINIMIZATION 61

A most interesting property of the Broyden class of algorithms is that
when applied to the positive definite quadratic function

f(x) = 3x'0x,

with the stepsize o, determined by line minimization, they generate a Q-
conjugate direction sequence, while simultaneously constructing the inverse
Hessian Q! after n iterations. This is the subject of the next proposition.

Proposition 1.21: Let {x,} and {d,} be sequences generated by the
algorithm (84)-(90) applied to minimization of the positive definite quadratic
function f(x) = $x'Qx with «, chosen by

(96) f(x + ody) = min f(x; + ady).

Assume none of the vectors xg, - . ., X, is optimal. Then

(a) The vectors d,, ..., d,—, are mutually Q-conjugate.
(b) There holds

D,=Q .
Proof: It will be sufficient to show that for all k
©7) 40d; =0, 0<i<j<k
(98) Dy 149: = Dy+1Qpi = i, 0<i<k

Equation (97) proves (a). Equation (98) proves (b), since fork=n—-11t
shows that pg, ..., p.—; are eigenvectors of D,Q corresponding to unity
eigenvalue. Since p; = «;d; and d, ..., d,-, are Q-conjugate, it follows that
the eigenvectors po, ..., p,—; are linearly independent and therefore D, Q
equals the identity.

We first verify that for all k

(99) D+ 14k = Di+19Opi = Pi-
From (88), we have

PxPi4x _ Dy.qy.qx Dic 4x
P4k 9k Dy g

Dy+ 14k = Digy + + (e Tk VG = P + i Toe Uk U -
An elementary calculation shows that v;, g, = 0, and (99) follows.

We now show (97) and (98) simultaneously by induction. For k = 0
there is nothing to show for (97), while (98) holds in view of (99). Assuming
that (97) and (98) hold for k, we prove them for k + 1. We have, for i <k,

(100) Vf(xp+1) = Vf(xi41) + Qpisy + - + D)
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Using (96), (97), (100), the fact p; = o;d;, and the fact Vi (xk+1) =0, we
obtain

PVf (s 1) = piVf(xi41) =0, O0<i<k+ 1
Hence from (98),
PiODy+ Vf (x¢+1) = 0, O0<i<k+1,
and since p; = o;d;, dy vy = — Dy Vf (x4 ), We obtain
d;Qdy,, =0, O<i<k+1
This proves (97) for k + 1.
From the induction hypothesis (98) and (97), we have

(101) Gi+1Dx+19: = Qs 1Dy 1 0P = Gies1Pi = Pics1Qpi = O,
0<i<k

Using (88), (89), (97), (101), and a straightforward calculation, we have, for

0<i<k,

, D , '
Dys2G; = Dys1q: + Pkl+1Pk+1‘1. _ e+ 19k + 19k + 1Dk + 14

’
Pr+19k+1 G+ 1Dx 1G4 4
F Gkt 1T+ 1Uk+ 10k +19;
= Dy119; = p;.

Taking into account (99), we have a proof of (98) for k + 1. Q.E.D.

It is also interesting to note that the sequence {x,} in Proposition 1.21 is
identical to the one that would be generated by the scaled conjugate gradient
method with scaling matrix H = Dy; ie., for k =0, 1,...,n — 1, the vector
Xy +1 minimizes f over the linear manifold

M, = {z]z = xo + 7oDon(Xo) + -+ %DoVf (i), v05 -+ Tk ER].

This can be proved for the case where D, = I by verifying by induction that

for all k there exist scalars S}; such that

M=

Dk=1+

k
Z ijVf (x)Vf (x j)'~
0j=0
Therefore, for some scalars b* and all k, we have
k
dy = —D\Vf(x) = Z b{"vf(xi)'
i=0

Hence, for all i, x;, , lies on the manifold

M; = {z]z = xo + 7oVf(x0) + -+ + 2V (x)), 70, --., ;€ R},
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and since the algorithm is a conjugate direction method the result follows
using Proposition 1.18. The proof for the case where D, # I follows by
making a transformation of variables so that in the transformed space the
initial matrix is the identity. A consequence of this result is that any algorithm
in Broyden’s class employing line minimization generates identical sequences
of points for the case of a quadratic objective function. This is also true even
for a nonquadratic objective function (Dixon, 1972a,b) which is a rather sur-
prising result. Thus the choice of the scalar {;, makes a difference only if the
line minimization is inaccurate.

Computational Aspects of Quasi-Newton Methods

Consider now the case of a nonquadratic problem. Even though the
quasi-Newton method (84)-(90) is equivalent to the conjugate gradient
method for quadratic problems, it has certain advantages which manifest
themselves in the presence of inaccurate line search and nonquadratic terms
in the objective function. The first advantage is that when line search is
accurate the algorithm (84)-(90) not only tends to generate conjugate
directions but also constructs an approximation to the inverse Hessian
matrix which tends to be more accurate as the algorithm progresses. As a
result, near convergence to a strong local minimum, it tends to approximate
Newton’s method thereby attaining a fast convergence rate. This fact is
suggested by Proposition 1.21 and has also been established analytically
by Powell (1971) [for a proof, see also Polak (197 1)]. It is significant that this
property does not depend on the starting matrix D,, and as a result it is not
usually necessary to periodically restart the method with a steepest descent-
type step—something that is essential for the conjugate gradient method.
A second advantage over the conjugate gradient method is that quasi-
Newton methods are not as sensitive to accuracy in the line search. This has
been verified by extensive computational experience and can be substan-
tiated to some extent by analysis (see Broyden et al., 1973). One reason that
can be given is that, under essentially no restriction on the line search
accuracy, the quasi-Newton method (84)-(90) generates positive definite
matrices D, and hence directions of descent (Proposition 1.20).

In an effort to compare further the conjugate gradient method and
quasi-Newton methods, we consider their computational requirements per
iteration. The kth iteration of the conjugate gradient method requires
computation of the objective function and its gradient (perhaps several
times in view of the employment of line search) together with O(n)t multi-
plications to compute the conjugate direction d, and next point x; .. A

+ In this context O(n) multiplications means that there is an integer M such that the number
of multiplications per iteration is bounded by Mn, where n is the dimension of the problem.
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quasi-Newton method requires roughly the same amount of computation
for function and gradient evaluations together with O(n?) multiplications to
compute the matrix D, and next point x, , ;. If the computation time necessary
for a function and gradient evaluation is larger or comparable to O(n?)
multiplications, the quasi-Newton method requires only slightly more
computation per iteration than the conjugate gradient method and holds
the edge in view of its other advantages mentioned earlier. In problems where
a function and gradient evaluation requires computation time much less
than O(n*) multiplications, the conjugate gradient method is preferable. For
example in optimal control problems where typically n is very large (over
100 and often over 1000) and a function and gradient evaluation typically
requires O(n) multiplications, the conjugate gradient method is preferred.
In general, both methods require less computation per iteration than
Newton’s method which requires a function, gradient, and Hessian evaluation,
as well as O(n’) multiplications at each step. This is counterbalanced by
the faster speed of convergence of Newton’s method. The case for Newton’s
method is strengthened if periodic reevaluation of the Hessian is employed
since each step that utilizes a previously evaluated (and factored) Hessian
requires only O(n?) multiplications. The same is true if the problem has
special structure that can be exploited to compute the Newton direction
efficiently. For example in optimal control problems, Newton’s method
typically requires O(n) multiplications per iteration versus O(n?) multi-
plications for quasi-Newton methods.

Finally, we note that multiplying the initial matrix D, by a positive
scaling factor can have a significant beneficial effect on the behavior of the
algorithm. A popular choice is to compute

(102) ﬁo = (P690/90 Do 40)Dy

once the vector x, (and hence also p, and g,) has been obtained, and use
D, in place of D, in computing D,. The rationale for this is explained in
Luenberger (1973). Among other things it can be shown that if the initial
scaling (102) is used, then the condition number M, /m,, where

M, = max eigenvalue of (D}/2QD}/?),
my, = min eigenvalue of (D}/2QD}/?),

is not increased (and is usually decreased) at each iteration (compare with
the discussion on rate of convergence in Section 1.3.1). Sometimes it is
beneficial to scale Dy even after the first iteration by the factor p}q,/q; D, g,
and this has given rise to the class of self-scaling quasi-Newton algorithms
due to Oren and Luenberger [see Oren and Luenberger (1974), Oren (1973,
1974), Oren and Spedicato (1976)].
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1.3.6 Methods Not Requiring Evaluation of Derivatives

All the gradient methods examined so far in Section 1.3 require calculation
of at least the gradient Vf(x,) and possibly the Hessian matrix V3f(x,) at
each generated point x,. In many problems, these derivatives are either not
available in explicit form or else are given by very complicated expressions
and hence their evaluation requires excessive computation time. In such
cases, it is possible to use the same algorithms as earlier with all unavailable
derivatives approximated by finite differences. Thus, second derivatives
may be approximated by the forward difference formula

0% (xi) - l [af(xk + he;) _ af(xk)]

(103) oxtox) h ox' ox'

or the central difference formula

azf(xk) - i [af(xk + hej) _ of (i — hej)]

104 = . -
(104) ox'ox!  2h ox' ox'

In these relations, h is a small positive scalar and e; is the jth unit vector
(jth column of the identity matrix). Similarly first derivatives may be approxi-
mated by

(105) of (x)/0x' ~ (/ML f (xi + he) — f(x)]
or by
(106) of (x)/0x* ~ (1/2m)[f Cxi + hey) — f(xx — hey)].

The central difference formula has the disadvantage that it requires twice
as much computation as the forward difference formula. However, it is
much more accurate. By forming the corresponding Taylor series expansions,
it may be seen that the absolute value of the error between the approxi-
mation and the actual derivatives is O(h) for the forward difference formula
while it is O(h?) for the central difference formula. In some cases the sainc
value of i can be used for all partial derivatives, but in other cases, particularly
when the problem is poorly scaled, it is essential to use a different value of
h for each partial derivative.

From the point of view of reducing the approximation error (or trunca-
tion error), it is advantageous to choose the finite difference interval h as
small as possible. Unfortunately there is a limit to the amount that h can be
reduced due to the significant cancellation error, which occurs when quantities
of similar magnitude are subtracted by the computer. Cancellation error is
particularly evident in the approximate formulas (105) and (106) near a
critical point where Vf'is nearly zero.
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Practical experience suggests that a good policy is to keep the scalar h
for each derivative at a fixed value which balances the truncation error
against the cancellation error. When second derivatives are approximated
by finite differences of first derivatives in discretized versions of Newton’s
method, practical experience suggests that extreme. accuracy is not very
important in terms of speed of convergence. For this reason, exclusive use
of the forward difference formula (103) is advisable in most cases. By con-
trast, when first derivatives are approximated by finite differences of function
values, the approximation can become poor near a critical point and can
vitally affect the convergence characteristics of the algorithm if the forward
difference formula (105) is used exclusively. A good practical rule is to use
the forward difference formula (105) until the absolute value of the cor-
responding approximate derivative becomes less than a certain tolerance;
ie.,

I(A/MLf (x + hey) — f(x]] < e,

where ¢ > 0 is some small prespecified scalar. At that point a switch to the
central difference formula is made; i.e., the formula (106) is used whenever
the inequality above is satisfied. This has been suggested by Gill and Murray
(1972). An extensive discussion of implementation of gradient methods
based on finite difference approximations can be found in Gill et al. (1981).

There are several other algorithms for minimizing differentiable functions
without the explicit use of derivatives, the most interesting of which, at least
from the theoretical point of view, are coordinate descent methods. For a
discussion of these and other nonderivative methods we refer the reader to
Avriel (1976), Brent (1972), Luenberger (1973), Polak (1971), Powell (1964,
1973), Sargent and Sebastian (1973), and Zangwill (1967a, 1969).

1.4 Constrained Minimization

We consider the problem
(CP) minimize f(x)
subject to xe X,

where f: R" — R is a given function and X is a given subset of R". We say
that a vector x* € X is a local minimum for (CP) if there exists an ¢ > 0 such
that

f(x*) < f(x) VxeS(x*;e), xeX.
It is a strict local minimum if there exists an ¢ > 0 such that

f(x*) < f(x) VxeS(x*;¢), xeX, x# x*
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It is a global minimum if
f(x*) < f(x) VxeX.

We have the following optimality conditions for the case where X is
a convex set. Proofs may be found in the sources given at the end of the
chapter. ’

Proposition 1.22: Assume that X is a convex set and for some ¢ > 0
and x* € X, fe C! over S(x*; ¢).

(a) If x* is a local minimum for (CP), then
¢ VF(x*y(x —x*)>0 VxeX.

(b) If fis in addition convex over X and (1) holds, then x* is a global
minimum for (CP).

We shall be mostly interested in optimality conditions for problems
where the constraint set X is described by equality and inequality constraints.
Equality Constrained Problems

We consider first the following equality constrained problem
(ECP) minimize f(x)

subject to  h(x) = 0,

where f: R" — R and h: R* - R™ are given functions and m < n. The com-
ponents of h are denoted h, ..., h,,.

Definition: Let x* be a vector such that h(x*) = 0 and, for some ¢ > 0,
he C*on S(x*; ¢). We say that x* is aregular point if the gradients Vh,(x*), ...,
Vh,(x*) are linearly independent.

Consider the Lagrangian function L: R"*™ — R defined by
L(x,A) = f(x) + A'h(x).
We have the following classical results (see, e.g., Luenberger, 1973).

Proposition 1.23: Let x* be a local minimum for (ECP), and assume
that, for some ¢ > 0,fe C*, he C* on S(x*; &), and x* is a regular point. Then
there exists a unique vector 1* € R™ such that

o) V, L(x*, 2*¥) = 0.
If in addition fe C? and he C? on S(x*;¢) then
3) 2’V L(x*, 1¥)z > 0 VzeR" with Vh(x*)z = 0.
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Proposition 1.24: Let x* be such that A(x*) = 0 and, for some ¢ > 0,
feC? and he C? on S(x*;e¢). Assume that there exists a vector A* € R™
such that

€)) V.L(x*,A*) =0
and
%) ZV2, L(x*,A*)z > 0 Vz#0 with Vha(x*)z=0.

Then x* is a strict local minimum for (ECP).

It is instructive to provide a proof of Proposition 1.24 that utilizes
concepts that will be of interest later in the analysis of multiplier methods.
We have the following lemma:

Lemma 1.25: Let P be a symmetric n x n matrix and Q a positive
semidefinite symmetric n x n matrix. Assume that x'Px > 0 for all x # 0
satisfying x'Qx = 0. Then there exists a scalar ¢ such that

P+ cQ > 0.

Proof: Assume the contrary. Then for every integer k, there exists a
vector x;, with |x,| = 1 such that

6) x; Px;, + kx;0x, < 0.

The sequence {x,} has a subsequence {x,}x converging to a vector X with
|X| = 1. Taking the limit superior in (6), we obtain

@) X'Px + lim sup(kx;Qx,) < 0.

P
Since x;,0x; = 0, (7) implies that {x; Ox,}x converges to zero and hence
X'Qx = 0. From the hypothesis it then follows that X’Px > 0 and this contra-
dicts (7). Q.E.D.

Consider now a vector x* satisfying the sufficiency assumptions of
Proposition 1.24. By Lemma 1.25 it follows that there exists a scalar ¢ such
that

8) V2, L(x*, A*) + ¢Vh(x*)Vh(x*)' > 0.
Let us introduce the so-called, augmented Langrangian function,L.: R"*™* 1 —
R defined by

® L(x,2) = f(x) + Xh(x) + 3¢|h(x) |
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We have, by a straightforward calculation,

(10) V. L(x,4) = Vf(x) + VA(x)[A + ch(x)],

(11) Vi L(x,4) = V¥ (x) + i [A; + chi(x)]V?h(x) + cVh(x)Vh(x).

Therefore, using also (8), we have, for all ¢ > ¢,
(12) V. L(x* A*¥) = V_L(x*, A*) = 0,
(13) V2 L(x*, A¥) = V2 L(x*, A*) + ¢Vh(x*)Vh(x*)' > 0.

Now by using Proposition 1.4 and the preceding discussion, we obtain the
following result:

Proposition 1.26: Under the sufficiency assumptions of Proposition
1.24, there exist scalars ¢,y > 0,and 6 > O such that

(14)  Lx, A*) > L(x*, 2*) + y|x — x*|*  VxeS(x*;d), c¢=>C¢
Notice that from (9) and (14), we obtain
fO) = f(x*) + ylx = x*>  VxeS(x*;e), h(x)=0,

which implies that x* is a strict local minimum for (ECP). Thus a proof of
Proposition 1.24 has been obtained.

The next proposition yields a valuable sensitivity interpretation of
Lagrange multipliers. We shall need the following lemma:

Lemma 1.27: Let x* be a local minimum for (ECP) which is a regular
point and together with its associated Lagrange multiplier vector A* satisfies
the sufficiency assumptions of Proposition 1.24. Then the (n + m) x (n + m)
matrix

(15) Je [VixL(x*, A% Vh(x*)]

Vh(x*) 0
is nonsingular.

Proof: If J were singular, there would exist y € R" and z € R™ not both
zero such that (y, z) is in the nullspace of J or equivalently

(16) V2, L(x*, A*)y + Vh(x*)z = 0,

a7 Vh(x*)y = 0.

Premultiplying (16) by y" and using (17), we obtain
y'V2 L(x* A*)y = 0.
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Hence y = 0, for otherwise the sufficiency assumption is violated. It follows
that Vh(x*)z = 0, which in view of the fact that Vh(x*) has rank m implies
z = 0. This contradicts the fact that y and z cannot be both zero. Q.E.D.

Proposition 1.28: Let the assumptions of Lemma 1.27 hold. Then there
exists a scalar 6 > 0 and continuously differentiable functions x(-): S(0; 8) —
R", A(-): S(0; &) = R™ such that x(0) = x*, A(0) = A*, and for all u € S(0; 9),
{x(u), A(u)} are a local minimum-Lagrange multiplier pair for the problem

(18) minimize f(x)
subject to  h(x) = u.
Furthermore,

V, f[x)] = —A(u)  VueS0;0).

Proof: Consider the system of equations in (x, 4, u):
Vf(x) + Vh(x)A = 0, h(x) —u=0.

It has the solution (x*, A*, 0). Furthermore the Jacobian of the system with
respect to (x, A) at this solution is the invertible matrix J of (15). Hence
by the implicit function theorem (Section 1.2), there exists a 6 > 0 and
functions x(-)e C*, A(-) e C* on S(0; d) such that

19) Vf[x(u)] + VA[x(u)]JA(u) = 0, h[x(u)] = u Y ue S(0;9).

For u sufficiently close to u = 0, the vectors x(u), A(u) satisfy the sufficiency
conditions for problem (18) in view of the fact that they satisfy them by
assumption for u = 0. Hence & can be chosen so that {x(u), A(u)} are a local
minimum-Lagrange multiplier pair for problem (18).

Now from (19), we have

V. x(u)Vf[x(u)] + V,x(u)Vh[x(u)]A(u) = 0

or

(20) V. STx@)] = =V, x()VADx()]Aw).
By differentiating the relation h[x(u)] = u, we obtain
21 I = V,h[x(u)] = V,x(u)Vh[x(u)].

Combining (20) and (21), we have
Vuf[x(u)] = _}'(u)’
which was to be proved. Q.E.D.
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Inequality Constraints

Consider now the case of a problem involving both equality and inequality
constraints

(NLP) minimize f(x)
subject to  h(x) = 0, g(x) <0,

where f: R" —» R, h: R" > R™, g: R" - R’ are given functions and m < n.

The components of g are denoted by g;,...,9,. We first generalize the
definition of a regular point. For any vector x satisfying g(x) < 0, we denote
22) Ax) = {jlgx) =0,j=1,...,r}

Definition: Let x* be a vector such that h(x*) = 0, g(x*) < 0 and, for
some ¢ > 0, he C* and g € C! on S(x*;¢). We say that x* is a regular point
if the gradients Vh,(x*),..., Vh,(x*) and Vg(x*), je A(x*), are linearly
independent.

Define the Lagrangian function L: R"*™*" — R for (NLP) by
L(x, 4, 1) = f(x) + Xh(x) + 1'g(x).

We have the following optimality conditions paralleling those for equality
constrained problems (see, e.g., Luenberger, 1973).

Proposition 1.29: Let x* be a local minimum for (NLP) and assume
that, for some ¢ > 0, fe C!, he C*, ge C! on S(x*;¢), and x* is a regular
point. Then there exist unique vectors A* € R™, * € R" such that

(23) V. L(x*, A*, i) = 0,
(24) pk>0, pfgx*)=0 Vj=1...,r

If in addition fe C?, h e C?,and g € C* on S(x*; &), then for all z € R" satisfying
Vh(x*)z = 0and Vg(x*)'z = 0, j € A(x*), we have

25) ZV2 L(x*, A*, 1*)z > 0.

Proposition 1.30: Let x* be such that h(x*) = 0, g(x*) < 0, and, for
some ¢ > 0, fe C?, he C?, and ge C? on S(x*;¢). Assume that there exist
vectors A* € R™, u* € R" such that

(26) V, L(x*, A%, u*) = 0,
27 ur =0, prg(x*) =0 Vi=1,...,r,
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and for every z # 0 satisfying Vh(x*)z = 0, Vg;(x*)'z < 0, for all j € A(x*),
and Vg (x*)'z = 0, for all j € A(x*) with 1} > 0, we have

(28) Z'V2, L(x*, A*, 1*)z > 0.

Then x* is a strict local minimum for (NLP).

Optimality Conditions via Conversion to the Equality Constrained
Case

Some of the results for inequality constraints may also be proved by
using the results for equality constraints provided we assume that f, h;, g; € C 2,
In this approach, we convert the inequality constrained problem (NLP) into
a problem which involves exclusively equality constraints and then use the
results for (ECP) to obtain necessary conditions, sufficiency conditions,
and a sensitivity result for (NLP).

Consider the equality constrained problem

(29) minimize f(x)
subject to hi(x)=0,...,h,(x) =0,
g1() + 21 =0,...,9,(x) + 27 =0,

where we have introduced additional variables z,, ..., z,. It is clear that
(NLP) and problem (29) are equivalent in the sense that x* is a local minimum
for problem (NLP)if and only if (x*,[ —g,(x*)]"3, ..., [—g,(x*)]*?) isia
local minimum for (29). By introducing the vector z = (zy,...,z,) and
the functions

f(x,2) = f(x),
h{x, z) = hy(x), i=1,...,m
gj(x,z)=gj(x)+zf, j=1...,r
problem (29) may be written as
(30) minimize f(x, z)
subject to  hy(x,z) =0, gix,2)=0, i=1,....,m, j=1,...,r

Let x* be a local minimum for our original problem (NLP) as well as
a regular point. Then (x*, z¥), where z* = (z%, ..., z¥), z¥ = [—g;(x*)]"?,
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is a local minimum for problem (30). In addition (x*, z*) is a regular point
since the gradients

[Vhy(x*)]
L 0 ’
[Vg,(x*)

Vh(x*, z%) =

Vg(x*, z¥) =

can be easily verified to be linearly independent when x* is a regular point.
By the necessary conditions for equality constraints (Proposition 1.23),
there exist Lagrange multipliers A}, ..., A¥, u¥, ..., u¥ such that

J

Vi(x*, %) + Y AFVh(x*, z%) +
i=1

KEVG(x*, %) = 0.
=1

In view of the form of the gradients of f, 4;, and g;, the condition above is
equivalent to

(31a) Vf(x*) + Zl;“Vh,-(x*) + Z,u}‘ng(x*) =0,
i=1 j=1
(31b) 2[—g M =0, j=1,...,n

The last equation implies 4} = 0 for all j ¢ A(x*) and may also be written as
(32) prg(x*) =0, j=1,...,rn

The second-order necessary condition for problem (30) is applicable, in
view of our assumption f, h;, g;€ C* which in turn implies f, h;, g;€ C*. It
yields

(33) [y, v'] 0 ik 0
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forallyeR", v = (vy, ..., v,) € R" satisfying
34) Vh(x*)y = 0, Vg(x*)Yy + 2zfv; =0, j=1,...,r
By setting v; = 0 for j e A(x*) and taking into account the fact uj = 0 for
j # A(x*) [compare with (32)] we obtain, from (33) and (34),
(35) YV L(x*, 2%, u*)y = 0,
Yy, with Vh(x*)'y = 0, Vg(x*¥)y =0, je A(x*).

For every j with z¥ = 0, we may choose y = 0, v; # 0,and v = 0, for k # j,
in (33) to obtain
(36) >0,
Relations (31), (32), (35), and (36) represent all the necessary conditions
of Proposition 1.29. Thus we have obtained a proof of Proposition 1.29
(under the assumption f, h;, g;€ C?) based on the transformation of the
inequality constrained problem (NLP) to the equality constrained problem
(29).

The transformation described above may also be used to derive a set

of sufficiency conditions for (NLP) which are somewhat weaker than those
of Proposition 1.30.

Proposition 1.31: Let x* be such that h(x*) = 0, g(x*) < 0, and, for
some ¢ > 0, fe C?, he C%, and g€ C? on S(x*;¢). Assume that there exist
vectors A* € R™, u* € R” satisfying

V. L(x*, A*, u*) = 0,
ur=0, wgix*)=0, j=1,...,r,
as well as the strict complementarity condition
wf>0 if jeA(x*).

Assume further that for all y # 0 satisfying VA(x*)'y = 0 and Vg (x*)'y = 0,
for all j e A(x*), we have

YVEL(x*, 2%, y¥)y > 0.
Then x* is a strict local minimum for (NLP).

Proof: From (31), (33), and (34), we see that our assumptions imply
that the sufficiency conditions of Proposition 1.24 are satisfied for (x*, z*)
and A*, 1*, where z* = ([—g,(x*)]"3, ..., [—g,(x*)]*/?) for problem (29).
Hence (x*, z*) is a strict local minimum for problem (29) and it follows that
X* is a strict local minimum of f'subject to h(x) = 0,and g(x) < 0. Q.E.D.
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We formalize some of the arguments in the preceding discussion in the
following proposition.

Proposition 1.32: If the sufficiency conditions for (NLP) of Proposition
1.31 hold, then the sufficiency conditions of Proposition 1.24 are satisfied
for problem (29). If in addition x* is a regular point for (NLP), then (x*, z*),
where z* = ([—g,(x*)]'%, ..., [—g.(x*)]*/?), is a regular point for problem
(29).

Linear Constraints

The preceding necessary conditions rely on a regularity assumption on
the local minimum x* to assert the existence of a unique Lagrange multiplier
vector. When x* is not regular, there are two possibilities. Either there
does not exist a Lagrange multiplier vector or there exists an infinity of
such vectors. There are a number of assumptions other than regularity
that guarantee the existence of a Lagrange multiplier vector. A very useful
one is linearity of the constraint functions as in the following proposition.

Proposition 1.33: Let x* be a local minimum for the problem
minimize f(x)
subjectto ajx —b; <0, j=1,...,r,

where f:R" > R,beR",and q;eR", j = 1, ..., r. Assume that, for some ¢ > 0,
fe C! on S(x*; ¢). Then there exists a vector u* = (uf, ..., i) such that

Vf(x*) + Y uta; =0,
=1

J

p¥ =0, u¥(a;x* — by =0, j=1...,r

Sufficiency Conditions under Convexity Assumptions
Consider the convex programming problem
37 minimize f(x)
subject to  g(x) < 0,

where we assume that the functions f and ¢y, ..., g, are convex and differ-
entiable over R". Then every local minimum is global, and the necessary
optimality conditions of Proposition 1.29 are also sufficient as stated in the
following proposition.
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Proposition 1.34: Assume that f and ¢, ..., g, are convex and con-
tinuously differentiable functions on R". Let x* € R" and u* € R" satisfy

V() + Vg(x*)p* = 0,
g <0, w20, wgx) =0 j=1..,r

Then x* is a global minimum of problem (37).

1.5 Algorithms for Minimization Subject to Simple Constraints

There is a large number of algorithms of the feasible direction type for
minimization of differentiable functions subject to linear constraints. A
survey of some of the most popular ones may be found in the volume edited
by Gill and Murray (1974), and computational results may be found in the
paper by Lenard (1979). In this section, we shall focus on a new class of
methods that is well suited for problems with simple inequality constraints
such as those that might arise in methods of multipliers and differentiable
exact penalty methods, where the simple constraints are not eliminated by
means of a penalty but rather are treated directly (cf. Sections 2.4 and 4.3).
We shall restrict ourselves exclusively to problems involving lower and/or
upper bounds on the variables, but there are extensions of the class of al-
gorithms presented that handle problems with general linear constraints
(see Bertsekas, 1980c).

Consider the problem

(SCP) minimize f(x)
subjectto x >0,

where f: R" —» R is a continuously differentiable function. By applying
Proposition 1.22, we obtain the following necessary conditions for optimality
of a vector x* > 0.

(1a) of (x*)/ox' = 0 if x>0, i=1,...,n
(1b) of (x*)/ox" = 0 if x=0, i=1,...,n

An equivalent way of writing these conditions is
(@) x* = [x* — aVf (x)]",
where o is any positive scalar and [-]* denotes projection on the positive
orthant; i.e., for every z = (2%, ..., z"),

max{0, z!}

3) [z]" =

max {0, z"}
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If a vector x* > O satisfies (1), we say that it is a critical point with respect to
(SCP).

Equation (2) motivates the following extension of the steepest descent
method

4 Xee1 = [ — akvf(xk)]+’ k=0,1,...,

where a is a positive scalar stepsize. There are a number of rules for choosing
o, that guarantee that limit points of sequences generated by iteration (4)
satisfy the necessary condition (1) (Goldstein, 1964, 1974; Levitin and
Poljak, 1965; McCormick, 1969; Bertsekas, 1974c). The rate of convergence
of iteration (4) is however at best linear for general problems. We shall
provide Newton-like generalizations of iteration (4) which preserve its
basic simplicity while being capable of superlinear convergence.
Consider an iteration of the form

©) Xer1 =[x — akaVf(xk)]+’ k=0,1,...,

where D, is a positive definite symmetric matrix and o, is chosen by search
along the arc of points

©) x(@) = [x — aD Vf(x)]",  a=0.

It is easy to construct examples (see Fig. 1.2) where an arbitrary choice of
the matrix D, leads to situations where it is impossible to reduce the value

A X2

~ LN > X!

b g

[Xk - Dka(Xk)] +

Xy - Dy VE(xy)
CONTOURS OF f

FIG. 1.2
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of the objective by suitable choice of the stepsize a (i.e., f[xp(@)] = f (i)
¥ o > 0). The following proposition identifies a class of matrices D, for which
an objective reduction is possible. Define, for all x > 0,

o) I*(x) = {i|x = 0,3f (x)/ox' > O}.

We say that a symmetric matrix D with elements d” is diagonal with
respect to a subset of indices I = {1,2,...,n},if
®) di=0 Viel, j=12,...,n, j#I

Proposition 1.35: Let x > 0 and D be a positive definite symmetric
matrix which is diagonal with respect to I*(x), and denote

9) x(e) = [x — aDVf(x)]™" Yo>0.
(a) The vector x is a critical point with respect to (SCP), if and only if
x = x(a) Va>0.

(b) If x is not a critical point with respect to (SCP), there exists a scalar
& > 0 such that

(10) fIx@] <f(x) Vae(0,al

Proof: Assume without loss of generality that for some integer r, we
have

I"x)={r+1,...,n}

Then D has the form

D ___0 ]
(11) D _ : dr+1 0 ’

0 !
0 d"
where D is positive definite and &' > 0,i=r+1,...,n
Denote

(12) p = DVf(x).

(a) Assume x is a critical point. Then, using (1), (7),
f(x)ox' =0 Vi=1,...,r
f(x)ox' >0, x'=0 Vi=r+1,...,n
These relations and the positivity of d,i = r + 1, ..., n, imply that
pP=0 Vi=1,...,r,
pP>0 Vi=r+1,...,n
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Since xi(x) = [x' — ap']* and x' =0 for i =r + 1,...,n, it follows that
x'(x) = x', for all i, and a > 0.
Conversely assume that x = x(«) for all « > 0. Then we must have

pP=0 Vi=1...,n with x>0,
pP>0 Vi=1,...,n with x'=0.

Now by definition of I*(x), we have that if x' =0 and i¢I7(x), then
9f (x)/0x" < 0. This together with the relations above imply

; :9f (%) (X)
Since, by (11) and (12),
P of (x)/ox
|=p|
Pr of (x)/ox"

and D is positive definite, it follows that
pP=0f(x)ox'=0 Vi=1,...,r

Since, for i = r + 1,...,n, of (x)/dx' > 0, and x' = 0, we obtain that x is a
critical point.

(b) For i=r+1,...,n we have §f(x)/ox' > 0, x' = 0, and, from
(11) and (12), p > 0. Since x(2) = [x' — ap']*, we obtain

(13) x=xi()=0 VYax=0, i=r+1,...,n
Consider the sets of indices

(14 I, ={i|x>0 or x=0 and p'<0, i=1...,r}
15 I,={ix*=0 and p'>0, i=1...,r}

Let

(16) a, = sup{a > 0|x' — ap’ > 0,i€l,}.

Note that, in view of the definition of I, «, is either positive or + co. Define
the vector p with coordinates

o pt if el
17 b=
17 P {0 if iel, or i=r+1,...,n
In view of (13)-(16), we have

(18) x(a) = x — op Vae(0,oy).
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In view of (15) and the definition of I*(x), we have

(19) f (x)/ox' < 0 Viel,,
and hence
o (x) ;

Now using (17) and (20), we have

_ I« I
21 : Vi(x)p = ~p' > -~ p'.
@1 f (x)'P ; o P _i; o P
Since x is not a critical point, by part (a) and (18), we must have x # x(«)
for some o > 0, and hence also in view of (13), p’ # 0 for someie{l,...,r}.
In view of the positive definiteness of D and (11) and (12), it follows that

It follows, from (21), that
Vi(x)p > 0.

Combining this relation with (18) and the fact that «; > 0, it follows that
p is a feasible descent direction at x and there exists a scalar & > 0 for which
the desired relation (10) is satisfied. Q.E.D.

Based on Proposition 1.35, we are led to the conclusion that the matrix
D, in the iteration

Xer1 = [Xe — o4 DV ()]™
should be chosen diagonal with respect to a subset of indices that contains
I (x) = {ilxi = 0, 9f (x,)/0x" > 0}.

Unfortunately, the set I7(x,) exhibits an undesirable discontinuity at
the boundary of the constraint set whereby given a sequence {x,} of interior
points that converges to a boundary point X, all the sets I*(x,) may be
strictly smaller than the set I™(X). This causes difficulties in proving con-
vergence of the algorithm and may have an adverse effect on its rate of
convergence. (This phenomenon is quite common in feasible direction
algorithms and is referred to as zigzagging or jamming.) For this reason,
we shall employ certain enlargements of the sets I*(x,) with the aim of
bypassing these difficulties.
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The algorithm that we describe utilizes a scalar ¢ > 0 (typically small),
a fixedt diagonal positive definite matrix M (for example, the identity),
and two parameters € (0, 1) and o € (0, 3) that will be used in connection
with an Armijo-like stepsize rule. An initial vector x5 > 0 is chosen and at
the kth iteration of the algorithm, we have a vector x;, > 0. Denote

we = 1x =[x = MVf(x)]" |, & = min{e, w,}.

(Actually there are several other possibilities for defining the scalar ¢, as
can be seen by examination of the proof of the subsequent proposition. It is
also possible to use a separate scalar ¢ for each coordinate.)

(k + 1)st Iteration of the Algorithm

We select a positive definite symmetric matrix D, which is diagonal
with respect to the set I,” given by

(22) I} = {i|0 < x§ < &, of (x,)/0x" > O}.
Denote

(23) P = DV f(x),

(24) (o) =[x, — ap]” Va>0.
Then x, ,, is given by

(25) X1 = X,

where

(26) % = ™,

and m, is the first nonnegative integer m such that

@(Xk)p,' + Z (%_()CL) i

Q@7 fx) = fIx(BM] 2 0{/5'"2 Xk = Xi(ﬁ"’)]}-

Wi i

iere O0x ier, Ox

The stepsize rule (26) and (27) is quite similar to the Armijo rule of

Section 1.3. We have chosen a unity initial stepsize, but any other positive

initial stepsize can be incorporated in the matrix D;. so this choice involves
no loss of generality. The results that follow can also be proved if

5 T,

i k
i
iel? (?x

+ Actually the results that follow can also be proved if the fixed matrix M is replaced by a
sequence of diagonal positive definite matrices {M,] with diagonal elements that are bounded
above and away from zero.
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SET OF ACCEPTABLE ACCEPTABLE UNSUCCESSFUL
STEPSIZE)S/\‘ STEPSIZE oy TRIAL STEPSIZES
AN
0 N Bz | B 1
* X % > o

1

i yA—

E ; \—o aZ af(ka) D;i(

el t ox!

x +3 M x'i( - x,,i((a)
{ fx(a)] - fix) } el ax!

FIG. 1.3 Line search by the Armijo-like rule (26), (27).

in (27) is replaced by vy )¢, [9f (x,)/0x7]pi, where y, = min{1, &} and
&, = sup{a|xi — api > 0V i¢ I, }. Other variations of the stepsize rule are
also possible. The process of determining the stepsize o, is illustrated in
Fig. 1.3. When I, is empty, the right-hand side of (27) becomes o ™Vf (x;) pi
and is identical to the corresponding expression of the Armijo rule for
unconstrained minimization. Note that, for all k, I, > I*(x,) so D, is
diagonal with respect to I*(x,). It is possible to show that for all m > 0,
the right-hand side of (27) is nonnegative and is positive if and only if x;
is not a critical point. Indeed since D, is positive definite and diagonal with
respect to 1,7, we have

~pi. >0 Vk=0,1,...,
i axl pk

while for all i€ I}, in view of the fact df (x*)/ox’ > 0, we have pj > 0, and
hence

Xk — xi(a) >0 Va>0, ielf, k=0,1,...,

) . )
fa(xx.-k)EXi—Xi(a)JZO Va>0, iel, k=0,1,....

This shows that the right-hand side of (27) is nonnegative. If x; is not critical,
then it is easily seen [compare also with the proof of Proposition 1.35(b)]
that one of the inequalities (28) or (29) is strict for « > 0 so the right-hand
side of (27) is positive for all m > 0. A slight modification of the proof of
Proposition 1.35(b) also shows that if x, is not a critical point, then (27) will
be satisfied for all m sufficiently large so the stepsize «, is well defined and
can be determined via a finite number of arithmetic operations. If x, is a
critical point then, by Proposition 1.35(a), we have x, = x,(«) for all « > 0.

(29)
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Furthermore the argument given in the proof of Proposition 1.35(a) shows
that

Fx)
) fa(xxi") Pi=0,

i¢ry
so both terms in the right-hand side of (27) are zero. Since also x, = x,(«)
for all a >0, it follows that (27) is satisfied for m = O thereby implying
that
Xee1 = X(1) = x, if x,iscritical.

In conclusion the algorithm is well defined, decreases the value of the
objective function at each iteration k for which x, is not a critical point, and
essentially terminates if x, is critical. We proceed to analyze its convergence
and rate of convergence properties. To this end, we shall make use of the
following two assumptions:

Assumption (A): The gradient V f is Lipschitz continuous on each bounded
set of R"; i.e., given any bounded set S = R" there exists a scalar L (depending
on S) such that

(30) IV/(x) = ViWI < Lix —y| Vx,yeS.

Assumption (B):  There exist positive scalars A, and A, and nonnegative
integers q, and q,, such that

(Bl)  Awd|z]? < 2Dz < A,wl|z]2 VzeR', k=0,1,...,

where
wi =[x — [x — MVf(x)]" .

Assumption (A) is not essential for the result of Proposition 1.36 that
follows but simplifies its proof. It is satisfied for just about every problem
likely to appear in practice. For example, it is satisfied when f'is twice differ-
entiable, as well as when f is an augmented Lagrangian of the type con-
sidered in Chapter 3 for problems involving twice differentiable functions.
Assumption (B) is a condition of the type utilized in connection with un-
constrained minimization algorithms (compare with the discussion preceding
Proposition 1.8). When g, = g, = 0, relation (31) takes the form

(32) Mlz|? < 2Dyz < Ay|z)? VzeR", k=0,1,...,

and simply says that the eigenvalues of D, are uniformly bounded above
and away from zero.

Proposition 1.36: Under Assumptions (A) and (B) above, every limit
point of a sequence {x,} generated by iteration (25) is a critical point with
respect to (SCP).
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Proof: Assume the contrary; ie., there exists a subsequence {x;}x
converging to a vector X which is not critical. Since {f (x;)} is decreasing
and f is continuous, it follows that {f(x,)} converges to f(%) and therefore

L) — [ )] = 0.

Since each of the sums in the right-hand side of (27) is nonnegative [compare
with (28) and (29)], we must have

33 0y L0,
i¢lr 0%
(34) 5 TOD i w10,

i
ielf ox

Also since X is not critical and M is positive definite and diagonal, we have
clearly |X — [X — MVf(X)]*| # 0, so (31) implies that the eigenvalues of
{D,}x are uniformly bounded above and away from zero. In view of the
fact that D, is diagonal with respect to I/, it follows that there exist positive
scalars 1, and 7, such that, for all k € K that are sufficiently large,

35) 0 < 1, 0f efoxt < pi < T, of ()fox' Vielf,
of (xi) | ; Of (%) of (xi) |?
(36) 111';; ox' = iséZI:,:pk ox* = Zzig;t ox'

We shall show that our hypotheses so far lead to the conclusion that

37 liminf o, = 0.

k=

keK
Indeed since X is not a critical point, there must exist an index i such that
either

(38) >0 and of®X)oxi #0
or
(39) =0 and of(X)/dx <O.

If i¢ I for an infinite number of indices k € K, then (37) follows from
(33), (36), (38), and (39). If ie I, for an infinite number of indices k€ K,
then for all those indices we must have 9f (x;)/0x’ > 0, so (39) cannot hold.
Therefore, from (38),

(40) >0 and of (X)/ox' > 0.
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Since, for all k € K for which i€ I [compare with (29)], we have
of (x0) 6f (xk)
jezﬁ o [xt — xi(%)] >
it follows from (34) and (40) that
lim [xi — xi(e)] = O.

k= o0
kekK

[xi — xi(@)] = 0,

Using the above relation, (35), and (40), we obtain (37).

We shall complete the proof by showing that {«,}x is bounded away
from zero thereby contradicting (37). Indeed in view of (31), the subsequences
{xi}k> {P} k> and {x ()} g, @ € [0, 1], are uniformly bounded, so by Assump-
tion (A) there exists a scalar L > 0 such that, for all t € [0, 1], 2 € [0, 1], and
k e K, we have

(41) [Vf(xi) — VfDxi — t[xe — x(@)]]] < tL]x; — xi(@)].
For all ke K and « € [0, 1], we have
SIx@)] = f(x) + Vf () Txa(@) — x;]

1
+ fo Vf G = Vf Dxie — thxe — xi(@)]1} delx, — ()],
sO

£ = F T = VG T — )]
" fOI{Vf[xk ~ tfxe — x@)T] = VY difxe — )]

> V() T — %]
- Vo — 15 — @] — V0! del, — @)l

and finally, by using (41),
(42)  f(x0) = fIx@)] = V) Txe — x(0)] — 3L x — xp(0) |2

For ie I, we have xj(«) = [xi — api]* > xi — api and pi > 0, so
0 < xi — xi(®) < ap}. It follows, using (35), that

f( k)

43) > Ix; — xi(@) > <« Z Pilxi — xi(0)] < A, Z — xi(0)].

ielf ielf iel

Consider the sets

Liw={ilof (foxt > 0,i¢ I}, I = {ilaf (x)/ox' < 0,i¢ I}
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For all ie I, , we must have xi > ¢ for otherwise we would have ielf.
Since |X — [Xx — MVf(X)]*| # 0, we must have liminfy_ o xex & > 0 and
g > 0 for all k. Let £ > 0 be such that & < ¢, for all ke K, and let B be such
that | pkl < Bfor all i and k € K. Then, for all « € [0, &/B], we have xi(a) =
xi — apj, so it follows that

@) 3 ¥ (x")[ x@]=a Y Y Vae[O, %]

iely x 0 iely,k ox!

Also, for all « > 0, we have xi — xi(x) < ap, and since 9f (x;)/0x" <0,
foralliel, ,, we obtain

Z af(-xk) [x xk( )] > o Z af(xk) p,'

k
i ')
ielz x 0x ielz,k 0

(45)

Combining (44) and (45), we obtain

@y 3 L xezay L0y Vae[O,%].

igI ox' i¢It
For all « > 0, we also have
|x;¢_x;c(a)|sa|p;c| Vi:l)“"n

Furthermore, it is easily seen, using Assumption (B), that there exists 1 > 0
such that

2. (@ D<Ay af(x") p.  VkeKk.

i¢ I i¢I;f

Using the last two relations, we obtain, for all « > 0,

@7) > Ix - si@P <o ¥ LWy

i¢I} i¢It

We now combine (42), (43), (46), and (47) to obtain, for all a € [0, £/B]
witha < land ke K,

pL VkeKk.

22 )
@ o0 - rTa@) = (s - 5) 3 T

of (xk)

+ (1 — 304, L) Z+ [xi — xi(@)].

iely

Suppose « is chosen so that

(49) 0 <a< B, 1 — 3all > o, 1 —3ad,L >0, a<l,
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or equivalently

€ 21 — o) 2(1 — o) !
B’ AL ° I,L |
Then we have from (48) and (49), for all ke K,

af(xk) i af(-xk) i i
.-;:,: o Pt iEZI’: Pl b xk(a)]}.

(50) 0<a< min{

F0u) — fDx@] = a{a

This means that if (50) is satisfied with f™ = «, then the inequality (27) of
the Armijo-like rule will be satisfied. It follows from the way the stepsize is
reduced that «, satisfies

g 21 —0) 21 — o)

> in<— = .
(1) ozk_ﬂmm{B, L 4L ,1} VkeK

This contradicts (37) and proves the proposition. Q.E.D.

We now focus attention at a local minimum x* satisfying the following
second-order sufficiency conditions which are in fact the ones of Proposition
1.31 applied to (SCP), as the reader can easily verify. For all x > 0, we
denote by A(x) the set of indices of active constraints at x; i.e.,

(52) AX) = {ilx =0} Vx>0

Assumption (C): The local minimum x* of (SCP) is such that, for some
o0 > 0, f is twice continuously differentiable in the open sphere S(x*; 6) and
there exist positive scalars m, and m, such that

(53) my|z]* < ZV¥(x)z < my|z]* VYxeS(x*;0) and z #0,
suchthat z'=0 VieA(x*).

Furthermore,
(54) of (x*)/ox' > 0 Vie A(x*).

The following proposition demonstrates an important property of the
algorithm, namely, that under mild conditions it is attracted by a local
minimum x* satisfying Assumption (C) and identifies the set of active con-
straints at x* in a finite number of iterations. Thus, if the algorithm converges
to x*, then after a finite number of iterations it is equivalent to an unconstrained
optimization method restricted on the subspace of active constraints at x*.
This property is instrumental in proving superlinear convergence of the
algorithm when the portion of D,, corresponding to the indices i ¢ I, is
chosen in a way that approximates the inverse of the portion of the Hessian
of f corresponding to these same indices.
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Proposition 1.37: Let x* be a local minimum of (SCP) satisfying
Assumption (C), and let Assumption (B) hold in the stronger form whereby,
in addition to (31), it is assumed that there exists a scalar 4; > 0 such that
the diagonal elements dj of the matrices D, satisfy

(55) I, <di  Vk=01,...,icl.

There exists a scalar & > 0 such that if {x;} is a sequence generated by
iteration (25) and for some index k, we have

Ixg — x*| <9,
then {x,} converges to x*, and we have
If = A(x) = A(x*) Vk>k+ 1

Proof: Since f is twice differentiable on S(x*;9), it follows that there
exist scalars L > 0 and §, € (0, 6] such that for all x and X with |x — x*| < §,
and |X — x*| < 0,, we have

IVf(x) = Vf(3)| < L|x — X|.
Also for x, sufficiently close to x*, the scalar
wy =[x — [xe — Mf(xk)]+|

is arbitrarily close to zero while, in view of (54), we have

[x;; - m"af(—xik):l+ =0 VieA(x*®),
0x

where m' is the ith diagonal element of M. It follows that, for x, sufficiently
close to x*, we have

(56) xi<wo=¢g <e VieAX*),
while
57) XL > g Vi¢ A(x®).

Since, by Assumption (C), 9f (x,)/0x" > 0 for all i € A(x*) and x;, sufficiently
close to x*, (56) and (57) imply that there exists J, € (0, §,] such that

(58) A(x*) = I} Vk suchthat |x, — x*|<J,.
Also there exist scalars & > 0 and 65 € (0, d,] such that

(59) xi>& Vi¢A(x*) and k suchthat [x, — x*| < J3.
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By repeating the argument in the proof of Proposition 1.36 that led to (51),
we find that there exists a scalar & > 0 such that

(60) oy > a Vk suchthat |x, — x*| < ;.
By using (55) and (58), it follows that
61) 0 < 4, of (x)/0x" < pi Vie A(x*) and k

such that |x, — x*| < 65,
while, by Assumption (B), there exists a scalar A > 0 such that
of (%)
ox'

Since df (x*)/ox" > 0 for all i € A(x*) and 9f (x*)/dx" = O for all i ¢ A(x*), it
follows from (58)-(62) that there exists a scalar §, € (0, §5] such that

2

Vk suchthat |x, —x*| < J;.

(62) PN A ADY

i¢ A(x%) i¢ A(x*)

(63) A(x*) = A(X 4 1) Vk suchthat |x, — x*| <9,
and
(64) [ X1 — X*| < 05 Vk suchthat [x, —x*| <d,.

In view of (58), we obtain, from (63) and (64),
(65) A(x*) = A(re+q1) = I, Vk suchthat |x, — x*|<,.

Thus when |x, — x*| < J,, we have |x;.; — x*| < 85, A(x*) = A(x,+ ),
and the (k + 1)th iteration of the algorithm reduces to an iteration of an
unconstrained minimization algorithm on the subspace of active constraints
at x* to which Proposition 1.12 applies. From this proposition, it follows
that there exists an open set N(x*) containing x* such that N(x*) < S(x*;é,)
and with the property that if x,., e N(x*) and A(x,,,) = A(x*), then
X +2 € N(x*) and, by (63), A(x;+,) = A(x*). This argument can be repeated
and shows that if for some k > 0 we have

xg€ N(x*),  A(xp) = A(X*),
then {x,} - x* and
xke N(X*), A(xk) = A(x*) Vk Z E

To complete the proof, it is sufficient to show that there exists & > 0 such
that if |x, — x*| < J then x,,, € N(x*) and A(x;.,) = A(x*). Indeed by
repeating the argument that led to (63) and (64), we find that given any
5 > 0 there exists a & > 0 such that if |x, — x*| < &, then

IXke1 — x*| < 6, AXp 4 1) = A(x*).

By taking § sufficiently small so that S(x*;J) = N(x*) the proof is com-
pleted. Q.E.D.
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Under the assumptions of Proposition 1.37, we see that if the algorithm
converges to a local minimum x* satisfying Assumption (C) then it reduces
eventually to an unconstrained minimization method restricted to the
subspace

S* = {x|x' =0, Vie A(x*)}.

Furthermore, as shown in the proof of Proposition 1.37 [compare with
(58)], for some index k, we shall have

(66) I = Ax*) Yk=k

This shows that if the portion of the matrix D, corresponding to the indices
i¢ I is chosen to be the inverse of the Hessian of f with respect to the indices
i¢ I, then the algorithm eventually reduces to Newton’s method restricted
to the subspace S*.

More specifically, by rearranging indices if necessary, assume without
loss of generality that

67) If={r+1,...,n}

where r, is some integer. Then D, has the form

(68) D, =

where di > 0,i = r, + 1,..., n, and Dy can be an arbitrary positive definite
matrix. Suppose we choose D, to be the inverse of the Hessian of f with
respect to the indices i = 1, ..., ry; i.e., the elements [D; *];jof Dy ' are

(69) [D; 1= 0*f(xfoxiox!  Vijély.

By Assumption (C), V2f(x*) is positive definite on S*, so it follows from
(66) that this choice is well defined and satisfies the assumption of Proposition
1.37 for k sufficiently large. Since the conclusion of this proposition asserts
that the method eventually reduces to Newton’s method restricted to the
subspace S*, a superlinear convergence rate result follows. This type of
argument can be used to construct a number of Newton-like and quasi-
Newton methods and prove corresponding convergence and rate of con-
vergence results. We state one of the simplest such results regarding a
Newton-like algorithm which is well suited for problems where fis strictly
convex and twice differentiable. Its proof follows simply from the preceding
discussion and Propositions 1.15 and 1.17 and is left to the reader.
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Proposition 1.38:  Let f be convex and twice continuously differentiable.
Assume that (SCP) has a unique optimal solution x* satisfying Assumption
(C), and there exist positive scalars m; and m,, such that

my|z]> < 2V (0)z S mylzlP Vze{x[f(x) <f(xo)}-

Assume also that in the algorithm (22)-(27), the matrix D, is given by
D, = H; ', where H, is the matrix with elements H i/ given by

Hi = if i#j andeither iely or jely,

K7 08% (x)/0x' dx!  otherwise.
Then the sequence {x,} generated by iteration (25) converges to x*, and
the rate of convergence of {|x, — x*|} is superlinear (of order at least two if
V2fis Lipschitz continuous in a neighborhood of x*).

It is worth noting that when f(x) is a positive definite quadratic function,
the algorithm of Proposition 1.38 finds the unique solution x* in a finite
number of iterations, assuming x* satisfies Assumption (C).

An additional property of the algorithm of Proposition 1.38 is that after
a finite number of iterations and once the set of binding constraints is
identified, the initial unity stepsize is accepted by the Armijo rule. Computa-
tional experience with the algorithm suggests that this is also true for most
iterations even before the set of binding constraints is identified. In some
cases, however, it may be necessary to reduce the initial unity stepsize
several times before a sufficient reduction in objective function value is
effected. A typical situation where this may occur is when the scalar ¥
defined by

?k = min{l»&k}’ &k = SuP{alxi - (Xp;c = 09 x;.c > O’léllj-}

is much smaller than unity. Under these circumstances a nonbinding con-
straint that was not included in the set I becomes binding after a small
movement along the arc {x,(«)|o > 0} and it may happen that the objective
function value increases as o becomes larger than j,. To correct such a
situation, it may be useful to modify the Armijo rule so that if after a fixed
number r of trial stepsizes 1, B, ..., p7 ' have failed to pass the Armijo
rule test, then 7, is computed and, if it is smaller than pr~1, it is used as the
next trial stepsize.

Another (infrequent) situation, where the algorithm of Proposition 1.38
can exhibit a large number of stepsize reductions and slow convergence
when far from the optimum, arises sometimes if the set of indices

(70) I} = {il0 < xi < &, pi > 0},
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where p, = D,Vf(x,), is strictly larger than the set I; of (22). (Note that,
under the assumptions of Proposition 1.38, we always have I;}} < I,} with
equality holding in a neighborhood of the optimal solution x*.) Under these
circumstances, the initial motion along the arc {x(x)|« > 0} may be along a
search direction that is not a Newton direction on any subspace. A possible
remedy for this difficulty is to combine the Armijo rule with some form
of line minimization rule.

Extension to Upper and Lower Bounds

The algorithm (22)-(27) described so far in this section can be easily
extended to handle problems of the form

minimize f(x)
subjectto b; < x < b,,

where b, and b, are given vectors of lower and upper bounds. The set I;
is replaced by

IF = {i|b} < xi < b} + ¢ and df (x,)/0x' > 0
or by — g < xk < b}, and 9f (x,)/0x* < 0},
and the definition of x,(«) is changed to
x((2) =[x — aDVf (x)]%,

where for all ze R" we denote by [z]* the vector with coordinates

b} if by <z,

[z2]# =17 if by <z < b,

b} if 2 <bl.

The scalar ¢, is given by
& = min{e, [x, — [x, — MVf(x)]7 |}.

The matrix Dy is positive definite and diagonal with respect to I, and M
is a fixed diagonal positive definite matrix. The iteration is given by

Xe+1 = Xi(0),

where o, is chosen by the Armijo rule (26), (27) with [x} — xi(8™)]"* replaced
by [x; — xi(B™]1%.

Similar extensions of the basic algorithm can be provided for problems
where only some of the variables x' are simply constrained by upper and/or
lower bounds.
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1.6 Notes and Sources

Notes on Section 1.2:  The proof of the second implicit function theorem
may be found in Hestenes (1966, p. 23). The theorem itself is apparently due
to Bliss (Hestenes, personal communication).

Notes on Section 1.3: The convergence analysis of gradient methods
given here stems from the papers of Goldstein (1962, 1966), and bears sim-
ilarity with the corresponding analysis in Ortega and Rheinboldt (1970).
Some other influential works in this area are Armijo (1966), Wolfe (1969),
and Daniel (1971). Zangwill (1969) and Polak (1971) have proposed general
convergence theories for optimization algorithms. The gradient method
with constant stepsize was first analyzed by Poljak (1963). Proposition 1.12
is thought to be new. The linear convergence rate results stem from Kan-
torovich (1945) and Poljak (1963), while the superlinear rate results stem
from Goldstein and Price (1967). For convergence rate analysis of the
steepest descent method near local minima with singular Hessian, see Dunn
(1981b). The spacer step theorem (Proposition 1.16) is due to Zangwill
(1969). For an extensive analysis and references on Newton-like methods,
see Ortega and Rheinboldt (1970). The modification scheme for Newton’s
method based on the Cholesky factorization is related to one due to Murray
(1972).

Conjugate direction methods were originally developed in Hestenes and
Stiefel (1952). Extensive presentations may be found in Faddeev and Faddeeva
(1963), Luenberger (1973), and Hestenes (1980). Scaled (k + 1)-step con-
jugate gradient methods for problems with Hessian matrix of the form

k
Q=M+ ) v
i=1

were first proposed in Bertsekas (1974a). For further work on this subject,
see Oren (1978).

Extensive surveys of quasi-Newton methods can be found in Avriel
(1976), Broyden (1972), and Dennis and Mor¢ (1977).

Notes on Section 1.4: Presentations of optimality conditions for con-
strained optimization can be found in many sources including Fiacco and
McCormick (1968), Mangasarian (1969), Cannon et al. (1970), Luenberger
(1973), and Avriel (1976). For a development of optimality conditions based
on the notion of augmentability, which is intimately related to methods of
multipliers, see Hestenes (1975).

Notes on Section 1.5: The methods in this section are new and were
developed while the monograph was being written. Extensions to general
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linear constraints may be found in Bertsekas (1980c). The methods are par-
ticularly well suited for large scale problems with many simple constraints.
An example is nonlinear multicommodity flow problems arising in com-
munication and transportation networks (see Bertsekas and Gafni, 1981).
The constrained version of the Armijo rule (26), (27) is based on a similar
rule first proposed in Bertsekas (1974c). The main advantage that the methods
of this section offer over methods based on active set strategies [compare
with Gill and Murray (1974) and Ritter (1973)] is that there is no limit to the
number of constraints that can be added or dropped from the active set in
a single iteration, and this is significant for problems of large dimension. At
the same time, there is no need to solve a quadratic programming problem
at each iteration as in the Newton and quasi-Newton methods of Levitin
and Poljak (1965), Garcia-Palomares (1975), and Brayton and Cullum (1979).



Chapter 2

The Method of Multipliers for
Equality Constrained Problems

The main idea in the methods to be examined in this chapter is to approxi-
mate a constrained minimization problem by a problem which is consi-
derably easier to solve. Naturally by solving an approximate problem, we
can only expect to obtain an approximate solution of the original problem.
However, if we can construct a sequence of approximate problems which
“converges” in a well-defined sense to the original problem, then hopefully
the corresponding sequence of approximate solutions will yield in the
limit a solution of the original problem.

It may appear odd at first sight that we would prefer solving a sequence
of minimization problems rather than a single problem. However, in practice
only a finite number of approximate problems need to be solved in order to
obtain what would be an acceptable approximate solution of the original
problem. Furthermore, usually each approximate problem need not be
solved itself exactly but rather only approximately. In addition, one may
utilize efficiently information obtained from each approximate problem
in the solution of the next approximate problem.

95
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2.1 The Quadratic Penalty Function Method

The basic idea in penalty methods is to eliminate some or all of the
constraints and add to the objective function a penalty term which prescribes
a high cost to infeasible points. Associated with these methods is a para-
meter ¢, which determines the severity of the penalty and as a consequence
the extent to which the resulting unconstrained problem approximates the
original constrained problem. As c takes higher values, the approximation
becomes increasingly accurate. In this chapter, we restrict attention to the
popular quadratic penalty function. Other penalty functions will be con-
sidered in Chapter 5.

Throughout this section we consider the problem

) minimize f(x)

subjectto xe X, h(x) =0,
where f: R — R, h: R" - R™ are given functions and X is a given subset of
R". We assume throughout that problem (1) has at least one feasible solution.

For any scalar ¢, let us define the augmented Lagrangian function
L.:R" x R™ - Rby

) Li(x,4) = f(x) + A'h(x) + Fc|h(x)|*.
We refer to c as the penalty parameter and to A as the multiplier vector (or
simply multiplier).

The quadratic penalty method consists of solving a sequence of problems
of the form

(3 minimize L, (x, )
subjectto xe€ X,

where {4} is a bounded sequence in R™ and {c,} is a penalty parameter
sequence satisfying

0<c <cryq Vk, ¢ — o0.

In the original version of the penalty method the multipliers A, are taken
to be equal to zero,

A =0 Vk=0,1,...,

and the method depends for its success on sequentially increasing the
penalty parameter to infinity. We shall see later in this chapter that it is
possible to improve considerably the performance of the method (under
certain assumptions) by employing nonzero multipliers A, and by updating
them in an intelligent manner after each minimization of the form 3).
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In this section, however, we concentrate on the effect of the penalty parameter,
and we make no assumption on {4} other than boundedness.
The rationale for the penalty method is based on the fact that when
{4} is bounded and ¢, — oo, then the term
Aih(x) + 3al h()I%,

which is added to the objective function, tends to infinity if h(x) # 0 and
equals zero if h(x) = 0. Thus, if we define the function fiR" - (— o0, + 0] by

I i R =0,
f (x)_{oo if  h(x) # 0,

the optimal value of the original problem can be written as

) f* = inf f(x) = inf f(x) = inf lim L,(x, A)-
h(;c)ej(o xeX xeX k—

On the other hand, the penalty method determines, via the sequence of mini-
mizations (3),

%) f= lim inf L, (x, A&).

k—oo xeX

Thus, in order for the penalty method to be successful, the original problem
should be such that the interchange of “lim” and “inf ” in (4) and (5) is valid.
The following proposition guarantees the validity of the interchange, under
mild assumptions, and constitutes the basic convergence result for the
penalty method.

Proposition 2.1: Assume that fand h are continuous functions and X is
a closed set. For k = 0, 1, ..., let x, be a global minimum of the problem

6) minimize L, (X, 4,)
subjectto xe X,

where {4} is bounded and 0 < ¢; < ¢4 for all k, ¢, = 0. Then every
limit point of the sequence {x;} is a global minimum of f subject to x € X,
h(x) = 0.

Proof: Let X be a limit point of {x,}. We have by definition of x,
@) L, (%, A4) < Le(x, A4) VxeX.
Let f* denote the optimal value of the original problem. We have
f*= inf f(x) = inf L(x,4)

h(x)=0 h(x)=0
xeX xeX
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Hence, by taking the infimum of the right-hand side of (7) over xe X,
h(x) = 0, we obtain

Lo (%> &) = f(x) + Ach(x) + Sel h(x) > < f*.
The sequence {4} is bounded and hence it has a limit point 2. Without

loss of generality, we may assume A4, — 1. By taking the limit superior in
the relation above and by using the continuity of fand h, we obtain

(©) fX) + Zh(X) + lim sup 3e, | () > < f*.

k=0
Since |h(x,)|* = 0, ¢, — oo, it follows that we must have h(x,) — 0 and
® hx) = 0,

for otherwise the limit superior in the left-hand side of (8) will equal + oo.
Since X is a closed set we also obtain that X € X. Hence X is feasible, and

(10) f*<f®.
Using (8), (9), and (10), we obtain
f* + lim sup 3¢, | h(x) | < f(X) + lim sup Je; | h(x)* < f*.

k= o0 k— o0
Hence,
lim Jci | h(x) > = 0
k=
and
f(x) =r*
which proves that X is a global minimum for problem (1). Q.E.D.

The proposition shown above has several weaknesses. First, it assumes

that the problem

minimize L (x, 4;)

subjectto xe X
has a global minimum. This may not be true, even if the original problem
(1) has a global minimum. As an example, consider the scalar problem

minimize —x*

subjectto x = 0.

This problem has, of course, a unique global minimum—the point x* = 0.
We have

L, (%, 4) = —x* + 4x + 3¢, x>
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Clearly, inf, L. (x, 4) = —o, and L (x, 4,) has no global minimum for
every ¢, and 4,. This example shows a weakness of the penalty method
and focuses attention at a situation where some care should be exercised.
One should choose the order of growth of the penalty function in such a
way that the augmented Lagrangian has a minimum. For instance, in the
example above if we use a penalty function of the form

sclh()? + [h(x) P,

where p > 4, then L, (x, 4,) has a global minimum for every 4, and ¢, > 0.
We shall consider such penalty functions in Chapter 5. If one cannot find
a suitable penalty function, an alternative is to impose additional artificial
constraints on the problem so that the constraint set X is compact. Then
L, (x, 4) will attain a global minimum over X by Weierstrass’ theorem.
Another possibility is to replace the objective function f by an equivalent
objective which is bounded below, such as e/, although this is seldom
recommended as it tends to introduce numerical difficulties.

A second weakness of Proposition 2.1 is that it relates exclusively to
global (as opposed to local) minima of both the original problem and the
augmented Lagrangian. The following proposition remedies the situation
somewhat. We first introduce a definition:

Definition: A nonempty set X* < R" is said to be an isolated set of
local minima of problem (1) if each point in X* is a local minimum of problem
(1) and, for some ¢ > 0, the set

(1) X¥ = {x||x— x*| < efor some x* € X*}
contains no local minima of problem (1) other than the points of X*.

Note that a strict local minimum may be viewed as an isolated set of
local minima consisting of a single point.

Proposition 2.2: Let fand h be continuous functions, X be a closed set,
{4} be bounded, and 0 < ¢, < ¢4, for all k, ¢, = co. Assume that X* is
an isolated set of local minima of problem (1) which is compact. Then
there exists a subsequence {x,}x converging to a point x* € X* such that
X 1s a local minimum for the problem

(12) minimize L, (x, 4,)
subjectto xe X

for each k € K. Furthermore, if X* consists of a single point x*, there exists a
sequence {x,} and an integer k > 0 such that x, - x* and x, is a local
minimum of problem (12) for all k > k.
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Proof: Consider the set
X% = {x||x — x*| < ¢ for some x* € X*},
where 0 < ¢ < ¢and ¢is asin (11). The compactness of X* implies thatX¥ is
also compact, and hence the problem
minimize L, (x, 4)

subjectto xeX¥nX

has a global minimum x, by Weierstrass’ theorem. By Proposition 1.1,
every limit point of {x,} is a global minimum of the problem

minimize f(x)

subjectto xe X¥n X, h(x) = 0.

Furthermore, each global minimum of the problem above must belong to
X* by the definition of X%. It follows that there is a subsequence {x}x-
converging to a point x* € X*. Let K = {ke K'||x, — x*| <¢&'}. Then K
is an infinite subset of the integers, and x, is a local minimum of problem (12)
for each k € K. The argument given above proves also the last part of the
proposition. Q.E.D.

Both Propositions 2.1 and 2.2 assume implicitly that a method is avail-
able that can find a local or global minimum of the augmented Lagrangian.
On the other hand, unconstrained minimization methods are usually
terminated when the gradient of the objective function is sufficiently small,
but not necessarily zero. In particular, when X = R" and f, heC! the
algorithm for solving the unconstrained problem

minimize L (x, 4;)
subject to xeR"

will typically be terminated at a point x; satisfying
IVchk(xk’ Ak)I S 8k’

where ¢, is some small scalar. We address this situation in the next proposi-
tion, where it is shown in addition that one can usually obtain as a by-
product of the computation a Lagrange multiplier vector.

Proposition 2.3: Assume that X = R" and f, he CL.Fork=01,...,
let x, satisfy

|Vchk(xka j'k)l < €k
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where {/;} is bounded, 0 < ¢; < ¢, for all k, ¢, —» o0, and 0 < ¢, for all
k, & — 0. Assume that a subsequence {x,}; converges to a vector x* such
that Vh(x*) has rank m. Then for some vector 1*, we have

{A + ah(x)}g = A%,
VI (x*) + Vh(x*)A* = 0, h(x*) = 0.
Proof: Define for all k
Je = A + ch(xy).
We have
VeLe (X, ) = Vf(x,) + Vh(xk)lgllk + cch(x)]
= V(%) + V(A = V. Lo(Xx, 4
and, for all k such that Vh(x,) has rank m, it follows that
T = [VAGR) VA(5)] ™ VhCe) TV, L (oo &) — VS (5))
Since V, L, (x;, 4) — 0, it follows that
{Idg = A% & —[VA(e*YVA(x*)] ™ 'Vh(x*) Vf (x*),
and
V. Ly(x*, A*) = 0.
Since {4} is bounded and {4, + ¢, h(x,)}x — A*, it follows that {c,h(x,)}x
is bounded. Since ¢, — o0, we must have h(x*) = 0. Q.E.D.

Proposition 2.3 relates to the case where we utilize a method for un-
constrained minimization which aims at finding for each k a critical
point of the augmented Lagrangian. Assuming that the kth unconstrained
minimization is terminated when |V L, (x;, 4)| < ¢ where ¢ — 0, there
are three possibilities:

(a) The method breaks down, because for some k a vector x, satisfying
|V.L.(x, )| < g cannot be found.

(b) A sequence {x,} with |V, L, (x;, 4)| < g for all k is found, but it
either has no limit points, or for each of its limit points x* the matrix VA(x*)
has linearly dependent columns.

(¢) A sequence {x,} with |V_ L (x;,4)| < ¢ for all k is found and it
has a limit point x* with Vh(x*) having rank m. This point x* together with
A*—the corresponding limit point of {4, + ¢, h(x,)}—satisfies the first-order
conditions for optimality.

Possibility (a) will usually occur if L(-,4,) is unbounded below as
discussed following Proposition 2.1.
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Possibility (b) usually occurs when L, (-, 4,) is bounded below, but the
original problem has no feasible solution. Typically then the penalty term
dominates as k — o0, and the method usually converges to an infeasible
vector x* which is a critical point of the function |h(x)|? This means that
Vh(x*)h(x*) = 0 implying that Vh(x*) does not have rank m. However
possibility (b) may also occur even if the original problem has a feasible
solution. A typical example is when f(x) £ 0 and 4, = 0. Then for all ¢, > 0,
a vector x* is a critical point of L( -, 0) if and only if it is a critical point
of the function |h(x)|?, or equivalently if and only if VA(x*)h(x*) = 0. If
Vh(x*) does not have rank m, it is possible that Vh(x*)h(x*) = 0 while
h(x*) # 0. This can occur regardless of whether there is a feasible solution.
We provide an example of such a situation.

Example: Letn =2 m =2 f(x) 20,

hy(xy,x5) = x§ — 3, hy(x1, X5) = —2x; + X3.

The vectors (\/3, i\/ 2\/3) are the only feasible solutions. On the other
hand for the infeasible vector x* = (—1, 0) we have, for all ¢ > 0,

% () — oo | =2 =2 -2 _ 0
V,.L(x* 0) = cVA(x*)h(x*) = c[ 0 0][ 2] = [0]

Possibility (c) is the normal case where the unconstrained minimization
algorithm terminates successfully for each k and {x,} converges to a feasible
vector which is also a regular point. It is possible of course that {x, } converges
to a local minimum x* which is not a regular point as shown by Proposition
1.2. In this case, if there is no Lagrange multiplier vector corresponding to
x*, the sequence {4, + ¢, h(x,)} diverges and has no limit point.

Extensive practical experience has shown that the penalty function
method is on the whole quite reliable and usually converges to at least a
local minimum of the original problem. Whenever it fails, this is usually
due to the fact that unconstrained minimization of L(x, 4,) becomes
increasingly ill-conditioned as ¢, — c0. We proceed to discuss this in what
follows in this section. In Section 2.2, we shall show how, by introducing
suitable updating formulas for the multipliers 4,, the difficulties due to
ill-conditioning can be significantly alleviated, and in fact it might not even
be necessary to have ¢, — oo in order to induce convergence.

The Problem of I1l-Conditioning

Since the penalty method is based on the solution of problems of the
form
(13) minimize L (x, 4)
subjectto xe€ X,
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it is natural to inquire about the degree of difficulty in solving such problems.
When X = R" and f, h e C?, the degree of difficulty for solving problem (13)
depends on the eigenvalue structure of the Hessian matrix VZ L, (X, 4).
We have

Vazchck(xk» A) =V (x) + z [ + ch(x)1:V?hi(xi) + ¢ VR(x)Vh(xy) .
i=1
By using the notation 4, = 4, + ¢, h(x,), we can write
(14) Vazchck(xka A = Vi Lo(x, Zk) + & Vh(x,)Vh(x,)'.
The minimum eigenvalue y(x,, 4, ¢;) of VZ, L . (x, 4,) satisfies

. 2Z'V2 L, (X, &)z . Z'VE Lo(x, 1)z
(15)  p(xx, Ak, €) = min — =222 c",( k> ) < min XX ?( o ,
z#0 zz z#0 zZz
Vh(xy)==0
where we assume that m < n, and hence there exists a vector z # 0 with
Vh(x,)z = 0. The maximum eigenvalue I'(x,4,c) of VZ.L. (X, 4)
satisfies

/VZ L ,A
(16)  T(x, 4, c) = maxi_LM
z#0 zZZzZ
,VZ 7 ! ,
> mll’lz—n&((—x—k—’—@ + ckmaxw‘
z#0 A 2%0 7'z

If {x,} converges to a local minimum x* which is a regular point with
associated Lagrange multiplier vector A*, then, by Proposition 2.3, we have
X, — A*. Since Vh(x*) # 0, it follows, from (15), (16), that

lim T(xi Axs €i) _
k- V(X Axs C)

In other words, the condition number of problem (13) becomes progressively
worse and tends to infinity as k — oo.

A conclusion that can be drawn from the above analysis is that for high
values of the penalty parameter c, the corresponding unconstrained optimiza-
tion problem becomes ill-conditioned and hence difficult to solve. For example,
steepest descent is out of the question as a possible solution method. Even
Newton’s method can encounter significant difficulties if ¢, is very high, and
the starting point for minimizing L., (-, 4,) is not near a solution.

The ill-conditioning associated with the unconstrained minimization
problems (13) is a basic characteristic feature of penalty methods and
represents the overriding factor in determining the manner in which these
methods are operated. Ill-conditioning can be overcome only by using for
each k a starting point for the unconstrained minimization routine which
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is close to a minimizing point of L,(-, 4). Usually, one adopts as a starting
point the last point x,_, of the previous minimization. In order for x;_,
to be near a minimizing point of L, (-, 4,), it is necessary that ¢, is close to
¢ — - This in turn implies that the rate of increase of the penalty parameter ¢,
should be relatively small. If ¢, is increased at a fast rate, then convergence
of the method (i.e., of the sequence {x,}) is faster, albeit at the expense of
ill-conditioning. In practice, one must operate the method in a way which
balances the benefit of fast convergence with the evil of ill-conditioning.
Usually, a sequence {c,} satisfying ¢,., = fc, with pe[4,10] works well.
There is no safe guideline as to what is a suitable value for ¢,, so one may
have to resort to trial and error in order to determine the value of this
parameter.

2.2 The Original Method of Multipliers

Consider the equality constrained problem
(ECP) minimize f(x)
subjectto  h(x) = 0,

where f: R" - R, h: R" - R™ are given functions. The components of h are
denoted by hy,...,h,. For any scalar c, consider also the augmented
Lagrangian function

L(x, A) = f(x) + ¥h(x) + sclh(x) .

Throughout this section, we shall assume that x* is a local minimum satis-
fying the following second-order sufficiency condition (compare with
Proposition 1.24).

Assumption (S): The vector x* is a strict local minimum and a regular
point of (ECP), and f, h € C* on some open sphere centered at x*. Further-
more x* together with its associated Lagrange multiplier vector A* satisfies

Z'V2 Lo(x*, A*)z > 0,
for all z # 0 with Vha(x*)'z = 0.

A formal description of the typical step of the original version of the
method of multipliers (Hestenes, 1969; Powell, 1969) is as follows:

Given a multiplier vector A, and a penalty parameter c,, we minimize
L. (-, %) over R" thereby obtaining a vector x;. We then set

(D Ay = A+ och(x)s

we choose a penalty parameter ¢, ., = ¢, and repeat the process.
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The initial vector A, is chosen arbitrarily, and the sequence {c;} may be
either preselected or determined on the basis of results obtained during the
algorithmic process.

The description given above is not meant to be precise, but is rather
aimed at providing a starting point for the analysis that follows. The reader
can view, for the time being, the method of multipliers simply as the penalty
function method where the multipliers A, are determined by using the
updating formula (1).

2.2.1 Geometric Interpretation

We provide a geometric interpretation of the method of multipliers
which motivates the subsequent convergence analysis. Consider the primal
functional p of (ECP) defined by

p(w) = min f(x),
h(x)=u
where the minimization is understood to be local in an open sphere within
which x* is the unique local minimum of (ECP). We specify p more precisely
later, but for the moment we shall use this informal definition. Clearly
p(0) = f(x*), and, from Proposition 1.28, we have Vp(0) = —A*. We can
break down the minimization of L.(-, A) into two stages, first minimizing
over all x such that h(x) = u with u fixed, and then minimizing over all u
so that
min L(x, ) = min min {f(x) + A'h(x) + 3c|h(x)|*}

u h(x)=u

= min {p(u) + Au + ¥clul?},

where the minimization above is understood to be local in a neighborhood
of u = 0. This minimization can be interpreted as shown in Fig. 2.1. The
minimum is attained at the point u(4, ¢) for which the gradient of p(u) +
A'u + %c|u|? is zero, or equivalently

V{pW) + 3clul}ymung = —4

Thus the minimizing point u(4, ¢) is obtained as shown in Fig. 2.1. We have
also

min Lc(-x’ ’1) - A/u(’L C) = p[u(iv C)] + %Clu(’la c)lza

so the tangent hyperplane to the graph of p(u) + 4c|u|® at u(4, ¢) (which
has “slope” —A) intersects the vertical axis at the value min, L (x, 1) as
shown in Fig. 2.1. It can be seen that if ¢ is sufficiently large then p(u) +
Au + 3c|u|? is convex in a neighborhood of the origin. Furthermore, the
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FIG. 2.1 Geometric interpretation of minimization of the Augmented Lagrangian

value min, L.(x, A) is close to p(0) = f(x*) for values of A close to A* and
large values of c.

Figure 2.2 provides a geometric interpretation of the multiplier iteration
(1). To understand this figure, note that if x, minimizes L. (-, 4), then by
the analysis above the vector u, given by u, = h(x,) minimizes p(u) +
Apu + 4c,|ul?. Hence,

V{p(u) + %cklulz} |u=uk = _;Lk7
and
Vo) = — (i + aw) = —[A4 + ah(x)]
It follows that, for the next multiplier 4, ,, we have
Aev1 = A + Ch(x) = —Vp(yy),

as shown in Fig. 2.2. The figure shows that if 4, is sufficiently close to A*
and/or ¢, is sufficiently large, the next multiplier 4,,, will be closer to A*
than 4, is. In fact if p(u) is linear, convergence to A* will be achieved in one
iteration. If V2p(0) = 0, the convergence is very fast. Furthermore it is not
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FIG. 22 Geometric interpretation of the first-order multiplier iteration

necessary to have ¢, — co in order to obtain convergence but merely to have
that ¢, exceeds some threshold level after some index. We proceed to make
these observations precise.

2.2.2 Existence of Local Minima of the Augmented Lagrangian

As in the case of the penalty method, it is natural to inquire whether
local minima of the augmented Lagrangian exist, and if so how their distance
from local minima of the original problem is affected by the values of the
multiplier A and the penalty parameter c. To this end, we focus on the local
minimum x* satisfying Assumption (S) together with its corresponding
Lagrange multiplier A*. We have, for any scalar c,

(2) V,Lx* A*) = Vf(x*) + VA(x*)[A* + ch(x*)] = V. Lo(x*, %) = 0
and [compare with (14) in the previous section]

V2, L(x*, A*) = V2, Lo(x*, A*) + cVh(x*)Vh(x*)'.
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Lemma 1.25 and Assumption (S) imply that there exists a scalar ¢ such that
3) V2. L(x* A*) >0 Vexc

From (2) and (3), we have that x* is a strict local minimum of L(-, A*) for
all ¢ > ¢. It is thus reasonable to infer that if A is close enough to A*, there
should exist a local minimum of L (-, A) close to x* for every ¢ > ¢. Proposi-
tion 2.2 suggests that this will also be true even if 4 is far from A* provided ¢
is sufficiently large. The following proposition makes this idea precise.
It also provides estimates on the proximity of the local minimum of L (-, A)
to x* and the corresponding Lagrange multiplier estimate to A*.

Proposition 2.4: Assume (S) holds and let ¢ be a positive scalar such
that

(G V2, L(x* A*¥) > 0.
There exist positive scalars , ¢, and M such that:
(a) Forall (4, c)in the set D = R™*! defined by

%) D= {(4¢)||A— A*| < dc,C < c},
the problem
(6) minimize L/(x, A)

subject to x € S(x*;¢)

has a unique solution denoted x(4, ¢). The function x(-,-) is continuously
differentiable in the interior of D, and, for all (4, ¢) € D, we have

(7 [x(4, ¢) — x*| < M|1 — 2*|/c.
(b) For all (4, ¢)e D, we have

®) |A(4, ¢) — A*| < M|A — A*|/c,

where

) (A, ¢) = A + ch[x(4, ¢)].

(c) For all (4,c)eD, the matrix V2 L.[x(4,c), A] is positive definite
and the matrix VA[x(4, ¢)] has rank m.

Proof: For ¢ > 0, consider the system of equations in (x, 4, 4, ¢)
(10) Vi (x) + Vh(x)Z = 0, h(x) + (A — D)/c = 0.
By introducing the variables t € R™, y € R defined by
Y t=G4—-AMe, y=1l
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we can write system (10) as
(12) Vf(x) + Vh(x)A = 0, h(x) + t + yA* — 91 =0.
For t = 0 and y € [0, 1/¢], system (12) has the solution x = x* and I = Ax
The Jacobian with respect to (x, £) at such a solution is
ViLo(x*, A*)  Vh(x*)
Vh(x*) —yI [
where I is the identity matrix. We show that matrix (13) is invertible for all

y€[0,1/¢]. By Lemma 1.27, this is true for y = 0. To show this fact for
y € (0, 1/¢], suppose that for some z € R" and we R", we have

(13)

V2 _Lo(x* A*) Vh(x*)][ z
(14) [ ”V,f((x*), ) _(yl )] [W] =0
or equivalently
(15) V2, Lo(x*, 1)z + Vh(x*)w = 0,
16) Vh(x*)z — yw = 0.

Substituting the value of w from (16) into (15), we obtain
[VZ Lo(x*, A¥) + (1/7)VA(x*)Vh(x*)]z = 0.

Fory = 1/cwithc > ¢, this yields V2, L(x*, A*)z = 0,and since V, L(x*, 1*)
> 0 for ¢ > ¢, we obtain z = 0. From (16), we also obtain w = 0. Thus if
(14) holds, we must have z = 0 and w = 0, and it follows that matrix (13) is
invertible for all y e [0, 1/¢].

We now apply the second implicit function theorem of Section 1.2,
to the system (12), where we identify the compact set K = {(0, )|y € [0, 1/¢1}
with the set X of that theorem. It follows that there exist ¢ > Oand 6 > Oand
unique continuously differentiable functions %(z,7) and A(t,7) defined on
S(K; 8) such that (]%(t,7) — x*|* + |21, ) — A¥|)Y? < ¢ for all (t,7)€
S(K ; 0) and satisfying

an VFL(t, 7)) + VAR(L )IAGL ) = 0,

(18) h[R(t, )] + t + yA* — yAt,y) = O.

Clearly & and ¢ can be chosen so that in addition Vh[X(t, y)] has rank m and
V2 Lo[&(t, 7), A(t, )] + cVA[R(t, NIVA[R( 7)] > 0

for (z,7) € S(K;8),c = ¢. For ¢ > ¢and |A — 2*| < dc, define

g% . ~ g%k
x(4,¢) = fc(l1 4 ,1), MA, ¢) = i(l 4 ,l)
C C C

C
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Then in view of (11), (17), and (18), we obtain, for (4, ¢) € D,
VI [x(4, ¢)] + Vh[x(%, ¢)]A(4, ¢) = 0,
XA ) = A+ ch[x(4, 0)],
VZLo[X(4, ¢), X(4, ©)] + cVh[x(4, ¢)JVA[x(4, )] = V2, L.[x(, c), A] > 0.

Thus, the proposition is proved except for (7) and (8).
In order to show (7) and (8), we differentiate (17) and (18) with respect
to t and y. We obtain, via a straightforward calculation,

(19) [V,x(t, W VL3RG, y)’] A y)[ 0 0 ]

Vt Z(L ‘V)I Vy j’(t, '}’), -1 j’(t’ y) — A*

where
_ V,%xLO [f(t, y)s ’T'(t’ ’Y)] Vh[f(t, Y)] -1
20) AL —[ A « ] .

We have for all (¢, y), such that |¢| < 6 and y € [0, 1/¢],

@1 () — x*| [ %t y) — %(0, 0)]
At y) — 2*| 2@ y) — X0,0)

1 0 0 !
= LA(CI,C?)[_I A, Cy)—’l*][y] *

Since matrix (13) is invertible for all y € [0, 1/¢], it follows that, for § suffi-
ciently small, A(t,7) is uniformly bounded on {(z,y)||t| < &, y € [0, 1/&]}.
Let u be such that | A(t, y)| < u for all [¢] < 8, y € [0, 1/], and if necessary
take o sufficiently small to ensure that u§ < 1. Then, from (21), we obtain

(22) (1%t ) = x*12 + [ A(t, y) — A*|H)'2

< u(ltl + max |2, &) - i*ly)-

0=<i<1

From this, it follows that, for all (¢, y) with |t| < &, y € [0, 1/¢], and y < §,
14, ) — 2*| < ple| + py max |22, {y) — 2*].

0<{<1
Using the inequality above with {t, {y, { € [0, 1] in place of ¢, y, we obtain
3 H
(23) max |A({t, {y) — A*[ < ———t].
0<i<1 1 — py

Combining (22) and (23), we obtain, for all (¢, y) with [t| < &, y [0, 1/¢],
andy < 9,

2, L
u /) ol

e %2 ‘: _ 1% |2)1/2 <
(1%, ) = x** + | 4(t, ) — 2*]?) S<u+1_w ltl_l_#(S
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By taking & sufficiently small if necessary, we obtain
(12t y) — x*|* + |2t y) = A* )V < 2pult].

By using (11) and writing x(4,¢) = £(t,y) and (A, ¢) = At,y), we have
that, for all (4, ¢) with |A — A*| < éc and ¢ > max{¢, 1/8}, there holds
|x(4, ¢) — x*| < 2ulA — A*|/c, |A(A, ¢) — A*| < 2uld — A*|/c.

Thus (7) and (8) hold with M = 2y for all (4,¢) with |4 — A¥| < 6c and
¢ > max{c, 1/8}. Because x(-, ) is continuously differentiable, we can also
find an M so that (7) and (8) hold for all (4,¢) with |A — A*| < éc and
¢ < ¢ < max{¢, 1/6}. This completes the proof. Q.E.D.

Figure 2.3 shows the set D of (5) within which the conclusions of Proposi-
tion 2.4 are valid. It can be seen that, for any A, there exists a ¢, such that
(4, ¢) belongs to D for every ¢ > c;. The estimate dc on the allowable distance
of A from A* [compare with (5)] grows linearly with c. In particular problems,
the actual allowable distance may grow at a higher than linear rate, and in
fact it is possible that for every A and ¢ > O there exists a unique global
minimum of L,(- , A). (Take for instance the scalar problem min{3x?|x = 0}.)
The following example shows however that the estimate of a linear order
of growth cannot be improved.

Example: Letn = m = 1, and consider the problem

minimize —x*
subjectto x =0,

where p is an even integer with p > 2. We have x* = A* = Oand Assumption
(S) is satisfied. We have

L(x, A) = —xP + Ax + 3c|x|.
V.L(x,4) = —=pxP~1 + 4 + cx,
V2. L(x,A) = —plp — Dx*"* +c.
A straightforward calculation shows that
V2, L(x,4) > 0<>|x| < [¢/p(p — 1)]"/*~2,
V.L(x, ) =0« 4= x(pxP~2 = ¢).

Y

D _-
209~

FIG. 2.3 Region D of pairs (4, ¢) for which the method of multipliers is defined
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%
< <X\<\\\\x

FIG. 24 Form of the set (24)

Using these relations it can be verified that L.(-, A) has a unique local
minimum x(4, ¢) with V2, L [x(4, ¢), A] > 0 for all (4, ¢) in the set

— 1/(p—2)
24) {(,1, 14l < H [ﬁ] L=V o s 0},

shown in Fig. 2.4. The order of growth on the allowable distance of A from A*
is (p — 1)/(p — 2) and tends to unity as p increases. Thus, we cannot demon-
strate, in general, a better than linear order of growth of the allowable
distance of A from A* as ¢ increases.

Proposition 2.4 can yield both a convergence and a rate-of-convergence
result for the multiplier iteration

Aes1 = A+ cch(xy).

It shows that if the generated sequence {4,} is bounded [this can be enforced
if necessary by leaving A, unchanged if 4, + ¢, h(x;) does not belong to a
prespecified bounded open set known to contain A*], the penalty parameter
¢, is sufficiently large after a certain index, and after that index minimization
of L. (-, 4) yields the local minimum x, = x(4,, ¢,) closest to x*, then we
obtain x, — x*, 4, - A*. However the threshold level for the penalty param-
eter is unknown thus far. We try to characterize this level and obtain a
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sharper convergence and rate of convergence result. The primal functional
plays a key role in this respect, so we first analyze its properties.

2.2.3 The Primal Functional

Consider the system of equations in (x, 4, u)
Vf(x) + Vi(x)A = 0, h(x) —u=0.

It has the solution (x*, A*,0). By the standard implicit function theorem,
there exists a & > 0 and functions x(-) € C* and A(-) € C*, such that x(0) = x*
and A(0) = A*, and, for |u| < 4,

(25 Vf[x(w)] + VhIx(u)]A(u) = 0, h[x(u)] — u=0.
Furthermore, for some ¢ > 0, we have |x(u) — x*| < ¢ and |A(u) — Ml <e
for |u| < 6. The function p: S(0; ) — R given by

p(u) = flxw]  YueS(0;9)

is referred to as the primal functional corresponding to x*. In view of (S),
we can take & and ¢ sufficiently small so that x(u) is actually a local minimum
of the problem of minimizing f(x) subject to h(x) = u. Thus, an equivalent
definition of p is given by

(26) p(u) = f[x(w)] = min{f(x)|h(x) = u, x € S(x*; &)}
From Proposition 1.28, we have

X)) Vp(u) = —Au) Y ueS(0;9).
Differentiating (25), we obtain

(28) V, x(@)VZ, Lo[x(u), Aw)] + V,A@)Vh[xW)] = 0,
(29) V,x(w)Vh[xu)] = I.

From (29), we have, for any ce R,

(30) eV, x(W)Vh[x(w)IVA[x(w)] = cVh[xW)],

and by adding (28) and (30), we obtain
V, x(w){VZLo[x(w), Au)] + cVA[x(w)IVA[x(w)]'}
+ [V, A(w) — cI1Vh[x(u)] = 0.
From this, we obtain, for every ¢ for which the inverse below exists,
V., x(u) + [V, A(u) — cIIVA[xw)]
x {V2 Lo[x(w), Au)] + cVA[xw)]VA[xw)]'} ™' = 0.
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Multiplying both sides with Vh[x(u)] and using (27) and (29), we obtain
(31) I + V2p(u) = {VRx()]'{V2, Lo[x(u), A(u)]
+ cVh[x(u)]VA[x(u)]'} = 'VA[x(u)]} 1.

Equation (31) holds for all u with |u| < & and for all ¢ for which the inverse
above exists. For u = 0, we obtain

(32) VZp(0) = {VA(x*)[VZ, L(x*, A*)] " 'Vh(x*)} ! — cI,

for any ¢ for which VZ, L(x*, 1*) is invertible. If [V2 Ly(x*, 1*)]~! exists,
then

(33) V2p(0) = {Vh(x*) [V, Lo(x*, A*)]~'Vh(x*)} 1.

The following proposition shows that the threshold level for the penalty
parameter in Proposition 2.4 can be characterized in terms of the eigenvalues
of the matrix V2p(0). In the next section, we shall see that the rate of con-
vergence of the method of multipliers can also be characterized in terms of
these eigenvalues.

Proposition 2.5: Let (S) hold. For any scalar ¢, we have
(34) VIL(x* A*)> 0<>c > max{—e,,..., —e,} <> V2p(0) + cI > 0,
where ey, ..., e, are the eigenvalues of V?p(0).

Proof:  Since the eigenvalues of V?p(0) + ¢l are ¢; + ¢, i=1,...,m,
the condition ¢ > max{—e,, ..., —e,} is equivalent to

(35) V2p(0) + cI > 0.

If VZ, L(x*, A*) > 0, then from (32) it follows that (35) also holds. Conversely
if (35) holds, then, using (27), we have that u = O is a strong local minimum
of p(u) + A*u + %c|ul?. It follows that, for some &, > 0, y > 0, and all u
with [u]| < d,,

p) + A*u + 3clul® = p0) + 3ylul®
Hence using (26), we have that there is an ¢ > 0 such that

min { 1) + Ah(x) + C—;—’ lh(x)lz} - F(x¥).

x€S(x*;¢)
As a result V2, Ly(x*, A*) + (¢ — y)Vh(x*)Vh(x*) > 0 or
(36) V2. L(x* A*) > YVh(x*)Vh(x*Y.
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It follows that VZ, L (x*, A*) > 0. If there exists a z # 0 such that
Z’VZ, L(x*, A*)z = 0,

then, from (36), Vi(x*)z = 0 and using (S) we have z'V2, Ly(x*A*)z > 0
or equivalently z'VZ, L (x*, 1*)z > 0. Thus, we must have z'V2 L (x*, A*)z >
0 for all z # 0, and V2, L (x*, A*) must be positive definite. Q.E.D.

An alternative proof of Proposition 2.5 can be given by making use of
(32) and the result of the following exercise.

Exercise: Let Q be a symmetric n x n matrix and L be a subspace of
R". Assume that
ZQz >0 VzeL, z#0.
Then
Q>0<«Q 'existsand wQ 'w >0 VwelLt, w#0,
where L* is the orthogonal complement of L. Hint: Consider a set of basis

vectors for L* and let B be the matrix having as columns these vectors. Show
that min{3x'Qx|B'x = u} = 1w (B'Q~'B) ™ 'u

[t is interesting to interpret the condition (35) in terms of the “penalized ”
primal functional p(u) = p(u) + 3c|u|* of Figs. 2.1 and 2.2. Relation (34)
can be written as

(37 Vi L(x*, 2¥) > 0= V?p,(0) > 0,

so we have VZ,L(x* A*) > 0 if and only if p. is convex and has positive
definite Hessian in a neighborhood of u = 0.

2.2.4 Convergence Analysis

We shall obtain a convergence and rate-of-convergence result for the
method of multipliers which is sharper than the one implied by Proposition
2.4. To this end, we need the following intermediate result.

Proposition 2.6:  Assume (S) holds and let ¢ and ¢ be as in Proposition
2.4. For all (4, ¢) in the set D defined by (5), there holds

(38) M, €) — 2* = Jl N [A* + {(A — AF)](A — A%) d,
0

where for all (4, ¢) € D, the m x m matrix N, is given by
(39)  NAA =T = cVh[x(4, )T {Vi L [x(4 ¢), 21}~ 'Vh[x(4, c)]

and I is the identity matrix.
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Proof: Going back to the proof of Proposition 2.4 we have, by using the
matrix inversion formula of Section 1.2, that for y > 0 the matrix A(Z, ),
defined by (20), is given by

A7) = [ ) g(t, 7) i v_';Q(t, V)Vh[f?(t, mo ]
yTIVRIR(E )T Q) —y ™ + 77 2VRIR(E 1)) Q(, »)VALE, )]
where
Q(t,7) = {VZ,Lo[(t,7), At, )] + 7~ 'VALR(, IVALR(E, M}
Using (19) we have, for any y € (0, 1/¢],

ey — 2 = At y) — A0,7) = fo VA )t dL

1
= fo {p™ 1 — y72VAIR(Ct, ] Q(Lt, )VALR(E, )]} dL.

Substituting y = 1/c, t = (A — A*)/c, x(4, ¢) = £(t,7), and I, ¢) = At,y) =
A + ch[x(4, ¢)], we obtain the result. Q.E.D.

We can now show our main convergence and rate-of-convergence result.

Proposition 2.7: Assume (S) holds, and let ¢ and 6 be as in Proposition
2.4. Denote by ey, ..., e,, the eigenvalues of the matrix V2p(0) given by (32)
or (33). Assume also that

(40) ¢ > max{—2e;,..., —2e,},

(or equivalently that V2p(0) + 4¢I > 0). Then there exists a scalar §, with
0 < &, < d such that if {¢,} and 4, satisfy

41 [Ag — A*|/co < 64, C < ¢ £ Cruq Vk=01,...,
then the sequence {4,} generated by
42) Aer1 = A+ ch[x(A, ¢)]

is well definedt and we have 4, — A* and x(4, ¢,) = x*. Furthermore if
lim sup,., ¢, = ¢* < oo and A4, # A* for all k, there holds

. A1 — A% €
P— % = >
@ R Rl e P
while if ¢, = o0 and 4, # A* for all k there holds
A — A
(44) lim ————— = 0.
koo A — A%

+ By this we mean that, for all &, (4, ¢;) belongs to the set D of (5), and hence x(4;, ¢;)
is well defined.
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Proof: Consider the matrix N, of (39). We have
N{(2*) = I — cVh(x*) [VZ L(x*, A%)] 7 'Vh(x*).
Using (32), we obtain
N(A*) =1 — c[V*p(0) + cI]™ 1.
If py(c), - .., un(c) are the eigenvalues of N (A*), we have

e,+c e +c’

ple) =1 —

For all (4, ¢) in the set D of (5), we can rewrite (39) as

N(A) = I — VA[x(4, ¢)]{c™ V2, Lo[x(4 c), i(4, ¢)]
+ VA[x(4, ¢YIVR[x(%, ¢)]'} ™ VA[x(4, ©)].

By using the result of Proposition 2.4 and the above expression, it is easy to
see that given any ¢; > 0 there exists a J, € (0, 6] such that, for all (4, ¢) with
[A — A*|/c < 04, C < ¢, we have

€;

IN(D| < INAA*)| + &, = max |u(c)| + & = max
e+ ¢

i=1,..., m i=1,...,m

{ + &;.
Using (38), we obtain for all these pairs (4, ¢)

(45) [A(4, ¢) — A*| < ( max

i=1,.., m

—e—~ + el)ll e
i
From (40) and (41), we have max;-; . le/(e; + ¢)| < 1, so by choosing ¢,
sufficiently small we have for some p € (0, 1) and all (4, ¢) with |A — A*|/c <
d,,¢ <¢,

|A(4, ©) — A% < p|2 — 2%|.

This combined with (7) and (41) shows that A, — A* and x(4,, ¢;) — x*. The
rate-of-convergenceestimates(43) and (44) follow from (45) and the preceding
argument. Q.E.D.

The region D, of initial multiplier-penalty parameter pairs (4, ¢,) for
which convergence is attained according to Proposition 2.7 is shown schema-
tically in Fig. 2.5. It can be seen that a poor choice of 1, can be compensated
by a choice of sufficiently high c,. Furthermore, if for some k the algorithm
generates a pair (4, ¢,) that lies in the shaded region of Fig. 2.5, convergence
of A, to A* is guaranteed.
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E>mux{-2e|, ...,-Ze,n} ¢

FIG. 2.5 Region of convergence of the first-order multiplier iteration

Regarding the threshold value ¢, note that:

(a) If V2p(0) > 0, which by Proposition 2.5 is equivalent to the local
convexity condition

V2, Lo(x*,A*) > 0,

then any positive ¢ can serve as a threshold level. The same is true even if
V2p(0) > 0. We shall reencounter this result in the context of convex pro-
gramming problems in Chapter 5.

(b) If V2p(0) has a negative ecigenvalue, then any ¢ satisfying ¢ >
max{—ey,..., —e,} is sufficient for V2. LA(x*, A*¥) > 0 to hold (Proposition
2.5). However, it is necessary to take ¢ > 2 max{—ey,..., —e,,} in order
to induce convergence [compare with (40)]. The reason for this can be
understood by examination of Fig. 2.2, where it can be seen that to achieve
convergence the “penalized” primal functional p. must have at least as
much “positive curvature” as the “negative curvature” of p.

Regarding rate of convergence, we see from (43) and (44) that we have at
least Q-linear convergence if {c,} is bounded and superlinear convergence
if either {c} is unbounded or V2p(0) = 0. These rate-of-convergence results
cannot be improved, since for any dimensions n and m, it is possible to
construct a problem with a quadratic objective function and linear equality
constraints and a starting point A, for which, if ¢, = ¢* for all k, relation (43)
holds as an equality. The reader can verify this by first considering the
scalar problems min{x”*|x = 0} and min{—x?|x = 0} and then by con-
structing a related example for the general case. Note that the rate of con-
vergence improves as ¢, increases. The case where V2p(0) = 0 is not as
uninteresting as might appear at first sight. From (27) and (28), we have

V2, Lo(x*, A¥)Vh(x*) = 0 = V?p(0) = 0.
Thus if the objective and all the constraint functions have zero curvature
on the subspace
{z|z = Vh(x*)w, we R™},
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which is orthogonal to the manifold tangent to the constraints at x*, then
we have V2p(0) = 0 and a superlinear rate of convergence. A related situation
occurs in linear programming problems, for which in fact we shall show in
Chapter 5 that the corresponding method of multipliers converges in a
finite number of iterations.

It should be noted that our convergence analysis is contingent upon
the generation of the points x(4,, c,) by the unconstrained minimization
method employed, at least for all k after a certain index. These points are,
by Proposition 2.4, well defined as local minima of L., (-, 4,) closest to x*.
Naturally L, (-, 4) may have other local minima to which the uncon-
strained minimization method may be attracted. Thus, unless the uncon-
strained minimization method stays after some index in the neighborhood
of the same local minimum x* of (ECP), our convergence analysis is not
applicable. On the other hand, as extensive computational experience has
shown, the usual practice of using the point x, obtained from the kth mini-
mization as a starting point for the (k + 1)th minimization tends to produce
sequences {x,} that are close to one and the same local minimum x* of
(ECP). As a result, in the great majority of practical cases, our analysis
applies and provides an accurate measure of the convergence behavior of
the method of multipliers.

Dependence of Convergence Results on the Assumptions

A careful examination of the convergence results obtained reveals that
they depend to a large extent on the fact that the primal functional p is
twice continuously differentiable in a neighborhood of u = 0. This in turn is
guaranteed under the sufficiency assumption (S). When this assumption is
relaxed the primal functional need not be twice differentiable, and this
can have a substantial effect on the convergence and rate-of-convergence
properties of the method of multipliers. Some simple examples illustrate
these points.

Example 1: Consider the problem min{—|x|?|x = 0}, where 1 < p <
2. Then for any ¢ > 0, one can find a neighborhood of x* = 0 within which
L (-, A)does not have a local minimum for every value of 2. Here Assumption
(S) is violated. The situation can be corrected by using a nonquadratic
penalty function of the form @(f) = |t|”" or ¢(t) = [t|” + 5t%, where p’
satisfies 1 < p’ < p (see Chapter 5).

Example 2: Consider the problem min{|x|?|x = 0}, where | < p < 2.
Here again Assumption (S) is violated, but it will be shown in Chapter 5
that the method of multipliers converges to A* = 0 for any starting 4,
and any nondecreasing penalty parameter sequence {c.}. When {c,} is
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bounded and A, # A*, the sequence {|4, — A*|} converges sublinearly. This
can be verified directly by the reader (see also the analysis of Chapter 5).

The choice of a quadratic penalty function also has a substantial effect
on the convergence rate. If a different penalty function is chosen, then the
convergence rate can become sublinear or superlinear. We provide some
examples below. A general convergence rate theory for nonquadratic
penalty functions will be provided in Chapter 5 in the context of a convex
programming problem.

Example3: Consider the scalar problem min{3x*|x = 0}, with x* = 0
and A* = 0, and the generalized method of multlphers (see Chapter 5) con-
sisting of sequential unconstrained minimization of

Lo (x, &) = 3x* + Lx + (1/c)d(cix),
followed by multiplier iterations of the form
st = A + V(e xy).
Here ¢(t) is the penalty function, and V¢ is its first derivative. If ¢(t) =

11t]?, ¢ = 1,and A < 0, the minimizing point of L,(x, 4) is

x(h 1) = Y=1 + /1 = 42).

For a starting point 4, < 0 and ¢, = 1, the multiplier iteration takes the

form
Agr1 = /11( + [‘%(_1 + 1 - 4)%)]2 = %(1 RV 1 - 4’114)'

It can be verified that 4, = A* = 0 and lim,_ o, |44, — A¥|/|4 — A*| = L
Thus, sublinear convergence occurs.
If instead we use the penalty function ¢(t) = %|¢|*/2, then, for 4 < 0,

x(3, 1) =3[—-1+ 1 —41]%

If 1, < 0 and ¢, = 1, the multiplier iteration takes the form

A’kﬁ-l =Ak +j‘l)_'(—l +\/1 —4/11().

It can be verified that 4, » A* = 0 and lim,_  [Acrq — A*|/[4 — A¥> =1
Thus the convergence is superlinear of order two.

We finally point out that if we use the (nondifferentiable) penalty function
$(t) = |t|, then the augmented Lagrangian L.(x, A) is minimized at x* = 0
for all A and ¢ such that | 1| < c. Thus the method is exact in the sense that the
optimal solution x* can be obtained by a single minimization of L.(x, 4).
This type of method will be studied in Sections 4.1 and 5.5.
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2.2.5 Comparison with the Penalty Method—Computational
Aspects

Since Proposition 2.4 applies to both the method of multipliers and
the penalty method where the iteration
(46) Aes1 = A + cch(x)
is not employed, it provides a natural vehicle for comparison of these
methods. From (7), it follows that, in the penalty method where 4, = const,
it is ordinarily necessary to increase ¢, to infinity. It follows, from Proposition
2.6, that it is not necessary to increase c, to infinity in order to induce convergence
in the method of multipliers. This is an important advantage, since it results
in elimination or at least moderation of the ill-conditioning problem.
A second important advantage of the method of multipliers is that its
convergence rate is considerably better than that of the penalty method.
This can be seen by comparing the convergence rate of the two methods as
given by the estimates (7), (8) and (43), (44). While in the method of multi-
pliers, the rate of convergence is linear or superlinear, in the penalty method,
the rate of convergence is much worse and essentially depends on the rate
at which the penalty parameter is increased. This advantage in speed of
convergence has been verified in many computational studies, where a
consistent reduction in computation time ranging from 80 to 30 9; has been
reported when the multipliers were updated via (46) over the case where 4,
was kept constant. For illustration purposes, we provide the following
example, which is trivial in terms of computational complexity but none-
theless is representative of the computational savings resulting from employ-
ment of the multiplier iteration (46).

Example: Consider the two-dimensional problem
minimize 3[(x")* + 3(x?)*]
subjectto x! + x? = 1.
The augmented Lagrangian is given by
Lo (x, A) = 3D + 36:)2] + Ak + X% = 1) + Jax! + x? = 12
Minimization of L., (-, 4,) yields

1 Cp — Ak 2 3(Ck - Ak)
Xk = 5 xk -
1 + 4c¢; 1 + 4c¢
The optimal solution is x* = (0.25, 0.75), and the corresponding Lagrange
multiplier is A* = —0.25. In Table 2.1, we show the results of the computa-

tion for the penalty method where 4, = O for all k and for the method of
multipliers, where
A’k-*-l = )'k + Ck(x;} + x,% — 1), 10 = 0.
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Notice that the method of multipliers requires a smaller number of minimiza-
tions to obtain the solution. The number of minimizations required for
both methods decreases when the penalty parameter is increased at a faster
rate. However, the effects of ill-conditioning are felt more under these
circumstances when the unconstrained minimization is carried out numeri-
cally.

An important practical question is how one should select the initial
multiplier 1, and the penalty parameter sequence. Clearly, in view of (8),
any prior knowledge should be utilized to select A, as close as possible to A*.
The main considerations to be kept in mind for selecting the penalty param-
eter sequence are as follows:

(a) Theparameter ¢, should eventually become larger than the threshold
level necessary to bring to bear the positive features of the multiplier iteration.

(b) The initial parameter ¢, should not be too large to the point that
ill-conditioning results in the first unconstrained minimization.

(c) The parameter ¢, is not increased too fast to the point that too
much ill-conditioning is forced upon the unconstrained minimization
routine too early.

(d) The parameter ¢, is not increased too slowly, at least in the early
minimizations, to the extent that the multiplier iteration has poor conver-
gence rate. '

These considerations are to some extent contradictory, and, in addition
for nonconvex problems, it is difficult to know a priori the corresponding
threshold level for the penalty parameter. A scheme that usually works
well in practice is one whereby a moderate value of ¢, is chosen (if necessary
by some preliminary experimentation), and subsequent values of ¢, are
monotonically increased via the equation ¢, = fc,, where f is a scalar
with f > 1. Typical choices are f € [4, 10]. In this way, the threshold level
for multiplier convergence will eventually be exceeded.

Another reasonable parameter adjustment scheme is to increase ¢
by multiplication with a factor f > 1 only if the constraint violation as
measured by |h[x(4,, ¢;)]| is not decreased by a factor y < 1 over the previous
minimization;i.e.,

Ber  if |R[x(A, c)]| > y[ADx(Ak - 15 ek 115
Ck if  [h[x(A, )] < pIADx(Ag - 1, e D]

Choices such as § = 10 and y = 0.25 are typically recommended. Assuming
that {1,} remains bounded, one can prove, for this scheme, that the penalty
parameter sequence {c,} will remain bounded. To see this, suppose that {4;}
remains bounded and ¢, becomes unbounded. Then after some k, the param-
eter ¢, will be sufficiently high for the estimates (7) and (8) of Proposition

(47) Cr+1 = {
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2.4 to become effective and in addition ¢,_,; > M. Let L be a Lipschitz
constant for h. We have, from (7) and (8) for all k > k,

43) |[x(As )| < LIx(A, ¢) — x*| < LM A — A¥| /ey
e = Aol TAma = 21 JA = A7)

Cr-1 Cr—1 Cr-1

49) | h[x(Ak-15 - Dl =

= (M~ = DI A — A%
Combining (48) and (49), we obtain

LM
(50) |R[x(4y, c)]| < oM T =) [RDx(A - 15 - )] 1-
From (47) and (50), it follows that the assumption that {c,} is unbounded
implies ¢,,, = ¢, for all k sufficiently large, which is a contradiction.
Hence, {¢,} will remain bounded if the penalty parameter adjustment scheme
(47) is adopted, while convergence will be achieved by virtue of enforcement
of asymptotic feasibility of the constraints; i.e.,
lim |A[x(4, ¢)]] = 0.
k=

Another possibility along the same lines is to use a different penalty
parameter for each constraint h(x) = 0, and to increase by a certain factor
only the penalty parameters which correspond to those constraint equations
for which the constraint violation as measured by |h[x(4,c,)]| is not
decreased by a certain factor over the previous minimization. It is to be
noted that the convergence analysis given earlier can be easily modified to
handle the case where a separate penalty parameter is used for each con-
straint.

As an example of a situation where using a different penalty parameter
for each constraint can be beneficial, consider a problem with “poorly
scaled” constraints such as

minimize 3[(x!)? + (x*)? + (x*)*]
subjectto  x? =0, 105x® = 0.
We have
Lx, A) = 3[(x)? + (x?)? + (x*)*] + A'x?
+ 10522x3 + Le(x?)? + 310 %¢(x>)*.
Clearly, minimization of L.(-, 4) is an ill-conditioned problem. A scheme
that allows a different penalty parameter for each constraint and adjusts

these parameters depending on the progress made towards satisfying these
constraints can partially compensate for poor scaling. As an additional
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measure, one can multiply initially the constraints with scaling factors
that make the norms of their gradients at the starting point equal to unity.
This is generally recommended as a good heuristic (but not fail-safe) tech-
nique.

We finally note that the overall efficiency of the method strongly depends
on the initial choice of the multiplier 4,. As suggested by the convergence
analysis given thus far, a choice of 4, close to A* can reduce dramatically the
computational requirements of the method.

2.3 Duality Framework for the Method of Multipliers

Let ¢, 6, and ¢ be as in Proposition 2.4, and define for (4, ¢) in the set
€)) D ={(A0)||A - A*| <édc,c <c}
the dual functional d. given by
(2) d(A) = min L/(x,4) = f[x(4,¢)] + Vh[x(4, ¢)] + ic|h[x(4, ¢)]|*.

x e S(x*; £)

Since x( -, ¢) is continuously differentiable (Proposition 2.4), the same is true
for d.. We compute the gradient of d, with respect to 4. We have

Vd.(A) = V,x(4, ){Vf[x(4, ¢)] + Vh[x(4, c)]A + cVh[x(4, ¢)]Jh[x(4, c)]}
+ h[lx(4, )]
= V,;x(4, c)V,.L.[x(4,c), A] + h[x(4, ¢)].
Since V. L.[x(4, c), 1] = 0, we obtain
(3) Vd (%) = h[x(4, c)].

Since x(-, ¢) is continuously differentiable, the same is true for Vd,. Differ-
entiating with respect to 4, we obtain

@) V2d (%) = V,x(4, ¢c)Vh[x(4, ¢)].
We also have, for all (4, ¢) in the set D,
V.L[x(4,¢c),A] =0.
Differentiating with respect to 4, we obtain
V,x(4, )V L.[x(4 ¢), A] + Vi, L[x(4,¢),A] =0,
and since
V2.L.[x(4,¢), A] = Vh[x(4, ¢)],
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we obtain

V,x(4,¢) = —Vh[x(4, )] {Vi L[x(4 ¢c), A]} "'
Substitution in (4) yields the formula
) V2d(2) = —Vhx(4 ) {Vi L[x(2, c), A1}~ 'Vh[x(4, ¢)].

Since V2.L.[x(4,¢),A] > 0 and Vh[x(4,c)] has rank m for (4,c)eD
(Proposition 2.4), it follows from (5) that V2d(4) <0 for all (4,¢)eD.
Furthermore using (3), we have, for all ¢ > ¢,

Vd (A*) = h[x(4*, )] = h(x*) = 0.

Thus, for every ¢ > ¢, A* maximizes d(4) over {i||A — A*| < dc}. Also the
multiplier iteration in view of (3) can be written as

(6 Aerr = A + . Vde (A)

and represents a steepest ascent iteration for maximizing d.. When ¢, = ¢
for all k, then (6) is the constant stepsize steepest ascent method

@) Ay = A+ cVd(A)

for maximizing d, and is of the type discussed in Section 1.3.1.

2.3.1 Stepsize Analysis for the Method of Multipliers

As discussed following Proposition 1.10, the choice of stepsize in the
steepest ascent method is crucial both in terms of convergence and rate of
convergence. It is a rather remarkable fact that the particular stepsize c
used in iteration (7) works so well. Nonetheless, it is of interest to try to
compare the stepsize ¢ with other possible stepsizes and investigate whether
there exists an optimal stepsize. In order to simplify the analysis, we restrict
ourselves to the case where f'is a (not necessarily positive definite) quadratic
function and 4 is a linear function, i.e., the problem

minimize x'Qx
subjectto Ax = b,

where Q is a symmetric n X n matrix, 4 is an m x n matrix of rank m, and
b e R™is a given vector. It is assumed that this problem has a unique minimum
x*, which together with a Lagrange multiplier 1* satisfies Assumption (S).
It is a routine matter to extend the analysis to the general case under Assump-
tion (S). If f * is the optimal value of the problem, the function d. is quadratic
of the form [compare with (5)]

8) d(A) = —3(A — A*YAQ + cAA) TA (A — A*) + f*
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for all ¢ for which Q + cA’A > 0. Consider, for 4, # A* and « > 0, the
iteration

® Awy = A + aVd(4).

By Proposition 1.14, we have

(10 [Aerr = A*1/ 14 — A*] < (o),
where

(1) (o) = max{|1 — aE|,|1 — oe.]},

and E, and e, are the maximum and minimum eigenvalues of
AQ + c AA) A

Convergence occurs for

(12) 0 <a < 2/E,.

The optimal convergence ratio is attained for the stepsize o*, minimizing
r(a) over a,

(13) oa* =2/(E, + e),
and is given by
r(a*) = (E; — e)/(E; + e).

Let us assume that Q is invertible. Then, by using the matrix identity
given in Section 1.2, we have

(I + cAQ™ A =1 — cA(Q + cA'A)™ ' A.
Thus the eigenvalues of (4Q*4")™ ! and A(Q + cA'A)™'A' are related by
(1 + c/e[(AQ~1A) ™" = 1 — ce[A(Q + cA'A)~1A].
Let y and I denote the eigenvalues of (4'Q~*4) ™! corresponding to E,. and
e, via the relation above. We have, via a straightforward calculation,
1 1

=, eC = .

y+c I'+c

(14) E,
Note, from Eq. (33) of Section 2.2.2, that the Hessian of the primal functional
is given by

V2p(0) = (4Q714A) 7Y,

and y and T are the smallest and largest eigenvalues of V*p(0), respectively.
In view of (10), (11), (12), and (14), we have that convergence occurs for

(15) O<a<2y+o),
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In particular for « = ¢, we obtain that convergence occurs if —2y < ¢ and
r
(17) rc) = max{ ? }
y+c¢

I'+c¢
as already derived in Proposition 2.6. Using (13), (14), and (16) we obtain,
via a straightforward calculation, the expressions for the optimal stepsize
o* and the corresponding convergence ratio

2+ + 0

and the convergence ratio is

o o
1- 1=
y+c I'+c¢

(16) r(a) = max{

B

18 * —
(18) x T+ + 2
I —»
19 = ——.
(19) (o) '+y+2c
We note that, from (18), one can verify that we have
* _
lim la* —cl _ 0
c— 0 c

thereby implying that as ¢ increases the ratio o*/c tends to unity. We now
distinguish two cases of interest.

Cask (a) (y <0 < T): Here we assume that V?p(0) is neither positive
semidefinite nor negative semidefinite. It can be seen that we must have
—v < c in order to guarantee V2, L(x*, A*) > 0 (Proposition 2.5), in which
case, from (15), we see that there exist some stepsizes a which achieve con-
vergence. However, the particular stepsize o = ¢ guarantees convergence
only if —2y < ¢ (compare with Proposition 2.6). For values of ¢ close to
—2y, Eq. (17) shows that the convergence ratio r(c) is poor (close to one).
However, as c increases, not only does the convergence ratio r(c) improve
but also the ratio r(c)/r(a*) decreases, and in fact, from (17) and (19), we have,
via an easy calculation,

. 1) 21yl 2|1
- il R Bt bl 2.
cllm @) max{ ST <

Thus, in the case y < 0 < T for large values of ¢, we have that r(c) is close to
being optimal and can be improved only by a factor of at most 2 by optimal
stepsize choice.

Case (b)) (y <T <0 or 0<y<T): Here V?p(0) is either positive
semidefinite or negative semidefinite. The case where 0 < y < I can often be
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easily recognized in practice since it corresponds to a convex programming
problem. We have, from (17) and (19), that if I" # y

. 1) 20yl 2|T|
1 = Eadl AN LA
cin; r(a*) max{l' -y T =y

while if I' = y we have r(a*) = 0. Thus, in this case, there is considerable
room for improvement by alternative stepsize choice. The potential benefits
become greater as the ratio y/I" approaches unity.

It is, of course, possible to compute at least approximately the eigen-
values of V2p(0), thereby obtaining an approximate value of the optimal
stepsize. This can be done by computing the eigenvalues of

VhIx(A, ) {Vix Lo [x(hi, €, 4} ™ VAIx(, €]

and by using Eq. (31) of Section 2.2. Such an approach probably would not
be worthwhile for most problems, but, in some problems which are solved
repetitively with slightly varying data, it may be profitable to compute
approximately these eigenvalues at least once and obtain approximate
values of y and I for use in the optimal stepsize formula (18).

Another possibility is based on the fact that, from (18), we obtain

0(*_2(1“+c)(y-i-c)_zc1_ c + I'y
T T +y+2 F'+y+2 ccT+y+2))

and an underestimate of a* is given by
o* > 2¢[1 — c/(T + y + 20)].

This underestimate is quite accurate for large c¢. For problems that are
solved repetitively with slightly varying data one can use the stepsize formula

(20) o = 2¢[1 — e/(u + 2c0)],

where p is a parameter approximating (I" + y) and determined by experi-
mentation with a few trial runs. When p = 0, (20) yields o = ¢;. For ¢,
very large, we have o ~ ¢,. For problems with convex structure where
V2p(0) > 0, we shall have u > 0, so the stepsize «, of (20) satisfies

G < oy < 2¢y.

Such a stepsize lies within the interval of convergence [compare with (15)],
so the corresponding method

A1 = A+ o h(xy),

with «, given by (20), is guaranteed to converge in the quadratic case. In
fact, one may show that this is also true in the general case under Assumption
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(S). We leave the proof of this fact as an exercise for the reader (see also
Proposition 5.13). For problems with V?p(0) < 0, we shall have u < 0.
In order to avoid a negative o, from (20), it is advisable to select u so that o,
as given by (20) satisfies

21 PC < oy < ¢

where p is some small scalar with 0 < p < 1. For ¢, greater than the threshold
level —2y, we see that o, lies within the interval of convergence [compare
with (15)], and the resulting method is guaranteed to converge. Unfortunately
it is not ordinarily easy to determine whether the condition V2p(0) < 0
holds in a given problem.

Example: Consider the three-dimensional problem
minimize 3{(x* + x*)* + (x! + x3)® 4+ (x! + x?)?}
subjectto x! +x2+2x3=2, x! —x?>=0.

The optimal solution is x* = (0,0,1) and the corresponding Lagrange
multiplier is A* = (—1,0). The optimal value is equal to unity. We show,
in Table 2.2, the sequences {d,,(4,)} generated via the iteration

Asr = A + oh(xy),

where «, is given by the stepsize rule (20) for various values of u. The starting
point in all runs was 4, = (10, —5). It can be seen that a value of u between
1 and 5 improves considerably the rate of convergence over the standard
‘stepsize (u = 0 and o, = ¢}).

There is another way to improve the convergence rate of the method of
multipliers by alternative stepsize choice when either V2p(0) > 0 or V2p(0) <
0. We proceed to describe it briefly for the case of the general problem (ECP)
under Assumption (S). Consider the system of equations in (x, A)

Vf(x) + Vh(x)A = 0, h(x) = 0.

Using the implicit function theorem, it follows that there exists a continuously
differentiable function x(A) defined in a neighborhood N(1*) of A* such that
x(4*) = x* and

VF[x(A)] + Vh[x(1)]A = 0, h[x(A)] =0 Y Ae N(A*).
Define
d(A) = f[x(A)] + Vh[x(1)] YV Ae N(A¥).
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A calculation analogous to the one given in this section following (2) shows
that

Vd(4) = h[x(4)],
V2d(2) = = VAx()Y{VZ,Lo[x(2), A1}~ 'VA[x(A)],
where we assume that V2 Ly(x*, A*) is invertible and N(1*) is chosen so
that {VZ,Lo[x(A), A]} ! exists for all 1€ N(A*). We have
Vd(A*) = h(x*) = 0.

From (33) of Section 2.2, we have that if V?p(0) > 0 then V?d(A*) < 0 while
if V2p(0) < 0 then V?d(A*) > 0. Thus, if V2p(0) > 0, we have that A* maxi-
mizes d, while if V2p(0) < 0, we have that A* minimizes d. We mention that
in the case where V?p(0) > 0, the function d is the ordinary dual functional
in the local duality framework of Luenberger (1973). Now when operating
the method of multipliers, each time we obtain a vector x(4,, ¢,), we have

Vf [x(As €)1 + VA[x(Ay, )14 = O,
where
I = A + e h[x(Ay, )]
This means that if £, is sufficiently close to A*, we have
Vd(7,) = h[x(A, c)],
d(7) = fTx(h, )] + AchDx (A, €)1

This information on gradients and values of d can be utilized to determine
a stepsize for the multiplier iteration by interpolation aimed at maximizing
or minimizing d depending on whether V?p(0) > 0 or VZp(0) < 0, respec-
tively. It is necessary to carry out the interpolation every second iteration
so as to collect sufficient data in the intermediate iteration. We describe the
typical step of this procedure.

Given A, and ¢y, k=0,1,..., we obtain x,, and h(x,,) by uncon-
strained minimization of the augmented Lagrangian, and we set

Aakr1 = Agi + Coh(x3).
Similarly, we obtain x,,., and h(x, ;) by means of unconstrained mini-
mization of the augmented Lagrangian. However, we now set
Askr2 = Agpsy + %o 1 A(Xap4 1)
where

, _. h(x k4 1) 'A(x )
L T e )V h(X ) — [h(X s )2

(22)
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This choice of stepsize oy, is based on quadratic interpolation of
d[ Az 41 + oh(x 4+ 1)] based on

Vd(Azy+1) = h(x21), VA1 + czk+1h(X2k+1)] = h(X2x+1)-

The stepsize o, 4 1, given by (22), is the one for which the derivative of the
interpolating polynomial is zero. In the case where V2p(0) > 0 [V*p(0) < 0],
it may be a good idea to restrict o, 1 to be less or equal to 2¢55 41 [Cok+1]
This will guarantee convergence [compare with 151

It is possible to show that this stepsize procedure improves the con-
vergence rate of the method of multipliers (see Bertsekas, 1975¢), although
in most cases the improvement is not spectacular. Some related computa-
tional results can be found in Bertsekas (1975a,c). On the other hand, the
added computational overhead of the procedure is negligible, and it may
be worth trying as a means of accelerating the rate of convergence of the
basic method when Newton-type iterations to be examined in the next
section are inappropriate.

2.3.2 The Second-Order Multiplier Iteration

In view of the interpretation of the multiplier iteration as a steepest
ascent method, it is natural to consider Newton’s method for maximizing
the dual functional d, which is given by

(23) hev1 = A — [Vzdck(’lk)]_ 1Vdck('1k)-
In view of (3) and (5), this iteration can be written as
24) Aes1 = M + B thDx(A, )]s
where

(25) Bk = Vh[x(/lk’ ck)],{vazcx Lck[x(lk’ ck)a Ak]} - th[x(;Lka Ck)]-

We shall provide a convergence and rate of convergence result for
iteration (24), (25). To this end, we consider Newton’s method for solving,
for ¢ € R, the system of necessary conditions

(26) V. L(x,4) = Vf(x) + VA(x)[A + ch(x)] = O, h(x) = 0.

In this method, given the current iterate, say (x, 4), one obtains the next
iterate (%, A) as the solution of the linear system of equations (compare with
Proposition 1.17)

V2 L(x,2) VRG)|[% — x| [ViLdxA)
@7 [ Vh(x) 0 ][Z—A] - '[ h(x) ]
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If VZ, L (x, A) is invertible and Vh(x) has rank m, we can solve system (27)
explicitly. We first write (27) as

(28) VZ L(x, A% — x) + VA(X)(A — 1) = =V, L(x, ),
(29) Vh(x)(% — x) = —h(x).
Premultiplying (28) with VAa(x)'[VZ, L.(x, 2)]~ ! and using (29), we obtain
—h(x) + Vh(x)[V2.L(x, )]~ 'Vh(x)(A — A)

= —Vh(x)[ViL(x, )] ™'V, L(x, )
from which
(30) A=A+ {Vh(x)[V2,L(x, A)]~'Vh(x)} !

x [h(x) — Vh(x)[ViL(x, )] 'V, L(x, A)].

Substitution in (28) yields
(€2Y) 2 =x = [VLL(x, A7V, L(x, A).

Returning to (24), (25) and using the fact that V,L[x(4, ¢), A] = 0, we see
that iteration (24), (25) is of the form (30).

For a triple (x, 4, ¢) for which the matrix on the left-hand side of (27)
is invertible, we denote by %(x, 4, ¢), A(x, 4, ¢) the unique solution of (27)
and say that %(x, 4, ¢), A(x, 4, ¢) are well defined. Thus (24), (25) is written

(32) )*k+ 1= Z[x(j-k, Ck)a lka Ck]-

Proposition 2.8: Let ¢ be a scalar. For every triple (x, 4, ¢), the vectors
2(x, 4, ¢), X(x, A, c) are well defined if and only if the vectors £[x, 4 + ch(x), 0],
A[x, A + ch(x), 0] are well defined. Furthermore

33) (x, A, ¢) = X[x, A + ch(x), 0],
34) Mx, A, ¢) = A[x, A + ch(x), 0].
Proof: We have
V2. L(x,2) = VZ,Lo[x, A + ch(x)] + cVA(x)Vh(x),
VoL(x,A) = V. Ly[x, A + ch(x)].
As a result, the system (27) can be written as

39) V2, Lo[x, A + ch(x)] + cVh(x)Vh(x) Vh(x)][% — x
Vh(x) 0o ||1-2

_ | V<Lolx, 4 + ch(x)]
- h(x) '
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The second equation yields Vh(x)'(X — x) = —h(x), which, when substituted
in the first equation, yields

V2, Lo[x, A + ch(x)](x — x) — cVA(x)h(x) + Vh(x)(A — 4)
= —V,Lo[x, A + ch(x)].
Thus, system (35) is equivalent to
(36)

V2.Lo[x, A + ch(x)] Vh(x) £—x _[V<Lolx, A + ch(x)]]
[ Vh(x) 0 ||A-4—chx)] h(x) '

This shows (33) and (34). Q.E.D.

In view of (34), we can write (32) [or equivalently (24), (25)] as

(37) )'k +1 = Z[x('ik ) ck)’ Z(’lk > Ck)’ 0]9
where
(38) Z(;Llw c) = A + ch[x(A, c)]

This means that one can carry out the second-order multiplier iteration (24),
(25) in two stages. First execute the first-order iteration (38) and then the
second-order iteration (37), which is part of Newton’s iteration at [x(4, ¢i),
XAy, ¢)] for solving the system of necessary conditions Vf(x) + Vh(x)A = 0,
h(x) = 0. Now, we know that [x(4,,cy), (A, )] is close to (x*, A*) for
(A4, ¢,) in an appropriate region of R™* ! (Proposition 2.4). Therefore, using
known results for Newton’s method, we expect that (37) will yield a vector
A+, which is closer to A* than 4. This argument is the basis for the proof
of the following two propositions.

Proposition 2.9: Assume (S) holds, and let ¢ and 6 be as in Proposition
2.4. Then, given any scalar y > 0, there exists a scalar 6, with 0 < 0, <9
such that for all (4, ¢) in the set D, defined by

(39) D, = {(4o)||A — A¥| < 6,c,C < c},
there holds

(40) |4 €) = A*| < 914 = A%\ /e,
where

@) Mo = A+ B hIx(A o),

(42) B(2) = VA[x(4, )Y {VZ L [x(2, c), A1}~ 'VA[x(4, c)].
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If, in addition, V?*f and V?h;, i = 1,. ., m, are Lipschitz continuous in a
neighborhood of x*, there exists a scalar M, such that, for all (4,c)eD,,
there holds

(43) [A(A ) — A¥| < M, A — A*2/c

Proof: Let M be as in Proposition 2.4. Given any y > 0, there exists
an ¢ > 0 such that if x(4, ¢) € S(x*; ¢) and A(4, ¢) € S(A*: ¢), there holds

(44) [((R[x(2, €), 44, €), 01, A[x(4, ¢), (4, ¢), 0]) — (x*, )|
< GOV/2M)|[x(A, ©), (A, ) — (x*, 4%)|
(compare with Proposition 1.17). Take &, sufficiently small so that, for
(x,A)€D,, we have x(4,c)e S(x*;¢) and A(4,c) e S(A*;¢) (compare with
Proposition 2.4). Using-(7) and (8) in Section 2.2, (44), and the fact
A, ¢) = ALx(A €), (4, ), 0],

we obtain

|24, ¢) — A*| <

2

v MZM_A*IZ M2|)»—/1*|2 1/2 '))I/l—)u*|
+ =

\/EM 2 2

4 4 C

and (40) is proved.
If V2 and V2h; are Lipschitz continuous, then there exists an M, such
that for x(4, ¢) € S(x*; ) and (4, ¢) € S(x*; &), we have

45) [(R[x(4, ¢), Z(4, ¢), 01, A[x(4, ¢), A(4, ¢), 0]) — (x*, A%)]|
< (M,2M?)|[x(4, ¢), A(4, ©)] — (x*, A¥)|2.
Using again (7) and (8) in Section 2.2, and (45), we obtain
M, <M2|,1 ; A% |2 N M?|) — i*lz) _ M, |4 = 2%

|24 c) — A*| <

2M? c c? c? ’

and (43) is proved. Q.E.D.

An almost immediate consequence of Proposition 2.9 is the following
convergence result:

Proposition 2.10:  Assume (S) holds, and let ¢ and & be as in Proposition
2.4. Then there exists a scalar §, with 0 < §, < § such that if {¢,} and 4,
satisfy

(46) Ao — A*|fco <8y,  E< < sy Vk=0,1,...,
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then the sequence {4,} generated by [compare with (41), (42)]
47 A1 = M )

is well defined, and we have 1, —» A* and x(J,c,) » x*. Furthermore
{| A — A*|} and {|x(4,c,) — x*|} converge superlinearly. If in addition
V3fand Vh,, i = 1,..., m, are Lipschitz continuous in a neighborhood of
x* then {|A — A*|} and {|x(4, ;) — x*|} converge superlinearly with
order at least two.

Proof: Take y € (0, ¢) and let §, be as in Proposition 2.9. Then 4, — A*
by (40) and x(4,, ¢,) — x* by Proposition 2.4. The convergence rate assertions
follow from (40) and (43). Q.ED.

It is interesting to compare the result of the proposition above with
the corresponding result for the first-order iteration

(48) A1 = A+ cch[x(A, ¢)]

(Proposition 2.7). The region of convergence of both iterations is of a similar
type but the threshold level for the penalty parameter in the first order iteration
(48) is higher than that for the second-order iteration (47) if V2p(0) has a
negative eigenvalue. Indeed if y is the smallest eigenvalue of V2p(0) and
y < 0, we must have ¢ > 2|y| in the first-order method and ¢ > |y| in the
second-order method in order to assert convergence for A, sufficiently close
to A* (compare Propositions 2.5, 2.7, and 2.10). Furthermore the second-order
iteration has a faster convergence rate than the first-order iteration. On the
other hand, the second-order iteration requires availability and computation
of second derivatives as well as more overhead than the first-order iteration.
The first-order iteration has an additional advantage which will become
apparent when we consider convex programming problems in Chapter 5.
We shall see there that for such problems, the first-order iteration is guaran-
teed to converge even without differentiability assumptions and for an arbi-
trary starting multiplier 4,. By contrast, the second-order iteration requires
second derivatives for its implementation and in general convergence can
be guaranteed only for a limited region of initial multipliers. This suggests
that for problems with inherently convex structure the first-order iteration is
more robust than the second-order iteration.

It is worth noting that from (32) of Section 2.2 and (5), we have V?d (A*) =
—[V2p(0) + cI]~! and therefore

lim |V2d(A*)"" + I _

[Smdiee]

0.

C

Thus the first-order iteration approaches the second-order iteration as
¢ —> 0.
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2.3.3  Quasi-Newton Versions of the Second-Order Iteration

It is possible to eliminate the need for availability and computation
of second derivatives if a quasi-Newton method such as the DFP or BEGS
method, described in Section 1.3.5, is used for minimization of the augmented
Lagrangian. In these methods, one obtains usually (but not always) a good
estimate D, of {VZ, L, [x(4, ¢t), 4]} ~* which, in view of (5), can be used in
turn to generate an estimate of Vzdck(lk) by

V2d,(A) ~ —Vh(x,) D, Vh(x,).

We thus can use the approximate version of the Newton iteration (24),
(25) given by

(49) Aev1 = A + {Vh[x(4, eI’ D VALx(Ay, €)1} ™ h[x (A, el

This type of method avoids computation of second derivatives at the expense
of what is usually an insignificant degradation of rate of convergence over
the second-order iteration (24), (25). For problems with a quadratic objective
function and linear constraints, if the starting point x, in the first uncon-
strained minimization is such that a complete set of n iterations of the
quasi-Newton method is required for termination, then the final inverse
Hessian approximation D, is exact (Proposition 1.21), and application of
(49) will yield A* in a single iteration; i.e., A, = A*. For this, it is necessary,
of course, that the initial penalty parameter satisfies ¢, > —7v, where y is the
minimum eigenvalue of V2p(0), for, otherwise, L. (-, 4y)is unbounded below
and has no local minimum.

Another advantage of this approach is that the matrix D, obtained via
the quasi-Newton method at the end of the kth minimization may be used to
generate a good starting matrix for the quasi-Newton method at the next
minimization. If ¢, , ; # ¢,, we have

VL, (X% A%) = V2L (X* 2%) + (Cesy — C)VA(*)Vh(x*),

XX e+ 1

so if D, is a good approximation to VZ L (x*, A*)™!, then it is reasonable
that

5k ={D;' + (Ck+1 — )Vh(x)Vh(x,)} ™1

should be a good approximation to V2, L., . (x* A*)7'. By using the matrix
identity of Section 1.2, we also have
D, = D, — D, Vh(x)[Vh(x,) D, Vh(x,) + (ex+1 — ck)_II]_IVh(xk),Dk‘

Depending on whether one actually works with a Hessian or inverse Hessian
approximation in the quasi-Newton scheme, one formula may be preferable
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to the other. If a separate penalty parameter is used for each constraint,
then the corresponding formula is

m -1
D, = {Dk_l + Z (C;;+1 - cllc)Vhi(xk)Vhi(xk)l} >
i=1

where ¢ is the penalty parameter used for the ith constraint. An equivalent
form is given by

Dy = D, — DyN(N;; DN, + C; ') 'N;.Dy,

where N, is the matrix having as columns the gradients Vh,(x,) for which
ci ., # ci and C, is the diagonal matrix having the nonzero penalty param-
eter differences c.,, — ci along the diagonal.

Another idea for approximating the inverse Hessian [V, (A4)]7 1 is
based on the formula [compare (31) of Section 2.2 and (5)]

—[V2d (4] = V?plh(x)] + ¢l
Thus, the second-order iteration can be written as
Aevr = A + {Vzp[h(xk)] + ¢ IIh(xy).

Now during the course of the computation, we obtain the values and gradients
of p(u) at several points, since we have, for each j < k,

pu;) = f(x)), Vp(u;) = 4; + cju;, u; = h(x;).

From these function values and gradients, we can generate an approximation
of V2p[h(x,)] via a quasi-Newton iteration. This approximation can be
used, in turn, in place of V2p[h(x,)] in the second-order iteration above.
Unfortunately, several points are necessary before a reasonable approxima-
tion to V2p can be obtained, so the idea can lead to substantial improvements
only for problems where the number of constraints m is small. Note however
that this scheme is applicable regardless of whether a quasi-Newton method is
used for unconstrained minimization of the augmented Lagrangian.

2.3.4 Geometric Interpretation of the Second-Order Multiplier
Iteration

We finally offer a geometric interpretation of the second-order iteration
in terms of the primal functional p. Given 4, ¢;, and x, such that
Vchk(xk’ ik) =0,
the second-order iterate A, , is given by

Aer = A + {Vh(xk)/[vix Lck(xk’ A1 IVh(xk)} B lh(xk)'
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This equation can be written in terms of the primal functional p as

(50) hesr = A+ [V2Pw) + e Lduy = & + V2p(uu,
where
(51) uk = h(xk), Zk = j’k + Ckuk.

If we form the second-order Taylor series expansion of p around u,

Pi(u) = p(u) + Vp(u) (0 — u) + 3(u — u) Vp(udu — uy),

we obtain

(52) Vpi(0) = Vp(w) — Vzp(uk)uk'
Since (compare with Fig. 2.2) we have
(53) A = = Vp(w),

it follows from (50)—(53) that
VBi(0) = — 4+,

as shown in Fig. 2.6. In other words the second-order iteration yields the
predicted value of —Vp(0) based on a second-order Taylor series expansion

Sk, 2
plu)+ Ll

p(0)=f(x")

FIG. 2.6 Geometric interpretation of the second-order iteration
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of p around u, = h(x,). By contrast the first-order iteration yields the pre-
dicted value of —Vp(0) based on a first-order Taylor series expansion of
p around u, = h(x,) (compare with Fig. 2.2).

2.4 Multiplier Methods with Partial Elimination of Constraints

In the algorithms of Sections 2.2 and 2.3, all the equality constraints
were eliminated by means of a penalty. In some cases however, it is of interest
to consider algorithms where only part of the constraints are eliminated by
means of a penalty, while the remaining constraints are retained explicitly.
A typical example is a problem of the form

minimize f(x)
subjectto  h(x) = 0, x >0,
where the dimension n of the vector x is large and h(x) = O represents a
small number of nonlinear constraints. While, in addition to the constraints
h(x) = 0, it is possible to eliminate the simple inequality constraints x > 0
by means of a penalty function, it is probably desirable in most cases to
handle these constraints directly by suitable modifications of unconstrained
minimization methods (compare with Section 1.5). The corresponding
method of multipliers consists of (simply) constrained minimizations of the
form
minimize f(x) + A h(x) + e h(x)|?
subjectto x >0
yielding vectors x,, followed by multiplier updates of the form
Aes1 = A + cch(xp).

In this section, we provide an analysis of multiplier methods of this type.
We restrict attention to the case where the explicitly retained constraints
are equalities. There is no loss of generality in doing so since, as will be seen
in Section 3.1, a parallel analysis can be given for inequality constraints
after they are converted to equalities by using additional variables.

Suppose that (ECP) can be written as

) minimize f(x)
subjectto  h,(x) =0, h,(x) =0,

where (hy, h,) = h, h;: R" > R™, and h,: R" - R™. For ¢ > 0, consider the
partial augmented Lagrangian function L, .: R"*™ — R defined by

) Ly (x4 = f(x) + Aihy(x) + 3¢lhy (x) ]2,
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The (first-order) multiplier method with partial elimination of con-
straints is defined, under Assumption (S), by the iteration

3) Akrr = A+ chi(x),
where x, solves locally in a neighborhood of x* the problem
G minimize L, (x, ;)

subject to  h,(x) = 0.

As before, {c,} is a sequence of positive penalty parameters, and 4, , is
chosen a priori.

As mentioned earlier, we have in mind primarily cases where the con-
strained problem (4) can be solved quite easily and possibly even more
easily than the problem of unconstrained minimization of the ordinary
augmented Lagrangian.

The analysis of partial multiplier iterations of the form (3) is very similar
to the one given in the previous two sections. In fact it is possible to argue
that the method (3), (4) is really no different than the ordinary multiplier
method. To see this, partition x as

X
x= "1,
X2

where x; € R"~™ and x, € R™, and assume without loss of generality that
the m, x m, gradient matrix V_, h,(x¥, x¥) is nonsingular. Then, using the
implicit function theorem, it is possible to solve near x* = (x}, x¥) the
system of equations

&) hy(xy,x5) =0

and obtain x, in terms of x, as an implicit function ¢(x,). Then problem (1)
becomes

6) minimize f[x;, ¢(x;)]
subjectto  h,[x,, #(x,)] = 0,
while problem (4) becomes
@) minimize L, [x;, ¢(x1), A1 ;]
subjectto x, € R™.

It is easy to see that the partial multiplier iteration (3) is nothing but the
ordinary multiplier iteration for problem (6) and involves in effect un-
constrained minimizations of the form (7). It is thus possible to extend all
the results of Sections 2.2 and 2.3 to cover partial multiplier iterations of
the form (3) by making use of the implicit solution of the system of equations
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(5). It is probably more straightforward however to develop these results
directly by simply paralleling the analysis of Sections 2.2 and 2.3. Some of
the details will be left to the reader.

The following proposition parallels Proposition 2.4. Here and in what
follows in this section we assume that (x*, A*) satisfy Assumption (S) and
A¥ (A¥) is the vector of the first my (last my) coordinates of A*.

Proposition 2.11: Assume (S) holds, and let ¢ be a positive scalart
such that

ZVEL(x*2%)z >0 Yz#0, Vhy(x*)yz=0.
There exist positive scalars J, ¢, and M such that
(a) For all (4,,c¢) in the set D = R™ ™! defined by
D = {(A, 0|14, — A¥| < dc, & < c},
the problem
minimize L, (x,4,)
subjectto  hy(x) =0

has a unique solution denoted x(4;, ¢). The function x(-,) is continuously
differentiable in the interior of D, and for all (4,, ¢) € D, we have

|x(Ay,¢) = x*| < M4, — Afl/c.
(b) For all (4,,¢) € D, we have
|Z1(Ay, €) — A¥| < M|A; — Afl/c,
where
T4y ) = 24 + chy[x(hy, O]

(c) For all (4, ¢) € D, there exists a vector 12(/11, ¢) such that
Vx I_‘C[X(AI’ C), Ala j"2(2'1’ C)] = 0,
ZIVJZCx Ec[x(/llﬁ C))a Al? zZ(A’ls C)]Z > 0 Vz ?é 0, th[x(/ll, c)]lz = 0,

where L.(x,1;,4,) = Ly x,4) + A3hy(x). Furthermore, the matrix
Vh[x(A,, ¢)] has rank m, and we have L(A¥,c) = A forallc > ¢

Proof: For ¢ > 0, consider the system of equations in (x, X1y Aty Azs ©)s

(8a) Vi (x) + Vh(x)A; + Vhy(x)A, =0,
(8b) hy(x) + (A, — 11)/0 =0,
(8¢0) h,(x) = 0.

+ We leave it to the reader to verify that Assumption (S) implies that such a scalar ¢ exists.
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By introducing the variables t € R™ and y € R defined by
t=@G —ADfe,  y=1/c,
we write system (8) as

(9a) VI (x) + Vh(x)Z; + Vhy(x)A, =0
(9b) hy(x) +t+yA¥ —9Z, =0
(9¢) hy(x) = 0

For t =0 and y€[0, 1/¢], system (9) has the solution x = x*, I, =A%
A, = 45. The Jacobian, with respect to (x, 4,, 4,), at such a solution is
VieLo(x*, 4%)  Vhy(x*) Vhy(x*)
Vh,(x*) —yI 0
Vh,(x*) 0 0
Similarly as in the proof of Proposition 2.4, we show that this Jacobian
is invertible for all y € [0, 1/¢]. We then apply the second implicit function
theorem of Section 1.2 to system (9), and the remainder of the proof proceeds

along the lines of the proof of Proposition 2.4, We leave the details to the
reader. Q.E.D.

In Section 2.2, we saw that the eigenvalues of the primal functional
play a significant role in the convergence analysis. Within the framework
of the present section it is appropriate to define the partial primal functional
p1:5(0: 6) - R by

pi(uy) = min{f(x)[h,(x) = uy, hy(x) = 0, x € S(x*; &)},

where ¢ and 6 are sufficiently small scalars [compare with Section 2.2.3 and
Eq. (26) in that section]. Clearly, we have

pi(uy) = p(uy, 0) Y u, with |u,| <9,
where p(u) = p(u,, u,) is the primal functional of Section 2.2.3. Thus
Vpi(uy) = V,,p(uy,0),
V2p,(u,) = Vi,,,p(uy, 0).

We leave it to the reader to transfer the argument of the proof of Proposition
2.5 and show the following.

Proposition 2.12:  Let (S) hold. For any scalar ¢, we have
ZVZ L, (x* %)z >0 Vz#0, Vhy(x*)z=0,
if and only if
¢>max{—ey, ..., —e,},
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where ey, .. ., e, are the eigenvalues of V2p,(0).
We also have the following convergence result.

Proposition2.13:  Assume (S) holds, and let ¢ and 6 be as in Proposition
2.11. Denote by ey, ..., e,, the eigenvalues of the matrix V2p,(0). Assume
also that

¢ > max{—2ey,..., —2ey,}.
There exists a scalar §, with 0 < &, < J such that if {¢,} and 4, , satisfy
[A1.0 — ATl/co < 04, C< ¢ £ Chey Vk=0,1,...,
then the sequence {4, ,} generated by
Avke1 = Akt achDx(Ay w0 6]

is well defined, and we have 4, , — A¥ and x(4; ;, ¢,) — x*. Furthermore if
lim Supy— o ¢ = ¢* < o0 and A, , # A} for all k, there holds

: |A1,k+1 — AT
limsup ————— <
koo ALk — AT i=nm

.....

while if ¢, — o0 and A, , # A} for all k, there holds

Ay ke — AT
Im ——————— =
koo A1k — AT

The proof of this and other extensions of the results of Sections 2.2 and
2.3 are obtained by means of the following observation. For ¢ and J as in the
definition of the partial primal functional, the problem

(10) minimize L, [(x,4,)
subject to  h,(x) =0, x € S(x*;¢),
can also be written as a problem in the variables (x, u,) of the form
minimize L, (x, 4;)
subject to  hy(x) = uy, hy(x) =0, u, € S(0; 0), x € S(x*; ¢).
This problem in turn is equivalent to
(11) minimize p,(u;) + Ay + scluy |?

subject to  u; € S(0;9),
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in the sense that if u;(4;,c) solves this problem and x[u;(44, ¢)] solves
the problem

minimize f(x)

subject to  hy(x) = u,(4,, ¢), h,(x) = 0, x € S(x*;e),
then the vector x(4,,¢) = x[u;(4,, ¢)] solves problem (10), and we have
uy(4y,¢) = hy[x(41,¢)]. It can be seen now that the partial multiplier

iteration A; y41 = Ay 4 + ¢ h[x(4; 4, ¢)] is in effect the (ordinary) multi-
plier iteration for the problem

(12) minimize p,(u,)
subjectto u, =0,

which involves unconstrained minimizations of the form (11). By applying
Proposition 2.7 to problem (12), we obtain a proof of Proposition 2.13.

Similarly by working with problem (12), we can define a partial dual
functional

di,(A)= min {p,(uy) + Lju; + 3c|u, |}
u; €S(0;90)

= min {f(x) + Ajhy(x) + 3c|h;(x)[*}
ey
for (4,, ¢) in a set of the form (compare with Proposition 2.11)
D = {(Ay,0)|14; — A¥| < ¢b,¢ < c}.

The gradient and Hessian matrix of d, are given by [compare with (3), &)
of Section 2.3]

Vd1,c('11) = hl[x(/lla o)l,
V2, (A1) = = {V?ps[us(Ay, O + eI}~ = —{Vp,[h;[x(Ay, )T] + I}~

Using these expressions, we can define Newton’s method for maximizing
d, ., and we can also prove a convergence result similar to Proposition 2.9.
As shown earlier, the Hessian of p, is given by

Vzpl(ul) = Vflu,p(ul’ 0)9

where p is the primal functional of Section 2.2.3. Thus, we can compute
V?p,(u,) using Eq. (31) of Section 2.2.3 and the solution x(44, ¢) and corre-
sponding Lagrange multiplier of the partially constrained problem

minimize L, (x, ;)

subject to  h,(x) = 0.
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2.5 Asymptotically Exact Minimization in Methods of
Multipliers

The multiplier methods considered in the previous sections have the
drawback that unconstrained minimization of the augmented Lagrangian
must be carried out exactly prior to updating the Lagrange multiplier. In
practice, this can be achieved only approximately since unconstrained
minimization of the augmented Lagrangian requires in general an infinite
number of iterations. Furthermore computational experience has shown that
insisting on accurate unconstrained minimization can be computationally
wasteful. More efficient schemes result if the unconstrained minimization
is terminated and the multiplier is updated as soon as some stopping criterion
is satisfied. In this section, we consider the case where the stopping criterion
becomes more stringent after every multiplier iteration so that minimization
is asymptotically exact.

First-Order Iteration

Consider the first-order iteration

¢y Aewr = A + cch(x),
where x, satisfies
@) |V Le (X A | < &

and {g,} is a sequence such that g > 0 for all k and g, — 0.
The following result relates to this method and extends Proposition 2.4.

Proposition 2.14:  Assume (S) holds, and let ¢ be a positive scalar such
that

3) V2, L(x*, A*) > 0.
There exist positive scalars 9, &, and M such that:
(a) Forall (4,c,a)in theset D R™+ 171 defined by
4) D= {(ll,c,a)|(ll—/l*|2/c2 + |a|)? < §,¢ < c},
there exists a unique vector x,(4, ¢) within S(x*; ¢) satisfying
) V. L[x.(4 ¢), A] = o

The function x, is continuously differentiable in the interior of D, and, for
all (4, ¢, ) € D, we have

(6) x40 €) — x*| < M(I1A2 = A% 2/e® + [
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(b) For all (4, c,a) e D, we have

@) |24(2, €) — A*| < M(|A — 2*[/c2 + |a|?)'2,
where
®) T4, ¢) = A + ch[x,(4,c)].

(¢) Forall (4, ¢, «) € D, the matrix V2, L.[x,(4, c), A] is positive definite,
and the matrix VA[x,(4, c)] has rank m.

Proof:  The proof is very similar to that of Proposition 2.4. For ¢ > 0,
we consider the system of equations in (x, Z, 4, c, a)

©) Vf(x) + Vh(x)A = o,  h(x) + (1 — D)/c = 0.
We introduce the variables t € R™ and y € R, defined by
(10) t=(A4—- A%/ and y = 1/c,

and write system (9) as
(11) Vi) + V()L =,  h(x) + t + yA* — 91 = 0.

For t =0, ye[0,1/¢], and « = 0, system (11) has the solution x = x*,
Z = A*. As in the proof of Proposition 2.4, we can apply the second implicit
function theorem of Section 1.2 to system (11) and assert the existence of
¢ >0 and 0 > 0 and unique continuously differentiable functions Xt 1),
Z(t,y) defined on S(K ;0), where K = {(0,7,0)|y€[0,1/¢]} such that
(1206, 7) — x* 12 + |4,(t,7) — A*|)V2 < ¢ for all (¢, y, a) € S(K; 8) and satis-
fying

(12) VIRt 1] + VARt 1A 7) = o,

(13) L2 0] + ¢ + pA* — p2,(,7) = 0.

Furthermore 6 and ¢ can be chosen so that Vh[%,(z, 7)] has rank m, and
(14 Vi Lo[%ult, ), 2t ] + ¢VALR,(t, )IVA[2,(t, )] > 0

for (t,7,®) € D. This proves parts (a) and (c) except for (6) similarly as in
the proof of Proposition 2.4.

To show (6) and (7), we differentiate (12) and (13) with respect to t, v,
and a. We obtain

ViZ(t,7) V269 Vok ()] Alt, . @) 0 0 1
Vz Za([, Y), V“/ Za(t’ '}’), Vaj:a(t’ y)l B 7 -1 za(to ’Y) -A* 0 ’
where

ViLolR(t, 1), Zult; )] VA[2,(t, v)]] N

(15) At 7, 0) = [ Vh[2,(2, 7)) —n
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We have, for all (¢, , &) such that |(¢, ®)| < dand y € [0, 1 /e,
(16)
Rt y) — x*| 1 0 0 nl
[Za(f» n = i*] B J.o AL C“)[—I Aot 0y) — A* o] H N

o

Let u be such that | A(t, y, )| < ufor all |(t, )| < éand y e [0, 1/¢], and take
§ sufficiently small to ensure that ué < 1. We have, from (16),

(1220, 7) = %* P + 128, 7) = ¥V < (1 (8 )| + max |2 (8t, &) — A%17),

0<f=<1
and, from this point on, the proof of (6) and (7) proceeds exactly as in the
proof of Proposition 2.4 with |(z, o) replacing |t|. Q.E.D.

We can obtain a convergence result from Proposition 2.14 as follows.
Consider the iteration

(17) Aerr = M+ ch(xy),

where 0 < ¢, < ¢, 4, for all k, and assume that for some sequence {&,} with

g — 0,0 < ¢ for all k, we have

(18) - log | < &, k=0,1,...,
where
(19) oy = Vchk(xIn lk)

Assume that for some k we have

Q0) & <d//2 k- A <ad2 = max{¢, /2 M},

where ¢, M, and & are as in Proposition 2.14. Then (4, ck, oz) €D, and
assuming x; is the unique point corresponding to (4z, ¢z, o) as in Proposition
2.14, we have, in view of ¢z = ¢z = \/EM,

gsr — A% < M(1g — A*PP/cd + o) < Mo < Cre10/3/2.
Given also that ¢, < g < 5/\/2 we obtain
(A%+ 1> Ci+ 1> O +1) € D-

This argument can be repeated, and we are thus led to the conclusion that
if, for some k, (20) holds, then we have

Ao cou)eD  Vk>k

provided that for each k the vector x; generated by the algorithm is the
unique point corresponding to (4, ¢, %) as in Proposition 2.14. This
means that the estimate (7) is applicable for k > k, and we have

sy — A% < M(|A — 2*2Jct + )2 Vk=k
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Since ¢, > /2 M for k > k, we obtain
e = A% < GlA — A + M?)V? Yk >k,
from which
[hesy — A2 <A — 2% + M2%2  Vk>E
Hence, for m > 1,

Agam — A2 <277 |4 — A%2 + Y 2-mmipg2g2

i=1

It is easily seen that g — 0 implies lim,,_ , Y7, 2~ ™ OM?¢2,, = 0, and it
follows that |4z,,, — A*| > 0as m — o0; ie.,

lim A, = A*.
k— o0

Also from (6), we obtain
I — x*| < M(14 — A**/c + &)'*  Vk>k
and it follows that

lim x, = x*.
k=

However, the rate of convergence of {|4, — A*|} and {|x, — x*|} need not
be linear. In order to achieve a linear rate of convergence, it is necessary that
the tolerance ¢, decreases to zero as fast as |4, — A*|/c,. This can be achieved
by replacing the stopping criterion (18), (19) by the stronger condition

(21) IV L (X, A)| < min{e,, y| h(x,)|},
where 7 is some scalar. We have, from (7),
(22) |Aesr = A% < M1 4 — 2*1P/ci + 9 [h(x) )2,
Using (17), we obtain

|4 = A% + cxh(x)| < M| 4 — A% P/c; + 32 [h(x)|)Y?
from which

Glh(x)| < M(1 A — 2*1/ci + 9? [h(x) )Y + |4 — A*]

< (M/ey + DA, — 2% + My|h(x))|.

For ¢, > My, the relation above yields

[h(x)| < [(M + c)fele, — My)]| A, — A*] Vk >k
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Substituting in (22), we obtain

2 271/2 L

(e — M}’)Z

Ck
For ¢, > M(1 + 2y), this relationship can be strengthened to yield finally
(23) | Ass — A*| < M(L+ &) |3 — 2| /ep < M(L + 29) 1A — A¥l/er

Relation (23) holds if x, satisfies the stopping criterion (21) and ¢, exceeds the
(unknown) threshold level M(1 + 2y). If (23) is effective and ¢, > M(1 + 2y)
for all k sufficiently large, then 4, - A* and x, — x*. The convergence rate
is at least linear if ¢, — c¢* < co and superlinear if ¢, — oo, similarly as in
the method with exact minimization.

The preceding analysis shows that if the sequence {&} used in the stop-
ping criterion (21) is bounded above by a sufficiently small positive number
then, given any initial multiplier Ay, there exists a generally unknown
threshold level for the penalty parameter ¢, . If ¢o exceeds this level conver-
gence is obtained. It is actually possible to obtain a sharper convergence and
rate-of-convergence result. To this end, we consider the following algorithmic
model:

Two sequences {¢,} and {y;}, with 0 < &.+1 < &, & — 0,0 < Yer1 < Vi»
and 7y, —» 0, are given. An initial multiplier 1, and a penalty parameter
sequence {c,} are also given and are asSumed to satisfy

5SCkSCk+1, k=0,1,...,
(140 — A*[7/c§ + €0)'* < 6,

where ¢ and & are as in Proposition 2.14. For k =0,1,... and for any
(Aes Ck» &) satisfying

(24) (1 = A*Pfei + &)V <0,

we consider the sets

(25) X&) = {Xolh> e 1ol < min{ey, yil Alxa(Ai, €113,
(26) A, Ci> &) = (A + ch(x)|x € X (A, ck, &)}

We focus attention at the iteration given by

27 X € X(Ak» Cis &)

(28) Aesy = A + i h(xp)

Iteration (27), (28) is equivalent to 4,.,; being any element of the set
A(y, ¢, &). We say that the iteration is well defined if A4, {&}, {c,} are such
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that,fork = 0, 1, ..., if (A, ¢, &) satisfies (24), then every A, ; € Ak, ¢, &)
satisfies

(lAe+1 — A*|2/013+1 + 31%+1)1/2 <.

The idea underlying the elaborate construction given above is to ensure
that multipliers generated by iteration (27), (28) lie within the region for
which approximate local minima of the augmented Lagrangian can be
guaranteed to exist in accordance with Proposition 2.14.

The following proposition provides a convergence and rate-of-con-
vergence result for iteration (27), (28). Its proof utilizes the machinery
developed in the proof of Proposition 2.14 similarly as the proof of the
related Proposition 2.7 made use of the arguments of Proposition 2.4. We
leave the straightforward but lengthy details to the reader.

Proposition 2.15: Assume (S) holds, and let ¢ and § be as in Proposition
2.14. Denote by ey, ..., e, the eigenvalues of the matrix V2p(0) given by
(32) of Section 2.2. Assume also that

¢ > max{—2e;,..., —2e,}.
There exist positive scalars §,, y such that if
IAO—A*I/CO<5I’ YOS’ya EScksck-Fl Vk=0>1’~-~:

then iteration (27), (28) is well defined and any generated sequences {/,}
and {x,} converge to A* and x*, respectively. Furthermore, if 4, # A* for
all k, we have

. [Akse1 — A¥] €; . . *

lim sup 5 —r— < max ™ if lim¢, =c* < o0,
ke A — A% i=1,..m|€ T C k=

. sy — AF .

hmsupI kil ! =0 if ¢ — .

k= Ilk_'l*'

Second-Order Iteration

The key to deriving the proper form of the second-order iteration when
unconstrained minimization is not exact lies with the result of Proposition
2.8 and Egs. (30) and (34) of Section 2.3 in particular. The second-order
iteration should consist of the first-order iteration followed by an iteration
of Newton’s method for solving the system of first-order necessary conditions.
Based on equations (30) and (34) of Section 2.3, we obtain the iteration

(29) Aev1 = A + {Vh(x) [V, Lo (x> 4)] ™ 'Vh(x,)} !
X [h(xy) — Vh(xk)/[vzx Lck(xk’ A1 lvx Lck(xk’ A
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The same reasoning together with Proposition 2.14 and the argument of the
proof of Proposition 2.9 yields the following result:

Proposition 2.16: Assume (S) holds and let ¢ and J be as in Proposition
2.14. Then given any scalar y > 0, there exists a scalar 8, with 0 < 9, <6
such that, for (4, c, @) in the set D, defined by

D, = {(ALc |4 - A¥12/c? 4+ |a|DY? < dyc,8 < ¢},
there holds
1740 ©) — %] < (1A — A% Pfe? + o),
where
A2 ) = A+ B4, )" Uh[x,(4, )] — 1(4, ®)},
B.(J, ) = VA[x,(A, &) {VZ.LIx(2, ¢), A1} 7' VAIx(4, )],
LA, 0) = VADx, (A OY (V2 LLx,(2 ©), A1} 7' ViLelxo(4: ), A)-

If in addition V?f and V?h;, i=1,...,m, are Lipschitz continuous in a
neighborhood of x*, there exists a scalar M, such that for all (4,¢,®)€ D,
there holds

7k €) — ¥ < My(14 = 2*1P/c? + |af).

There is also an analog of Proposition 2.10 that can be proved for iteration
(29), assuming that ¢ < ¢ < Ck+1 for all k, and x, satisfies for all k the
stopping criterion

|V Lo (X A < min{g, v | A1}

where 0 < g 41 < &, 0 < Ps1 < V%> & — 0, and y, — 0.

2.6 Primal-Dual Methods Not Utilizing a Penalty Function

One of the first Lagrange multiplier methods proposed for solving the
equality constrained problem

(ECP) minimize f(x)
subjectto  h(x) =0

consists of sequential minimizations of the form

€)) minimize Lo(x, 4;)

subjectto xe€R"
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yielding vectors x,, followed by multiplier iterations of the form
0)) Aer1 = A + ah(xy),

where o is a positive stepsize parameter.
A method of this type is particularly useful in separable problems having,
for example, the form

3) minimize i f(&D)
i=1
subject to Z":h,-(f,.) =0,
i=1

where x = (£,,..., &,). For such a problem, the minimization of the Lagran-
gian Ly(-, 4;) can be decomposed into n one-dimensional minimizations

(O] min Lo(x, ) = ) {n?n[f;'(éi) + lihi(éi)]}
x i=1 i
with considerable simplification resulting.

Essential for the validity of this method is the presence of some kind of
convex structure in the problem. In local versions of the method (which
are the only ones that will be examined in this section), one focuses on a
local minimum x* satisfying the sufficiency Assumption (S) of Section 2.2
and the additional local convexity condition

©) Vi Lo(x*, 2%) > 0.

There are also global versions of the theory where the underlying problem
1s a convex programming problem (see, e.g., Lasdon, 1970).

The analysis and indeed the motivation of method (1), (2) is based on
local duality. In fact all the necessary analysis has already been carried
out in Sections 2.2-2.5 and can be brought to bear by means of the following
simple observation:

For a positive scalar parameter o, consider the problem
6) minimize f(x) — 1| h(x)|?
subject to  h(x) = 0.

It is a simple matter to verify that this problem is equivalent to (ECP) in the
sense that the two problems have the same local minimum-Lagrange multiplier
pairs. If any such pair satisfies Assumption (S), for one problem, it also satisfies
it for the other. It is evident now that the iteration

s =My + ah(xy),
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where x, minimizes Ly(-, A) locally around x* is simply the first-order method
of multipliers for problem (6) with (constant) penalty parameter equal to o.

Thus the analysis of the preceding sections can be used to infer con-
vergence and rate-of-convergence results for the method. In particular,
it is easy to verify the following facts assuming (S) and the local convexity
condition (5).

(a) Thereexiste > 0and é > Osuch that for all 1 € S(4*; §) the problem
minimize Ly(x, 4)
subject to x € S(x*;¢)

has a unique solution denoted x(4) and such that V2, L,[x(4), A] > 0 and
Vh[x(A)] has rank m (compare with Proposition 2.4).
(b) A dual functional d is defined by

d(A) = Lo[x(4), A] vV Ae S(A*; 9)
and has gradient and Hessian given by
Vd(2) = h[x(2)] V e S(A*; 0)
V2d(A) = —Vh[x(1)]{V2.Lo[x(4), A}~ 'Vh[x(1)] v 1e S(A*; 0)

(compare with Section 2.3).
(c) If p is the primal functional of (ECP) (compare with Section 2.2.3),
then the primal functional of problem (6) is given by

P(u) = p(w) — 3ar|u?,

and if e is the minimum eigenvalue of V?p(0) then (e — «) is the minimum
eigenvalue of V2p(0).
(d) There exists a 6, € (0, d] such that the iteration

Aer1 = A + oh[x(4)]
is well defined and converges to A* if 1 € S(A*; 6,),0 > O,and o« > —2(e — )
(compare with Proposition 2.7) or equivalently if
@) 0<a<2e

where e is the minimum eigenvalue of the primal functional p of (ECP).
Furthermore if 4, # A* for all k there holds
|Ak+1 B l*l

lim sup ——————— < max
k=0 ]Ak - ’I*I i=1,..., m

where ey, .. ., e,, are the eigenvalues of V?p(0).
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(¢) There exists a d, € (0, §] such that the second-order iteration
At = A + {VRIX(A)T{VELo[x(A), 4]}~ VAIx(A)1} ™ h[x(4)]

is well defined and converges to A* if 1, € S(A*; §,) (compare with Proposition
2.10). Furthermore, the rate of convergence is superlinear (at least order 2
if V3fand V?h;, i = 1,...,m, are Lipschitz continuous in an open sphere
centered at x*).

Notice from (7) that the region of stepsizes that guarantee convergence
depends on the minimum eigenvalue e of V2p(0) and is generally unknown in
practice. Furthermore a good initial choice 4, is necessary to guarantee
convergence. These facts limit the usefulness of the simple primal-dual
methods of this section to large-scale problems with special structure [for
example, the separable problem (3)], which satisfy the local convexity
condition (5). It is possible to construct primal-dual methods for large-scale
separable problems satisfying Assumption (S) in place of the stronger local
convexity condition (5), but this requires a more elaborate structure (see
Bertsekas, 1979b).

2.7 Notes and Sources

Notes on Section 2.1: The basic idea of penalty function methods is
quite old. An extensive work which had substantial influence on further
developments is Fiacco and McCormick (1968). The rate of convergence of
the quadratic penalty function method was analyzed by Poljak (1971).

Notes on Section 2.2: The quadratic method of multipliers was first
proposed independently by Hestenes (1969) and Powell (1969). It was also
proposed a year later by Haarhoff and Buys (1970). The thesis by Buys
(1972) and the paper by Rupp (1972) provided the first local convergence
results for a fixed value of the penalty parameter. Related results were also
given by Wierzbicki (1971). Convergence results of a global nature and for a
variable penalty parameter were first given independently in Bertsekas (1973,
1976a) and Poljak and Tretjakov (1973). A related result was given in Hes-
tenes (1975). A sharp bound on the rate of convergence was first given in
Bertsekas (1975¢). The issue of convergence to a single limit point of the
sequence {x,} generated by a method of multipliers is addressed in Polak and
Tits (1979). The convergence analysis in this section follows Bertsekas (19792)
and sharpens the results of earlier works while weakening some of the assump-
tions.
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Notes on Section 2.3: The local duality framework for the method of
multipliers was developed independently by Buys (1972) and Luenberger
(1973). The stepsize analysis of Section 2.3.1 extends the one of Bertsekas
(1975¢). The stepsize rule (20) is new. An alternative stepsize rule has been
proposed by Jijtontrum (1980). The convergence and rate-of-convergence
analysis for the second-order iteration improves on earlier results in Bertsekas
(1976b, 1978). The first quasi-Newton version of the second-order iteration
was suggested independently by Fletcher (1975) and Brusch (1973). The
second quasi-Newton scheme is new.

Notes on Section 2.4: Multiplier methods with partial elimination of
constraints were first considered in Bertsekas (1977). The convergence
analysis given here is an improvement over the one in that reference.

Notes on Section 2.5: Multiplier methods with inexact minimization
were proposed and analyzed by Buys (1972), Bertsekas (1973, 1975c, 1976a),
and Poljak and Tretjakov (1973). Proposition 2.14 improves a result of
Bertsekas (1973) and Poljak and Tretjakov (1973), while Proposition 2.16
improves a result of Bertsekas (1978).

Notes on Section 2.6: These methods were pioneered by Everett (1963).
Additional relevant works are Poljak (1970), Luenberger (1973), and
Lasdon (1970). Ideas related to methods of multipliers have been used for
algorithmic solution of special types of large-scale separable problems for
which the local convexity assumption is not satisfied —see Stephanopoulos
and Westerberg (1975), Stoilow (1977), Watanabe et al. (1978). A different and
more general approach has been proposed in Bertsekas (1979b).



Chapter 3

The Method of Multipliers for
Inequality Constrained and
Nondifferentiable Optimization
Problems

3.1 One-Sided Inequality Constraints

Consider a nonlinear programming problem involving both equality
and inequality constraints

(NLP) minimize f(x)
subject to h(x) =0, g(x) <0,

where f: R” - R, h: R" - R™, and g: R" — R’ are given functions and m < n.
The components of h and g are denoted by hy, ..., h,and g, ..., g,, respec-
tively.

As discussed in Section 1.4, it is possible to convert (NLP) into an
equality constrained problem by introducing a vector of additional variables
z = (zy,...,z,). This problem is given by

6y minimize f(x)
subjectto  hy(x) = -+ = hyu(x) =0,
gi(x) +zi = =g+ =0

158
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We have that x* is a local (global) minimum of (NLP) if and only if

(x* z%, ..., z¥), where z¥ = /—g;(x*), j=1,...,r, is a local (global)
minimum of problem (1).

Based on this conversion, we shall extend all the algorithms and results
of Chapter 2 to (NLP). Essentially, no new analysis is required for this
extension.

Consider first the augmented Lagrangian for problem (1) defined for
¢ > 0by

@ Lixzd =69+ VhGo) + elho
+ S lrlaf) + 1+ delg 00 + 3P

In applying the methods of Chapter 2 to problem (1), we must minimize the
augmented Lagrangian (2) with respect to (x, z) for various values of A, u,
and c¢. An important point here is that minimization of L(x, z, A, u) with
respect to z can be carried out explicitly for each fixed x. To see this, note that

() min Li(x, z, ) = f(x) + Xh(x) + 3c|h(x)|?

+ 2
=1

min{u;[g,(x) + z7] + 3clg;(x) + z7|*}.
; ‘

2j

The minimization with respect to z; is equivalent to

@) min {1,[g,(x) + u;] + $clg,(x) + w,[*}

u;20

The function in braces above is quadratic in u;. Its unconstrained (global)
minimum is the scalar ; at which the derivative is zero. We have

from which
;= —[(u/c) + g (x)].

There are two possibilities. Either #; > 0 in which case #; solves problem (4),
or else the solution of problem (4) is u¥ = 0. Thus the solution of problem
4)is

(5) u¥ = max{0, —[(u;/c) + g;(x)]},
and we have

(6 g9,(x) + uf = max{g,(x), —(u;/c)}.
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Let us use the notation

(7) g;-(x> ,uj’ C) = max{gj(x)9 _(#j/c)}a
gr(xa K1, C)

® g pe)= : :
g:(x> Hrs C)

Then, from (3)-(8), we obtain
min L(x, z, 4, ) = f(x) + X'h(x) + 3c|h(x)[*

+ 1gt(x, p ) +3clgT(x 1 o)

We are thus led to the following definition of the augmented Lagrangian for
(NLP)

) L(x, A, ) = f(x) + Yh(x) + w'g™(x, p, ¢
+ Jc{lh) 1P + 197 (e, p, ©) 17}
An alternative expression for L(x, 4, p) is given by

(10) L(x, 4, ) = f(x) + Ah(x) + 3c|h(x)[?
1 r
+ 3, 2 {max{0, u; + cg (1 — 4j}.
j=1

The equality of the expressions (9) and (10) can be verified by a straight-
forward calculation. The form of the last term in (10) is shown in Fig. 3.1.
The conclusion from the preceding discussion is that the problem

(8)) minimize L/(x, z, 4, &, ¢)
subject to  (x,z)eR"*"

is equivalent to the problem

(12) minimize L.(x, A, )

subject to x € R",
E‘E { [mcx {0,p+ct}]3p2}

pt

% _u%2c

FIG. 3.1 Penalty function for one-sided
inequality constraints

oIE
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and [x(4, y, ¢), z(4, u, ¢)] is a solution of problem (11) if and only if x(4, u, ¢)
is a solution or problem (12) and [compare with (5)]

(13) z;(A u ¢)* = max{0, —[(uj/c) + g,lx(Lu, )11} Vj=1,...,n

As a result, the methods of Chapter 2 can be applied to problem (NLP) after
it has been converted to the equality-constrained problem (1), but the
computation itself need not involve the additional variables z,, ..., z, since
we can solve in place of problem (11) the equivalent problem (12).

We now develop some results, relating to problem (1) and the augmented
Lagrangian (9), which allow an almost mechanical extension of all the
algorithms and results of Chapter 2 to (NLP).

Proposition 3.1: (a) Iff, h, and g are continuous on a subset S of R”,
then L (-, 4, ) is continuous on S for each A, u,and ¢ > 0.

(b) Iff,h,geC" on an open subset S of R", then L(-,A, u)eC! on §
for each 4, u, and ¢ > 0.

(c) Iff,h,geC? on an open subset S of R”, then L+, 4, u) € C? on the
set

(14) gﬂ_c=Sr\{x|gj(x);é —yjlevj=1,...,r}
for each 4, yu, and ¢ > 0.

Proof:  The proof follows from the expression (10) for L(x, 4, ).
Q.E.D.

Much of the analysis of Chapter 2 focused on a local minimum x* and
rested on Assumption (S) of Section 2.2. Here again we focus attention at
a local minimum for (NLP) satisfying an analogous assumption stated
below.

Assumption (S*): The vector x* is a strict local minimum and a regular
point of (NLP), and f, h, g € C* on some open sphere centered at x*. Further-
more x* together with associated Lagrange multiplier vectors A*, u* satisfies

z’[sz(x*) + ii?‘vzhi(x*) + 3
i=1

2

,u;-"Vzgj(x*)]z >0
1

j:
for all z # 0 with Vh(x*)z = 0, and Vg (x*)z = 0 for all je A(x*) =
{jlg,(x*) = 0}.Inaddition, u* satisfies the strict complementarity assumption

gx*)=0=u¥>0 j=1,...,r
Restating Proposition 1.32, we have:

Proposition 3.2:  If x* satisfies Assumption (S*) then the local minimum
(x*, \/-—gl(x*), e, \/—g,(x*)) of the equality constrained problem (1)
satisfies Assumption (S) of Section 2.2.
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In view of Propositions 3.1 and 3.2, it is evident that we can extend the
algorithms and analysis of Chapter 2 by applying them first to problem (1)
and then transfering them to (NLP). Consider for example the first-order
multiplier iteration. If x(4,, s, ¢;) is obtained by minimization of L., (-, A, i)
the first-order multiplier iteration for problem (1) is given by [compare
with (6)-(8)]

(15) sy = A + i h[x(Ae, s )]s
(16) Mes1 = Mk + g x(Ais tie> €s P> €
In view of (7), we can also write (16) as
for = uh + ¢ max{—(ui/cy), g;lx(A, b €1}
and finally
an phey = max{0, pf + cg;[x(Ae, pi> €)1}

where pf denotes the jth coordinate of y. Equation (17) gives the inequality
constraint analog of the first-order iteration. Note that from this equation, it
follows that if x(Ay, i, Cx) — X*, then the multipliers corresponding to con-
straints that are inactive at x* converge to zero in a finite number of iterations.

Duality and Second-Order Iterations

The duality theory of Section 2.3 can also be extended in a straight-
forward manner. Under (S*) the dual functional is defined for all (4, 4, ¢) in
the set

(13) D = {(Ap o] (4 ) — (A% p*)| < dc, & < c}.
via the equation
19 d (A p) = min L(x, 4, p),

x € S(x*; €)

where &, ¢, and ¢ are as in Proposition 2.4 applied to problem (1). We have,
for (A, u,c)e D,

(20) V}. dc(j" Iu) = h[X()., H, C)l
(21) V,d.(%, 1) = g" [x(4, 1, ©), s, €],

where x(4, y, ¢) is the solution of the minimization problem in (19). The
Hessian of d, can be easily computed by writing (21) as [compare with (7),

®]
(22) adc('l’ .u)/apu = max{gj[x(/l, K C)]’ _#j/c}’ J =1...,r
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If x(A, u, c) belongs to the set S,..of (14), we have that d, is twice continuously
differentiable in a neighborhood of (4, , ¢). For all indices j such that
g;[x(4, p, ©)] < —pyfc, we have

azdc()“a “) - l/C if i= ja
3 — =
(232) o, L0 it i,
0*d (4, 1) .

For indices j, such that g;[x(4, u,¢)] > — uj/c, the corresponding second
derivatives are computed using the formulas of Section 2.3 by treating the
inequality constraints g;(x) < 0 as equalities. It can be seen that for (4, 1)
sufficiently close to (A*, u*), the vector x(4, p, ¢) belongs to S 4, Dy the strict
complementarity assumption, so for such (4, ) the Hessian V2d (A, 1)
exists.

To give an explicit formula for V2d, when x(4, u, ¢) € S 4, c» assume without
loss of generality that for some index p we have

gj[x('l’u’c)] > _“j/c’ j= 1:'--’p
gj[x(/l,#,c)] < —ujle, j=p+1L...,r
Then V2d, has the form

24) V2d (k) = [B dhp) 0 ]

0 —c I
where I is the (r — p) x (r — p) identity matrix and
Bc(la lu‘) = - N’{V:zchc[x(A" K C), 2y lu’]} - 1Na

where N is the matrix having as columns

Vi, [x(4, p, €)1, - - - Vi [X(4, s o), Vgi[x(4, u )], ..., Vg,[x(4, 1 o]l

The Newton iteration takes the form

Hic+1 M
In view of (22) and (24), we have

#i+1=0 V¢ A,

25) [A] - [l] — [V (s )] VoGl )

where
Ay = {j‘gj[x(}“k’/"k’ck)] > — i/}

The set A, may be viewed as the set of indices of inequality constraints esti-
mated to be active at x*. The Newton iteration can perhaps be described
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better with words than with equations. We set equal to zero the multipliers of
inequality constraints estimated to be inactive at x* (j ¢ 4y, and we treat
the remaining multipliers as if they correspond to equality constraints.

When employing the Newton iteration (25), it is quite possible that some
of the multipliers yj , , will turn out to be negative. On the other hand, we
know that u* > 0, so it appears sensible to set the negative multipliers to
Z€ro, i.e., to use in place of (25) the iteration

26) [lm] _ [/Tk ]
Hic+1 el

7. A -
27 [ﬁk] = [;] = [V (e, 15017 'V (s ),
k
where, for every u e R", we denote
max{0, u'}
pt= : :
max{0, 4"}

This can be justified in two ways. First, we clearly have
s — p*| < |l — p*|,

so that g, is closer to the solution y* than .. Second, it can be seen
from (10) that for all x, A, u, we have

LC(X, 2'9 ,U) S Lc(x’ 1’ :u+)
It follows that
dck(’lk+ 1 M+ 1) = dck(/’:k’ Fic)s

so the value of the dual functional cannot be decreased by replacing f, by
Hi+1- These facts are sufficient to establish that every convergence and rate of
convergence result that can be shown for iteration (25) can also be shown for
iteration (26), (27). At the same time, they suggest that iteration (26), (27)
may provide some computational savings over iteration (25).

3.2 Two-Sided Inequality Constraints

Many problems encountered in practice involve two-sided constraints
of the form

% < gj(x) < B;,
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where «; and f8; are some scalars. Each two-sided constraint could of course
be separated into two one-sided constraints which could be treated as
discussed in the previous section. This would require, however, the assign-
ment of two multipliers per two-sided constraint. We describe a more
efficient approach which requires only one multiplier per two-sided constraint.

We consider for simplicity the following problem involving exclusively
two-sided constraints. The reader can make appropriate adjustments for the
case where there are additional equality or one-sided inequality constraints.

) minimize f(x)
subjectto o; < gx)<B;, Jj=1....7
where f:R" —> R, g;:R" = R, and o; and B;,j=1,...,r, are given scalars

with o; < ;. Problem (1) is equivalent to the problem
2) minimize f(x)
subjectto o < gi(x) — u; < B;, u; =0, j=1,...,r

Now consider a multiplier method for problem (2) where only the con-
straints u; = 0 are eliminated by means of a quadratic penalty function.
This corresponds to partial elimination of constraints discussed in Section
2.4. The method consists of sequential minimizations over x and uy, ..., 4,
of the form

(3) minimize f(x) + Y {pfu; + 3cilu;)?}
j=1

subjectto o; < gix) —w; < B, j=1...,7
The multipliers yj are updated by means of the iteration
4) ey =u+cul, Jj=1...m

where ul, . .., u} together with a vector x, solve problem (3). Now similarly
as in the previous section, minimization in problem (3) can be carried out
first with respect to u; yielding the equivalent problem

) minimize 100 + 3 p0 00 o ]
j=1

subjectto x€R’,

where

p;lg (), phld = min {Ni“,‘ + %Ck|uj|2}'

a;<gj(x)—uj<B;
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A straightforward calculation shows that the minimum above is attained at
the point u] given by

. gi(x) — B; if #i: + alg x) - g1 >0,
(6) e =190 —a; if uf + clgx) — ] <0,
— /e, otherwise,
and p; is given by
(7) p][gj(x)’ ,uljn ck]
l‘i[gj(x) - ﬂ,] + _ZLCIgj(X) - ﬂj'z if .ul{ + ck[gj(x) - ﬁ,] >0,
= /‘ljc[gj(x) - “j] + %clgj(x) - “j'z if p + Ck[g](x) - “j] <0,
—(U?/2¢, otherwise.
It is easily seen that if g;j€ C, then pj[gj(x), Ui, ¢ ] is continuously differ-
entiable in x. If g;e C?, then p;lg(x), ui, ] is twice continuously differ-
entiable on the set {x|u] + ¢,[g;(x) — ;] # 0, i + clgi(x) — o;] # 0}.
The form of the function p; is shown in Fig. 3.2.
The conclusion from the preceding analysis is that a method of multi-
pliers for problem (1) consists of sequential minimizations of the form ),

(7), which do not involve the variables Uy, ..., u,. The (first-order) multi-
plier iteration is given by [compare with ), (6)]

. #i: + algx) — B; if /‘I'i: + algix) — B1>0,
Hiv1 =19 4 + algi(x) — a;] if uf + algi(x) — ;] <0,
0 otherwise,
where x, solves problem (5). It is also possible to develop a second-order
iteration which is best described verbally as follows (compare with the

procedure for one-sided constraints described in the previous section).
For every index j such that

gi(x) — B; < —pi/e, < gixe) — o,

plt,p,c)
/ B
(t-a) 8 ¢
a a+y B B+ t
2¢

FIG. 3.2 Penalty function for two-sided
inequality constraints
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set ui,, = 0. For every other index j, treat the constraint g;(x) > «; or the
constraint g,(x) < B; as an equality constraint depending on whether

—pifer > gi(x) — & or —pife < gix) — B;-

3.3 Approximation Procedures for Nondifferentiable and
I11-Conditioned Optimization Problems

Many optimization problems of interest can be written as

minimize f[x,7:[9:(¥)], - - -, Ym[gm(x)]]

SUbjeCt to h[x, yl[gl(x)]a R ym[gm(x)]] = O’

where f: R" — R, g;: R" — R", and h, y; are given functions.

We are primarily interested in the case wheref, h, g; € C?, but the presence
of the functions y; introduces difficulties in the numerical solution of the
problem in the sense that, if the functions y; were replaced by some real-
valued continuously differentiable functions §;, then the problem could be
solved in a relatively easy manner. For example, the functions y; may induce
constraints, nondifferentiabilities, or ill-conditioning.

We shall initially focus on the simpler case where the problem is of the
form

(1) minimize £() + 3 7[g(0]

i=1
subjectto xe€ X < R",

and we shall subsequently discuss the more general case. In connection with
problem (1), we shall assume that for each i, y;: R — (—o0, + 0] is an
extended real-valued, lower semicontinuous, convex function with y,(t) < o
for at least one t € R". (Such functions will be referred to as closed proper
convex functions in Chapter 5.)

We provide some examples of functions y; that are of interest in connection
with problem (1). In the first five examples, y; is a function defined on the
real line R (r; = 1).

Example 1: Equality Constraints:
0 if t=0,
@ D) = {+ 0 otherwise.

Here, the presence of y;[g{(x)] in problem (1) is equivalent to an additional
equality constraint

gi(x) = 0.
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Example 2: One-Sided Inequality Constraints:

0 if t<0,
) 70 = {+ fe'o) otherwise.

Here, the presence of y,[g,(x)] induces the constraint
gi(x) < 0.
Example 3: Two-Sided Inequality Constraints:

0 if o,<t<B§B,,
7i(t) = .
_ + 00 otherwise,

“

where «; and B; are scalars with «; < f;.

Example 4:  Polyhedral Functions:

(5) 7:(t) = max{0, t},
(6) (0 = |t],
(1] if |t <a
Q) 7t = {+ o otherwise,
max {y;t +46;,} if a<t<§p,
®) 7:(t) = {j’—'l,...,r
+ o0 otherwise,

where a, 8, y > and J; are given scalars.
Example 5: Ill-Conditioning Terms:

) yit) = 3st?,

(10) 7dt) = aef,

where s, «, and S are given scalars with s > 0 and & > 0. The term (9) may
induce ill-conditioning in problem (1) if s is very large, while the term (10)
may induce ill-conditioning in problem (1) if § is very large. More generally,
if the second derivatives or third derivatives of 7, are very large, relative to
other terms in the cost functional, the numerical solution of problem (1)
may run into serious difficulties.

Example 6: Minimax Problems: For t = (t,, tr,...,t.)€R", consider
(11) 74(0) = max{ty, t,,...,1,},
(12) Vi([)=max{|[1|9|[2|7--~7ltr,-l},
(13) y:(t) = max t'z,
|z—al <1

where « is a given vector in R"™.
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This section presents an approach for solving numerical problems of the
type described above. The approach consists of the approximation of
problem (1) by a sequence of optimization problems which involve relatively
well-behaved objective functions. The approximation is effected by intro-
ducing additional variables and constraints in problem (1), thus forming an
equivalent constrained minimization problem. This problem is subse-
quently handled by the method of multipliers. For the case of Examples 1,
2, and 3, our approach turns out to be identical to multiplier methods
introduced earlier. Thus the present section in effect extends the range of
applicability of the methods already discussed.

Throughout this section, we shall restrict ourselves to first-order multi-
plier iterations. Second-order iterations are also possible and can be devel-
oped along lines used earlier.

It is clear that problem (1) is equivalent to the following problem:

(14 minimize £ + > 70) — )

subjectto xe€ X, u; =0, i=1,...,m,
where we have introduced the additional vectors
u; € R", i=1,...,m

A method of multipliers for the problem above is based on sequential
minimization over x, uy, . . ., i, of the form

(15) minimize f(x) + Y {3:[g:(x) — u] + viu; + e |ug]}
i=1
subjectto xe X,

where y! are multiplier vectors in R™, ¢, is a positive scalar penalty parameter
and prime denotes transposition. Equivalently, problem (15) is written as

(16) minimize £(0) + 3 ph[:0<) 3]

i=1

subjectto xe€ X,

where
(17) pik[gi(x)7 yi] = min {y,[g{(x) — u;] + veu; + e lug*}-
The initial multiplier vectors y5, i = 1,..., m, are arbitrary, and after each

minimization (16), the multiplier vectors yj are updated by means of

(18) y;.(+1=ylic+ckuli(’ i=1...,m,



170 3. INEQUALITY CONSTRAINTS; NONDIFFERENTIABLE OPTIMIZATION

where uf, i =1,..., m, solve (15), together with some vector x,. Alternate
methods could be obtained by using a nonquadratic penalty function in
(15); in fact, in some cases, the use of such nonquadratic penalty functions is
essential. We shall restrict ourselves for the moment to quadratic penalty
functions and discuss methods based on nonquadratic penalty functions in
Section 5.1.3.

It is important to note that the function pL, of (17) is both real-valued and
continuously differentiable in x, provided the function g; is continuously
differentiable. Hence, problem (16) can be solved by the powerful methods
available for differentiable functions whenever f and g, are differentiable.
These properties of the function p{, can be inferred from the following
result.

Proposition 3.3: Let y: R"— (— o0, + ] be a lower semicontinuous
convex function, and assume that y(t) < + oo for at least one vector ¢ € R”.
Also let A be any vector in R” and ¢ > 0 be a scalar. Then, the function
p(-, A) defined by

(19) pt, A) = inf{y(t — u) + Au + Lc|ul?}

is real-valued, convex, and continuously differentiable in t. Furthermore,
the infimum with respect to u in (19) is attained at a unique point for every
teR".

Proof:  The function p(-,7) is the infimal convolution (Rockafellar,
1970) of the convex function y and the quadratic convex function h: R” — R
defined by

(20) h(u) = Au + Lc|ul?
Since
h(u) -» «© as |u|— oo,

it follows from Corollary 9.2.2 of Rockafellar (1970) that p(-, A) is convex
and the infimum is attained for each Aby some u. Since h is strictly convex and
real-valued, it follows that p.(-, A) is also real-valued and the infimum is
attained at a single point. Also, & is a smooth function and from Corollary
26.3.2 of Rockafellar (1970), it follows that p(-, 4) is an essentially smooth
convex function. Since it is also real-valued, it is continuously differen-
tiable. Q.E.D.

The interpretation of p.(-, 4) in the proof above as the infimal convolution
of y and h defined by (20) is useful in visualizing the form of p(-, A). The
epigraph of p.(-,4) is obtained as the vector sum of the epigraph of the
functions y(-) and h(-) (see Rockafellar, 1970, Theorem 5.4).
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In some cases, it is useful to work with a dual expression for the function
p(+, A) of (19). This expression is given in the following lemma, the proof
of which follows by straightforward application of Fenchel’s duality theorem
(Rockafellar, 1970, Theorem 31.1).

Proposition 3.4: The function p.(-, 4) of (19) is also given by

1
@1 pt, 4) = Sup{t'u* — VW) — ot - llz},

where
P*W*) = sup{u'u* — y(u)}

is the convex conjugate function of y. Furthermore, the supremum in (21) is
attained at a unique point u*(t, 4, ¢), and we have

(22) u*(t, A, c) = A + cu(t, A, ¢c) = V,pt, ),

where u(t, 4, ¢) is the unique point attaining the infimum in (19) and V,p, is
the gradient of p, with respect to ¢.

The correspondence between Egs. (22) and (18) is often convenient in
the analysis of specific cases.

It is to be noted that, even though we employed the additional vectors
Uy, ..., Uy, in order to introduce the algorithm, the numerical computation
itself need not involve these vectors, since, in the cases of interest to us, the
functions pl,_of (16)-(17) can be obtained in explicit form. Furthermore, the
minimizing vectors uf of (18) can be expressed directly in terms of mini-
mizing vectors x, in problem (16), since u} is uniquely defined in terms of
Xy, ¢, and yj as the minimizing vector in (17). We provide the corresponding
analysis for the examples given earlier.

Example 1: For the case where y,(t) is given by (2), we obtain from
(17)-(18):
PaL9:(x), ¥id = ¥igi(x) + 3e.[g.(3)1,
Vit1 = Vi + g%, i=1,...,m

In this case, the iteration reduces to the ordinary first-order multiplier
iteration for equality constraints.

Example 2: For y(t) given by (3), we obtain from (17)-(18) by straight-
forward calculation:

. ‘ 1 . .
pLlgix), yil = 2 {(max{0, y; + ¢.g:.(x)})* — (¥}

yli(+l = max{09 y;( + ckgi(xk)}’ i = 19"'9m'



172 3. INEQUALITY CONSTRAINTS ; NONDIFFERENTIABLE OPTIMIZATION

The algorithm reduces to the first-order multiplier method for inequality
constraints.

Example 3: For the case of two-sided inequality constraints, where
y,(t) is given by (4), we obtain

Yilgix) — B + salgit) — B> if i — yidew < 9i(),

.Vli‘[g{(x) — o] + 3alglx) — ] if gi(x) < o — Vi/ce
-2 otherwise;

pL[9:/x), yi

y;; + cxlg:(x) — Bl if B — yi/er < gdxi),
Vi + algix) — o] if gdxp) <o — y;;/ck,
0 otherwise.

Vi+1
The iteration reduces to the first-order iteration for two-sided inequality
constraints given in the previous section.

Example 4: Consider the case where y(f) = max{0,t}. Then, by
straightforward calculation, we obtain

gix) — (1 — ylic)z/zck if g(x)=(1- y;;)/ck,

pi.[g94x), vi] = f(yi)2/2ck if gix) < — Vil .
Vg0 + 30 i —yila < gdx) < (1 = yd/es
1 if gix) = (1 - /<
Vi+1 = 0 if gi(xk) < =W/

)’i + ¢ gi(x) if _yli/ck <g{x) <1 - ylic)/ck'

Notice that a single multiplier per term y;[g{x)] 1s utilized. If one were to
convert the problem to a nonlinear programming problem of the form

m
minimize f(x) + Y.z
i=1

subjectto gi(x) < z;, 0<z, i=1,..,m,

where z; are additional variables, then two multipliers per term y;[g:(x)]
would be required in order for the problem to be solved by the method of
multipliers.

The case where y,(t) is given by (6) can be converted to the earlier case
by writing

|t| = —t + max{0, 2t}.
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Let y/t) be given by (7), where a is some positive number. Such terms
appear, for example, in the cost functional of minimum-fuel problems in
optimal control. We have by straightforward calculation

PeL9:(x), yid
o« + yilgix) + o] + Jalgdx) + o1? if gi(x) .
< —a— (1 + y/e
—=g4x) = (1 + y)*/2¢, if —a—(1+ y)fe
< g{(x) .
< —(1 + y/e,
=9 ¥igi(%) + 3c:[g:(x)]? if —(1 4+ y/ck
< gi(x) )
< (1 - ,V;()/Ck,
gdx) — (1 = yi)*/2¢, if (1= y/e
< g{(x) .
<o+ (1 =y
o + yilgix) — o] + e lgix) — o] if o + (1 = yD/c,
< gi{(x),

and iteration (18) takes the form

Vi + algdx) + al, if g(x) < —a—(1+ yo/cx,

-1 if —a—(1+ y;;)/ck < gi(xi)
< = (1 + ¥,
Virr = Vi + agilxy), if =1+ e < gi(xi)
< (1 = y)ek,
1, if (1 = y)/ex < gix)

_ <o+ (1= y/e.
Ve + algix) — o], if o+ (1= y/e < gix).

Notice that a single multiplier per term v, is utilized in place of four multi-
pliers per term y; for the ordinary method of multipliers.

Similarly, one may obtain the function p., and iteration (18) in ex-
plicit form for the function y,(z) given by (8). Again, only one multiplier
per term is required in place of r + 2 multipliers for the ordinary multiplier
method.

Example 5: Let y,(t) = 35, [compare with (9)]. Then, we have by
straightforward calculation:

l’f-',([gi(x)» vid = [si/(s; + c)1{3al9:00)1% + vigdx) — (V)*/2s:},
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and iteration (18) takes the form

Vie1 = Vi + als:9:00) — Vid/(s; + c).

Notice that the second derivative of pi (-, yi) given above is s;¢,/(s; + ¢)
and can be made arbitrarily small by choosing c, sufficiently small.

The case where y,(t) is given by (10) requires a slightly different approxi-
mation method and a nonquadratic penalty function. It will be examined in
Chapter 5.

Example 6: Let y(t) = max{t,,...,t,} [compare with (11)]. From
Eq. (21), we have

1
Pt = sup{r’u* = ) = 5o 0 = ilz},

where the convex conjugate function of y can be easily calculated as

) = 0 if Z§=1H?=l, u¥*>0, i=1,...,r,
+ o0 otherwise.
Hence
(23) p(t,A) = max {t’u* 1 |u* — /112}.
X i 2

By introducing a Lagrange multiplier u(t, 4, ¢) corresponding to the con-
straint

Yup=1
i=1
and carrying out the straightforward optimization in (23), we obtain
1 r
pc(t, 2') = iz Z {(max{o’ j'i + c[ti - )u(t’ '1’ C)]})Z - A'zz} + l‘t(t? 19 C).
i=1

The maximizing vector #* in (23) has coordinates given by
24) ¥ = max{0, 4; + c[t; — u(t, 4, 0)1}, i=1,...,r

and the Lagrange multiplier u(t, 4, ¢) is determined from
Y max{0, 4; + c[t; — u(t, 4, 0)]} = L
i=1

In the context of problem (1), a term of the form

y[g(x)] = max{g'(x),g*(x), ..., g"(x)}
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is approximated by

J ; ;
Pelg(x), yi] = 5~ 2. {max{0, yi + c.[g:x) — ulg(x), yi> & J1})?* — G}
ki=1
+ ulg(x), i, cil-
The gradient with respect to x of the expression above is obtained from (22)
and (24):
Vpo[9(x), yid = ¥ Vgi(x) max{0, y; + cilgi(x) — ulg(x), yi» 11}
i=1

The scalar u[g(x), yi, ¢,] is determined from

Zr:l max{0, y; + ¢[g(x) — ulg(x), yi., all} = 1.

It is easy to see that the value of u[g(x), y;, c,] can be computed from the
relation above with very little effort.

Regarding the multiplier iteration, we have [see (18), (22), and (24)]
(25) Yisq = max{0, y; + algx) — ulgCa), yi, 11}, i=1...,r

For the case where

Y[9(x)] = max{|g,(X)|, |g(x), ..., |g,(x)|},

a very similar calculation as the one for the previous case yields the following:

Palo() 5] = 3 FL0 3] + L4 s )

13

where

Yilgi(x) = ulg(x), yi» ¢J1 + 3eilgix) — ulg(x), yi c11?
if ylic + ¢ lgi(x) — ulg(x), Vis6J] = 0,
PeL9(0), i =1 yilgix) + ulg(x), yi, eJ] + 3cilgix) + ulg(x), yi, ¢ 112
if yi + algdx) + ulg(x), Vi & J] <0,
—(y)?/2¢, otherwise.

The gradient of p,, [g(x), y,] with respect to x is given by

Vpo[9() yid = 3. VX (x, ye» ¢,

i=1
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where
Vi + algdx) — plg(x), ye- 611 if Vi + algdx)
—ulg(x), yi> &1 = 0,
(X, Yi» ¢) =1 Vi + algi(x) + plg(x), yi, cll if yi + algdx)
+Iu[g(x)’ Vi» ck]] < 0,
0 otherwise.

The scalar u[g(x), yi, ¢;] is determined from

r

ulg(x), yi, al =0 if Z |y;< + g < 1,

i=1
Y max{0, |yi + cgi(x)| — ckulg(x), yi- ]} =1 otherwise.
i=1
The multiplier iteration is given by
ylic+1 = 4 (Xk> Yi»> Ci)s i=1...,r

where u¥ is defined above.

The case where y,(t) is given by (13) and other related cases where y is
the support function of a relatively simple set can be handled in a similar
manner. We note that an alternative approximation procedure for minimax
problems, based on an exponential penalty function, is given in Section 5.1.3.
This procedure has the advantage that it leads to twice differentiable .
approximating functions and for many problems should be preferable over
the one described above.

Generalized Minimax Problems

Similar approximation procedures can be employed for solution of
generalized versions of problem (1) such as the problem

(26) minimize f[x’ ‘yl[gl(x)]’ st Ym[gm(x)]]
SubjeCt to h[x’ }’1[91()‘)], ctc ym[gm(x)]] = 07

where 7;:R"—> R, i=1,...,m, are convex real-valued functions and
f:R"*™ > R, g;: R" - R", and h: R"™™ — R®, are continuously differentiable
functions. A special case of particular interest is when y; in problem (26) is
of the form (11)

vit) = max{t;, t,, ..., 4} i=1,...,m

The corresponding method of multipliers consists of sequential unconstrained
minimizations of the form

(27) minimize f[X, pck[gl(x)’ yl‘k]v st pck[gm(x)9 ym.k]]
+ Ahlx, e L9109 Y1kds - - -5 Pelgm(X)s Ym.il]
+ Le [ hIx, P L91(3)s Y1ads - - - Peulgm(X)s Y id1%,
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where ¢, is the penalty parameter sequence, y; , is the multiplier corresponding
to y;, and 4, is the multiplier corresponding to A. If x, solves (perhaps approx-
imately) problem (27), the multipliers y; , are updated by means of [compare
with (25)]

(28) ,V{,k+1 = max{0, y/, + c,lgi(x) — ulgix): Vi a1}
i=1L....m j=1,...,r,

and the multiplier 4, is updated by means of the usual iteration

(29) Ar1 = A+ hlxi, P L9106, Y1k - - -5 PeeIm(Xi)s Y, 1 1]-

Under assumptions paralleling the second-order sufficiency assumption (S)
of Chapter 2, it is possible to show convergence of this algorithm without the
need to increase c, to infinity. It is also possible to construct a (local) duality
theory similar to the one of Section 2.3 and interpret iterations (28) and (29)
as steepest ascent iterations for maximizing a related dual functional.
Second-order iterations are also possible. The corresponding analysis closely
parallels the one in Chapter 2, but is tedious and will not be given here. We
refer to Papavassilopoulos (1977) for an account.

Finally we mention that the approach of this section applies to situations
where the functions y; appear in the objective function and constraints in
forms different than in problem (26). For example, the approach is applicable
to a problem of the form

minimize  f[x, y,[g,(x, y2(x))]]
subjectto  h(x) = 0.

In other words it is possible that the functions y; may contain as arguments
other such functions. It is interesting to note in this connection that the
function max{t,, t,, ..., t,} can be expressed in terms of the simpler function
y: R — R given by

(1) = max{0, t}
by means of the equation

max{ty, ty, ..., 0} =ty + 9t —t; + 9t —t, + -+ 9(t, = t,_y) ).

Another interesting situation of this type is when the objective function can
be expressed as a concatenation of operators of the type max{-,-,...,-}
as for example in dynamic programming. For an application of this type in a
problem of power system scheduling see Bertsekas, Lauer, Sandell, and
Posbergh (1981). The general approach in such problems is to replace the
functions y; as they appear in the cost function and the constraints by suitable
approximating functions and sequentially solve the resulting approximate
minimization problems. Each minimization is followed by multiplier
updates using the appropriate formulas.
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3.4 Notes and Sources

Notes on Section 3.1: The proper form of the quadratic augmented
Lagrangian function for inequality constraints was first given and analyzed
by Rockafellar (1971, 1973b).

Notes on Section 3.2: The treatment of two-sided inequality constraints
by using a single multiplier per constraint was first given in Bertsekas (1976b,
1977).

Notes on Section 3.3: Approximation procedures based on the
method of multipliers for nondifferentiable optimization problems were
introduced in Bertsekas (1974b, 1977). When the multiplier updating
formulas (28) and (29) are used, the performance of the method is very
similar to that of the first-order method of multipliers, and indeed, if the
functions max{t,, t,, . . ., {,} enter linearly in the objective function and
do not appear in the constraints, the two methods are mathematically
equivalent. The corresponding local duality theory and second-order
algorithms may be found in the M.S. thesis by Papavassilopoulos (1977).
His results can be strengthened by using an analysis that parallels the one
given in Chapter 2. Relations with the proximal point algorithm are ex-
plored in Poljak (1979).



Chapter 4

Exact Penalty Methods and
Lagrangian Methods

The methods presented in Chapters 2 and 3 require the solution of several
unconstrained or partially constrained minimization problems. It is thus
quite interesting that it is possible to construct methods which require the
solution of only a single unconstrained problem. We call such methods exact
penalty methods and consider them in the first three sections of this chapter.

In the fourth section, we consider a class of seemingly unrelated methods
which attempt to solve the system of equations and inequalities that constitute
the necessary optimality conditions for the constrained optimization problem.
The methods here are similar to those used for solving systems of nonlinear
equations. We term these methods Lagrangian methods in view of the promi-
nent role played by the Lagrangian function and Lagrange multiplier itera-
tions.

An important disadvantage of Lagrangian methods is that they require a
good starting point in order to converge to an optimal solution, i.., they
converge only locally. In order to enlarge their region of convergence, it is
necessary to combine them with other methods that have satisfactory global
convergence properties. Such combinations are discussed in the last section
of this chapter and here we find that the method of multipliers of Chapters 2
and 3 and the exact penalty methods of this chapter are well suited for this
purpose.

179
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Throughout this chapter we shall consider the problem
(NLP) minimize f(x)
subject to  h(x) = 0, g(x) <0,

where f: R" > R, h: R" > R™, g:R" > R",and m < n.
We shall also consider the special cases of (NLP)

(ECP) minimize f(x)
subject to h(x) =0

and
(ICP) minimize f(x)
subject to  g(x) < 0.
The components of hand g aredenoted h,, ..., h,and gy, ..., g,,respectively.

A standing assumption will be that f, h,ge C' on R".

TERMINOLOGY: In what follows we shall encounter several constrained
optimization problems involving differentiable functions, equality constraints,
inequality constraints, or a mixture of both. We shall say that a pair (triple)
of vectors is a Kuhn-Tucker (K-T for short) pair (triple) if it satisfies the
first-order necessary optimality conditions of Proposition 1.29, referred to as
the K-T conditions. For example, (x*, 1*, u*) is a K-T triple for (NLP) if

Vf(x*) + Vh(x*)A* + Vg(x*)u* = 0,
h(x*) = 0, g(x*) <0, u* >0, wrgx*) =0, j=1,...,r

Much of the analysis of this chapter focuses on K-T pairs satisfying the
second-order sufficiency assumptions (S) or (S*) of Sections 2.2 and 3.1,
respectively.

4.1 Nondifferentiable Exact Penalty Functions

We shall show that solutions of (NLP) are related to solutions of the
(nondifferentiable) unconstrained problem

(NDP), minimize f(x) + cP(x)
subject to xe€R”,

where ¢ > 0 and the function P is defined by '
M P(x) = max{0, g;(x), ..., g.(x), [h ()], ..., [hu(X)}.
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To see why something like this should be true, consider the special case
(ECP) minimize f(x)
subject to  h(x) = 0,

and let x* be a strict local minimum satisfying, together with a corresponding
Lagrange multiplier vector 1*, Assumption (S) of Section 2.2. Consider also
the primal functional p: S(0; ) — R defined in Section 2.2.3 and given by

p(¥) = min{f(x)|h(x) = u, x € S(x*; &)}
[compare with Section 2.2.3, Eq. (26)]. Then

(2)
inf [f(x) + cmax{|h;(x)],..., A (x)]}]
x€S(x*;€)
= inf inf [f(x) + cmax{|hy(X)], ..., | hn(x)]}]
ue{z|h(x)=z, x e S(x*; &)} h(x)=u,xeS(x*;¢)
= inf pu),
ue{z|h(x)=z, x€S(x*; &)}
where
pu) = p(u) + c max{|u|, ..., [u,l}.
Since Vp(0) = — A*, by the mean value theorem, we have, for each u and

some & € [0, 1],
p(u) = p(0) — A*u + 5u'Vp(au)u.
Thus
() pw) = pO) — Y Afu; + cmax{|u,|,..., |un|} + 2u'Vp(au)u.

i=1

m
i=

Assume that, for some y > 0,

c> ZM?‘I + 7.
i=1
Then we have
cmax{|ul, ..., |u,|} = ( [A¥] + v) max{|uy|,..., |uy,|}
i=1
>

Z/ll?kui + ymax{lulls"-aluml}
i=1

Using this relation in (3), we obtain

pu) = p(0) + y max{|uy ..., [u,|} + 3u'V?p(Guu.
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For |u| sufficiently small, the last term is dominated by the next to last term,
so we have

pw) > p(0) = p(0)

for all u # 0 in a neighborhood of the origin. Hence u = 0 is a strict local
minimum of p, as shown in Fig. 4.1. By using (2) and the fact that x* is a strict
local minimum of (ECP), it follows that if ¢ > > 7=, |4¥|, then x* is a strict
local minimum of f + cP.

N P(u)=p(u)+c max{iuyl,..., lumi}

FIG. 4.1

The preceding analysis can be extended to the general case of (NLP)
simply by converting the inequality constraints to equalities as in Section 3.1.
We have thus proved by means of this abbreviated but simple argument the
following proposition.

Proposition 4.1:  Let x* be a strict local minimum of (NLP) satisfying,
together with corresponding Lagrange multiplier vectors A* and u*, Assump-
tion (S*) of Section 3.1. Then, if

m r
c> YA+ X ul,
i=1 j=1

the vector x* is a strict unconstrained local minimum of f + cP.



4.1 NONDIFFERENTIABLE EXACT PENALTY FUNCTIONS 183

Proposition 4.1 indicates that solution of (NLP) may be attempted by
solving the unconstrained problem (NDP),. We would like to prove other
similar results that require less restrictive assumptions than (S*). In the
process we shall develop several results that are useful for the construction of
algorithms. We first consider the case where there are no equality constraints.
We then extend the analysis to the general case by converting each constraint
hi(x) = 0 to the two inequality constraints h;(x) < 0 and —hy(x) < O.
Inequality Constrained Problems

Consider the problem
(ICP) minimize f(x)

subject to  g(x) <0,
and for ¢ > 0, the corresponding problem
(NDP), minimize f(x) + cP(x)

subjectto xeR"

For notational convenience, we denote by g, the function which is identically
zero

“4 go(x)=0  VxeR",

and thus

©) P(x) = max{go(x), 9,(x), - - -, g-(x)}

For x e R", d € R", and ¢ > 0, we use the notation

(6) J(x) = {jlg)x) = P(x),j = 0,1,.... 7}

(M 0(x; d) = max{[Vf(x) + cVg;(x)]'d|j € J(x)}

Definition: We say that x* e R" is a critical point of f + cP if for all
d € R" there holds

0.(x*;d) = 0.

We note that 6,(x*; d) in the above definition can be shown [compare
with (9)] to be the Gateaux differential of f + cP at x* in the direction d
(Ortega and Rheinboldt, 1970, p. 65, Luenberger, 1969, p. 171). Our definition
of critical point is consistent with analogous definitions for nondifferentiable
functions that are Gateaux differentiable. The following two propositions
show that descent directions of f + ¢P can be found only at noncritical
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points. Furthermore, such directions can be obtained from the following
(convex) quadratic program, in (d, ) e R"*1,

(QP)(x, H,J) minimize Vf(x)d + 3d’'Hd + c¢
subject to  g{(x) + Vg,(x)d < ¢, jEeJ,

where ¢ > 0, H is a positive definite matrix and J is an index set containing
J(x); 1.e.,

@) 0O<e O<H, Jx)cJc{ol,...r.

It is easily seen that (QP)(x, H, J) has a unique optimal solution (in view of
H > 0,c¢ > 0),and at least one Lagrange multiplier vector (Proposition 1.33).

Proposition 4.2: (a) ForallxeR" deR" and o > 0,
) J(x + ad) + cP(x + ad) — f(x) — cP(x) = af(x; d) + o(x),

where lim,_, o+ o(a)/a = 0. As a result, if 0,(x; d) < 0, then there exists & > 0
such that

f(x + od) + cP(x + ad) < f(x) + cP(x) Vo e(0, a].

(b) ForanyxeR" H > 0,and J withJ(x) = J < {0, 1,...,r},if (d, &)
is the optimal solution of (QP).(x, H, J) and d # 0, then

(10) 0.(x;d) < —d'Hd < 0.
Proof: (a) We have, for all « > 0 and j € J(x),
fx + od) + cgi(x + ad)
= f(x) + aVf (x)d + c[g{(x) + aVg[(x)d] + ojx),
where lim, o+ oj(e)/a= 0. Hence
f(x + ad) + ¢ max{g(x + ad)|je J(x)}
= f(x) + aVf(x)d + c max{g/(x) + aVgi(x)d|je J(x)} + o(w),
= f(x) + cP(x) + ab,(x; d) + o(x)
where lim,_,+ o(a)/ = 0. We have, for all « that are sufficiently small,
max{g(x + ad)|je J(x)} = max{g{x + ad)|j =0,1,...,r} = P(x + od).
Combining the two above relations we obtain (9).

(b) We have gi(x) + Vg(x)d < ¢ for all jeJ. Since gi(x) = P(x) for
all j e J(x), it follows that Vg(x)'d < & — P(x) for all j € J(x) and therefore
using the definition of 6. we have

(11 0(x; d) < Vf(x)d + c[¢ — P(x)].
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Let {u;|j e J} be a set of Lagrange multipliers for (QP).(x, H, J). The K-T
conditions are written

(12) Vf(x) + Hd + j;ungj(x) =0,
(13) c-Yu=0
jeJ

(14) gi(x) + Vg x)d < ¢, ui=0 Vjeld,
(15) wlgx) + Vg (xyd — &1 =0 Vjel.
From (12) we obtain
(16) Vf(x)d + dHd + _Zjungj(x)/d =0

je

while from Egs. (13), (15) and the fact that g;(x) < P(x) for all j € J we have

a7 2 Vg (xyd = 3 & = Y g
jeJ jeJ jeJ
> j;#j[é — P(x)]
= c[¢ — P(x)].
Combining (16) and (17) we obtain
(18) Vi(x)d + dHd + ¢[{ — P(x)] <0

Adding (11) and (18) we obtain finally
0(x;d) +dHd <0
which is the desired result. Q.E.D.

Proposiiion 4.3. (a) If x* is a critical point of f + cP, then the quad-
ratic program (QP).(x*, H, J) has {d = 0, £ = P(x*)} as its optimal solution
for every J and H with

(19) 0<H, Jx*)<cJciol1,...,r).

(b) If {d =0,¢& = P(x*)} is the optimal solution of some quadratic
program (QP).(x*, H, J) where H and J satisfy (19), then x* is a critical point
of f + cP.

Proof: (a) If x* is critical then Proposition 4.2b shows that {d = 0,
¢ = P(x*)} is the optimal solution of (QP).(x*, H, J).

(b) Suppose {d =0, & = P(x*)} is the optimal solution of (QP).(x*, H, J).
Then the K-T conditions [compare with Egs. (12) and (13)] yield for some
set of Lagrange multipliers {y;|je J}

(20) VI(x*) + Y u;Vg(x*) =0, Y opj=c

JjeJ jeJ
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If x* is not a critical point of f + ¢P then, by definition, there must exist
d € R" such that

Q1) VAx*Yd + Vg (x*)d <0 Y jeJ(x*).

The inequality constraints of (QP).(x*, H, J) corresponding to indices
Jj ¢ J(x*) must be inactive, so u; = 0 for all j ¢ J(x*). Therefore, in view of
(20), at least one of the multipliers y;, j € J(x*) must be positive. By mul-
tiplying (21) by u; and adding over J(x*) we obtain
Y wVf(x*)d + ¢ Y pVgix*yd <0
jeJ(x*) JjeJ(x¥)
or
C[Vf(x*) + > ,ungj(x*)]d <0
JjeJ(x*)

which contradicts (20). Q.E.D.

Just as the quadratic program (QP).(x, H, J) is related to (NDP),,
there is a quadratic program associated with the nonlinear program (ICP).
This program is

(QP)o(x, H, J) minimize Vf(x)d + 3d'Hd

subject to  g{x) + Vgi(x)d <0 Vjeld,
where
22) 0<H, Jx)cJ<={0,1,...,r}

For notational convenience, we allow the possibility 0 € J which corresponds
to theinequality go(x) + Vgo(x)'d < 0or0 < 0.Thisinequality is superfluous
and can be assigned an arbitrary nonnegative Lagrange multiplier. Note that
the program (QP)y(x, H, J) may not be feasible for some x and J. If it is
feasible, it has a unique optimal solution and at least one Lagrange multiplier
vector which are related to K-T pairs of (ICP) as in the following proposition.

Proposition 4.4: Ifapair {x*, (u%, ..., u¥)} isa K-T pair for (ICP), there
existsaud > Osuchthat {d* = 0, {u¥|je J}}isaK-T pairfor (QP)o(x*, H, J)
for all H and J satisfying (22). Conversely, if {d* = 0, {u}|jeJ}} isa K-T
pairfor (QP),(x*, H, J)forsome H and J satisfying(22), then {x*, (u%, ..., u*)}
is a K-T pair for (ICP), where we define u¥ = 0 for all j ¢ J.

Proof: The K-T conditions for (ICP) are
(23) V(x*) + Y ufVg(x*) =0,
j=1

(24)  g(x*) <0, wF=0,  pigx*)=0 Vj=1,...,r
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By taking u¥ = Oand using the fact thatgo(x) £ 0, we see that these conditions
imply that {0, {u¥|jeJ}} satisfy the K-T conditions for (QP)(x*, H, J).
Conversely, if we write the conditions for {0, {u¥|je J}} to be a K-T pair for
(QP)o(x*, H, J), we find that they imply (23) and (24). Q.E.D.

The next proposition shows that if (QP)y(x, H, J) is feasible, then its
optimal solution can also be obtained by solving (QP)(x, H, J L {0}) for ¢
sufficiently large.

Proposition 4.5: If {d, {;|je J}} is a K-T pair of (QP)o(x, H, J) and

c= Z auj7
jeJ
j#0
then {d, ¢ = 0, {fi;|j€ J}} is a K-T pair of (QP).(x, H, J) where
J=Ju{0}, [Ei=u Vjed, j#0, ﬁ0=C—Zle-
i
Proof: The hypothesis implies that
VF(x) + Y. pVg(x) + Hd =0, gx)+Vg(x)d<0  VjeJ,
jed
w=0, g0+ Vg x)ydl =0 Vjel.
Using the definition of J, fi;, and the fact that go(x) £ 0, we see that these
relations imply

Vix) + Y AVeix) + Hd =0, c= Y i

JjeJ jelJ
gix) + Vgix)yd <0  Vjel,
>0,  [Afgfx) + Vg x)d]=0 Vjel.

These are precisely the K-T conditions for {d, £ = 0, {§;|j € J}}in connection
with (QP)(x, H, J). Q.E.D.

An immediate consequence of the preceding proposition is the following
result showing that K-T pairs of the nonlinear program (ICP) give rise to
critical points of f + ¢P provided c is sufficiently large.

Proposition 4.6:  If {x*, (u%, ..., 1)} is a K-T pair of (ICP), then x* is
a critical point of f + cP for all ¢ with

r
cz ) uf
Jj=1
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Proof: By Proposition 4.4, there exists u¥ > 0, such that {d* =0,
g, pt, ..., 1)} isa K-T pair of (QP)y(x*, H, {0, 1, ..., r}). It follows, from
Proposition 4.5, that if ¢ > Y_, u¥, then {d* = 0, &* = 0} is an optimal
solution of (QP).(x*, H, {0, 1, ..., r}). By Proposition 4.3, x* is a critical
point of f + cP. Q.E.D.

While each K-T pair of (ICP) gives rise to a critical point of f + ¢P, the
reverse is not true. It is possible in general that critical points of f + ¢P do
not correspond to K-T pairs of (ICP), which is somewhat unfortunate since
we are contemplating solution of (ICP) by unconstrained minimization of
f+ cP. The following three propositions, among other things, delineate
situations where this difficulty does not arise.

Proposition 4.7: Let X < R"beacompact set such that, for all x € X, the
set of gradients

{Vgx)ljeJ(x),j # 0}
is linearly independent. There exists a ¢* > 0 such that for every ¢ > c*:

(@) If x* is a critical point of f + cP and x* € X, there exists a u* € R
such that (x*, u*) is a K-T pair for (ICP).

(b) If (x*, u*) is a K-T pair of (ICP) and x* € X, then x* is a critical
point of f + cP. )

For the proof of Proposition 4.7, we shall need the following lemma:

Lemma 4.8: If X is a compact set satisfying the assumption of Pro-
position 4.7, then for each x € X there exists a unique vector a(x) = [j1;(x),
.., i(x)] minimizing over yu = (u,, ..., y4,) the function

(25) a0 = [V () + 3 1;Vg,(01F + Y [P(x) — g5x)]1%ui-
j=1 j=1
The function fi(-) is continuous over X, and if (x*, u*) is a K-T pair of (ICP)
with x* € X, then
A(x*) = p*.

Proof: To show uniqueness of the minimizing vector of (25), it will
suffice to show that the second-order term of q,(x)

| 2 wVo ) + X [P — gx)1u]

cannot be zero unless u = 0. Indeed if this term is zero, then u; = 0 for all
Jj=1,...,r with P(x) > g,(x) while at the same time ) j_, #;Vg(x) = 0.
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Hence
Y Vg x) =0

il
Since {Vg{(x)|je J(x),j # 0} is a linearly independent set by hypothesis it
follows that y; = 0 for all j with g(x) = P(x). Hence u = 0.
Continuity of ji follows from continuity of Vf, Vg;, and P. If (x*, u*) is a
K-T pair for (ICP), then g.(u*) = 0. Hence p* minimizes g.(), and it
follows that u* = f(x*). Q.E.D.

Proof of Proposition 4.7: Let

c* = max Y, jifx),
xeX j=1
where jij(-) is as in Lemma 4.8. The maximum in the above equation is
attained since X is compact by hypothesis and ji(-) is continuous by Lemma
4.8.

(a) If x*e X is a critical point of f + cP, then, by Proposition 4.3,

{d = 0,¢ = P(x*)} is the optimal solution of (QP)(x* H,{0,1,...,r}).
Hence, there exist u¥, u¥, ..., w¥ such that

(26) VF(x*) + Y ufVg(x*) =0, c= Yy u¥,

Jj=0 j=0
27 uf =0, wilg(x*) — P(x*)] = 0, j=0,1,...,r

Since go(x) £ 0, we obtain

VI(x*) + ) ufVg(x*) =0,  pflgx*) — Px]=0 Vj=1....r
j=1

Using the above equations and Lemma 4.8, it follows that u¥ = [i;(x*) for all

j=1,...,r. If ¢ > c* then we obtain

O—C— ,u*—c— p{x*)=c—c*>0.
1J

Since 0 = pglgo(x™) — P(x*)] = —,u;‘;P(x*), it follows that P(x*) = 0 and
x* is feasible for (ICP). It follows from (26) and (27) that {x*, (u}, ..., u¥)}isa
K-T pair for (ICP).

(b) If(x* u*)isa K-T pair for ICP)and x* € X, then, by Lemma 4.8, we
have u* = pa(x*). If ¢ > c¢*, then
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and using Proposition 4.6, we obtain that x* is a critical point of f + cP.
Q.ED.

The next two propositions are similar to Proposition 4.7 but employ
convexity assumptions in place of the linear independence assumption.

Proposition 4.9: Assumethatg,, ..., g,areconvex over R"and that there
exists a vector X such that

g{x) <0 Vi=1...,r
Then for every compact set X, there exists a ¢* > 0 such that for all ¢ > c*:

(a) If x*is a critical point of f + cP and x* € X, there exists a u* € R"
such that (x*, u*) is a K-T pair for (ICP).

(b) If (x*, p*) is a K-T pair for (ICP) and x* € X, then x* is a critical
point of f + cP.

It is convenient to state the main argument needed for the proof of
Proposition 4.9 as a lemma.

Lemma 4.10: Let X < R"be a set such that for each x € X the system of
inequalities in d

gx) + Vg(x)d <0,  jeJ(x),

has at least one solution. Fix H > 0, and assume that there existsac* > Qwith
the following property:

For each x € X, (QP)y(x, H, J(x)) has a set of Lagrange multipliers

{u(x)1j € J(x)}
satisfying

c* = Z pi(x)
JjeJ(x)

Then for all ¢ > c¢*:

(a) If x*e X is a critical point of f + cP and x* € X, there exists a
u* € R" such that (x*, u*) is a K-T pair for (ICP).

(b) If (x*, p*)is a K-T pair for (ICP) and x* € X, then x* is a critical
point of f + cP.

Proof: (a) Assume that x* € X is critical. Let {d*, {u;(x*)|j e J(x*)}}
be the corresponding K-T pair of (QP)y(x*, H, J(x*)). Let ¢ > c*. Since
¢ > Zjej(x*) ui(x*), it follows from Proposition 4.5 that {d*, ¢ = 0} is the
optimal solution of (QP).(x*, H, J(x*)). Since x* is critical, Proposition 4.3
shows that

d* =0, P(x*) = 0.
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It follows from Proposition 4.4 that {x*, (uf, ..., 1)}, where
o Jm(x®) for jeJ(x*), j#0,
770 for j¢J(x*), j#0.

is a K-T pair for (ICP).

(b) Assume that {x*, (u¥, ..., u¥)} is a K-T pair for (ICP) and x* € X.
Then, by Proposition 4.4, d* = 0 is the optimal solution of (QP)o(x*, H, J(x*)).
Let pj(x*) be the Lagrange multipliers satisfying ¢* > Y e Mi(x*) accord-
ing to the hypothesis. It follows from Proposition 4.5 that {d* = 0, {* = 0} is

an optimal solution of (QP).(x*, H, J(x*)) for all ¢ > c*. Using Proposition
4.3, we obtain that x* is a critical point of f + cP for all ¢ > c*. Q.E.D.

Proof of Proposition 4.9: Fix H > 0. By convexity of g;, we have
gi(x) + Vg (x)(X — x) < g{x) <0 VxeR', j=1,...,r

Hence for every x € R", the program (QP)y(x, H, J(x)) has d=(X—x)asa
feasible solution. Let d(x) be its optimal solution and {u{(x)|j € J(x)} be a
corresponding set of Lagrange multipliers. We have that d(x) minimizes

V(x)d + 3d'Hd + 3 u(x)[g,(x) + Vg(x)d]

jeJ(x)

over all d while
w()gx) + Vg x)yd(x)] =0 V¥ jeJ(x).
Hence
(28)  Vf(x)d(x) + 3d(x)yHd(x)
< Vf(x)(X — x) + X — x)’H(X — x)
+ Y w®gx) + Vgx)(x — x)]

JjeJ(x)
S VAR — %) + 3 = YH(E = x) + ), w(x)g,(%)

JjeJ(x)

S VX)X = x) + 3E = xYHE = x) —b ) ),

jelJ(x)
where

b=min{—gX)|j=1,...,r} >0.
We also have
(29) 0 < 3[H™'2Vf(x) + H'2d(x)|* = 3Vf (x)H ™ 'Vf(x)
+ Vf(x)d(x)
+ Ld(xyYHd(x).
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By combining (28) and (29), we obtain
Y oux) <ex)  VYxeR

jeJ(x)
where
c(x) = GV (xYH™'Vf (x) + Vf(x)(X — x) + 2(% — x)H(x = x)]/b.
Given a compact set X and a fixed H > 0, define

¢* = max c¢(x),
xeX

and note that
c*>c(x) > Y pi(x)  VxeX.

jeI
The result now follows from Lemma 4.10. Q.E.D.

Proposition 4.11: Assume that f, g4, ..., g, are convex over R" and that
(ICP) has at least one Lagrange multiplier vector u* = (uf, ..., u¥), in the
sense that u¥ > 0,j=1,...,r, and

inf {f(x) + u*9(x)} = inf f(x).

xeR" g(x)<0
Then, for every ¢ > Z;= 1 UF,avector x* is a global minimum of / + cPifand
only if x* is a global minimum of (ICP).

We postpone the proof of Proposition 4.11 until Chapter 5, where we shall
show a stronger version (Proposition 5.25.)

The following two examples illustrate the limitations of the preceding
results.

Example 1: Let n = 2, r = 1, and for all x = (x,, x,),
f(x) =0 — D>+ x%, g.(x)=xi

Here f and g, are convex and (ICP) has a unique optimal solution {x¥ = 0,
x¥ = 0}. Consider the function

f(x) + cP(x) = (x; — 1)*> + x3 + ¢ max{0, x?}
=(x; — 1)? + x3 + oxi.
For every ¢ > 0, it has a unique critical point {x,(c), x,(c)} (in fact a global
minimum) given by
x.(c) = 1/(1 + ¢), X,(c) = 0.

Thus the optimal solution {x} = 0, x¥ = 0} of (ICP) is not a critical point of
f + cP for any ¢ > 0. Conversely, none of the critical points {x,(c), x,(¢c)},
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¢ > 0,is an optimal solution of (ICP). Here {x} = 0, x¥ = 0} isnot a regular
point [Vg,(x*) = 0], and it can be verified that there is no corresponding
Lagrange multiplier u¥. Thus Proposition 4.7 cannot be applied to a compact
set containing {x¥ = 0, x¥ = 0}, and the assumption of Proposition 4.11 is

violated. Because there is no X such that g,(X) < 0, the assumption of
Proposition 4.9 is also violated.

Example 2: Letn =1,r = 2, and for all x,
f) =0, gix)=—x, g(x)=1-x"
The function
P(x) = max{0, —x, 1 — x?}

is shown in Fig. 4.2.

P(x)=mox{0, =%, 1 -xz}

T

/IN
/I\
/1 N\
1 N\

& A >

!
-11 1-J5 \\ { b3

7

FIG. 42 Function P(x) for Example 2

Since f(x) £ 0, the critical points of f + c¢P do not depend on c. They are

x=%(1—\/5), x =0, 1<x

Of these, only the ones with x > 1 correspond to K-T pairs of (ICP) (each
with Lagrange multipliers u¥ = 0 and uf = 0). Proposition 4.7 applies to
these points with ¢* = 0. The critical points 3(1 — \/5) and 0 are not covered
by Proposition 4.7 since the corresponding sets of gradients {Vg;(x)|g(x) =
P(x),j = 1,2} are linearly dependent. Propositions 4.9 and 4.11 are in-
applicable, since g, is not convex.

Example 2 illustrates the type of difficulties that are unavoidable if we
attempt to solve (ICP) by minimizing /' + ¢P. The minimization method will
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be attracted to the infeasible local minimum (1 — \/3) if started near it
independently of the value of ¢ (compare with Fig. 4.2). A very similar situa-
tion occurs in connection with the quadratic penalty method (compare
with the example following Proposition 2.3).
Extension to Mixed Equality and Inequality Constraints
Consider now the general problem

(NLP) minimize f(x)

subject to  h(x) = 0, g(x) <0.

We can convert this problem into one of the form (ICP) by converting each
equality constraint into two inequality constraints.
By denoting

hi(x) = g, +2i-1(x), —hi(x) = gr+24),
we obtain the problem
minimize f(x)
subjectto gi{x) <0, j=1,...,r+2m.

We can then transfer in a straightforward manner the analysis for (ICP) to
(NLP). We summarize these results, leaving many of the details to the reader.
Denote, for all xe R",de R", and ¢ > 0,

go(x) =0,
P(X) = max{go(x), gl(x)a M gr(x)9 |h1(X)|, A |hm(x)] }}
Jx) = {jlgx) = P(x),j=1,...,1},
I(x) = {i||h(x)| = P(x),i=1,..., m},
0.(x; d) = Vf(x)d + ¢ max{Vg(x)'d, {i(x; d)|j € J(x), i€ I(x)},
where
Vh(x)d if hy(x) > 0
G d) =4 —=Vh(xyd  ifh(x) <0
|Vhi(x)d| ifh(x)=0

A vector x is said to be a critical point of f + cP if

0(x;d) =0 VdeR"
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We have that if x is a critical point of f + ¢P, then (compare with Proposition
4.3) the quadratic program

(QP)(x, H, J, I) minimize Vf(x)d + 3d’'Hd + ¢
subject to  gi(x) + Vg x)d <&,  jeJ,
|h(x) + Vh(x)d| < &, i€l
has {d = 0, ¢ = P(x)} as its optimal solution for each H, J, and I with
(30) 0<H, Jx)cJ < {0,1,...,r}, Ix)cIc{l,...,m}.

Conversely, if {d =0, ¢ = P(x)} is the optimal solution of (QP).(x, H, J, I)
for some H, J, and I satisfying (30), then x is a critical point of f + cP.

If x is not a critical point of f + cP, then there is a d € R" such that
6.(x;d) <0.Such ad is a descent direction for f + cP and can be obtained by
solving (QP).(x, H, J, I) (compare with Proposition 4.2).

Consider the quadratic program

(QP)o(x, H, J,I) minimize Vf(x)d + 3d'Hd
subject to  g{(x) + Vg;(x)d <0, jeJ,
h(x) + Vh(xyd =0, i€l

where H, J, and I satisfy (30). If {x*, (u¥, ..., u¥), (A}, ..., A%)}isa K-T triple
of (NLP), then {d* = 0, {u}|jeJ}, {A¥|ieI}}, where u§ = 0,is a K-T triple
of (QP)o(x*, H, J, I). Conversely if {d* = 0, {u¥|jeJ}, {Afliel}}isaK-T
triple of (QP)o(x*, H, J, I)then {x*, (u¥, ..., ), (A%, ..., AH)}isaK-Ttriple
of (NLP), where u¥ = Af = 0 for all j¢J and i¢ I (compare with Pro-
position 4.4).

If d is the optimal solution of (QP)y(x, H, J, I), with corresponding
Lagrange multipliers {y;|j € J}, {4;|i € I}, and

c= Z'u.l-'- lella

jeJ iel
N EY
then {d, ¢ = 0} is the optimal solution of (QP).(x, H, J, I) (compare with
Proposition 4.5).
If {x*, (u¥, ..., %), (A%, ..., A5} is a K-T triple of (ICP), then x* is a
critical point of f + cP for all ¢ with

m

c= Yur+ YK
j=1 i=1

(compare with Proposition 4.6).
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We state formally the analog of Proposition 4.7:

Proposition 4.12: Let X = R"be a compact set such that for all x € X the
set of gradients

{Vgi(x), Vh(x)|j€ J(x),j # 0, i€ I(x)}
is linearly independent. There exists a ¢* > 0 such that for every ¢ > c*:

(a) If x* is a critical point of f + cP and x* € X, there exist u* € R" and
A*¥ € R™ such that (x*, u*, 2*) is a K-T triple for (NLP).

(b) If (x*, u* A*) is a K-T triple of (NLP) and x* € X, then x* is a
critical point of f + cP.

The proof of Proposition 4.12 is nearly identical to the proof of Proposition
4.7. As a threshold value c*, one may take

c* = max{ YA+ Y IZi(X)I},
xeX (j=1 i=1
where ji(x) and A(x) are the unique minimizing vectors of

a1 1) = V) + Vo + VHAP + T [P) = g,(01

J

+ TP — IhCOI12E:

4.2 Linearization Algorithms Based on Nondifferentiable Exact
Penalty Functions

4.2.1 Algorithms for Minimax Problems
We first consider an algorithm for finding critical points of /' + ¢P, where
c >0,
P(X) = max{go(x), gl(x)a e gr(x)} v X € Rn?
go(x) =0 Y xeR",

and f,g;€ C',j = 1, ..., r. We subsequently specialize the algorithm and the
corresponding convergence analysis to (ICP).

Linearization Algorithm: A vector x, € R"is chosen and the kth iteration
of the algorithm is given by

(1 Xgr1 = X+ edy,
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where o, is a nonnegative scalar stepsize, and dk is a direction obtained by
solving the quadratic program in (d, &)
(QP).(x,, H,, J,) minimize Vf(x,)d + $+d'H,d + c¢&

subject to  g{(x,) + Vgj(x)d < ¢, jeJy-
We require that H, and J, satisfy

0 < Hy, Js(x) = J, = {0,1,...,r},
where
Jo(xi) = {jlgilxi) = P(x) = 6,j=0,1,...,1},

and & is some positive scalar which is fixed throughout the algorithm. The
stepsize a, is chosen by any one of the stepsize rules listed below:

(@) Minimization rule: Here o, is chosen so that

f(x + oedy) + cP(x, + o4 dy) = min{f(x, + ady) + cP(x, + ody)}.
220

(b) Limited minimization rule: A fixed scalar s > 0 is selected and o, is
chosen so that

f(xk + akdk) + CP(xk + akdk) = min{f(xk + adk) + CP(xk + Otdk)}.

. ae[0,s]

(c) Armijo rule: Fixed scalars s, 8, and o, with s > 0, f€(0, 1), and
o €(0, 3), are selected and we set o, = f™s, where m, is the first nonnegative
integer m for which

(@) fa) + cP(x) — f(x + Bmsdi) — cP(x + Bsdy) = of™sd) Hydy.

We do not discuss the rather complex question of practical (approximate)
implementation of the minimization rules. On the other hand, it is easy to
show that if d, # 0, the Armijo rule will yield a stepsize after a finite number of

arithmetic operations. To see this, note that by Proposition 4.2, we have
forall o > O,

(3) f(xw) + cP(x) — f(xi + ody) — cP(x, + ady) = —ab(x;; dy) + o(x)
> ad, Hyd, + o(a).

Hence if & > 0 is such that for ae€(0,&] we have (1 — o)ad, H,d, +
o(a) > 0, then it follows using (3) that
f(x) + cP(xp) — f(x, + ody) — cP(x, + ody) > oadi Hyd, YV o e (0, a].
Therefore there is an integer m such that (2) is satisfied. Note also that if
d, = 0 then, by Proposition 4.3, x, is a critical point of f + cP.

Note that, in implementing the algorithm instead of solving (QP).(x;,
H,, J,), it is possible to solve a dual problem. The reader who is familiar with
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duality theory can verify that one such dual problem involving maximization
with respect to the Lagrange multipliers y;, j € J,, is given by

maximize —%[Vf () + > uVg ,(xk)] H;! [Vf )+ ) #ngJ(xk)]

jeJx jeJk

+ Z lujgj(xk)

JjeJk
subjectto Y ui=c¢, p; =20 VYV jeJ,.
JjeJk

It may be advantageous to solve the dual problem above, since it has a simpler
constraint set than (QP)(x,, Hy, J;) and possibly a smaller number of
variables.

We have the following convergence result:

Proposition 4.13: Let {x,} be a sequence generated by the linearization
algorithm where the stepsize o, is chosen by either the minimization rule or
the limited minimization rule or the Armijo rule. Assume that there exist
positive scalars y and I' such that

4 YNzl <ZHz <T|z> VzeR", k=0,1,....
Then every limit point of {x,} is a critical point of f + cP.

Proof:  We provide a proof by contradiction. Assume that a subsequence
{x}x generated by the algorithm using the Armijo rule converges to a vector
x which is not a critical point of f + ¢P. We may assume without loss of
generality that for some index set J, we have

Jx)=J<={0,1,....,r}, J,=J Vkek.

Since f(x,) + cP(x;) is monotonically decreasing, we have f(x,) + cP(x;) —
f(x) + cP(x) and hence also {f(x;) + cP(x;) — f(Xk+1) — cP(Xz44)} — O.
By the definition of the Armijo rule, we have

Fx) + cP(x) — f(xk+1) — cP(Xp4 1) > oo di Hydy.
Hence
(5) akd;‘dek g 0

Since for k € K, d, is the optimal solution of (QP)(x,, H,, J), it follows that
for some set of Langrange multipliers {uk|jeJ} and all k € K, we have

(6) Vi(x) + Y iiVgx) + Hyd =0, ¢ =Y i,
jeJ

jeJ

(7 =0,  plgix) + Vgx)de —E1=0 Ve,



4.2 LINEARIZATION ALGORITHMS 199

where
& = max{g(x;) + Vg;(xi)di}.
jeJ

The relations ¢ = Y ;. u¥ and p% > 0 imply that the subsequences {j}x are
bounded. Hence, without loss of generality, we may assume that for some
W, j€J, we have

® Wk —u;  Vijel.
Using assumption (4), we can also assume without loss of generality that
® {Hijx > H

for some positive definite matrix H.
Now from (5), it follows that there are two possibilities. Either

(10) lim inf{|d|} = 0
ek
or else
11) lim inf o, = O, lim inf{|d,|} > O.
ek ek

If (10) holds, then we may assume without loss of generality that {d,}x — 0
and from (6)-(9), we have

V) + Y Vg0 =0,  c=Yu
jeJ jeJ
B =0, ullgx) —&1=0 Vjel,
where & = max;.; g;(x). Hence the quadratic program (QP)(x, H, J) has
{d =0, P(x)} as its optimal solution, while we have J(x) = Js(x) =
J = {0, 1,..., r}. From Proposition 4.3, it follows that x is a critical point of

f + cP thus contradicting the hypothesis made earlier.
If (11) holds, we may assume without loss of generality that

(12) {o}x = 0.

Since (6), (8), and (9) show that {d,} is a bounded sequence, we may assume
without loss of generality that

(13) {djx—>d #0,

where d is some vector which cannot be zero in view of (11). Since {o}x — 0,
it follows, in view of the definition of the Armijo rule, that the initial stepsize s
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will be reduced at least once for all k € K after some index k. This means that
forallkeK, k > k,

(14)  f(x) + cP(x) — f(xi + ady) — cP(x, + & dy) < od,d,H,d,,
where

(15) % = o/B.

From Proposition 4.2a we have

(16)
f(x) + cP(xy) — f(xi + %edy) — cP(xy + Gedy) = —0(xy; %edy) + 0(%),

where

(17 lim @ =0,
koo Xk
keK

while from Proposition 4.2b, we have
—0.(x;;d) = d,H,d,.
Combining this relation with (14) and (16), we obtain
(1 — o)d, H dy, + o(o)/o < O.

In view of (9), (13), and (17) this leads to a contradiction. This completes the
proof of the proposition for the case of the Armijo rule.

Consider now the minimization rule and let {x,}x converge to a vector x
which is not a critical point of f + cP. Let X, be the point that would be
generated from x, via the Armijo rule and let &, be the corresponding stepsize.
We have '

S x)+ cP(x) = f (s 1) = P(x 1) 2 f(xid+ cP(x,) —
SXir1) —cP(Xisy) = 0&,di H, d,.
By simply replacing o, by & in the argumentsof the earlier proof, we obtain a
contradiction. In fact, this line of argument establishes that any stepsize rule
that gives a larger reduction in objective function value at each iteration than

the Armijo rule inherits its convergence properties. This proves also the
proposition for the limited minimization rule. Q.E.D.

It is possible to relax somewhat condition (4) and still be able to prove
the result of Proposition 4.13 similarly as in Section 1.3.1. For example, the
reader may wish to verify that (4) can be replaced by the condition

yIw(x) 9 |z]? < ZHyz < T|w(x) || z]? VzeR", k=0,1,...,

where g, and g, are some nonnegative scalars and w(-) is a continuous function
such that w(x) # 0 if x is not a critical point of f + ¢P [for example, w(x) =
min{0,(x; d)||d] < 1}].



4.2 LINEARIZATION ALGORITHMS 201

The method of proof of Proposition 4.13 can be used to show that if an
alternative form of the Armijo rule given by

fx) + cP(x) — fxi + Bsdy) — cP(xy + B™sdi) = —0l(xi; fsdy),
where &, is defined by
(18) &.x;d) = Vf(x)d + ¢ max{g;(x) + Vgx)d|j=0,1,..., r} — cP(x),

then the result of Proposition 4.13 also holds. The verification of this fact is
left for the reader (see also Section 4.5.3). This form of the Armijo rule has
been suggested by Mayne and Polak (1978). In contrast with (2), it requires
the evaluation of the gradients of all the constraint functions.

4.2.2.  Algorithms for Constrained Optimization Problems

Consider the inequality constrained problem
(ICP) minimize f(x)
subject to  g{x) <0, j=1...,r

We know that each K-T pair (x*, u*) of (ICP) gives rise to a critical point of
f + cPprovidedc > Y-, u¥ Thus we can apply the linearization algorithm
for finding critical points of f + ¢P. The difficulty with this is that we may not
know a suitable threshold value for ¢. Under these circumstances, a possible
approach is to choose an initial value ¢, for ¢ and increase it as necessary at
each iteration k if the algorithm indicates that the current value ¢, is in-
adequate. An underestimate for a suitable value of ¢, is Y ., j=o M}, Where
{,uf-lj € J,} are Lagrange multipliers obtained by solving (QP)o(xy, Hy, Ji)
(compare with Proposition 4.5). At the same time, we know that if
Ck = Z #57

jeJrk

%0
then the problem (QP)o(x, Hy, Ji) is equivalent to (QP),,(x, Hy, Ji v {0})
in the sense that d, is the optimal solution of the former if and only if (d;, 0)
is the optimal solution of the latter (Proposition 4.5). So by solving
(QP)o(xy, Hy, J1), we not only solve (QP),(x,, Hy, Ji U {0}), as needed in the
linearization algorithm, but we also simultaneously obtain an underestimate
for a suitable value of ¢, . These considerations lead to the following algorithm:

Modified Linearization Algorithm: A vector x,€R" and a penalty
parameter ¢, > 0 are chosen. The kth iteration of the algorithm is given by

Xp+1 = X + o4y, Chr1 = Gy
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where o, is chosen by any one of the stepsize rules given in Section 4.2.1 with ¢
replaced by ¢,. [For example, the minimization rule takes the form

[ + o dy) + T P(xy + apdy) = min{ f(x, + ady) + ¢ P(x, + ady)}.

«20
The vector d, and the scalar ¢, depend on x,, ¢, a matrix H,, and an index set
J satisfying
0< H,, Js(x) = J = {0, 1,...,1},
where
Js(x) = {jlgj(xi) = P(x) — 0,j=0,1,...,r}

and 6 > 0 is a scalar fixed throughout the algorithm. They are obtained
depending on which of the following cases holds true as follows:
CaSE 1: There exists d € R" satisfying

(19) gi(x) + Vgi(x)d <0 VjeJ
In this case d; is the unique solution of
(QP)o(xx, Hy, J,) minimize Vf(x,)d + 1d'H,d
subject to  g;(x;) + Vgi(x,)d <0 Vjed,
and ¢, is defined by

k : k
6 = Zjelk,j;to uj +e if ) e izo M = Cis
k C otherwise,

where {y%|j€J,} is a set of Lagrange multipliers for (QP)o(x;, Hy, J;), and
¢ > 0 1is a scalar that is fixed throughout the algorithm.

Notes: (1) When there are equality constraints of the form h,(x) = 0,
they can be treated by conversion to the inequalities h(x) < Oand —h(x) < 0.
In that case, the corresponding quadratic program is

minimize Vf(x,)d + 3d'H,d
subject to  g;(x,) + Vgi(x,)d <0 Vjied,
hi(xk) + Vhi(xk)/d = 0 V i€ Ik,

where I, is an index set containing {i||h(x;)| > P(x;) — J}. The definition of
¢, becomes

: k

& = {Zjefk,jaeo M+ Yien | A + ¢ if Y e izo s + Dien A= ¢,

k — .
Cx otherwise,

where {1, Af|j € Jy, i€ 1,} is a set of Lagrange multipliers for the quadratic
program.
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(2) In place of (QP)y(xy, Hy, Jy), it may be easier to solve the dual
problem in p;, j € Jy,

maximize —3[Vf(x,) + Y u;Vgx)1Hi "IV () + Y 1;Vg(x0)]

JjeJk jeJx

+ Y uigfx)

jeJx

subjectto u; >0, jeJ,.

Case 2: There does not exist d € R" satisfying (19). In this case, d, to-
gether with some &, > 0 are the unique solution of
(QP).(xi, Hy, J) minimize  Vf(x,)d + 7d'Hpdy + ¢,.&

subject to  gi(x;) + Vg;(x)d <&, jeJy,
and
Ek = Ck.

We observe that the sequence {c,} generated by the algorithm is un-
bounded only if the sequence {x,} is such that the system (19) is feasible for an
infinite number of indices k with Y ;.. jz0 45 = ¢. Otherwise, for some
¢ > 0, we have ¢, = ¢ for all k sufficiently large, and Proposition 4.5 implies
that the algorithm is equivalent to the earlier linearization algorithm for which

Proposition 4.13 applies. In this way, we obtain the following convergence
result.

Proposition 4.14: Let {x,} be a sequence generated by the modified
linearization algorithm where the stepsize «, is chosen by either the minimiza-
tion rule or the limited minimization rule or the Armijo rule. Assume that
there exist positive scalars y and I such that

JzP < ZH,z <T|z> VzeR% k=0,1,....
(a) If there exist k and ¢ such that
(20) g =¢C Vk>k

then every limit point of {x,} is a critical point of ' + ¢P. If, in addition, the
system of inequalities

(21) gi(x) + Vgi(x)d <0 Vjedy

is feasible for an infinite set of indices K, then every limit point of {x,, u*}xis a
K-T pair of (ICP), where for k € K, we have that

luk = (.uli” /"f)’

{u¥|j e J,} is a set of Lagrange multipliers of (QP)o(xy, Hy, Ji), and ,u’j =0
forj¢J,.
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(b) Ifthefunctionsgy, ..., g, are convex, there exists a vector X € R" such
that

gx) <0  Vj=1,....r€

and the sequence {x,} is bounded, then every limit point of {x,, u*} isa K-T
pair of (ICP).

Proof: (a) Theprooffollows from the remarks preceding the statement
of the proposition.
(b) Under the assumptions of this part, the system (21) is feasible for all
k. An argument which is very similar to the one used in the proof of Proposi-
tion 4.9 shows that
T i< 3V Ca) He 'Vf (%) + Vf () (X — x) + 3(X — X Hy(X — x3)
ien 1T min{—gX)|[j=1,2,...,r}
Jj¥0
It follows that if {x,} is bounded then {} ;;, ;o ¢} is also bounded which
implies that (20) holds for some k. The result follows from part (a). Q.E.D.

It is interesting to note that the proof of Proposition 4.14b hinges on the
fact that its assumptions guarantee that the system (21) is feasible and the
sequence of multipliers {y%|j € J,, j # 0} of (QP)o(xy, Hy, J,) is bounded if
{x;} and {H,} are bounded. There are assumptions other than the ones of
Proposition 4.14b that guarantee boundedness of {u|je J,, j # 0}. For
example, the reader may wish to verify a convergence result similar to
Proposition 4.14b for the problem

(ECP) minimize f(x)
subject to  hy(x) = 0, i=1....,m

under the assumption that the set {Vh(x)|i = 1, ..., m} is linearly indepen-
dent for all x € R™.

Implementation Aspects

One of the drawbacks of the modified linearization algorithm is that the
value of the penalty parameter ¢, may increase rapidly during the early stages
of the algorithm, while during the final stage of the algorithm a much smaller
value of ¢, may. be adequate to enforce convergence to a K-T pair of (ICP).
A large value of ¢, results in very sharp corners of the surfaces of equal cost of
the penalized objective f + ¢, P along the boundary of the constraint set, and
can have a substantial adverse effect on algorithmic progress. In this con-
nection, it is interesting to note that if the system g/(x;) + Vg(x;)d <0,
Jj € J, is feasible, then the direction d, is independent of ¢, while the stepsize &,
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depends strongly on ¢, For this reason, it may be important to provide schemes
that allow for reduction of ¢, if circumstances appear to be favorable. One
possibility is to monitor the progress of the generated sequence {(x, uH}
towards satisfying the K-T conditions. If at some iteration k, a pair (x,, ") is
obtained for which a measure of violation of the K-T conditions [for example,
|H,d,| + P(x,) or something similar] is reduced by a certain factor over the
last time ¢ was reduced, then we set Cosy = Y e jo0 Mf + eeven if
Y jes j=o M5 < ¢,. This guarantees that even if ¢, is reduced for an infinite
set of indices K then every limit point of {x,, u*}x will be a K-T pair. If ¢,
is reduced only a finite number of times, the resulting scheme is essentially
the same as the one involving no reduction for the purposes of convergence
analysis.

A most important question relates to the choice of the matrices H,. In
unconstrained minimization, one tries to employ a stepsize o, = 1 together
with matrices H, which approximate the Hessian of the objective function at
a solution. A natural analog for the constrained case would be to choose H;
close to the Hessian of the Lagrangian function

L(x, p) = f(x) + pg(x)

evaluated at a K-T pair (x*, u*). Indeed if the objective function is positive
definite quadratic, the constraints are linear, and J, = {0, 1, ..., r}, then the
corresponding algorithm will find the optimal solution in a single iteration.

There are two difficulties relating to such an approach. The first is that
V2, L(x*, u*) may not be positive definite. Actually this is not as serious as
might appear. As we discuss more fully in Sections 4.4.2 and 4.5.2, what is
important is that H, approximate closely VZ, L(x*, u*) only on the subspace
tangent to the active constraints. Under second-order sufficiency assumptions
on (x*, u*), this can be done with positive definite H,, since then V2, L(x*, u*)
is positive definite on this subspace.

The second difficulty relates to the fact that even if we were to choose H
equal to the (generally unknown) matrix V2, L(x*, u*) and even if this matrix
is positive definite, it may happen that arbitrarily close to x* a stepsize o = 1
is not acceptable by the algorithm because it does not decrease the value of the
objective fucntion f + c¢P. An example illustrating this fact is given in
Section 4.5.3. This example shows that unless modifications are introduced in
the linearization method, we cannot expect to prove a superlinear rate of
convergence for broad classes of problems even with a favorable choice of the
matrices H,. We shall consider such modifications in Section 4.5.3, where we
shall discuss the possibility of combining the linearization method with
superlinearly convergent Lagrangian methods.

When the linearization method converges to a local minimum of (NLP)
satisfying the sufficiency Assumption (S*) of Section 3.1, it can be normally
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expected to converge at least at a linear rate. As an indication of this, we note
that when there are no constraints the method is equivalent to the (scaled)
steepest descent method. The proof of a linear convergence rate result is
sketched in Section 4.4.1 (see also Pschenichny and Danilin, 1975).

It is interesting to note one important special case where the linearization
method with H, equal to the identity can be expected to converge super-
linearly under reasonable assumptions. This is the case where f(x) £ 0, and
(ICP) is equivalent to the problem of solving the system of nonlinear in-
equalities

gi{x) <0, j=L2...,r

We refer again to Pschenichny and Danilin (1975) for related analysis.

4.3 Differentiable Exact Penalty Functions

4.3.1 Exact Penalty Functions Depending on x and A

In this section, we show that it is possible to construct a differentiable
unconstrained optimization problem involving joint minimization in x and A
and having optimal solutions that are related to K-T pairs of the problem

(ECP) minimize f(x)
subject to  h(x) = 0,

where we assume that f, h € C* on R". To see that something like this is possible
consider the Lagrangian function

(6] L(x, ) = f(x) + Xh(x),

the necessary conditions for optimality

2 V.L(x,2) =0, V,L(x, A) = h(x) = 0,

and the unconstrained optimization problem

3) minimize %|h(x)|* + |V, L(x, )|?
subject to (x, A) e R" x R™

It is clear that (x*, A*) is a K-T pair for (ECP) if and only if (x*, 1*) is a
global minimum of (3). It is thus possible to attempt the solution of (ECP)
by solving instead the unconstrained problem (3). A drawback of this
approach is, however, that the distinction between local minima and local
maxima of (ECP) is completely lost when passing to problem (3).



4.3 DIFFERENTIABLE EXACT PENALTY FUNCTIONS 207

As an alternative to problem (3), we may consider the problem

O] minimize P(x, 4; ¢, ®)
subjectto (x,4)eR" x R™,
where P is defined by
©) P(x, A; ¢, @) = L(x, A) + 3c|h(x)|* + 3|V L(x, H)|?

and ¢ and « are some positive scalar parameters. As initial motivation for
this, we mention the fact that, for all ¢ > 0 and o > 0, if (x*, A*) is any K-T
pair of (ECP) then (x*, A*) is a critical point of P(-, -; ¢, a) [compare with (2)
and (5)]. Our main hope, however, is that by introducing L(x, 4) in the
objective function and by appropriately choosing ¢ and «, we can build into
the unconstrained problem (4) a preference towards local minima versus local
maxima of (ECP). Before going into this, we examine the relation of critical
points of P with K-T pairs of (ECP).

Proposition 4.15: Let X x A be a compact subset of R” x R™. Assume
that Vh(x) has rank m for all x € X. There exists a scalar & > 0 and, for each
a€(0, &], a scalar &(«) > O such that for all ¢ and o with

a e (0, ], ¢ = (o),

every critical point of P(-,- ; ¢, «) belonging to X x Aisa K-T pair of (ECP).
If V2, L(x, A) is positive semidefinite for all (x, A) € X x A, then o can be
taken to be any positive scalar.

Proof: The gradient of P is given by
V.P V.L + ¢Vhh + aVZ, LV, L
© VP = [V,IP] B [ h + aVH'V, L ]

where all gradients are evaluated at the same point (x,4) € X x A. At any
critical point of P in X x A, we have VP = 0 which can be written as

I+ aViL cVh][V.L
@ [ oaVi I ][ h ]’O'

Let & > 0 be such that for all « € (0, &] the matrix I + aVZ L is positive
definite on X x A. (If V2, L is positive semidefinite on X x A, then & can
be taken to be any positive scalar.) Then from the first equation of system
(7), we obtain

®) V.L= —c(I + aV2,L)"'Vhh,
and substitution in the second equation yields

©) [acVR(I + aV2,L)"'Vh — ITh = 0.
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For any « € (0, 4], we can choose ¢(x) > 0 such that, for all ¢ > &), the
matrix on the left above is positive definite on X x A. For such ¢ and «, we
obtain from (9) h = 0 and from (8) V. L = 0. QED.

The proof of the proposition can be adapted to show that there exist
@ >0 and ¢ > 0 such that, for all e (0,&] and ce (0, ], every critical
point of P in X x A is a K-T pair of (ECP). However, as will be seen in
Proposition 4.16, there are other reasons that make us prefer a large rather
than a small value of c.

The result of Proposition 4.15 might lead one to hypothesize that if
h has rank m on the entire space R" then all the critical points of P(-, - ; c, o)
are K-T pairs of (ECP). This is not true however. Even under quite favorable
circumstances P can have, for every ¢ > 0 and o > 0, critical points that are
unrelated to K-T pairs of (ECP). According to Proposition 4.15, these
spurious critical points move towards “infinity” as ¢ —» o0 and a — 0.
We illustrate this situation by an example.

Example 1: Consider the scalar problem where
f) =83,  h(x)=x, P(x,A;c,0) =&x3 + Ax + dex? + Ladx? + A%

Here {x* =0,A* =0} is the unique K-T pair. Critical points of P are
obtained by solving the equations

ViP=3x>+A+cex+ax(3x?2+4) =0, V,P=x+alx?+ 1) =0.
From the second equation, we obtain
A= —x/u — 3x?,

and substitution in the first equation yields, after a straightforward
calculation,

x[x — ¢+ (1/x)] = 0.

By solving these equations, we obtain that the critical points of P are
{x*=0,2* =0} and {x(c,®) = ¢ — /o, Mc, ) = (1 — c*a?)/202}. It can
be seen that, for every ¢ > 0 and o > 0 with ca # 1, the critical point [x(c, o),
A, a)] is not a K-T pair of (ECP). On the other hand, for any fixed « > 0,
we have lim__, ,, x(c, ) = oo and lim,_, , A(c,®) = — oo which is consistent
with the conclusion of Proposition 4.15.

The next example shows that if VZ L is not positive semidefinite on
X x A then the upper bound & cannot be chosen arbitrarily.

Example 2: Letn =2 m = 1, and

f(xy, x3) = —%xf, h(xy, x;) = x,.
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Here {x* = 0, x% = 0, A* = 0} is the unique K-T pair (a global maximum).
Also Vh is constant and equal to (0,1) so that the rank assumption in
Proposition 4.15 is satisfied. Take « = 1. We have, for every ¢ > 0,

P(x, A;¢, 1) = —3x} + 2x; + Jox + 3x1 + 347 = Axy + Joxd + 34

Since P is independent of x,, any vector of the form {x; = y,x, = 0,4 = 0}
with y € R is a critical point of P and of these only the vector {x} = 0,x3 =0,
A* = 0} is a K-T pair of (ECP).

The next proposition indicates how local minima of (ECP) relate to
unconstrained local minima of P.

Proposition 4.16: Assume f, he C* on R".

(a) If x* is a strict local minimum of (ECP) satisfying, together with a
corresponding Lagrange multiplier vector A*, the second-order sufficiency
assumption (S) of Section 2.2, then for every o > 0 there exists a &(«) > 0
such that, for all ¢ > &(x), (x*, A*) is a strict unconstrained local minimum
of P, and the matrix V2P(x*, A*; c, «) is positive definite.

(b) Let (x*, A*) be a K-T pair of (ECP). Assume there exists z€ R"
such that Vh(x*)z = 0 and z'V2 L(x*, A*)z < 0. Then there exists & > 0
such that for each « € (0, ] and ¢ > 0, (x*, A*) is not an unconstrained local
minimum of P.

Proof: (a) By differentiating VP as given by (6) and taking into
account the fact that V,L(x* A*) = 0 and h(x*) = 0, we obtain, via a
straightforward calculation,

H N cNN" 0 H
2 * A% . —
\ P(X 92' ,C,a) [N/ 0] + [ 0 0] + a[N/] [H N]a

H = V2, L(x*, A*), N = Vh(x*).

We can write, for any (z, w) e R"*™,

where

(10) [z wIVZP(x* A*;c, a)[vzv] = Q(z,w) + cR(z,w),
where Q and R are the quadratic forms

(11 O(z,w) = ZHz 4+ 2w'N'z + a|Hz + Nw|?,
(12) R(z,w) = zZ/NN'z.

If (z, w) # (0, 0) and R(z, w) = 0, then N’z = 0 which implies
O(z,w) = ZHz + a|Hz + Nw|.



210 4. EXACT PENALTY METHODS AND LAGRANGIAN METHODS

By the second-order sufficiency assumption we have zZHz >0 if z £ 0
while if z =0 then w # 0 and the full rank assumption on N implies
|[Hz + Nw|®> = |[Nw|*> > 0. In either case, we obtain Q(z,w) > 0 for all
(z, w) # 0 with R(z, w) = 0. Since R is positive semidefinite, by Lemma 1.25,
there exists a ¢(e) > 0 such that for all ¢ > ¢(«) the quadratic form Q + cR,
or equivalently the matrix V2P(x*, A*;c, ), is positive definite. Hence,
(x*, A*) is a strict local minimum of P.

(b) Let z be such that N'z = 0 and z’Hz < 0. For « < —z'Hz/|Hz|?
we obtain, from (10)-(12),

[z OJV2P(x* i*:c, oc)[(z)] = 7Hz + a|Hz|? < 0,

which implies that V2P(x*, 1*;c,«) is not positive semidefinite. Hence,
(x*, A*) cannot be a local minimum of P. Q.E.D.

If in Example 2 we take a > 1, then we see that the global maximum
{x¥ = 0,x¥ = 0} gives rise to a global minimum of P, and this shows that
the upper bound on « is necessary for the conclusion of Proposition 4.16b.
Also in Example 1 by computing V2P at the global minimum {x* = 0,
A* = 0}, we find that it is positive definite if and only if ac > 1, so the lower
bound c¢(«) on ¢ is necessary for the conclusion of Proposition 4.16a.

Proposition 4.16b shows in particular that local maxima of (ECP)
satisfying the second-order sufficiency conditions for optimality cannot
give rise to unconstrained local minima of P provided « is chosen small
enough, while under sufficiency assumptions local minima of (ECP) give
rise to local minima of P provided c is chosen large enough. This supports
our contention that by employing the exact penalty function P in place of
$1h(x)|* + $|V.L(x, 4)|> we provide a preference towards local minima
rather than local maxima of (ECP).

We are still not completely satisfied, however, in view of the fact that this
property depends on proper choice of both parameters ¢ and . It turns out
that we can eliminate the effect of the parameter « and simultaneously
gain some additional flexibility by considering the function

(13)  P(x,4;¢, M) = L(x, 4) + 3¢|h(x)|* + 3IM(x)V, L(x, )|,

where, for each x, M(x) is a p x n matrix where m < p < n. We assume that
M e C? on the open set

(14) X* = {x|Vh(x) has rank m}.
Note that, for p = n and
M(x) = /al,

we obtain the function P(x, 4; c, ) considered earlier.
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We calculate the gradient of P. Let my, ..., m, denote the columns of
M’ so that

my(x)
Mx)=| : |
my(x)
and let ey, ..., e, denote the columns of the p x p identity matrix, so that
m(x) = M(x)e;, i=1,...,p,
my(x) = e;M(x), i=1,...,p.

Using this notation and suppressing the argument of all functions, we have

p
V.GIMV.L]?) = Vx[% Y (mngL)z]
i=1
)4
= Y (Vi.Lm; + Vm;V,L)mV L
i=1

)4
= Vf,xLM’(Z e,-eﬁ)MVxL + (

i=1

1

)4

VmiVxLe;-)MVxL.
=1
Since Y P_ e;e; = I, we finally obtain

14
V.MV, L) = (vngM' Ly VmiVxLe;)MVxL.

Using this expression and (13), we obtain

p

(152) V,.P =V,L + cVhh + (vngM' +3 Vm,-VxLe;)MVxL,
i=1

i=

(15b) V,P=h+ VAM'MV,L,
where the argument of all functions in the expressions above is the same
(typical) vector (x, A) € X* x R™

- The following result is an immediate consequence of the form of P and
VP given by (13) and (15).

Proposition 4.17:  If (x*, A*) is a K-T pair of (ECP) and x* € X*, then
(x*, A*) is a critical point of P(-,-; ¢, M) and
P(x*, 2%;¢, M) = f(x¥).

The following three propositions apply to the case where p = m, and
the m x m matrix M(x)Vh(x) is nonsingular in some subset of R". This can
be true only if Vh(x) has rank m in which case any choice of M of the form

(16) M(x) = A(x)Vh(x)',
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where A(x) is an m x m nonsingular continuously differentiable matrix on
X*, makes M(x)Vh(x) nonsingular. For example, we may choose

M(x) = nVh(x),,
where 7 is any positive scalar.

Proposition 4.18: Let X x A be a compact subset of X* x R™, where
X* is given by (14) and assume that M(x)Vh(x) is an m x m nonsingular
matrix for all x € X. Then there exists a ¢ > 0 such that, for all ¢ > ¢, every
critical point of P(-,-;c, M) belonging to X x A is a K-T pair of (ECP).

Proof : By (15), the condition V; P = 0 at some point of X x A implies
17 MV.L = —(VKM')"'h,
so if at this point V, P = 0 also holds, we obtain, using (15) and (17),
0=MV.P

13

= MV,L + cMVhh + M(Vg,,LM' + Y Vm,-VxLeg)MVxL
i=1

—(VA'M")™*h + cMVhh

-M <V§xLM "+ ) VmV, LeQ)(Vh'M )" 1h
i=1

i=

{cMVh - [1 + M(VngM' + Y Vm,.VxLe;.)](Vh'M')-l}h.
i=1

Since MVh is invertible on X, M € C' on X*, and X x A is compact, there
exists a ¢ > 0 such that, for all ¢ > ¢, the matrix on the right in the above
expression is nonsingular. Thus, if ¢ > ¢, then for every point in X x A,
with V,P = 0 and V,P = 0, we obtain h = 0, and from (17), MV, L = 0.
Using (15a), we also obtain V,L = 0. So, for ¢ > ¢, every critical point of
P(-,-;¢,M)in X x AisaK-T pair of (ECP). Q.E.D.

We note that Example 1, given earlier, satisfies the assumption of Proposi-
tion 4.18 on every compact set with M(x) = \/&Vh(x)/. We saw in that
example that, for every ¢ > 0 and « > 0, P has a spurious critical point
that is not a K-T pair. This critical point moves towards “infinity” as ¢
increases, which is consistent with the conclusion of the proposition.

The next proposition and corollary show that isolated local minima of
(ECP) on compact sets, which are also regular points, give rise to isolated
local minima of P for ¢ sufficiently large.

Proposition 4.19:  Let (x*, 4*) be a K-T pair of (ECP) and X be a
compact subset of X*. Assume that x* is the unique global minimum of f
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over X n {x|h(x) = 0} and that x* lies in the interior of X. Assume further
that M(x*)Vh(x*) is an m x m nonsingular matrix. Then, for every compact
set A = R™ containing A* in its interior, there exists a ¢ > 0 such that,
for all ¢ > ¢, (x*, A*) is the unique global minimum of P(-,-;c, M) over
X x A

Proof: Let A = R™be acompact set such that A* belongs to the interior
of A. Assume that the conclusion of the proposition is false. Then, for any
integer k, there exists ¢, > k and a global minimum (x,, 4;) of P(-,-; ¢;, M)
over X x A such that (x;, 4,) # (x*, A¥). Therefore

(18) P(xy, As €s M) < P(x*, A% ¢, M) = f(x¥),
where the last equality follows from Proposition 4.17. Hence we have
(19) lim sup P(xy, A; ¢k, M) < f(x*).

k=0

We shall show that {(x,, 4,)} converges to (x*, A*). Indeed if (X, 1) is a
limit point of {(x;, 4,)}, then since ¢, — oo we must have h(X) = 0 and

(20) &) + HMGV,LE D) < f(x*)

for otherwise (19) would be violated. Since also X € X and x* is the unique
global minimum of f over X n {x|h(x) = 0}, it follows from (20) that
X = x* and M(X)V,L(xX, 1) = M(x*)V,L(x*, 1) = 0. Taking into account
the fact that V, L(x*, A*) = 0, we obtain

M(x*)Vh(x*)A = M(x*)Vh(x*)A*.

Since M(x*)Vh(x*) is invertible we have 1 = A*.

Since {(x;,A)} converges to (x*, A¥), it follows that there are open
spheres S,. and S,. contained in the interior of X and A, and centered at x*
and A*, respectively, such that (x;, 4,) € S« x S« for all k sufficiently large.
Furthermore we can choose S,. so that M(x)Vh(x) is invertible in the closure
of S,«. By Proposition 4.18, there exists a ¢ > 0 such that, for all ¢ > ¢,
every critical point of P(-,-;c, M) in the closure of S,. x S,«is a K-T pair.
Hence for k sufficiently large, (x;, 4,) is a K-T pair, implying h(x,) = 0,
and from (18), f(x,) < f(x*). Since x* is the unique global minimum of f
over X n {x|h(x) = 0}, it follows that x, = x* for all k sufficiently large.
Since V,.L(xy, 4) = 0 and Vh(x,)(= Vh(x*)) has rank m, it follows that
A, = A* for all k sufficiently large. This contradicts the hypothesis (x;, 4;) #
(x*, A*) for all k. Q.E.D.

Corollary 4.20: Let (x*, A*) be a K-T pair of (ECP) such that x* is the
unique local minimum of (ECP) over an open sphere S.., centered at x*
with S,. = X*, and Vh(x*) has rank m. Then there exists a ¢ > 0 and an open
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sphere S;. centered at A* such that, for all ¢ > ¢, (x*, A*) is the unique local
minimum of P(-,-;c, M) over S« X Su.

The next proposition shows that local minima of P over any bounded
set give rise to local minima of (ECP) provided c is sufficiently large.

Proposition 4.21: Let X x A be a compact subset of X* x R™ and
assume that M(x)Vh(x) is an m X m nonsingular matrix for all x € X. Then
there exists a ¢ > 0 such that, for all ¢ > ¢, if (x*, A*) is an unconstrained
local minimum of P(-, -; ¢, M) belonging to X X A, then x* is a local mini-
mum of (ECP).

Proof: By Proposition 4.18, there exists ¢ > 0 such that, for all ¢ > ¢,
if (x*, A*) is an unconstrained local minimum of P, then (x*, A*) is a K-T
pair of (ECP). This implies

P(x*,A*;c,M) = f(x*) Vc¢=>G¢,

and that there exist open spheres S.«, S;. centered at x* and A*, respectively,
such that

P(x*, 2*; ¢, M) < P(x, A; ¢, M) VxeSun {x|h(x) =0}, 1€,
The last two relations yield
(21) f(x*) < f(x) + FIMX)Vf(x) + M(x)VA(x)A|* V x€Sn {x|h(x) =0},
AES ;.

By the continuity and rank assumptions, there exists an open sphere S..
centered at x* such that

(22) A= —[M)Vh(x)] 'M)Vf(x)eS;»  VxeS.a.
By combining (21) and (22), we obtain

fGH <fx)  VxeSan {x|hx) =0},
which implies that x* is a local minimum of (ECP). Q.E.D.

Proposition 4.21 illustrates the advantage gained by using the m x n
matrix M in the formulation of the exact penalty function. Under a non-
singularity condition on MVh we can, by proper choice of the single param-
eter ¢, guarantee that, within a bounded set, local minima of P(-, -; ¢, M)
can arise only from local minima of (ECP). By contrast, it was necessary to
choose appropriately both ¢ and « in the penalty function P(-,-;c, ) in
order to achieve the same effect. The price for this is a more complex expres-
sion for both P and its derivatives.
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We finally mention the more general penalty functions
P(x, A5 ¢, @) = L(x, 4) + 3(c + Tl AP hG) P + 50| V. L(x, A)|*
and
P(x, A; ¢, M) = L(x, ) + ¥c + t|AP) A + 3IM)V.L(x, DI,

where 7 > 0is some fixed scalar. When 7 = 0, we obtain the penalty functions
examined earlier. A possible advantage in using a positive scalar  is that if
f + 4c|h|? is bounded below, then P, ; ¢, M) is also bounded below for
7 > 0 but this is not necessarily true for © = 0. This can have a beneficial
effect in the performance of unconstrained methods for minimizing P. It is
possible to show that the results of this section generalize to the penalty
functions P,. As an aid in this, note that the extra term

Fel AR RGP

contributes to V2, P, at a K-Tpair (x*, 1*) the term 7| A*|*VA(x*)Vh(x*) and
does not otherwise affect the Hessian V2P, at (x*, A*). Thus, as far as V2P, is
concerned, the effect of the added term $7|A|*|h(x)|* at (x*, A*) is the same
as adding 7|A*|? to the penalty parameter c.

4.3.2 Exact Penalty Functions Depending Only on x

If our ultimate objective is to solve (ECP) by minimizing with respect
to (x, A) the exact penalty function P, we can take advantage of the fact
that P is quadratic in A and minimize explicitly P with respect to 4. Consider
the set

23) X* = {x|Vh(x) has rank m}.

Let us choose, for x € X*,

(24) M(x) = [Vh(x)'Vh(x)]~ 'Vh(x)'.

Then M(x)Vh(x) equals the identity, and we have

(25) P(x,4;¢, M) = f(x) + Yh(x) + sc|h(x)|* + I M(x)Vf(x) + A%
By setting V, P = 0, we obtain

(26) h(x) + M(x)Vf(x) + A =0,

so the minimum of P with respect to A is attained at

@27 A(x) = —h(x) — [Vh(x)' VA(x)]~ 'Vh(x)'Vf (x).
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Substituting in (25) and using (26), we obtain
(28) min P(x, A;c, M)
l .
= f(x) — h(x)[Vh(x)'Vh(x)] ™ 'Vh(x) Vf(x) + $(c — 1)|h(x)|*

We are thus led to consideration of the function

(29) P(x;c) = f(x) + Ax)h(x) + dc|h(x)[?,
where
(30) Ax) = —[Vh(x)'Vh(x)]~ 'Vh(x)'Vf(x) VxeX*
Note that from (28) we have, for all x € X*,
31 P(x;c) = min P(x, A;¢ + 1, M),

A
where
(32) M(x) = [Vh(x)'Vh(x)]~ *Vh(x) YV xeX*
From (31), we obtain
(33) P(x;c) = P[x,A(x);c + 1,M]  VxeX*

where A(x) is given by (27). Differentiation with respect to x yields
(34) VP(x;c) = V. P[x, A(x); c + 1, M] + VA(x)V, P[x, X(x); c + 1, M].
Since
(35) ViP[x,A(x);c + LM] =0  VxeX*
by definition of A(x), we obtain, using (34) and (15a),
(36) VP(x;c) = V. P[x, A(x);c + 1, M]
= V,L[x,Ax)] + (¢ + 1)Vh(x)h(x)

- {VixL[x, MG + 3. Vm 9V, LLx, 2(x)]e:}

x M(x)V, L[x, A(x)],

where 1 is given by (27), M is given by (32), m; is the ith column of M’, and
e; 1s the ith column of the m x m identity matrix. We have the following
proposition.

Proposition 4.22: The following hold true for the set X* and the function
P defined by (23) and (29), (30).

(@) If (x* A*) is a K-T pair of (ECP) and x € X*, then x* is a critical
point of P(-;c) for all ¢ > 0.

(b) Let X be a compact subset of X*. There exists a ¢ > 0 such that,
for all ¢ > ¢, if x* is a critical point of P(-;c) and x* € X, then [x*, A(x*)]
is a K-T pair of (ECP).
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(c) Let (x*, A*) be a K-T pair of (ECP) and X be a compact subset of
X*. Assume that x* is the unique global minimum of f over X N {x|h(x) = 0}
and that x* lies in the interior of X. Then there exists a ¢ > 0 such that,
for all ¢ > ¢, x* is the unique global minimum of P(-; c) over X.

(d) Let X be a compact subset of X*. There exists a ¢ > 0 such that,
for all ¢ > ¢, if x* is a local unconstrained minimum of P(-; ¢) belonging to
X, then x* is a local minimum of (ECP).

Proof: (a) We have Vf(x*) + Vh(x*)A* = 0 from which Va(x*)'Vf (x*)
+ Vh(x*)'Vh(x*)A* = 0. Since Vh(x*) has rank m and h(x*) = 0, it follows
that A* = A(x*) [compare with (27)]. Since V, L[x*, A(x*)] = 0and h(x*) =
0, it follows from (36) that VP(x*; c) = 0 for all ¢ > 0.

(b) From (34) and (35), it follows that x* e X is a critical point of
P(-;c)ifand only if [x*, A(x*)]is a critical point of P(-, - ; ¢ 4+ 1, M). Consider
the compact set A = {A|A = A(x), x € X}. By Proposition 4.18, there exists
a &> 0 such that if ¢ > ¢ and [x* A(x*)]€ X x A is a critical point of
P(-,-;c + 1, M), then [x*, A(x*)]is a K-T pair of (ECP). Since for h(x*) =
we have A(x*) = A(x*), the result follows.

(c) By Proposition 4.19, for any compact set A containing A* in its
interior, there exists a ¢ > 0 such that, for all ¢ > ¢, (x*, 4*) is a global
minimum of P(-, ;¢ + 1, M) over X x A. The result follows using (31).

(d) From (31) and (33), it follows that x* € X is a local unconstrained
minimum of P(- ; ¢)if and only if [x*, J(x*)]is a local unconstrained minimum
of P(-,-; ¢ + 1, M). The result follows from Proposition 4.21. Q.E.D.

The reader may wish to verify that, for Example 1 of Section 4.3.1, the
function P(-;c) has, for every ¢ > 0, a critical point x(c) that does not
correspond to a K-T pa1r of (ECP). For this critical point, we have
lim,_.,, x(c) = o which is consistent with the conclusion of Proposition
4.22b.

We note that the form of the function P of (29) depends on the particular
choice for M given in (25). Different choices for M yield different exact
penalty functions. Other functions can also be obtained by minimization of
P, -; ¢, M) over A for positive values of t.

4.3.3  Algorithms Based on Differentiable Exact Penalty
Functions

We have examined so far in this section the following three basic types of
exact penalty functions of varying degrees of complexity

P(x, 2; ¢, 0) = L(x, A) + 3c|h(x)|* + 3| V. L(x, D)%,
P(x, A;¢, M) = L(x, 2) + %c|h(x)|* + $IM(x)V,L(x, )|,
P(x;c) = LIx, A(x)] + 3c|h(x) [,
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where
Ax) = —[Vh(x)'Vh(x)]~ *Vh(x)'Vf (x).

The preceding analysis suggests that unconstrained minimization of any
one of these penalty functions is a valid approach for solving (ECP). Any
unconstrained minimization algorithm based on derivatives can be used for
minimization of P or P. However it is important to use an algorithm that
takes into account the special structure of these functions. The salient
feature of this structure is that the gradients of P and P involve the second
derivatives of f and h. If these second derivatives are unavailable or are
difficult to compute, they can be suitably approximated by using first
derivatives. As an example, take the gradient of P(x, 4; ¢, «). From (6), we
have

V,.P(x, A;c,a) = V. L(x, A) + cVh(x)h(x) + aV2,L(x, )V, L(x, A),
V,P(x, A;¢,a) = h(x) + aVh(x)'V,L(x, ).
At any point (x, 1), the troublesome term
V2, L(x, )V, . L(x, 1)
can be apbroximated by
™YV, L[x + tV,L(x, A), A] — V.L(x, )},

where ¢ is a small positive scalar. Thus we can bypass the need of computing
Vi:L(x,4) by means of a single additional evaluation of Vf and Vh. A
similar approach can be used for the other penalty functions.

If second derivatives can be computed relatively easily then there arises
the possibility of using a Newton-like scheme for unconstrained minimiza-
tion. The difficulty with this is that the Hessian matrix of P or P involves
third derivatives of f and h. It turns out, however, that at K-T pairs of
(ECP), the third derivative terms vanish, so they can be neglected in a Newton-
like algorithm without loss of the superlinear rate of convergence property.

Consider first the function P(x, 1; c, o). We can write

P(x, A;¢c,a) = L(x, A) + 3VL(x, AYKVL(x, A),

al O
K = .
[ 0 ¢l ]
We have

37 VP(x,A;¢c,0) = [I + V2L(x, )K]VL(x, 1),

where K is the matrix
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while at a K-T pair (x*, 1*), we have
(38)  V2P(x*, A*;c,a) = V2L(x*, A*) + V2L(x*, A*)KVZL(x*, A*).

Thus V2P(x*, A*; ¢, «) involves only first and second derivatives of f and h.
Consider the Newton-like method
Ax,
% [A zk]’

SO Pl o P

where a, is a positive stepsize parameter and

(40) Iiii{k:l & dk = _Bk—IVP(xk,j'k;c’ a)?
k
41) B, = VZL(xka A + VZL(xk, A'k)KVZL(xka Ay)-

Since B, approaches V2P(x*, 1*;c,a) as (x;, 4) approaches a K-T pair
(x*, A*¥), we conclude (compare with Proposition 1.15) that the method is
well defined and converges superlinearly if V2P(x*, 1*;c,a) > 0 and o
is chosen by the Armijo rule with unity initial stepsize. Now from (37),
(40), and (41), we have

d, = —(V?’L + VALKV?*L)"'(I + V2LK)VL
= — (V2L + V2LKV?L)" Y (V2L + V2LKV?L)VL™'VL,
and finally
d = _VZL(xIw )" 'WL(xy, )

An important observation is that d, is the Newton direction for solving the
system of equations VL = 0. Thus iteration (39) coupled with a stepsize
procedure based on descent of the exact penalty function P(x, A;c,a) can be
alternately viewed as a means for enlarging the region of convergence of
Newton’s method for solving the system VL = 0. We shall discuss more
specific methods of this type in Section 4.5.2.

Consider next the function P(x, A; ¢, M). We can write

P(x, A; ¢, M) = L(x, A) + 3VL(x, A) K(x)VL(x, A),

where

M(xYM 0
(42) K(x)=[ (X)O () d].
We have

(43) VP(x, A;c, M) = [I + iV2LK + iV(KVL)]VL,
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where V(KVL) denotes the gradient matrix of the function KVL with
respect to (x, 1). At any K-T pair (x*, 1*), we have
(44) V2P(x*, A*;c, M) = V2L(x*, A*) + $V2L(x*, A*)K(x*)V2L(x*, A*)
+ IV(K(x*)VL(x*, A*))VZL(x*, A*).

We are thus led to consideration of the Newton-like method

Xk+1 Xk Ax;
45 = + a 5
@ et = Gl

where o, is a positive stepsize parameter and

I o ET S L)
47) B, = V2L(xy, &) + 3V2L(x, A)K(x,)VZL(xy, A)

+ V(K () VL, A)V2L(xx5 A)-
In view of (43), (46), and (47), we can also write
de = =V2L(xy, 4)~ 'WL(x, A)-

Thus the direction of descent for the Newton-like method is again the Newton
direction for solving the system VL = 0.

In both Newton-like methods presented for minimizing P(x, 4; ¢, «) and
P(x, A;c, M), it may be necessary to introduce modifications in order to
improve their global convergence properties. Such modifications together
with quasi-Newton versions are given in Section 4.5.2.

Finally consider the function P(x; c). We have, from (29),

(48) VP(x,c) = V. L[x, A(x)] + VAx)h(x) + cVh(x)h(x).

If (x*, A*) is a K-T pair and VA(x*) has rank m, then A* = A(x*) and, by
differentiating VP at x* and using the facts V,L(x*, 1*) = 0 and h(x*) =0,
we obtain

(49) V2P(x*;c) = V2, L[x*, A(x*)] + VAx*)Vh(x*) + Vh(x*)VA(x*)
+ cVA(x*)Vh(x*)'.
Thus we may consider a Newton-like method of the form
Xp+1 = X + edys

where o, is a stepsize parameter and d, is obtained by solving the system of
equations

Hd, = —Vﬁ(xk;c),
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where
H, = V2, L[x;, Ax)] + VAxVA(x) + VhR(x)VA(x) + cVh(x)Vh(x)'.

Again it may be necessary to introduce modifications similar to those for
Newton’s method (compare with Section 1.3.3) in order to improve the
global convergence properties of the method. Additional Newton-like
methods and quasi-Newton versions for minimizing the penalty function P
will be analyzed in Section 4.5.2.

Choice of the Penalty Parameter

For each of the exact penalty methods examined so far, the penalty
parameter ¢ must be chosen sufficiently high, for otherwise the method
breaks down. We can gain some insight regarding the proper range of values
for ¢ by considering a problem with quadratic objective function and linear
constraints

(50) minimize f(x) = $x'Hx
subjectto N'x =0,

where we assume that f(x) > 0 for all x # 0 with N'x = 0, and that N has
rank m. (This corresponds to the case where the K-T pair {x* = 0, A* = 0}
satisfies the second-order sufficiency conditions for optimality.) Consider
first the function

(51) P(x;c) = &x'Hx + Ax)N'x + 3c|N'x|?,
where
Ax) = —(N'N)"'N'Hx.

Appropriate values of ¢ are those for which the Hessian V2P is positive
definite. We have

(52) V2P = V2J(x) + cNN/,
where
Y(x) = L[x, A(x)] = 3x’Hx + A(x)'N'x.
By differentiation of ¥, we obtain
V2y = H— HN(N'N)"'N' — N(N'N)"'N'H.
Denote

(53) E=N(N'N)"!N, E=I1-E
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Then a straightforward calculation yields
(54) V3 = H — HE — EH = EHE — EHE.
The matrices E and E are projection matrices for the subspaces
% = {x|N'x = 0}
and its orthogonal complement
%+ = {N¢|¢eR™),
respectively. By this, we mean that any vector x € R" can be written as
x = Ex + Ex,

and Ex is the orthogonal projection of x on %, while Ex is the orthogonal
projection of x on ¥*. Furthermore, we have

(55) Ex=x, Ex=0 Vxe%,
(56) Ex = x, Ex=0 Vxe¥-
From (54), (55), and (56), we obtain
xXV¥yx =xHx Vxe%b,
xXVix = —x’Hx Vxe¥%-

Thus we find that V2 has the same curvature as H on the subspace % (the
constraint set), and the opposite curvature of H on the subspace %+ (the
subspace orthogonal to the constraint set).

Returning to (52), we see that the term ¢ NN’ cannot influence the curva-
ture of V2P along . Its purpose is to counteract the possibly negative
curvature of V2 along ¢+ or equivalently the possibly positive (!) curvature
of H along ¢*. More precisely, from (53), we have EN = N, so using (52)
and (54), we can write

V2P = EHE + E(cNN' — H)E,
x'V2Px = (Ex)YH(Ex) + (Ex)(cNN' — H)(Ex) VxeR"
It follows that V2P is positive definite if and only if
57 zZHz >0 Vz#0, ze¥
¢ZNN'z > ZHz Vz#0, ze®*

By assumption, we have that (57) holds. Thus we obtain

’

~ ZHz
VP >0 > —
< max{Z,N N7

|z] =1, ze‘gl}.
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It follows that if H is negative semidefinite on the subspace $* any positive
value of c is suitable for use in the exact penalty function. Otherwise there is a
lower bound ¢ > 0 that suitable values of ¢ must exceed. This implies in
particular that for convex programming problems we can expect that high
values of ¢ may be necessary. The preceding observations show that there is a
striking difference between the roles of the penalty parameter c in the method
of multipliers and in the exact penalty methods of this section. In the method
of multipliers, the threshold value for c increases as the curvature of the objec-
tive along €+ becomes smaller, while the exact opposite is true for the exact
penalty methods of this section. This may be viewed as a fundamental difference
between the two types of methods.
Consider next the penalty function

P(x, A; ¢, M) = IX’Hx + AN'x + 3¢|N'x|* + 3|M(Hx + NA)|?,

where M is a p x n matrix with m < p < n and such that MN has rank m.
We are interested in conditions on ¢ and M that guarantee that V2P is
positive definite. Consider the function

P(x; ¢, M) = min P(x, 4; ¢, M).
A
Since P is positive definite quadratic in A for every x, the minimization
above can be carried out explicitly and the minimizing vector is given by
Ax) = —(NNM'MN) YN’ + N'M'MH)x.
Substitution in the expression for P yields

P(x;c, M) = ix'[H + HM'MH + cNN’
— (N + HU'MN)N'M'MN)~ XN’ + N'M'MH)]x.

It can be easily verified that V2P is positive definite if and only if
V2P(x;c, M) > 0.
Consider the matrices
(58) Ey = MMMN(N'M'MN)™'N’,  Ey =1— E,.
A straightforward calculation shows that P may also be written as
P(x;c,M) = ix[E},HE,; — EyyHE\; + cNN' — N(N'M'MN)~*N']x
+ {MHx)[I — MN(N'M'MN)~'N'M'](MHXx).

The matrix [I — MN(N'M'MN) " 'N'M’] is a projection matrix and is
therefore positive semidefinite. Hence the second term in the right-hand



224 4. EXACT PENALTY METHODS AND LAGRANGIAN METHODS

side in the previous equation is nonnegative, and it follows that in order that
V2P(x;c, M) > 0 it is sufficient that

(593’[E}WHEM — EyyHE, + ¢cNN' — N(INM'MN) " 'N']x >0  Vx #0.
Consider the subspace
€ = {x|N'x = 0}.
For any x € R", we have, using (58),
NEyx=N'x, NEyux=N(I—-Eyx=0.

Hence
(60) Eyxc¥% VxeR"
We have also

N'x = N'Ex,
where E is given by (53). In view of (58), this implies

Eyx = EyEX.
By using the above two equations, we can write (59) as
(Epx)H(Eyx) + (Ex)[cNN' — Ej HE,; — N(N'M'MN)™*N"](Ex) > 0 .

Vx#0.

In view of the fact that E, x € ¢ [compare with (60)] and the hypothesis
ZHz > 0V z # 0 with z €&, the first term in the previous relation is non-
negative. Hence, the relation will hold if and only if

Z[EyyHE, + N(NNM'MN)™!N"]z
ZNN'z

61) c> max{

|z| = l,ze(gl}.

This in turn implies that the matrix V2P will be positive definite if ¢ satisfies
(61).

Consider now the case M = \/&I, for which we have P(x,A;c, M) =
P(x, A; ¢, a). Since every vector z € ¥+ can be represented as z = N¢&, where
EeR™and E,; = N(N'N)™'N’, relation (61) is easily shown to be equivalent
to

c(N'N)*> — aN'HN — N'N > 0,
or by right and left multiplication with (N'N) ™2,
62) col — (N'N)"Y(N'HN)(N'N)~! — (N'N)"! > 0.

This relation suggests rules for selection of the parameters ¢ and «. Given
o, one should select ¢ sufficiently large so that (62) holds. If the value of « is
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not sufficiently small to the extent that unconstrained minimization yields
critical points of P which are not local minima of (ECP), then o must be
reduced but this reduction must be accompanied by a corresponding increase
of ¢ so that (62) holds. A good rule of thumb is therefore to increase ¢ so as to
keep the product co roughly constant.

Automatic Adjustment of the Penalty Parameter

Since a proper range of values of the penalty parameter may be unknown
in a practical situation, it may be useful to provide for a scheme that auto-
matically increases c if the results of the computation indicate that the value
currently used is inadequate. We provide an informal discussion of such
schemes.

Consider first the penalty function P(x, A;c, M). One possibility for
automatic penalty adjustment is based on the idea that if the penalty param-
eter were increased only finitely often, say to a maximum value C, then the
unconstrained minimization algorithm will normally converge to a critical
point (X, 4) of P(-,-;¢, M). Thus we would have

(63) lim VP(x,, A; ¢, M) = VP(X, 4; ¢ M) = 0.

k= oo
Now if we had h(xX) = 0, it can be seen from (15) that (63) implies V. L(%,7) =
0 so that (x, 4) is a K-T pair. If h(X) # 0, then, for k sufficiently large and any
positive scalar y, we would have

(64) [F(Xks 15 Ak 15 Cos M) < 71 h(x4 4 1)1,

where F is any continuous function such that F = 0 when VP = 0. Thus
when (64) holds, it provides us with an indication that the current value ¢,
is inadequate and should be increased.

Thus we are led to a scheme whereby at each iteration k we perform an
iteration of an unconstrained algorithm for minimizing P(-,-; ¢,, M) to obtain
(Xk+ 1> A+ 1)- We then check to see if (64) is satisfied. If so we increase c; to
Crs1 = Pei, where B > 1 is a fixed scalar factor. Otherwise we set ¢ 1 = Cx
and continue.

In order for such a scheme to have a good chance of success it is necessary
to show that, under normal conditions, if ¢, becomes large enough then
(64) will not hold so that ¢, will normally be increased finitely often. This
can be guaranteed if' M(x)Vh(x) is an m x m nonsingular matrix in the
region of interest X* = {x|Vh(x) has rank m}. We choose

P
(65) F = MV_P — [1 + M(VﬁxLM' + ¥ Vm,-VxLeg)](Vh’M’)‘lV,lP.

i=1
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The motivation for this complicated formula will become apparent later
where it will be seen that in special cases it leads to a simple test [compare
with (66)]. We have, using (15a) and (15b),

P
MV_P = cMVhh + [I + M(vngM' + Y VmiVxLe;>]MVxL,

i=1
MV,L = (VKM’)"Y(V,P — h),

from which we obtain

F = {cMVh - [I +M (V,%XLM’ + Y VmiVxLeg)](Vh'M’)'l}h.
i=1
It is clear that, given any y > 0 and any compact subset X x A < X* x R™
there exists a ¢ > 0 such that

|F(x, A5 ¢, M)| > 7|h(x)| Ve>e, (x,A)eX x A.

So if {(xx, 4)} remains within a bounded subset of X* x R™ inequality (64)
will never be satisfied if ¢, increases beyond a certain level.

To summarize, if the algorithm with the automatic penalty adjustment
scheme just described is used to generate a sequence {(x,, 4, ¢;)} there are
only two possibilities:

(a) There is no compact subset of X* x R™ containing the sequence
{(xies A}

(b) The sequence {(x;, 4)} belongs to a compact subset of X* x R™
in which case ¢, is constant for k sufficiently large. If the unconstrained
algorithm used to minimize P(-,-;c, M) has the property that, for every
¢ > 0, all limit points of sequences it generates are critical points of P(-,-;
¢, M), then all limit points of {(x,, 4)} are K-T pairs of (ECP).

We can similarly construct a penalty adjustment scheme for the penalty
function P. Since [compare with (24), (27), (28), and (31)]

P(x;¢) = min P(x, A;¢ + 1, M) = P[x, A(x);c + 1, M],
A

where
Ax) = —h(x) — [Vh(x)'Vh(x)]~ *Vh(x) Vf (),
M(x) = [Vh(x)'Vh(x)]~ 'Vh(x),

any unconstrained algorithm for minimizing P(-;c) may be viewed as an
unconstrained algorithm for minimizing P(-,-;c + 1, M). We are thus
reduced to the case examined earlier. This leads to the test [compare with
(64)]

[F(Xps 15 Aksrs @+ 1, M) < 9] h(xs )],
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where F is given by (65) and
Aery = Ak 1)-
Since [compare with (35) and (36)]
Vi P(Xp1> Mxrrs e+ 1L, M) =0,
Vo P(Xis 1o Aer1s 6 + 1L, M) = VP(xi 15 ),
the test above can also be written as
(66) | M(xy DVPCxis 15 €)1 < 7 1RG0

Whenever the relation above holds, we increase ¢, by multiplying it with
a scalar § > 1. Similar statements regarding convergence can be made as for
the scheme given earlier in connection with the exact penalty function
P(x, A; ¢, M).

Extensions to Inequality Constraints

Some of the preceding results and algorithms admit straightforward
extensions for problems involving inequality constraints. This can be done
by converting inequality constraints to equality constraints. Consider the
equality constrained problem

67) minimize f(x)
subjectto  gx)+z7 =0, j=1,...,1

obtained from (ICP) by introducing the additional variables z;,j = 1,..., 1.
Consider also the corresponding exact penalty function

69 Pouzumed) =09+ ¥ lmlof) + =1 + delg ) + 17

+ 3|V Lx, W? + 200 ) 23],
j=1

where
L(x, p) = f(x) + wg(x).

Minimization of P with respect to (x, z, #) can be carried out by mini-
mizing first with respect to z and by subsequently minimizing the resulting
function with respect to (x, u). A straightforward calculation yields
(69)  P*(x, u;c,0) £ min P(x, z, ; ¢, @) = f(x) + 3| V. L(x, ) |*

z

2¢ ;

J

+ 1 y: {[max{0, u; + 2au? + cg;(x)}]?
=1

— (; + 20p3)* — docpig (%)}
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with the minimum attained at
z3(x, 5 ¢, @) = max{0, —[(u; + 2ap})/c] — g{(x)}.

Thus minimization of P can be carried out by minimizing instead the function
P of (69) which does not involve the additional variables z;.
If instead of the penalty function (68), we use the penalty function

c + 1|ul?
Ml lul

P(x,z, p;¢,0) = f(x) + Z {#, [9,x) + z}] lg,(0) + z71? }

+ Lo|V L(x, )| + 2a Z zipd,

j=1

where 7 > 0, then we can similarly eliminate z and obtain the penalty function
(70)  P{(x, 5 ¢, ) & min P(x, z, u; ¢, ) = f(x) + 30|V L(x, w)|?

z

1
+_—_..
20c + t|ul?)

x . {[max{0, u; + 2o + (¢ + 7|p|*)g;(x)}]1?
j=1
— (W + 20p7)* — da(c + t|u)uig (%)}
The minimum is attained at
) Wi + 2ou?
z}(x, ps ¢, ) = max{O, - c’?,#—li — g,(x) ¢

A similar procedure can be used for the penalty function P(x, z, u; ¢, M).
In connection with problem (67), let us choose

M(x, z) = /n[M(x) 2Z],

where 7 is a positive scalar, M(x) is a continuous r x n matrix, and Z is the
diagonal matrix

we have

c+71 Iul2

P(x,z,pu;¢, M) = f(x) + Z {#,[g,(X) + 23]+ ———[gfx) + z}1* }

+ 21| M)V L(x, p) + 4Z%p|*.
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Again minimization of P with respect to (x, z, u) can be carried out by
minimizing first with respect to z and by subsequently minimizing the result-
ing function with respect to (x, u). It is straightforward to verify that

(71) P} (x, u; ¢, M) & min P(x, z, u; ¢, M)

= f(x) + Wg(x) + 3¢ + tluP) g + I M)V, L(x, p)|?

_ i [min{0, (¢ + t|u|?g;(x) + w; + 4nu;m(x)'V, L(x, 1)} ]?
= 2(c + t|ul® + 16nu?)

where m;(x)' is the jth row of the matrix M(x) (see also DiPillo and Grippo,
1979b).

Unfortunately, when the penalty function P(x, z;c) is used in con-
junction with problem (67), it does not seem possible to eliminate the addi-
tional variables z;. However, Glad and Polak (1979) have been able to
construct an exact penalty function analogous to P for problem (ICP) that
does not employ additional variables. The same reference gives a correspond-
ing superlinearly convergent algorithm under an assumption that is some-
what stronger than Assumption (S*).

Newton-like algorithms for minimizing the penalty functions P} (-, -; ¢, &)
and P/ (., -; ¢, M) will be given in Section 4.5.2.

Extensions to Nonnegativity Constraints

When the only inequality constraints are nonnegativity constraints on
the variables, it may be worthwhile to consider an alternative approach.
Consider the problem

(ECP)* minimize f(x)
subject to  A(x) = 0, x>0,

where f: R"—» R and h: R" > R™. An equivalent problem is obtained by
making the change of variables

2 .
X; = zi, i=1,...,n,

where x;,i = 1, ..., n are the coordinates of x. The problem is then trans-
formed into

(ECP); minimize f(z)
subject to Ai(z) = 0,
where

z=(2y,...,2,)
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and
J@=f@. ...z, k@) =hz,..., D).
It is easily seen that
Vi(2) + Vh()A = Z[Vf(Z3, ..., 22) + Vh(z3, ..., z2)A],
where

Z= - .

0 2z,

Consider the expression for the penalty function Pz, A; c, a) for problem
(ECP){ . Based on the relation above we find that the variables Zy, ...,z eNter
in this expresswn exclusively in squared form so that by using the substitution

x; = z7itis possible to write this expression in terms of the variables x;. It takes
the form

P(x, A;¢c,a) = L(x, A) + 4VL(x, A)'K(x, ¢, ))VL(x, 1),
where
L(x, A) = f(x) + Vh(x),
4ox, 0
K(x,c,a) = N

0 eI
Thus the unconstrained minimization problem
minimize Pz, 4; ¢, ®)
subject to zeR", AeR™,
is equivalent to the (simply) constrained problem
minimize P(x, 4; ¢, «)
subjectto x >0, AeR™

By solving this latter problem for suitable values of ¢ and a, we can, based on
the theory of this section, reasonably hope to obtain a solution of (ECP) and
hence also of (ECP)*. A similar approach can be developed by using in
connection with (ECP)* the penalty function P (z, A; M, ¢) with

M(z) = Vh(z)
or
M(z) = [Vh(z)'Vh(z)] " 'Vh(z).
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4.4 Lagrangian Methods—Local Convergence

The methods to be examined in this section may be viewed as methods for
solving the system of nonlinear equations (and possibly inequalities) that
represent the necessary conditions for optimality of the constrained minimiza-
tion problem. Thus the necessary conditions for optimality of (ECP)

(e Vf(x) + Vh(x)A =0, h(x) =0,

are viewed as a system of (n + m) nonlinear equations with (n + m) un-
knowns—the vectors x and A.
We can view system (1) as a special case of the general system

@) F(z) =0,

where F: R” — RP and p is a positive integer. A general class of methods for
solving system (2) is given by

(3) Zr1 = G(zp), k=0,1,...,

where G: R? —> RP is some continuous function. If {z,} generated by (3)
converges to a vector z*, then by continuity of G, we must have z* = G(z*), so
G must be chosen so that its fixed points are solutions of (2). General tools
for showing convergence of iteration (3) are various fixed point theorems of
the contraction mapping type. We give one such theorem that is often quite
useful. Its proof may be easily deduced from the analysis in Ortega and
Rheinboldt (1970, p. 300). We first introduce the following definition:

Definition: A vector z* € R” is said to be a point of attraction of iteration
(3) if there exists an open set S such that if z, € S then the sequence {z}
generated by (3) belongs to S and converges to z*.

Ostrowski’s Theorem: Assume that G: R — RP has a fixed point z*, and
that G € C' on an open set containing z*. Assume further that all eigenvalues
of VG(z*) lie strictly within the unit circle of the complex plane. Then z* is a
point of attraction of iteration (3), and if the sequence {z,} generated by (3)
converges to z*, the rate of convergence of {|z, — z*|} is at least linear.

In what follows in this section, we consider various Lagrangian methods
starting with a first-order method which does not require second derivatives.
We then examine Newton-like methods and their quasi-Newton versions.
Throughout this section, we focus on local convergence properties, i.e.,
questions of convergence and rate of convergence from a starting point
that is sufficiently close to a solution. Our presentation, however, is geared
towards preparing the ground for the developments of Section 4.5 where
modifications of Lagrangian methods will be introduced with the purpose of
improving their global convergence properties.
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4.4.1 First-Order Methods

The simplest of all Lagrangian methods for the equality constrained
problem

(ECP) minimize f(x)
subject to h(x) =0
is given by
“) Xer1 = X — AV, L(xg, 4p),
%) Ae1 = A + oV, L(xy, 4),

where L is the Lagrangian function
L(x, ) = f(x) + A'h(x)
and o > 0 is a scalar stepsize. We have the following result:

Proposition 4.23:  Let (x*, 1*) be a K-T pair of (ECP) such that fiheC?
in an open set containing x*. Assume that the matrix VA(x*) has rank m
and the matrix V2, L(x*, 1*) is positive definite. There exists & > 0, such
that for all a € (0, @], (x*, A*) is a point of attraction of iteration (4), (5), and
if the sequence {(x;, 4,)} generated by (4), (5) converges to (x*, A*), then the
rate of convergence of {|(x;, 4,) — (x*, 1*)|} is at least linear.

Proof:  The proof consists of showing that, for « sufficiently small, the
hypothesis of Ostrowski’s theorem is satisfied. Indeed for « > 0, consider the
mapping G,: R"*™ — R"*™ defined by

own=[} L mie o)
Clearly (x*, A*) is a fixed point of G,, and we have
6) VG, (x*, A*) =1 — aB,
where

(M

B V2, L(x*, A*) Vh(x*)
| =Vh(x*y 0o [

We shall show that the real part of each eigenvalue of B is strictly positive, and
then the result will follow from (6) by using Ostrowski’s theorem. For any
complex vector y, denote by 7 its complex conjugate, and for any complex
number 7, denote by Re(y) its real part. Let 8 be an eigenvalue of B, and let
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(z, w) # (0, 0) be a corresponding eigenvector where z and w are complex
vectors of dimension n and m, respectively. We have

z

@® Re{[f’ w18 ” }=Re{ﬂ[2/ ] [j]}=ke(ﬂ)(|z|2+ wi?),

while at the same time, using (7),

z
w

©) Re{[é’ W1B } = Re{#'V2,L(x*, A*)z + #'Vh(x*)w — WVh(x*) z}.

Since we have for any real n x m matrix M
Re{Z’M'w} = Re{WwMz}
it follows from (8) and (9) that

(10) Re{2'VZ L(x* A*)z} = Re{[é’ W’]B[;]} = Re(B)(|z|*> + |w]?).

Since for any positive definite matrix 4 we have
Re{Z'Az} > 0 Vz#D0,

it follows from (10) and the positive definiteness assumption on VZ, L(x*, 1*)
that either Re(f) > 0 or else z = 0. But if z = 0 the equation B[] = B[;]
yields

Vh(x*)w = 0.

Since Vh(x*) has rank m it follows that w = 0. This contradicts our earlier
assumption that (z, w) # (0, 0). Consequently we must have Re(B) > 0.

Q.E.Q.

By appropriately scaling the vectors x and A, we can show that the result
of Proposition 4.23 holds also for the more general iteration

Xg+1 = X — aDV, L(x;, A, w1 = A+ aMV; L(x,, A,

where D and M are any positive definite symmetric matrices of appropriate
dimension (compare with Section 1.3.2). However the restrictive positive
definiteness assumption on VZ L(x*, A*) is essential for the conclusion to
hold.

There are other first-order Lagrangian methods available in the literature.
As an example, we mention the linearization method of Section 4.2 with a
constant stepsize and constant matrix H; which can be shown to converge
locally with a linear rate to a K-T pair satisfying Assumption (S*) of Section
3.1 provided the stepsize is sufficiently small. We sketch a proof of this fact
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for the case of problem (ECP) and the choice H, = I. The method takes the
form
Xie+1 = X + od(xy),
where d(x,) is the solution of the quadratic program
minimize Vf(x,)d + 1|d|*
subject to  h(x,) + Vh(x,)d = 0,

and a > 0is a constant stepsize parameter. If Vh(x,) has rank m, the Lagrange
multiplier for this program can be calculated to be

Axi) = [Vh(x)Y VA(x)] ™ [h(xe) — Vh(x) Vf ()],
and it follows from the condition Vf(x,) + Vh(x)A(x;) + d(x;) = O that
d(xy) = — V. L[x;, Ax0)].
So the method takes the form
Xe+1 = X — aV, Lx;, Ax0)].

The result of Proposition 4.26 in Section 4.4.2, together with Ostrowski’s
theorem, can be used to show that if « is sufficiently small, this iteration con-
verges locally with a linear rate to a local minimum x* satisfying Assumption
(S). For a detailed analysis together with an extension of this result to the case
of inequality constraints we refer the reader to Pschenichny and Danilin
(1975).

4.4.2 Newton-like Methods for Equality Constraints

Consider the system of necessary optimality conditions for (ECP)

(11) VI (x) + Vh(x)A = 0, h(x) = 0,
or equivalently
(12) VL(x, 1) = 0.

Newton’s method for solving this system is given by
(13) Xer1 = X + AXy, Aevr = K + Ay,
where (Ax,, A4) € R"*™ is obtained by solving the system of equations

Ax,

(14) V2L, A) [ Al
k

:l = —VL(xg, A4).
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We have
H N V. L(xi» 4)
2 _ k k = * k k
(15)  V2L(xi, ) = [N; 0 ] VECs ) [ hix) ]
where
(16) Ho= VLG A),  Ni= Vh(x).

Thus, the system (14) takes the form

a7 [Hk Nk] [Axk] _ [VxL(xk, lk)]
N, 0 || AA h(x) |

We say that (x4 1, Ax+ 1) is well defined by the Newton iteration (13), (14)
if the matrix V2L(x,, 4,) is invertible. Note that at a K-T pair (x*, 1*)
satisfying the sufficiency Assumption (S) of Section 2.2, we have that
V2L(x*, A*)is invertible (Lemma 1.27). As a result, V2L(x, A) is invertible in a
neighborhood of (x*, A*), and within this neighborhood points generated by
the Newton iteration are well defined. In the subsequent discussion, when
stating various local convergence properties of the Newton iteration in con-
nection with such a K-T pair, we implicitly restrict the iteration within a
neighborhood where it is well defined.

The local convergence properties of the method can be inferred from
Proposition 1.17, and in fact we have already made use of these properties
in Section 2.3.2 (compare with Proposition 2.8 and the subsequent analysis).
For purposes of convenient reference, we provide the corresponding result in
the following proposition.

Proposition 4.24: Let x* be a strict local minimum and a regular point of
(ECP) satisfying together with a corresponding Lagrange multiplier vector
A* the sufficiency Assumption (S) of Section 2.2. Then (x*, 1*) is a point of
attraction of the Newton iteration (13), (14). Furthermore if {(x;, 4)}
generated by (13), (14) converges to (x*, A*) the rate of convergence of
{1(xx, &) — (x*, A*)|} is superlinear (at least order two if V3f and V?h;,
i=1,...,m, are Lipschitz continuous in an open set containing x*).

Alternative Implementations of Newton’s Method

We first observe that if H, is invertible and N, has rank m we can provide a
more explicit expression for the Newton iteration. Indeed the system (17) can
be written

(18) H,,Axk + NkA)“k = —VxL(xk, )'k)
(19) N;‘Axk = —h(xk).
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By multiplying the first equation with Nj H; ! and using the second equation,
it follows that
—h(x) + N Hy N AA, = — N H 'V, L(x,, A).
Since N, has rank m, the matrix N; H; *N, is nonsingular, and we obtain
(20) Ay — A= Ak = (N Hy N7 [h(x) — NiHi 'V L(xi, A))-
Since
V, L(xi, 4) = Vf(x) + Nk = Vf(x0) + Niederr — NiBAg
=V, L(xx, Ar1) — Ny Ay,

we also have

(NiHy ‘"N~ INH 'V, L(x, ) = A + (NiHi "N 7N H 'VE (%),

Vi L(xks A) + N DA = Vo L(X, At ).

Using these equations in (20) and (18), we finally obtain
1) Aer = (N Hg "N 7 [h(x) — NiH 'V (),
(22) Xge1 = X — Hi "V L(xi, s r)-

Another way to write the same equations is based on the observation that
for every scalar ¢ we have, from (19),

c¢cN N Ax = —cNh(x),
and substitution in (18) yields
(Hk + CNkN;‘)Axk + NkAllk = —VXL[xk, A’k + Ch(xk)].

Thus, if (H; + ¢N,N,)~ ! exists, then we obtain by the same type of calcula-
tion used to obtain (21) and (22):

(23) Aerr = [Ni(Hy + cNNY TN ™!

x [h(x) — Ni(H, + NN~ Vf (xi)),
(24) Aery = zk+1 — ch(x),
(25) Xer1 = X — (Hy + ¢NeNQ) 7'V L0, Ags 1)

Note that for ¢ = 0, Egs. (23)-(25) reduce to (21) and (22). An advantage that
(23)-(25) may offer is that the matrix H, may not be invertible while (H, +
¢N, N;) may be invertible for some values of ¢. For example, if (x*, A*) satisfy
Assumption (S) then H, need not be invertible, while for sufficiently large ¢
and (x,, 4;) sufficiently close to (x*, A¥), we have that (H, + cN,N,) is not
only invertible but also positive definite. An additional advantage offered by
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this property is that it allows us to differentiate between local minima and local
maxima, for if (x;, A,) is near a local maximum-Lagrange multiplier pair
satisfying the sufficiency conditions for optimality, then (H, + c¢N, N;) will not
be positive definite for any value of c. Note that positive definiteness of
(H, + ¢N,N,) can be easily detected if the Cholesky factorization method is
used for solving the various linear systems of equations in (23) and (25).

A third implementation of the Newton iteration is based on the observa-
tion that Egs. (22) and (19) can be written as

Vf(xk) + HkAxk + Nklk‘f'l = 0, h(xk) + N;Axk = O,

and are therefore the necessary optimality conditions for (Ax,, 4;+,) to be
a K-T pair of the quadratic program

(26) minimize Vf(x,)Ax + 3Ax'H, Ax
subject to  h(x;,) + NiAx = 0.

Thus we can obtain (Ax,, 4. ;) by solving this problem. This implementation
is not particularly useful for practical purposes but provides an interesting
connection with linearization methods. This relation can be made more
explicit by noting that the solution Ax, of (26) is unaffected if H, is replaced by
any matrix of the form (H, + ¢N,N;), where ¢ € R, thereby obtaining the
program

27 minimize Vf(x,)Ax + $AX'(H, + ¢N,N})Ax
subject to  h(x,) + NiAx = 0.

To see that problems (26) and (27) have the same solution Ax,, simply note
that they have the same constraints while their objective functions differ by
the constantterm (1/2) éAx'N, Nj Ax = (1/2).¢| h(x,)|>. Near a local minimum-
Lagrange multiplier pair (x*, A*) satisfying Assumption (S), we have that
(H, + N N,) is positive definite if ¢ is sufficiently large and the quadratic
program (27) is positive definite. We see therefore that, under these cir-
cumstances, the Newton iteration can be viewed in effect as a special case of the
linearization method of Section 4.2 with a constant unity stepsize, and scaling
matrix H, = H, + CN, Ny where ¢is any scalar for which H, is positive definite.

Still another implementation of Newton’s method which offers computa-
tional advantages in certain situations will be given in Section 4.5.2.

Descent Properties of Newton’s Method

Since we would like to improve the global convergence properties of
Newton’s method, it is of interest to search for functions for which (x,,; — x;)
is a descent direction at x,. By this, we mean functions F: R" — R such that

Flxp + oxe 41 — x)] < F(xy) Vae(0,a],
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if x, # x* and & is a sufficiently small positive scalar. We have already
developed the necessary machinery for proving the following proposition.

Proposition 4.25: Let x* be a strict local minimum of (ECP), satisfying
together with a corresponding Lagrange multiplier vector A* the sufficiency
assumption (S) of Section 2.2. There exists a neighborhood S of (x*, A*) such
thatif (x,, 4) € Sand x, # x*,then (x; . 1, A +1)1s well defined by the Newton
iteration (13), (14) and the following hold true:

(a) For every ¢ > 0, the vector (x,+; — X;) is a descent direction at x;
for the exact penalty function

(28) fx) + cmax{|hy(X)], ..., [hn(x)|}.

(b) The vector {(xx+; — Xx), (A+1 — 4} is a descent direction at
(xx, 4) for the exact penalty function

(29) F(x, 1) = 3|VL(x, )|

Furthermore given any scalar r > 0, there exists a 6 > 0 such that if
[(xe — x*, A4 — A¥)| < 9,

we have

30) F(Xi4 15 A1) S TF(Xp, M)

(c) Let M(x) be a continuous p x » matrix with m < p < n and such
that M(x*)Vh(x*) has rank m. For every x,, 4, and ¢ > 0 for which the matrix

M(x)’M(x) 0

GD  VEL0x, A) + V2L(x, lk)[ 0 ol

]VzL(xk ’ lk)
is positive definite, the vector {(x;+; — Xi), (A+1 — 4)} is adescent direction
at (x,, 4) of the exact penalty function

(32)  P(x, 456, M) = L(x, ) + 3c|h(x)* + ZIM(x)VL(x, D).

(d) For every ceR for which (H, + ¢cNN;) is positive definite, the
vector (x,,; — X;) is a descent direction at x; of the augmented Lagrangian
function L (-, 44 1)

Proof: (a) Take ¢ > O sufficiently large and a neighborhood S of
(x*, A*) which is sufficiently small, so that for (x;, 4)€S, the matrix
(H, + ¢NN,) is positive definite. Since Ax, is the solution of the quadratic
program (27), it follows from Proposition 4.2 that if x, # x*, then Ax, is a
descent direction of (28).
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(b) We have
[xk+1 - xk] = —V2L(xp, A) " 'VL(Xk, )
/1k+ 1 'lk
and
VF(xi, A) = V2L(xk, A)VL(x, 4.
So

[Goes1 — X)s (aw1 — A IVF(x, 4) = — [VL(x, A <0,

and the descent property follows.
From Proposition 4.24, we have that, given any 7 > 0, there exists a 5>0
such that for |(x, — x*, 4 — A*¥)| < & we have

(33) [t — X*5 ey — A S FlOg — x*, 4 — A%)]
For every (x, 4), we have, by the mean value theorem,
x — x*
VL(x,A) =B [i _ A*]’

where each row of B is the corresponding row of V2L at a point between
(x, 1) and (x*, A*). Since VZL(x*, A*) is invertible, it follows that there is an
¢ > 0and scalars u > 0 and M > O such that for [(x — x*, 1 — A*)| < ¢, we
have

G4 ullx = x* A= %] < |VL(x, D] < M|(x — x*, 4 = A¥)].

From (33) and (34), it follows that for each 7 > 0 there exists 6 > 0 such that,
for |(x, — x*, 4 — A¥)| < 0,

IVL(Xg 4 15 A 1)| < (MF/p) [ VL(x., A) |-
or equivalently
F(Xps 15 A1) < (MPP2[UP)F (i, Ay

Given r > 0, we take ¥ = (u/M )\/; in the relation above, and (30) follows.
(c) This part was shown in effect in Section 4.3.3.
(d) From (24) and (25), we have

X1 — X = —(Hp + ¢NeND) 7V Llxy, Ayt + ch(x)]
= —(Hy + CNkN;c)_IVch(xka A+ 1)s

and the result follows. Q.E.D.
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Variations of Newton’s Method

A variation of Newton’s method is obtained by introducing a positive
parameter ¢, in the second equation so that Ax, and A4, are obtained by
solving the system

(35) HkAxk + NkAj'k = —VXL(X,‘, llk),
(36) NiAx, — cf *Ady = —h(xy).

As ¢, — o0, the system becomes in the limit the one corresponding to Newton’s
method. We can show that the system (35), (36) has a unique solution if either
H' or (H, + ¢, N, N;)™! exists. Indeed when H, ' exists, we can write
explicitly the solution. By multiplying (35) by N; H; ! and by using (36), we
obtain

cp 'Aly — h(x) + Ny H N Ak = — N H7 'V, L(x,, &)
from which
Ak = [ei ' + N Hy "N 7 Th(x) — Ny H 'V, L(x, )]
and
(37) Aewr = A+ [ee ' + Ny Hy 'N, 7 '[h(x) — N H; 'V, L, A))-
From (35), we obtain
(38) Xew1 = X — Hy 'V L(xy, A+ 1)-

Also if (Hy, + ¢, N, N;)™ ! exists, by multiplying (36) with ¢, N, and adding the
resulting equation to (35), we obtain

(Hy + cx Ny NDAX, = =V, L(xy, A4) — ¢ N h(xy),
and finally
(39) Xe+1 = X — (Hy + Ny N) 7'V L (%, A,
where L, is the augmented Lagrangian function. Also from (36), we obtain
(40) Axe1 = A + a[h(x) + Nilxes 1 — x0)].

Note that the preceding analysis shows that N, need not have rank m in
order for the system (35), (36) to have a unique solution, while this is not
true for the Newton iteration. Another interesting fact that follows from (39) is
thatif (Hy + ¢, Ni N}) is positive definite, then (x, . , — X;)is adescent direction
for the augmented Lagrangian function L.(-, 4). Furthermore, if the con-
straints are linear, then (40) can be written as

Aer1 = A+ ch(Xy s ),
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while if in addition the objective function is quadratic and (H, + ¢, N;N})
is positive definite, then from (39), x, ., is the unique minimizing point of the
augmented Lagrangian function L,(-, 4;). Hence, it follows that if the
constraints are linear, [h(x) = N'x — b], the objective function is quadratic
[f(x) = 4x'Qx], and for all k, ¢, is such that (Q + ¢, NN') is positive definite,
then the iteration (39), (40) is equivalent to the first-order method of multipliers
of Section 2.2. This suggests that if ¢, is taken sufficiently large, then iteration
(39), (40) should converge locally to a local minimum-Lagrange multiplier
pair (x*, A*) satisfying Assumption (S). Furthermore the rate of convergence
should be superlinear if ¢, — co. Indeed this can be shown either directly or by
appealing to the theory of consistent approximations (see Ortega and Rhein-
boldt, 1970, Theorems 11.2.2 and 11.2.3). The proof is routine and is left to
the reader.
Another variation of Newton’s method is given by

41) Xpa1 = X — (Hy + Ny N7 'VL (X, A,
42) e = Mg+ (X 1)

This iteration is the same as (39), (40) except that the term h(x; ;) in (42)
replaces its first-order linear approximation [h(x,) + Ni(xx+1 — x)] in
(40). When the constraints are linear, the two iterations are identical. It is
possible to show that, if ¢, is constant but sufficiently large, iteration (41), (42)
converges locally to a K-T pair satisfying Assumption (S) at a linear rate.
Since this iteration seems less interesting than (39), (40), as well as the itera-
tions (43), (44) and (45), (46) that follow, we omit the proof.

Two more variations of Newton’s method are obtained by replacing
(H, + ¢, N.Np) in (39) or (41) by VZ, L, (X, A), thereby obtaining the itera-
tions

(43) Xk+1 = X — [V;Zchck(xk, A1~ 1Vchk(xk= A,
(44) Aer1 = A+ al[hlx) + Ni(xis 1 — X))

and

(45) Xg+1 = Xg — [Vchchk(xk’ A1V, L, (k> A,
(46) Aer1 = A+ (Xt 1)

Since

VZ L, (%, 4) — (Hy + N NY) = ¢, Z h(x,)V2h(x,)s

i=1
we see that if ¢, is chosen in a way that ¢, h(x;) — O, then iteration (43), (44)
becomes asymptotically identical with (39), (40) while (45), (46) becomes
asymptotically identical with (41), (42). The condition c,h(x,) — 0 can be
enforced in a practical algorithm by means of a test on the magnitude of
| h(x,)| which allows c, to be increased by a factor § > 1 only if | A(x,)| has been
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decreased by a factor y > B over the previous time ¢, was changed. Another
simple way to enforce the condition ¢, h(x,) — 0 is to keep ¢, constant

G =c Vk=0,1,....
Under these circumstances, if ¢ is chosen sufficiently large, both iterations (43),
(44) and (45), (46) can be shown to converge locally to a K-T pair (x*, 1¥)
satisfying Assumption (S) at a linear rate. We show this fact for iteration (45),

(46). The proof for iteration (43), (44) is similar and will be omitted.
Let ¢ > 0 be such that

VZ.L(x* A*) > 0.

For (x;, 4) sufficiently near a K-T pair (x*, 1*) satisfying Assumption (S) so
that V2, L (x,, 4,) is nonsingular and Vh(x,) has rank m, consider the iteration
Xe+1 = X — [Vix Lc(xk, )'k)]_ lvx Lc(xk, Ak)y

Aerr = A + ch(xyy).
We have, by the mean value theorem,

VieL(xys A4) = Ry(x, — x*) + Ni(4, — A*),
where each row of R(N,) equals the corresponding row of V2, L.(Vh)
evaluated at a point lying between (x;, 4,) and (x*, 1*). Similarly, we have

h(xg1y) = Nllc(xk+l - x*),

where each row of N, equals the corresponding row of VA’ evaluated at a
point between x, , ; and x*. By combining the relations above we obtain

Xe+q — X* Ay Bl x — x*
[lkﬂ - )**] B [Ck Dk] [Ak - )‘*],
where the matrices 4,, B,, C;, and D, are given by
A =1 = VL, )Ry,
B, = — Vi L(x, ANy,
Ci = cNi A4y,
Dy =1~ cN,VZ, L(xi, 2)” ' Ny.
For any ¢ > 0 such that V2, L(x*, 2*) > 0, we have, by using the matrix
identity of Section 1.2,
VI, L(x*, A*)” 'Vh(x*)
= [VZ, L{x*, 2*) + (c — &)VA(X*)Vh(x*)]~ 'Vh(x*)
= V2, L{x*, A*)” 'Vh(x*)
x {I — [I/f(c — &) + Vh(x*)VZ, L{x*, A*)~'Vh(x*)]~*
x Vh(x*)VZ, Lx*, 2*)~ 'Vh(x*)}.
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Hence
lim VZ, L (x*, A*)™ 'Vh(x*) = 0.

We also have, from Eq. (32) of Section 2.2.3,

lim[I — ¢Vh(x*)VZ, L(x*, 2*)~*Vh(x*)] = 0.
By using these relations, it is easy to see that given any ¢ > 0 there exists a
&(¢) > Osuch that forevery ¢ > ¢(e) there is a neighborhood N(c, ) of (x*, A*)
within which |4;]| < e, |Bi| <¢, |C| < ¢, and |D,| < &. Hence, given any
r > 0, there exists a ¢(r) > 0 such that for every ¢ > ¢(r) there is a neighbor-
hood of (x*, 1*) within which there holds

|1 = X5, Aewr — A S 7](x — X%, 4 — A%)].
It follows that if ¢ is sufficiently large then (x*, A*) is a point of attraction of

iteration (45), (46). The convergence rate is at least linear with a convergence
ratio that can be made arbitrarily small by choosing ¢ sufficiently large.

Newton’s Method in the Space of Primal Variables

As indicated by Proposition 4.24, it is necessary to have a good initial
choice for both x and 4 in order to ensure convergence of the Newton itera-
tion. If however a good initial choice x, is available, then it is possible to
obtain a good initial choice 4, from

'10 = j‘\('xO)a
where the function 1 is given for all x in the set
“én X* = {x|Vh(x) has rank m}

by

(48)  A(x) = [VA(X)Vh(x)]~ '[h(x) — Vh(x)'Vf(x)] V x e X*.

Indeed for any K-T pair (x*, *) such that x* € X*, we have shown (Proposi-
tion 4.22) that A(x*) = A*. Since A(-) is a continuous function on X*, it follows

that Z(xo) is near A* if x, is near x*. This leads to a Newton-like iteration
whereby (x; .+, A4+ 1) are obtained by solving the system

Vi Llx, j'(xk)] Vh(xk)] |:xk+ 1 xk] _ [VxL(xk> llk):l
Vh(x) 0 Ay —Ad o)

This system can also be written as
(50) VieLDxy, j‘(xk)] (Xi+1 — x0) + Vh(x)A s 1 = =V (x0),

(51) Vh(x) (X1 — xi) = —h(x),
50 X 1, IS independent of A,.

(49) [
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We derive now an explicit formula for x, , ;. From (51), we have
(52)  Vh(x) [Vh(xa) VhGa)]™ ' Vh(a) (et — X))
= —Vh(x)[Vh(x) Vh(x,)1™  h(x,),
while from (50), we obtain
(53)
— Vh(x) [VA(x,) Vh(x:) 1™ "Wh(x,) Vi L[Xks z(xk)] (Xk+1 = X)) — VA A+ 1
= Vh(x) [Vh(xi) Vh(x)]™ ' Vh(x,) VS (k).
By adding (50), (52), and (53) and by making use of (48), we obtain
(54) {E(x) + I — EGe)IV2,LExe, M)} (s — %) = = VaLDxi, A0x0)],
where E is defined by
(55) E(x) = Vh(x)[Vh(x)Vh(x)]~ 'Vh(x)'.
If the matrix within braces in (54) is invertible, we can write
(56) Xer1 = i — {E(x) + [ — E(e)IVa L% A1}~ Vi LDk, 4]

We shall demonstrate shortly that the inverse above indeed exists for x,
sufficiently close to a local minimum x* satisfying Assumption (S) (Proposi-
tion 4.26¢). We have thus obtained a Newton-like method which can be carried
out in the space of primal variables x without any reference to the dual vari-
ables A.

We can develop iteration (56) by starting from a different viewpoint.
Consider for x € X* the equation

(57) V.L[x, A(x)] = 0.
The following proposition shows that K-T pairs of (ECP) can be obtained by

solving this equation.

Proposition 4.26: Let x* € X* and assume f, h € C? in a neighborhood of
x*. Then:

(@) (x*, A*)is a K-T pair of (ECP) if and only if x* is a solution of Eq.
(57) and A* = A(x*).

(b) If x*is a solution of Eq. (57), then the Jacobian matrix (with respect
to x) of V, L[x, A(x)] evaluated at x* is given by

(58)  V(V.L[x* Ax®]) = EGe*) + [ — E(c*)IVELDx*, A(x*)].

(c) If x* is a local minimum of (ECP) which together with A* = A(x*)
satisfies Assumption (S) of Section 2.2, then the matrix (58) is nonsingular.
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More specifically this matrix has m eigenvalues equal to one and its remaining

(n — m) eigenvalues are equal to the (n — m) positive eigenvaluesy,, ..., Yp-m
of the matrix
(59) [ — EQe*)IVEL(x*, A¥)[] — E(x*)].

(Note: It will be shown as part of the proof that the matrix (59) has exactly
(n — m) positive eigenvalues and a zero eigenvalue of multiplicity m.)

Proof: (a) If (x* A*) is a K-T pair then the equation Vf(x*) +

Vh(x*)A* = 0 yields
Vh(x*)'Vf (x*) + Vh(x*)Vh(x*)A* = 0
from which
A* = —[Vh(x*)Y'Vh(x*)] ™ *Vh(x*)'Vf (x*).

Using (48) and tl;le fact that h(x*)A= 0, we obtain A* = A(x*). Hence, 0 =
VF(x*) + Vh(x*)A(x*) = V,L[x*, A(x*)], and it follows that x* is a solution
of Eq. (57).

Conversely let x* be a solution of Eq. (57); i.e.,

(60) V.L[x*, A(x*)] = 0.

From (48), we obtain

(61) h(x*) = Vh(x*)'Vf (x*) + Vh(x*)'Vh(x*)A(x*)
= Vh(x*)'V,L[x*, A(x*)].

By combining (60) and (61) and writing A* = J(x*), we obtain
V. L(x*, A*) = 0, h(x*) = 0,

showing that (x*, A*) is a K-T pair for (ECP).
(b) Denote, for x € X*,

(62) p(x) = V,L[x, A(x)].

By differentiation, we obtain

(63) Vp(x) = V2, L[x, A(x)] + VA(x)Vi(x).

From (59), it follows that, for x € X*,

(64) [I — E(x)]Vh(x) = 0.

By applying [I — E(x)] to both sides of (63) and using (64), we obtain

(65) [I — E(x)]Vp(x) = [I — E(x)]JV2.L[x, A(x)] vV xeX*.

Also from (48), we have Vh(x)'V L[x, A(x)] = h(x) or, equivalently,
h(x) — Vh(x)'p(x) = 0 vV xe X*.
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By differentiating and by taking into account the fact that p(x*) = 0, we
obtain
Vh(x*) — Vh(x*)'Vp(x*) = 0.

Multiplying with VA(x*)[Vh(x*)'Vh(x*)]~! and using (55), we obtain
(66) E(x*)Vp(x*)" = E(x*).
By combining (65) and (66), it follows that

Vp(x*) = E(x*) + [I — E(x*)]VZL[x* A(x*)],

which, in view of (62), is identical to (58).
(c) Let y be an eigenvalue of the matrix (58) and let y # 0 be a corre-
sponding eigenvector. We have

(67) [EGe*) + [ — E(e*)IVa L(x*, A%)]y = yy.

By using the relation

(63) E(x*)[1 — E(x*)] =0

and by multiplying (67) in turn by E(x*) and [/ — E(x*)], we obtain
(69) E(x*)y = yE(x*)y,

(70) [ — E(c*)]IVi L(x*, A%¥)y = y[I — E(x*)]y.

There are two possibilities:

(i) E(x*)y # 0. Then it follows from (69) that y = 1.
(ii) E(x*)y = 0. In this case, [I — E(x*)]y = y, and (70) yields

(71) [I — EG*)IVELLGe*, A9 — E(x*)]y = yy;

i.e., y is an eigenvalue of the matrix (59) and y is a corresponding eigenvector.
Since matrix (59) is symmetric, both y and y are real. Hence from (71), we also
obtain

YU — EG*IVELGe*, A9 — E(x*)]y = 7yl
from which, using the fact that E(x*)y = 0, it follows that
(72) YV L(e*, %)y = ylyl*
By using (55), the equation E(x*)y = 0 is written
Vh(x*) [Vh(x*) Vh(x*)] ™ 'Vh(x*)'y = 0,
and by multiplying with VA(x*)', we obtain
Vh(x*)'y = 0.
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By using Assumption (S) and the fact that y # 0, we obtain
y'VZ L(x*, A¥)y > 0.
In view of (72), this implies that
y > 0.

Conversely, if 75 0 is an eigenvalue of matrix (59) and y # 0 is the cor-
responding eigenvector, then both 7 and j are real since this matrix is sym-
metric. We have

(73) [ — EG*)IVELL(x*, %) — E(x*)]y = 75
and by multiplying with E(x*) and using the fact that E(x*)[I — E(x*)] = O,
we obtain 0 = JE(x*)y or
74 E(x*)y = 0.
Combining (73) and (74), we obtain
[E(*) + [I — E(x*)]VZLOx*, A%)]5 = 77

Hence, 7 is also an eigenvalue of matrix (58), and y is a corresponding eigen-
vector. This together with (74) and the facts already proved also imply that
7> 0.

Summarizing, we have shown up to this point that each nonzero eigen-
value of matrix (59) is positive and is also an eigenvalue of matrix (58), and
all the remaining eigenvalues of matrix (58) equal unity. The proposition will
be proved if we can show that matrix (59) has a zero eigenvalue of multiplicity
exactly m. It can be easily seen, using Assumption (S), that the nullspace of
matrix (59) is the m-dimensional subspace {z|[] — E(x*)]z = 0}. For sym-
metric matrices the multiplicity of the zero eigenvalue is equal to the dimen-
sion of the nullspace and the result follows. Q.E.D.

It can now be seen that iteration (56) iAs a Newton-like method for solving
Eq. (57), where the Jacobian of V. L[x, A(x)] is replaced by the matrix

E(x) + [I — E()IVZLIx, Ax)]-

Since at a solution these two matrices are equal by essentially repeating the
proof of Proposition 1.17 (compare also with the proof of Proposition 4.25b),
we obtain the following result:

Proposition 4.27: Let x* be a local minimum of (ECP) satisfying, to-
gether with A* = A(x*), Assumption (S) of Section 2.2. Then:

(a) x* is a point of attraction of iteration (56), and if a sequence {x;}
generated by (56) converges to x*, the rate of convergence of {|x, — x*|} is
superlinear.



248 4. EXACT PENALTY METHODS AND LAGRANGIAN METHODS

(b) Givenanyscalarr > 0,thereexistsad > Osuchthatif|x, — x*| < §
then

(75) IV L[x+ 1, 2(xk+ D1l < 7|V L[x, j'(xk)] [

It is worth mentioning that for x, € X* we can obtain both A(x;) and
V. L[x;, A(x;)] by solving the quadratic program

minimize Vf(x,)d + %|d|?
subject to  h(x,) + Vh(x,)d = 0.

Indeed the K-T conditions for this program are Vf(x,) + Vh(x)A +d =0
and h(x,) + Vh(x,)'d = 0,and it canAbe easily seen that the (unique) Lagrange
multiplier vector of this program is A(x), while the unique optimal solution is

d(x) = —V,.L[x, A(x)].

4.4.3 Newton-like Methods for Inequality Constraints

There are two main approaches for developing Newton-like methods for
problems with inequality constraints. In the first approach, inequality con-
straints are treated by separating them explicitly or implicitly into two groups.
In the first group are those that are predicted to be active at a solution and
these are treated essentially as equality constraints. In the second group are
those that are predicted to be inactive at a solution, and these are essentially
ignored. This will be referred to as the active set approach. In the second
approach inequality constraints are treated directly. Since all the methods of
thistype that we shall consider involve the solution of quadratic programming
subproblems, we refer to this approach as the quadratic programming
approach.

For simplicity we restrict attention to the problem

(Icp) minimize f(x)
subject to g(x) < 0.

The methods to be described can be extended to handle additional equality
constraints in a manner that should be obvious to the reader in light of the
developments so far in this chapter.

Active Set Approaches

The first active set approach to be examined is based on a transformation
by means of which the K-T conditions for (ICP) are converted into a system
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of nonlinear equations. For a fixed scalar ¢ > 0, consider the open set
S* < R" x R’ defined by

(76) SF={G Wl +cgx)#0, j=1,....r}
and the system of equations on S¥*

(77) V() + Vg™ (x, m c)u =0,

(78) g7 (x, 1, ¢) =0,

where the function g™ is given by
gr(xa His C)
(79) g (x, ) = : ,
g: (x, pys €)

(80) g9 (x, uj, ©) = max{gy(x), —p;/c}, j=1...,r
Note that g* is differentiable on S* as many times as g, so the system (77),

(78) is well defined. We remind the reader that g* appears in the definition of
the augmented Lagrangian function for (ICP) which takes the form

Lx, 1) = f(x) + @g™(x, p, ) + 3clg™(x, p, o)

[compare with Section 3.1, Eq. (9)].
The following proposition establishes the validity and relevance of
Newton’s method for solving the system (77), (78).

Proposition 4.28: Let ¢ > 0 be a scalar.

(a) A pair (x*, u*) belongs to S¥ and is a solution of the system (77), (78)
if and only if (x*, u*) is a K-T pair of (ICP) satisfying the strict comple-
mentarity condition

(81) pE>0eg(x) =0 Vj=1,...,r

(b) If (x*, u*) is a K-T pair of (ICP) satisfying Assumption (S*) of
Section 3.1, then (x*, u*) is a point of attraction of Newton’s method for
solving the system (77), (78). If {(x,, w)} generated by Newton’s method
converges to (x*, u*), then the rate of convergence of {|(x;, t) — (x*, u*)|}
is superlinear (of order at least two if V2 and V?g;,j = 1, ..., r, are Lipschitz
continuous in a neighborhood of x*).

Proof: (a) Assume that (x*, u*) belongs to S¥ and is a solution of the
system (77), (78). Since g* (x*, u*, ¢) = 0, it follows in view of (79), (80) that

g(x*) <0, pur>0 Vj=1,...,r,
gix*) =0 if pF>0, g(x*)<0 if pF=
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In view of these relations, the equation Vf(x*) + V. .g*(x*, u*, c)u* = O can
be written as

VF(x*) + Vg(x*)u* = 0.

Hence all the K-T conditions, as well as the strict complementarity condition
(81), are satisfied by (x*, u*). The proof of the converse is straightforward
and is left for the reader.

(b) There is a neighborhood of (x*, u*) such that gi(x) > —pu;/c if
gi(x*) = 0and g;(x) < —pu;/cifg(x*) < Ofor all (x, x) in this neighborhood.
Within this neighborhood, the functions appearing in the system (77), (78) are
continuously differentiable and Proposition 4.24 applies. QE.D.

Consider now the implementation of Newton’s method. Define, for
(x, u) € 8%,

(82) L*(x, p¢) = f(x) + wg™(x, p, ¢),
(83) Ac('x’ Au') = {]lg](x) > _#j/c? .] = 1,...,7’},

and assume without loss of generality that A.(x, u) = {1, ..., p} for some
integer p (which depends on x and u). We may view A.(x, 1) as the active
index set, in the sense that indices in 4.(x, w) are “predicted ” by the algorithm
to be active at the solution. By differentiation in the system (77), (78) we find
that Newton’s method consists of the iteration

(84) X =x+ Ax, p=pu+ Ay,
where (Ax, Ap) is the solution of the system
[ Ax ] [V, L*(x, 1, c)|
Aﬂl g;(-x’ ﬂa C)
ViL™(x, 4 ¢) N(x,pc) 0 : :
(85) N(x> K, c)l 0 0 Aﬂp = - g;(x, K, C)
0 0 —(/l|Appss gp+ 10X, s ©)
| Ay, | | 9/ (x, 1 0) |

In the equation above, N(x, u, ¢) is the n X p matrix having as columns the
gradients Vg(x), j € A(x, u), I is the (r — p) x (r — p) identity matrix, and
the zero matrices have appropriate dimension. Since we have

g;(xa K, C) = _luj/c V]¢ Ac(xa iu)a
it follows, from (84) and (85), that

(86) B=0  Vj¢ALxp).
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It also follows from (85) that the remaining variables Axand Ay, ..., Au,are
obtained by solving the reduced system

Ax V.L*(x, p, c)

(87) VchxL+(xa H, C) N(X, H, C) A:u'l - _ gl(x)
N(x, p, ¢y 0 : :

Ap, gx(x)
where we have made use of the fact that
(88) g;-(xa M, C) = gj(x) VJ € Ac(x9 lu)
If we note the fact that
(39) V.L*(x, p0) = Vf(x) + Y Vgiou,

JjeAc(x, )

we can see from (86), (87), and (89) that the Newton iteration can be described
in a simple manner. We set the Lagrange multipliers of constraints that are not
in the active set A/(x, 1) to zero, and treat the remaining constraints as if they
are equalities.

The second active set approach to be examined is based on the last
Newton-like method described in the previous section. We consider the
quadratic program

(90) minimize Vf(x)d + %|d|?
subject to  gi(x) + Vg (x)d <0,  jeJsx),
where
Jo(x) = {jlgx) = max{0, g,(x), ..., gx)} — &}

and 6 > 0 is a fixed scalar. For x such that the program (90) has a feasible
solution, let fi,(x), j € J5(x), be corresponding Lagrange multipliers and set
Aj(x) = 0 for j ¢ J5(x). Let the active index set be

A(x) = {jlax) > 0},

and assume, without loss of generality, that A(x) contains the first p indices
where p < r. Define the n x p matrix N(x) by

N(x) = [Vg,(x) - -- Vg,(x)],
and let
E(x) = N(x)[N(x)N(x)]" 'N(x).
A Newton-like method can now be defined by

X =x + Ax,
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where Ax is the solution of the system [compare with (56)]
{E(x) + [I — E()IVZLIx, 2(x)]}Ax = —V L[x, i(x)].

Again we see that this method consists of treating the constraints in the active
set as equalities and ignoring the remaining constraints. It is relatively easy to
show that if x* is a local minimum of (ICP) satisfying the sufficiency Assump-
tion (S*) of Section 3.1, then x* is a point of attraction of the method just
described, and that the rate of convergence of {|x, — x*|} is superlinear. We
leave the verification of this fact as an exercise for the reader.

As a precautionary note, we finally mention that active set approaches
depend strongly for their success on the choice of a starting point which is
sufficiently favorable to enable accurate identification of the constraints that
are active at the solution. For many problems such a choice is unavailable, so
active set approaches are typically effective only when combined with methods
that incorporate a mechanism for enforcing convergence from poor initial
starting points. Such combinations will be considered in Section 4.5.

Quadratic Programming Approach

This approach is based on a direct extension of Newton’s method to
inequality constrained problems. Given (x;, y), we obtain (Xx., Me+1)
as a K-T pair of the quadratic program

O1)  minimize Vf(x)'(x — %) + 3(x — %' Vi L(x, i) (x — x;)
subject to  g(x,) + Vg(x,)'(x — x;) < 0.

Note that V2, L(x,, ) need not be positive definite even near a K-T pair
(x*, u*) satisfying Assumption (S*) of Section 3.1. For this reason it is
necessary to show that, at least for (x,, 1) near (x*, u*), the program (91) has
at least one KT pair and to further specify which of its possibly multiple
K-T pairs will be the next iterate (x , ;, i+ ) of Newton’s method. This can
be done by making use of the implicit function theorem as we now show.

Consider the following system of (n + r) equations, with unknowns the
vectors xe R", ue R", xe R", and i e R,

92) V() + VOO + VA L(x, )(% — x) = 0,
93) Algx) + Vg =01 =0,  j=1...,x

Note that (92) and (93) are necessary conditions for {d = (X — x), ii} to be
a K-T pair of the quadratic program

(94) minimize Vf(x)'d + 3d'VZ, L(x, n)d
subject to  g(x) + Vg(x)d < 0,
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the remaining K-T conditions being
95) gx) + Vg(x)(x —x) <0, p=0.

Let (x*, u*) be a K-T pair of (ICP) satisfying the sufficiency Assumption (S*)
of Section 3.1. Then x = x*, u = pu*, X = x* and g = p* is a solution of the
system (92), (93). The Jacobian matrix of this system, with respect to (X, )
evaluated at the solution (x*, u*, x*, u*), can be calculated to be

V2.LGe%, )| Vg(x*)
________ Ammmmmmmmmmmmomo oo
* *Y/ *
(96) G* = N:‘V%(X*), : g1(x*) 0* 0
p3Vg,(x*) : 0 g(x*) - 0
: [ - :
. l . M .
| wfVg (x*y |0 g:/(x*) |
In order to apply the implicit function theorem, we must show that G* is non-
singular. Indeed if (z, wy, . .., ,) is a vector in the nullspace of G*, then we
have
o7 VI L(x*, p*)z + ) wiVg(x*) = 0,
j=1
98) piVg,(x*)z + gj(x*w; =0,  j=1,...,r

Let A(x*) denote the set of indices of active constraints at x*

A(x*) = {jlgx*)=0,j=1,...,r}

Since (x*, u*) satisfy Assumption (S*), we have the strict complementarity
condition
wE> 0= jeA(x®),  pf = 0<sj¢ AGK®).

These relations together with (98) imply that

(99a) w;=0 Vjé¢ A(x*®),
(99b) Vgi(x*)z =10 V je A(x*).
Multiplying (97) with z', we obtain

(100) 2V L(x*, u*)z = — Y w;z’Vg(x*).
i=1
From the last three relations, it follows that, for all j € A(x*),
ZVI L(x* u*)z =0, Vgi(x*)z=0.
Using Assumption (S*), we obtain
(101) z=0.
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Therefore, using (97) and (99a) we have
Y. w;Vg(x*) = 0.

je A(x¥)

Since by (S™) the gradients Vg (x*), j € A(x*), are linearly independent, we
obtain

(102) w,=0  VYjeA(x*).

From (99a), (101), and (102) it follows that the only vector in the nullspace of
G* is the zero vector. Hence G* is nonsingular.

Now by applying the implicit function theorem to the system (92), (93), it
follows that there exist open spheres S; and S, centered at (x*, u*) and a
continuous function ¢ (-, -): §; — S, with

x(x, u)]
X, =1_ s
o0 1) [#(X, 0]
such that
J—C(X*9 .u*) = X*> ﬁ(X*’ lu*) = :u*,
and for all (x, u) € S, there holds
(103) VI (x) + Vg()ia(x, p) + Vi, L(x, ) [X(x, ) — x] = 0

(104) Bi(x, g {x) + Vg(x)[x(x, 1) — x]]1 =0
Vi=1...,r

We can take S, sufficiently small, so that for all (x, u) € S,

(105) 9fx) + Vg () [x(x, 1) — x] <0 Vj¢A(x*),

(106) Aix, ) >0 VjeA(x*),

and X(x, w), f(x, p) is the solution of (92), (93) closest to (x*, u*) in terms of
Euclidean distance. Observe that (103)-(106) are the K-T conditions for
{d = X(x, 1) — x, fi(x, u)} to be a K-T pair of the quadratic program (94).
Furthermore {d, fi(x, p)} is the K-T pair of (94) which is closest to (x*, u*)
in terms of Euclidean distance.

We are now in a position to define the iteration of Newton’s method for
(ICP). For (x;, i) in the open sphere S, specified above via the implicit
function theorem, the iteration consists of

(107) Xer1 = XX, W), Brr1 = B(Xg, W),

where [X(xy, W), (X, W) is the K-T pair of the quadratic program (91) which
is closest to (x*, u*) in terms of Euclidean distance.



4.4 LAGRANGIAN METHODS—LOCAL CONVERGENCE 255

Note that from (104)-(106), we have
Bxem) >0 VjeARX*), A, m) =0  Vj¢A(x®).

It follows that, for (x;, i) € S;, the Newton iteration can be alternately
described as follows:
We set

HTI=0 YjgAG®),

and we obtain [x;,q, {#§*']j€ A(x*)}] as the K-T pair of the quadratic
program

minimize V(%) (x — X)) + 3¢ — %)’ V2 LX) (x — Xz)
subject to  g{(x;) + Vgi(x)(x — x) =0,  jeA(x¥),
which is closest to [x*, {u¥|je A(x*)}]. Equivalently,
[Xe+ 1 {#’;+ Hje A(x*)}]
are obtained by solving the system of equations

(108) VaeL(xi, ) (x — x;) + . AZ“)#;'VQ ) = = V(x),

(109) Vg(x)(x — x) = —gfx)  JEAXT).

Except for the additional term

| > avae|oc—w
j¢ A(x*)

in (108), this system is the same as the one solved in Newton’s method of the
previous section applied to the equality constrained problem

minimize f(x)
subject to g {(x) =0, j e A(x*).

Now, since u¥ = 0, for j ¢ A(x*), the term [} ¢ 4 #5V?g(x1)] can be made
arbitrarily small by taking g, sufficiently close to u*. Based on this fact, it can
be verified, by essentially repeating the proof of Proposition 1.17, that given
any scalar r > 0, there exists a §, > 0 such that if |(x;, ) — (x*, p*)| < 6
then

|Xee1 — X*[> + Z I,U?H - .U}k|2 < r?(lx — x*)* + Z |#§ - #}‘|2)~
je A(x*) Jje A(x*)

Since pk*!

k*1 = p¥ = 0for j ¢ A(x*), we also obtain

IXer 1 — X1+ (e — 2*1P < 72(Ix — X*|2 4 |y — 1*1?)
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or equivalently

[ks 1 — X5, ey — W5 S 7] 0o — X*, y — p¥).
This implies that (x*, u*) is a point of attraction of iteration (107) and the rate of
convergence is superlinear. If V2f and Vg, j € A(x*), are Lipschitz continuous
in a neighborhood of x*, then the rate of convergence is superlinear of
order at least two.

4.4.4 Quasi-Newton Versions

We can develop quasi-Newton versions of the Newton-like methods of
Section 4.4.2 simply by replacing various Hessian or inverse Hessian matrices
wherever they appear in Newton-like iterations by approximations obtained
via quasi-Newton updating formulas such as the BFGS, DFP, and others
(see Section 1.3.5).

Thus a quasi-Newton version of the Newton iteration (21), (22) is given by

(110) Aer1 = (N Hg 'NY) ™ [h(x) — Ny Hy 'V (x0)],
(111) Xp+1 = X — Hy IVxL(xka A+ 1)

where N, = Vh(x,) and H, is an approximation to V2, L(x,, 4). Another
quasi-Newton version of the same iteration is given by

(112) Aev1 = (NeBe N ™ [h(x,) — Ni B Vf (x)],
(113) X1 = X — BV L(x, At 1),

where B, is an approximation to [V2, L(x,, 4,)] .

In a similar manner, one can provide quasi-Newton versions of variations
of Newton’s method (compare with (37)-(38), (43)—(44), and (45)-(46)] and
of Newton’s method for inequality constraints [compare with (91)].

There are a number of formulas for updating the approximating matrices
H, and B, of (110)—(113). Some examples follow.

(114) H,,, = H, + Ok = Hisdsit sy — His)' s — Hysp)sisy
k+1 = Hy -

Sk Sk (sks0)? ’
(115) H,,, = H, + Ok = Hiesyie + vl — Hesy)' _ S — His)yai
k+1 = Hy ; - )
YieSk s’
(116) B,., = B, + (5k = Biyidyk + Vilsk — Byyr) _ Vilsi — B yi)yi Vi
k+1 — / , B
! Vi Yk iy’

(117) B, =B, + (s — Biysi + silse — Bive)  Vi(sk — Byyw)sisi
k+1 — Pk ’ - ’
Sk Yk (siy)’

>
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where
(118) S = Xg+1 — Xk
(119) Vi = VeL(xps 15 A1) — Ve L(xg, Ags1)-

The formula (114) stems from Powell (1970), while (115) is an analog of the
Davidon-Fletcher-Powell formula considered in Section 1.3.5. The formula
(116) stems from Greenstadt (1970), while (117) is an analog of the Broyden—
Fletcher-Goldfarb-Shanno formula (Section 1.3.5).

The convergence analysis of the iterations just described follows a pattern
established in papers by Broyden et al. (1973) and Dennis and Moré (1974).
The main assumptions are that the starting matrices H, and B, are close to
V2, L(xq, Ao)and [V2, L(x,, Ao)] ™}, respectively, and that (x,, 4,) is close to a
K-T pair (x*, 1*)satisfying Assumption (S). For the case of the formulas (115)
and (117), it is also necessary to assume that V2, L(x*, A*) is positive definite.
These assumptions are of course quite restrictive, but it should be recalled that
the analysis of this section is purely local in nature. The principal idea of the
analysis is that the updating formulas are such that the differences [H), —
V2, L(x*, A¥)] and [B, — [V, L(x*, *)]~ '] remain small as k — oo and tend
to zero along the directions of interest. This in turn implies superlinear con-
vergence of {|(x, — x*, 4, — A¥)|}. For a detailed analysis we refer the reader
to Glad (1979), Han (1977a), Tapia (1977), and Gabay (1979). An alternative
quasi-Newton approach, due to Powell (1978a), will be described in Section
4.5.3.

4.5 Lagrangian Methods—Global Convergence

In order to enlarge the region of convergence of Lagrangian methods, it is
necessary to combine them with some other method that has satisfactory
global convergence properties. We refer to such a method as a global method.
The main ideas here are very similar to those underlying modifications of
Newton’s method for unconstrained minimization (compare with Section
1.3.3), although the resulting implementations tend to be somewhat more
complex. Basically, we would like to have a combined method that when
sufficiently close to a local minimum of (NLP) satisfying the sufficiency
conditions for optimality switches automatically to a superlinearly convergent
Lagrangian method, while when far away from such a point it switches auto-
matically to the global method which is designed to make steady progress
towards approaching the set of K-T pairs of (NLP). Prime candidates for use
as global methods are various penalty and multiplier methods, such as those
examined in Chapters 2 and 3, and exact penalty methods, such as those
considered in this chapter.



258 4. EXACT PENALTY METHODS AND LAGRANGIAN METHODS

There are many possibilities for combining global and Lagrangian
methods, and the suitability of any one of these depends strongly on the
problem at hand. For this reason, our main purpose in this section is not to
develop and recommend specific algorithms, but rather to focus on the main
guidelines for harmoniously interfacing global and Lagrangian methods while
retaining the advantages of both. Our emphasis thus is placed on explaining
ideas rather than proving specific convergence and rate of convergence
theorems.

Once a global and a Lagrangian method have been selected, the main
issue to be settled is the choice of what we shall call the switching rule and the
acceptance rule. The switching rule determines on the basis of certain tests at
each iteration whether a switch should be made to the Lagrangian method.
The tests to be used depend on the information currently available, and their
purpose is to determine whether an iteration of the Lagrangian method has a
reasonable chance of success. As an example, for (ECP) such tests might
include verification that Vi has rank m and that V2, L is positive definite on
the subspace {z|Vh'z = 0}. We hasten to add here that these tests should not
require excessive computational overhead. In some cases a switch might be
made without any test at all, subject only to the condition that the Lagrangian
iteration is well defined.

The acceptance rule determines whether the results of the Lagrangian
iteration will be accepted as they are, whether they will be modified, or whether
they will be rejected completely and a switch will be made back to the global
method. Typically, acceptance of the results of the Lagrangian iteration is
based on improvement of some criterion of merit such as reduction of the
value of some exact penalty function.

Nearly all the combined methods to be considered are motivated by the
descent properties of Newton’s method and its modifications discussed in
Section 4.4.2 (compare with Proposition 4.25).

4.5.1 Combinations with Penalty and Multiplier Methods

One possibility for enlarging the region of convergence of Lagrangian
methods is to combine them with methods of multipliers discussed in
Chapters 2 and 3. The resulting combined methods tend to be very reliable,
since they inherit the robustness of the method of multipliers. At the same time
they typically require fewer iterations to converge within the same accuracy
than pure methods of multipliers.

The simplest possibility is to switch to a Lagrangian method at the begin-
ning (or the end) of each (perhaps approximate) unconstrained minimization
of a method of multipliers and continue using the Lagrangian method as long
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as the value of the exact penalty function | VL |? is being decreased by a certain
factor at each iteration. If satisfactory progress in decreasing |VL|? is not
observed, a switch back to the method of multipliers is made. Another
possibility is to attempt a switch to a Lagrangian method at each iteration.
As an example, consider the following method for solving (ECP) which
combines Newton’s method for unconstrained minimization of the augmented
Lagrangian together with the Lagrangian iteration (43), (44) of Section 4.4.2.

At iteration k, we have x,, 4, and a penalty parameter c,. We also have a
positive scalar w,, which represents a target value of the exact penalty function
| VL | that must be attained in order to accept the Lagrangian iteration, and a
positive scalar g, that controls the accuracy of the unconstrained minimization
of the method of multipliers. At the kth iteration, we determine X+ 1, A+ 1
Wi+ 1, and g, as follows:

We first form the modified Cholesky factorization L, L; of the matrix
V2, L, (xi, 4) as in Section 1.3.3. In the process, we modify V2, Lo (x> A) if
it is not “sufficiently positive definite” (compare with Section 1.3.3). We then
find the Newton direction

¢)) dy = — (L L)~ leLck(xka A

and if V2, L (x, 4) was found “sufficiently positive definite” during the
factorization process, we also carry out the Lagrangian iteration [compare
with (43) and (44) in Section 4.4.2)

(2) )?k = X + dk’
3 i = A + a[h(x) + V() (% — X))
If

|VL(X,, zk)|2 < Wy,
then we accept the Lagrangian iteration and we set

Xps1 = Xy Aar = Moo Chr1 = Cr> &1 = &

71 lVL(xk’ Zk)|27

where 7y, is a fixed scalar with 0 < y, < 1. Otherwise we set

Wi +1

Xg+1 = X + %,

where the stepsize is obtained from the Armijo rule (compare with Section
1.3.1)

o = ﬂm,"
where my is the first nonnegative integer m such that

Lck(xm )"k) - Lck(xk + ﬁmdka )'k) = _Gﬁmd;cvx Lck(xh j'k)
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and B and ¢ are fixed scalars with f€(0, 1) and o € (0, 3). If
IV Lo (Xk+ 15 4| < &,
implying termination of the current unconstrained minimization, we set
4) Aer1 = Ae + cch(x),
Ee1 = V28> Crkw1 = TCks Wis1 = V2| VL(Xt 15 Aesy) %
where y, and r are fixed scalars with 0 < y, < 1and r > 1. If
IVeLe (Xt 15 4| > &,
we set
Aer1 = A Ek+1 = &, Ck+1 = C, Wk+1 = Wy,

and proceed with the next iteration.

The preceding algorithm is only an example of a large variety of methods
that one can construct based on combinations of multiplier methods and
Lagrangian iterations. For example, a quasi-Newton approximation could be
used in place of the Newton direction (1); a different Lagrangian iteration
could be used in place of (2), (3); a second-order multiplier iteration could be
used in place of (4); etc. Finally, one can handle inequality constraints via
Lagrangian iterations employing an active set strategy (compare with
Section4.4.3). Werefer to the paper by Glad (1979) for some specificalgorithms
and computational results.

4.5.2  Combinations with Differentiable Exact Penalty Methods
—Newton and Quasi-Newton Versions

We have already observed, in Section 4.3.3, that the Newton direction for
solving the system of equations VL(x, 1) = 0 of (ECP) approaches asymp-
totically the Newton direction for minimizing the exact penalty functions
(compare with Section 4.3.1)

(5)  Pdx, A c,0) = Lix, A) + 3(c + t|AP)|h(x)[> + Jo|V, L(x, 1)
and

©)  Pdx, ;¢ M) = L(x, A) + 3c + t|A)[h(x) > + FIM(x)V,.L(x, D%,

wherec > 0, « > 0,7 > 0, M(-)is continuous,and M(x)Vh(x) is invertible for
all x in the set X* defined by

X* = {x|Vh(x) has rank m}.
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More precisely for (x;, 4,) sufficiently close to a K-T pair (x*, A*) satisfying
the sufficiency assumption (S), the Lagrangian iteration

@) Xir1 = X + A%y Aerr = A + Ay,
where

Ax, 2 -
® | = =L )7 VLG, B

is well defined. Furthermore iteration (8) can be expressed as
Ax,
A,

where B(-, -; ¢, o), B(-, - ; ¢, M) are continuous matrices satisfying
B(x*, 2*; ¢, 0) = V2P (x*, A*; ¢, )7,
B(x*, A*; ¢, M) = V2P (x*, A*;¢c, M)~ ..

_B(xka Aka [ a)VP‘r(xh ;['k> (¢ O()

= _B(xk’ A’Iw c, M)VPr(xk9 lk; C, M))

Based on this fact, we can introduce in the Lagrangian iteration (7), (8) a
stepsize procedure based on descent of the penalty function (5) or (6) and
combine the iteration with modifications such as those considered in con-
nection with Newton’s method for unconstrained minimization to enforce
convergence from poor starting points. We consider two types of modifica-
tions. The first is based on a'combination with the steepest descent method,
while the second is based on modification of the Hessian V2, L(x,, 4) to
make it positive definite along the subspace which is tangent to the con-
straint surface.

It appears that the algorithms of this section that are based on descent
of the penalty functions (5) and (6) are primarily useful in the case where
second derivatives of the objective and constraint functions are available.
Quasi-Newton versions of these algorithms are possible [see Eqgs. (58)-(61)
in this section], but then it seems preferable to use for descent purposes an
exact penalty function depending only on x (compare with Section 4.3.2) as
will be described in what follows [see Egs. (74), (75) in this section]. We
assume throughout this section that f, h € C>.

Combination with the Steepest Descent Method

Let us consider an algorithm that combines the Newton iteration (7), (8),
a scaled steepest descent method with a positive definite scaling matrix D, and
the Armijo stepsize rule with parameters ¢ € (0, 3), 8 € (0, 1), and unity initial
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stepsize. The algorithm consists of the iteration
)] Xp+1 = X + B™AX, Aer1 = Ky + AN,
where m, is the first nonnegative integer m for which

(10) Pt(xk, ;I'k: (& M) - Pr(xk + BmAxk’ )'k + BMA'lln c, M)
2 —of"[AX V. Pxy, & ¢, M) + ARV, Py, &; ¢, M)].

The direction (Ax,, A4;)is the Newton direction (8), if V2L(x,, 4,)is invertible
and if

(1) —[AXV P(xi, Aes ¢, M) + ARV, P (xy, A ¢, M)]
= ylvpt(xka )'k, c, M)Iq,

where y is a positive scalar with typically very small value, and q is a scalar
with g > 2. (These tests represent the switching rule to the Lagrangian
iteration.) Otherwise (Ax,, A4,) is the scaled steepest descent direction

(12) Al DVP (xy, Ay ¢, M.
Al

The preceding algorithm is not necessarily the most efficient for any given
problem, but rather represents an example of how one can enlarge the region
of convergence of the Lagrangian iteration (7), (8). It is straightforward
(compare with the analysis in Sections 1.3.1 and 1.3.3) to verify the following
facts:

(a) Every limit point of a sequence {(x;, 4)} generated by iteration
(9)-(12) is a critical point of P,(-, - ; ¢, M).

(b) Suppose (x*, 1*) is a K-T pair of (ECP), satisfying Assumption (S),
and c is such that V2P (x*, A*; ¢, M) is positive definite. If (x*, *) is a limit
point of {(x,, 4)} generated by (9)-(12) then {(x;, 4)} actually converges
to (x*, A*). Furthermore, the rate of convergence is superlinear. In addition
there exists an integer k such that, for all k > k, (Ax,, A4,) is given by the
Newton direction (8) and the stepsize equals unity [m, = 0in (9)]. If (x,, 4)
is sufficiently close to (x*, A*) then the same is true for all k.

A similar algorithm can be constructed in connection with the penalty
function P (-, -; ¢, ), and convergence results analogous to the one stated
above can be shown. In fact for this penalty function, it is possible to char-
acterize somewhat more precisely the region of pairs (x,, 4;) for which the
Newton direction (8) is a direction of descent. This result is given in the
following exercise, the proof of which can be obtained by straightforward
adaptation of the proof of Proposition 4.29 that follows.
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Exercise: Consider the penalty function P(-, -; c, o) of (6) where T > 0
and o > 0. Let X be a compact subset of X* and A a compact subset of R™
such that, for some positive scalars y and I', we have

ylzP? < 2VEL(x, )z < Tz?

for all (x, A) € X x A, and z € R" with Vh(x)'z = 0. Then there exist scalars
¢>0and B > 0 (depending on X and A) such that the solution (Ax, A4)
of the system

VI L(x,A) Vh(x)|[Ax]  [ViL(x,4)
Vh(x) o (lar]™ | mx

satisfies, for all (x, A)e X xA and ¢ > C.

VP (x, 2; c, ) [ﬁﬂ < —BIVP(x A, )P

Positive Definitenesss Modification on the Tangent Plane and Quasi-Newton
Versions

We remind the reader that one of the modified versions of Newton’s
method for the unconstrained problem

minimize f(x)
subject to xeR"
consists of the iteration (compare with Section 1.3.3)
Xga1 = X — 4D Vf (%),
where D, is a positive definite matrix of the form
Dy = (V¥ (x) + Ex)~!

where E, is a diagonal matrix which is either zero if V3f(x,) is “sufficiently
positive definite ” or else is a positive definite matrix obtained via the Cholesky
factorization process. '

The natural constrained analog of this procedure is to modify the Hessian
of the Lagrangian Vi L(x,, A) by adding a matrix so as to make it positive
definite along the tangent plane

(13) %, = {z|Vh(x,)z = 0}.
By this, we mean replacing VZ, L(x;, 4) by
(14) Hy = V2 L(x, A4 + Eg,
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where E, is an n x n matrix such that
ZHy,z >0 Vze®, z#0.

Similarly as in unconstrained minimization, this modification can be em-
bedded within a factorization process used for solving the system of equations

[Vix L, A4) Vh(xk)] [Ax] - _ [Vx L(xy, }%):I

(15) Vh(x,) o ||aa h(x,)

that yields the Newton direction, as we now show.
Assume that x, belongs to the set

(16) X* = {x|Vh(x) has rank m),

and let Z, be an n x (n — m) matrix, the columns of which form an ortho-
normal basis for the tangent plane %, of (13);1i.e.,

(17) Z,Zy =1, Z,Vh(x) = 0.

Letalso ¥, beann x m matrix with columns forming a basis for the subspace
spanned by the gradients Vh,(x), . . ., Vh,(x,). This is the subspace #* which
is orthogonal to %,

@i = {z]zZx =0V x€ %)} = {Vh(x)é|E€R™).
Clearly, we have
(18) Z, Y. =0.

Actually, we can take Y, = Vh(x,), but it is possible to obtain other choices via
the LQ-factorization of Vh(x,) which yields simultaneously a matrix Z,
satisfying (17) (see Gill and Murray, 1974, p. 61). Now, every vector w € R" can
be written as

w=2¢+ Ly

in terms of unique vectors £ and  belonging to R"~™and R™, respectively. We
can write, in this manner,

19) Ax = Z,d, + Y4,
and system (15) can then be written as
VZ.L(x, A)Zid, + V2, L(x,, A Yed, + Vh(x )AL = —V_L(x;, A),
Vh(x,YZ,d, + Vh(x,) Y, d, = —h(x,).
Since Vh(x,)'Z, = 0, the second equation yields
(20) d, = —[Vh(x) Y] 'h(xy).
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By premultiplying the first equation by Z; and by taking into account the
fact that Z, Vh(x,) = 0, we also obtain

1) Zi Vi L(xi, A)Zid; = Zi[ Vi L0, A YL[Vh() Y™ Hh(x) — Vf (xi)]:

Thus if Z}, V2, L(x,, 4)Z, is invertible, we can solve for d, thereby completely
determining Ax. A very interesting fact that follows from Egs. (20) and (21) is
that the vector Ax depends on V2, L(x,, A,) only through the product Vi, L(x,,
A)Zy. Similarly if V2, L(xy, A) is replaced in (15) by any matrix Hy such that
Z,H,Z, is invertible, Ax will depend on H, only through the product H,Z,.
Regarding the vector A4, we see that given Ax it can be determined from the
equation

(22) AL = —[Vh(x)'Vh(x)]™ 'Vh(x) [V LOxe, AAX + Vi L(xy, &)1

Now the matrix Z; V2, L(x;, 4)Z, may be viewed as the restriction of the
Hessian V2, L(x,, 4,) on the tangent plane %,. Suppose we add to VZ, L(x;, 4,)
a matrix E, of the form

E = ZkEkZ;u
where E, is diagonal, thereby forming the matrix
(23) H, = VZ L(x, %) + ZE Z;.
Then in view of the fact that Z; Z, = I, we have
(24) Z H,Z, = Z V2. L(xy, W)Z, + E,.

By choosing appropriately E,, we can make the matrix H, positive definite on
the tangent plane %,; i.e.,

Z.H.Z, > 0,

and in fact this can be done during the Cholesky factorization process that
may be used to solve system (21) similarly as in the unconstrained case con-
sidered in Section 1.3.3. At the same time, the Hessian V2, L(x,, 4,) and its
modification H, operate identically on vectors in the subspace €j spanned by
the constraint gradients.

In conclusion, we have shown that by modifying V2, L(x,, 4), as in (23),
we can obtain a matrix H, that is positive definite on the tangent plane %,,
and furthermore this can be done conveniently during the factorization
process used in solving the system (21). Of course once VZ L(x;, &) is
replaced by H,, we shall obtain a solution (Ax, AA) of the system

H,  Vh(x)][Ax] _ [VeL(x, &)
25) [Vh(xk)’ 0 ][M] - [ h(x,) ]
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rather than the original system (15). We have yet to demonstrate that some
substantive purpose is served by such a modification. As a first step in this
direction, we show the following proposition which essentially says that if H,
is positive definite on the tangent plane, the pair (x,, 4,) satisfies for all k a
relation of the form

(26) M(x )V L(xg, A) = AQx, A)h(xy),
where A is a continuous m x m matrix function, and the parameter c¢ is

sufficiently large, then the solution (Ax,, A4,) of system (25) is a direction of
descent of the penalty function

@7) Pux, Ase, M) =L(x, ) + Hc + t|AP)[h(x) > + I M(x)V, L(x, DI

It appears that in order to construct globally convergent algorithms
based on solution of the system (25) and descent of the above penalty func-
tion, it is necessary that a condition such as (26) be satisfied by successive
iterates (x;, 4). We will subsequently show how one can construct algorithms
where condition (26) is automatically satisfied.

Proposition 4.29: Consider the penalty function P, of (27) where 7 > 0
and M(x)isanm x ntwice continuously differentiable matrix function on X*
such that M(x)Vh(x) is nonsingular for all x € X*. Let # be a compact set of
symmetric n X n matrices, let y and I" be some positive scalars, let X be a
compact subset of X*, let A be a compact subset of R™, and let A(x, 1) be
an m X m matrix function which is continuous on X x A. There exist
scalars ¢ > 0 and § > 0 (depending on #, A4, y, I', X, and A) such that, for
all vectors x € Xand 1 € A and matrices H € s satisfying

(28) M(x)V.L(x, 2) = A(x, Dh(x),
(29) v|z]? < ZHz < T|z|? VzeR" with Vh(x)z =0,
the solution (Ax, A1), of the system

(30) H Vh(x) [[Ax | _ V. L(x, 2)
Vh(xy 0 |[|AA] hx) |
exists, is unique, and satisfies, for all ¢ > ¢,
’ Ax 2
(31 VP.(x, A; c, M) AJ < —BIVP(x, A;¢c, M)|*.

Proof: For vectors x € X* and A € A satisfying (28), let us use the abbre-
viated notation
(32) a=V,L(x, 1), b = h(x), N = Vh(x), M = M(x),

(33) Q = V,[M(x)V,L(x, 1)], A = A(x, 4).
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We have, using this notation,

(34) V. P(x, A;¢, M) = a + (c + t|A|*)Nb + QMa,

(35) V,P(x, A;¢c, M) = b + 1|b|*A + N'M'Ma.
Consider any H € # satisfying (29). Let us denote

(36) J =V, P(x, A; ¢, MYAx + V,P(x, 4; c, M) A4,

where (Ax, AA) is the solution of system (30). (The fact that this solution exists
and is unique follows by repetition of the proof of Lemma 1.27.)
Let p > 0 be a scalar such that the matrix

(37) H=H + pNN'

is positive definite with eigenvalues uniformly bounded above and away from
zero over all x € X and H e 5 satisfying (29). (It is straightforward to show
that such a scalar p exists by a minor adaptation of the proof of Lemma 1.25).
The second equation of system (30) yields

(3%) N'Ax = —b.
By substituting in the first equation and using (37), we obtain
39) HAx + NAL = —a — pNb.

By multiplying this equation by N'H ™' and using (38), we obtain
(40) AA = (N'H IN)"![(I — pN'H"'N)b — N'H™ 'a].
Substitution in (39) yields finally
1) Ax = —[H™' — H'N(NH"'N)"'N'H ']a

— B IN(N'H N)"'b.

We now rewrite the inner product J of (36) using Egs. (34) and (35).
We have

J=aAx + (c + T| APV N'Ax + aM'Q'Ax + b'(I + tbA)AL + a M'MNAA.
Using equations (38), (39), and (40), we obtain
J=dAx — (c + t|AP)|b? + aM'Q'Ax + b'(I + thA)N'H 'N)™*
x [ — pN'H"'N)b — N'H™ 'a] — @ M'M(pNb + a + HAx).

By rearranging terms and using (28) and (41), we find that J can be expressed
as a sum of two quadratic forms

(42) J= R(aa b) - Clblza
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where
R(a,b) = —a'[H™' — H!N(N'H™!N)"'N'H ']a — aM'Ma
- bA(Q — ME)[H ! — H 'N(NH 'N)"'N'H a
— aM'(Q' — MEDA"'N(N'H™'N)~'b
—b'[(I + hA)Y(N'H !N)"!N'H™ ' + pN'M'M
+ (NH'N)"'N'H Ja
—b[c|APL — (I + ) (N'H'N)"\(I — pN'H~'N)Jb.

(Note: A critical step in the above calculation, that uses the assumption (28),
is to substitute b’4" in the third term in the right side in place of a’M’. This
step makes the following argument possible.)

The quadratic form R(a, b) when restricted on the subspace {(a, b)|b = 0}
can be written

R(@,0) = —a[H ' — H'N(NH"'N)"'N'H™* + M'M]a
= —a'[l1 - N(NN)"'N' + M'M]a,
where
d=H '"qa, N=H'Y2N, and M = MH'2.

We claim that R(a, 0) is negative definite. Indeed, since both matrices
[1 — N(N'N)~'N'] and M'M are positive semidefinite, it follows that R(a, 0)
is negative semidefinite. If R(@, 0) = 0 for some a # 0, then we must have
@[l — N(N'N)~'N]a = Oand @M'Na = 0.Since [I — N(N'N)~*N']is the
projection matrix on the subspace {z| N'z = 0}, the first equation shows that
a belongs to the orthogonal subspace; i.e., @ = N¢ for some & € R™. Then the
equation @’M'Ma = 0 yields & N'NM'MN¢ = 0. Since MN = MN and MN is
invertible, we obtain ¢ = 0 which is a contradiction. Having established
negative definiteness of R(a, 0), it follows, using (42) and Lemma 1.25, that
for ¢ sufficiently large, we can represent J as a negative definite quadratic
form; ie.,

J=1[a b1D(x, A H, ¢ m

where D(x, A, H, c)is a negative definite matrix. Since the matrix D(x, A, H, ¢)
is continuous in all its arguments, it is straightforward to use the previous
reasoning and a minor extension of Lemma 1.25 in order to show that there
exists ¢ > O such that, forallc¢ > ¢, xe X, Ae A, and He # satisfying (28)
and (29), the eigenvalues of D(x, 4, H, c¢) are negative and uniformly bounded
above and away from zero. Since, in view of (34) and (35), the square norm of
the gradient VP, can be expressed as a quadratic form in (a, b), it follows that
there exists f > 0 such that (31) holds. Q.E.D.



4.5 LAGRANGIAN METHODS—GLOBAL CONVERGENCE 269

Let us now consider an algorithm of the form

(43) Xp+1 = X + 04 AX,,

(44) Aevr = A + 04 Ak,

where (Ax,, A4,) is the solution of the system

(45) H, ’ Vh(x,) | | Ax — _ V. L(x, Ak)_l.
Vh(x,) 0 AL h(x) |

o is a scalar stepsize based on descent of the exact penalty function
P(-,-; c, M) and is obtained, for example, via the Armijo rule. The matrix H,
is assumed positive definite on the tangent plane %, and can be obtained from
either the Hessian V2, L(x,, 4,) or a quasi-Newton approximation of it by
appropriate modification, if necessary, as described earlier [compare with
(23)]. We know from our earlier analysis that if H, = V2 L(x,, 4,) then
for (x;, 4)in a neighborhood of a K-T pair (x*, 1*) satisfying Assumption (S)
the direction (Ax,, A4,) is a descent direction for P, for sufficiently large c.
Proposition 4.29 shows that this is also true even if H, # V2, L(x,, 4) and
(x, A4) is not near (x*, A¥) provided c is sufficiently large and a relation of the
form

(46) M(x )V, L(xy, &) = A(Xg, Ah(xi)

is satisfied for some continuous m x m matrix A. It is possible to construct a
convergent algorithm in which a relation of the form (46) is satisfied by making
A, depend continuously on x, via the relation
(47) A = A(xi)s
where
(48) Ax) = — {Vh(x)M(x) M(x)Vh(x)
+ Th(x) P13 ™ [h(x) + VhA(x) M(x) M(x)VS (x)].
Using the above definition we have
V. P.[x, Ax); ¢, M] = h(x) + t|h(x)[*A(x)
+ Vh(x) M(x) M(x)V, L[x, A(x)]
= 0’
so it can be seen that A(x) minimizes P(x, A; ¢, M) over all A € R™ It is also easy
to verify via a straightforward calculation that Eq. (46) is satisfied with

49) A(x, A) = —[Vh(x) M(x) ][I + tA(x)h(x)'].

Therefore, given any pair (x, A) with x € X*, if we replace A by A(x), the value of
P, cannot increase; i.e.,

(50) P[x, A(x);c, M] < P(x,A;¢c, M) ¥YxeX* AeR™
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while at the same time, Eq. (28), which is sufficient to guarantee the descent
property of Proposition 4.29, is satisfied. This leads to the following type of
algorithm.

Given x,€ X* and 4, = A(x;), compute the solution (Ax,, AA) of the
system of equations

5 H, Vh(xp][ax] _[VxL[xk, i(xk)]]
D Vh(x)) 0 AL h(x;) ’

where H, is positive definite on the tangent plane %, . Then set
(52) Xi+1 = X + 0 Ax,,
(53) Irr = Ax) + o Al

where o is obtained by line search based on descent of the penalty function
P(-, -;c, M) (compare with Proposition 4.29). Then set

(54) Agr1 = Z(xk+ 1)

and proceed to the next iteration.

Thus the algorithm above utilizes a two-step procedure at each iteration.
Given (x;, 4) with x;, € X* and 4, = A(x,), in the first step we obtain by line
search a pair (x; . ;, 4+ ;) with a lower value of P, and in the second step, we
replace 1, ; by A(x; . 1) which, in view of (50), also lowers the value of P,.

Summarizing the developments so far, we have seen that there are several
algorithmic possibilities for minimizing the exact penalty function P(x, A;
¢, M) based on solution of the system

55 H,  Vh(x)||Ax]| V. L(x, A)

(53) Vh(x,y 0 [[Ar] hx) [
where H, is positive definite on the tangent plane %,. Given any (x, 4)
sufficiently close to a K-T pair (x*, A*) satisfying Assumption (S), the direc-
tion (Ax,, A4,) obtained from system (55) is a descent direction at (Xx, A) Of
P if H, = V%, L(x, 4). When far from (x*, 1*) or when H, # V2, L(x, A),
it may be necessary to replace 4, by i(x,), given by (48), in order to obtain a
descent direction in the same manner. To do this, it is necessary that the
penalty parameter c exceeds a certain (generally unknown) threshold. There is
complete freedom in choosing the matrix H, as long as it is positive definite on
the tangent plane. Thus H, may equal the Hessian V2, L(xy, 4) perhaps
modified along the tangent plane, as discussed earlier, or it may equal a
quasi-Newton approximation generated, for example, by one of the quasi-
Newton formulas discussed in Section 4.4.

A reasonable algorithm seems to be one whereby the direction (Axy, AAy)
1s computed via solution of the system (55) and is tested to determine whether
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it is a descent direction by computing its inner product with the gradient VP..
In the case where it is not, the vector A(x,) is computed and 4, is replaced by
A(x). It is not necessary to resolve the system (55) since the vector Ax, and the
vector (4, + AL do not depend on , [compare with (20)-(22)]. Thus the
only additional computation in the case where (Ax, A,) is not a descent
direction is the computation of A(x), and even this need not be difficult since
for the typical choice M = (Vh'Vh)™ 'Vh the computation of A(x,) [compare
with (48)] requires the inverse (VA'Vh)™* which is normally available from
earlier computations during the current iteration [compare with (22)]. In a
practical setting, it is of course quite possible that, even after 4, is replaced by
A(x,), a direction of descent is not yet obtained because the parameter c is not
sufficiently large. In this case, a reasonable scheme is simply to increase ¢ by
multiplication with some scalar until a descent direction is obtained. This can
be coupled with an automatic penalty parameter adjustment procedure of the
type discussed in Section 4.3.3.

Convergence and Rate of Convergence

It is possible to show various convergence results for specific algorithms of
the type described above. These results are based on Proposition 4.29 and the
analysis of Chapter 1 and should be routine for the experienced reader.

When the algorithms are combined with the Armijo rule with unity initial
stepsize, it is easy to show superlinear convergence to a K-T pair (x*, A*)
satisfying Assumption (S) under the condition

(56) H, — V2, L(x*, *).

The proof of this is fairly evident, since we have already shown in the beginning
of this section that if H, = V2, L(x, ) the algorithm reduces asymptotically
to Newton’s method for minimizing P;.

In some cases where a quasi-Newton scheme is used, it is not reasonable to
expect that the condition H, — V2, L(x*, A*) will be attained in practice.
Powell’s variable metric scheme, to be discussed in the next section, is a prime
example of this situation. For this scheme, one can expect at most that the
condition

(57) [H — Vi L(x* A*)]Z* - 0

will be attained, where Z*isann x (n — m) matrix the columns of which form
a basis for the tangent plane

€* = {z|Vh(x*)z = 0}.

It will be shown later in this section that if this condition holds and if the
stepsize o, in the algorithm

Xp+1 = X + o Ax, A1 = A + oAy
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is unity for all k sufficiently large, then the rate of convergence of the sequence
{x,} is superlinear. Unfortunately, if only (57) is satisfied in place of (56), it is
not possible to guarantee that the condition o, = 1 for all k sufficiently large
will be attained as long as we insist on reduction of the exact penalty function
P, at each iteration. It is possible to bypass this difficulty by modifying the
vector A/, in the following manner:

Consider the iteration

(58) Xe+1 = X + 0 Axy, Aerr = Ao + 04y,

where Ax, together with a vector A4, solve the system

(59) H, Vh(x)[[Ax| N V. L(xg, A4)

Vh(x,) 0 ALl hixp) |
H, is positive definite on the tangent plane %,, and J, is defined by
(60) O = —[M(x)Vh(x)] ™ 'y + M (Ve L%, 401,
where
(61) Ve = VLM )V L(xy, A4)] Ax,.

Note that the computation of y, requires the use of second derivatives, but it is
possible to estimate y, accurately by the finite difference scheme

(62) y, =t [M(x, + tAX )V L(xy + tAXy, 4) — M(x, )V, L(xy, 4)],

where ¢ is a small positive scalar.
By essentially repeating the proof of Proposition 4.29, it is possible to show
the following result.

Proposition 4.30:  Consider the penalty function P, of (27) where T > 0
and M is a continuous m x n matrix such that M(x)Vh(x) is nonsingular for
each x € X*. Let # be a compact set of symmetricn x n matrices, and yand I’
be two positive scalars. Also let X be a compact subset of X*, and A be a com-
pact subset of R™. There exists a scalar ¢ > 0and a scalar § > 0 (depending on
A, y, I, X, and A) such that for all vectors x € X and A € A and matrices
H e s# satisfying

y|z|* < ZHz < T|z|? VzeR" with Vh(x)z =0,

the vectors Ax, and &, defined via the solution of system (59) and Egs. (60)
and (61), satisfy, for all ¢ > ¢,

VPr(xk’ ’lka [ M)/[A5Xk:| < _BIVPr(xka lk; c, M)lz'
k
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Proposition 4.30 asserts that the algorithm (58)-(61) has global descent
properties. We now sketch a proof of the fact that if the sequence {H,} is
bounded and if the algorithm converges to a K-T pair (x*, 1*) satisfying
Assumption (S) and the condition [H, — V2, L(x*, A*)]Z* — 0 holds [com-
pare with (57)], then close enough to (x*, 4*) the stepsize o = 1 will be
acceptable by the algorithm in the sense that it leads to a reduction of P,. To
this end, we show that the direction (Ax,, 6,) differs from the direction
(dy, d;,) generated by solving the Newton system

(63) [V:Zcx Lk, A4) Vh(xk)] [dxk] - _ [Vx L(xy, lk)jl
Vh(x) 0 A h(x,)

by a term that goes to zero faster than |VL(x;, 4)[; ie.,

(64 Ax; = dy, + o(IVL(xk, A1),

(65) O = dj, + o(|VL(x, A1)

We have that Ax,(d,,) depends on H,[VZ,L(xy, 4)] only through the
matrices H,Z, [V2,L(xy, 4)Z:], where Z, is an orthonormal basis matrix
for the tangent plane [compare with (20) and (21)]. We can assume, without
loss of generality, that Z, — Z* so that (57) yields

[He — Vi L(x*, 9)]Z, — 0.

Since Ax, = O(|VL(x,, 4)|) (in view of boundedness of {H,}), it is easily seen
that (64) holds.
Now the vector d,, satisfies

Vh(x,)ds,, = — Vi Lk, Addg, — Vi L(Xis Ay
and therefore
(66) d;, = —[M(x)Vh(x)] ™ IM(xi)V 2 Ly, A, + M)V L(xi, Ai)]-
The vector y, of (61) can be expressed as
Vi = [IM(x)Vz L(xi, A) + O VLCxy, A)1)IAX.
Since Ax, = O(|VL(xy, 4,)|), the previous equation and (60) yield
(67) 8 = —[M(x)Vh(x)]™ ' IM(x)Vi L0xe, A)Ax
+ o(|VL(xg, A1) + M(x )V, L(x;, A4)]-

By taking into account (64) and comparing (66) and (67), we obtain (65).
We know from our earlier analysis that (d,, , d;,) differs from the Newton
direction for minimizing P, by a term o( | VL(x,, 4;)|). In view of (64) and (65),
it follows that the same is true for the direction (Ax,, J;). This is sufficient to
show that near (x*, A*) the stepsize o, = 1 will be acceptable by the algorithm



274 4. EXACT PENALTY METHODS AND LAGRANGIAN METHODS

(58)-(61) (in the sense that it leads to “sufficient ” reduction of the value of P,)
and that the rate of convergence is superlinear under the conditions stated
earlier.

Quasi-Newton Algorithms for Differentiable Exact Penalty Functions
Depending Only on x

Let us consider the exact penalty function P introduced in Section 4.3.2.
We have, for all x e X*,

(68) P(x;c) = f(x) + Ax)h(x) + dc|h(x) P2,
where
(69) Mx) = — [Vh(x)’Vh(x)] ~IVh(x) Vf (x).

We saw, in Section 4.3.2, that P can be expressed as
(70) P(x; ¢) = P[x, Ax); ¢ + 1, M] = min P(x, A; ¢ + 1, M),
A

where

(71 P(x,4;¢, M) = L(x, 4) + 3c|h(x)|* + 3| M(x)V, L(x, })|?,
(72) M(x) = [Vh(x)'Vh(x)]~ *Vh(x),

(73) Ax) = —h(x) — [Vh(x)'Vh(x)]~ 'Vh(x) Vf (x).

It is thus natural to expect, in view of the analysis given earlier, that algorithms
of the type considered so far in this section can also be used for minimizing the
penalty function P. Indeed let us consider an algorithm of the form

(74) Xe+1 = X + 0 Axy,

where o, is a stepsize obtained by descent on P (for example via the Armijo
rule with unity initial stepsize). Assume that Ax, together with a vector A,
solves a system of the form

(75) H, Vh(x,) | [ Ax _ Ve L(xi, A4)

Vh(x,) 0 AL hx) |
where 4, is an arbitrary vector in R™ and H, is a symmetricn x nmatrix which
is positive definite on the tangent plane

(76) %, = {z|Vh(x)'z = O}.

We shall show first that Ax, so obtained is a descent direction of P at x,.
To this end, we note the basic fact that Ax, does not depend on 4, at all and
depends on H, only through H, Z,, where Z, isann x (n — m) orthonormal



4.5 LAGRANGIAN METHODS—GLOBAL CONVERGENCE 275

basis matrix for €, [compare with (19)-(21) and the related discussion]. We
next observe, using (72), that (73) can be written as

M(x)Vx L[X, j'(x)] = - h(X),

and hence the condition (28) of Proposition 4.29 is satisfied by all pairs
(x, A(x)), x € X*, with 4 equal to — I. Proposition 4.29 shows therefore that,
for all ¢ sufficiently large, the direction (Ax,, A4,) is a descent direction of
P(,,-; ¢ + 1, M) at (x;, A(x,)). Furthermore we have, for all x € X* [compare
with (35) and (36) in Section 4.3.2],

(77) V.P[x, X(x); ¢ + 1, M] = VP(x; ¢),

(78) V.P[x, A(x);c + 1, M] = 0.

Using these equations in Proposition 4.29, we obtain that, for some § > 0,
VP(x;; €)' Axy < = BIVP(x,; ).

It follows that Ax, is a descent direction of P at x, for sufficiently large c.
Indeed based on Proposition 4.29, we have proved by the argument above
the following result:

Proposition 4.31: Let 5# be a compact set of symmetric n x n matrices,
let y and I be two positive scalars, and let X be a compact subset of X*. There
exists a scalar ¢ > 0 and a scalar § > 0 (depending on #, y, I', and X) such
that for all vectors x € X and A € R™ and matrices H € 5 satisfying

p|z|> < zZHz < T|z]> VzeR" with Vh(x)z =0,
the solution (Ax, A1) of the system

H  Vhx)][Ax]  [V.L(x 2
Vhxy 0 [[Ad] ™ | hx) ]

satisfies, for all ¢ > ¢,
VP(x; cyAx < —B|VP(x; c)|*

Proposition 4.31 shows that the algorithm (74), (75) has global conver-
gence properties provided the penalty parameter ¢ is chosen sufficiently large.
We shall show that if {H,} is bounded, the algorithm converges to a K-T pair
(x*, A*) satisfying Assumption (S), and the condition
(79) Axi[H\ — VZ L(x*, A*)]Z*/|Ax, | = 0
holds, where Z* is an orthonormal basis matrix for the tangent plane ¢* =
{z|Vh(x*)'z = 0}, then for sufficiently large k the stepsize o, = 1 is acceptable
(in the sense that it leads to a “sufficient” reduction of the value of P) and the
rate of convergence of the algorithm is superlinear. To this end, it will be
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sufficient to show (compare with the proofs of Propositions 1.15and 1.17) that
(79) implies

(80) V2P(x*; c)Ax, = —VP(xy; ¢) + o(|x, — x*]).

In order to show (80), we first observe (using the boundedness of {H,})
that we have :

®1)  Ax, = O(|VLLx;, 2x11) + O(1h(x)]) = O(Ix, — x*1).
A straightforward calculation shows that
(82)  VP(xi;¢) = VLD, Ax)] + VAxDh(x) + cVA(x)h(xy),
(83) V2P(x*;c) = V2 L(x*, A*) + VA(X*)Vh(x*) + Vh(x*)VA(x*)
+ cVA(x*)Vh(x*)'.
Hence Eq. (80), which is to be proved, can be written as
(84) [V2,L(x*, A*) + VA(x*)Vh(x*)' + Vh(x*)VA(x*)
+ cVh(x*)Vh(x*)]Ax,
= —[V,L[x, Ax)] + VAx)h(x,) + cVh(x)h(x)]
+ o(|x, — x*|).
Using (81) and the fact that h(x,) = — Vh(x,)' Ax,, we have
(85) VA(x)h(x,) = —VAx)Vh(x, ) Ax, = —VAXF)VA(x*) Ax,
+ o(|x, — x*|),
(86) Vh(x)h(x,) = —Vh(x)Vh(x, ) Ax, = —VA(x*)Vh(x*)' Ax,
+ o(|x; — x*|).
Using these equations, we see that (84) is equivalent to
(87) [VZ.L(x*, A*) + Vh(x*)VA(x*)]Ax, + V. L[x, A(x,)] = o(|x, — x*|).
From the definition of A(-), we have, for all x € X*,
(88) Vh(x)'V,.L[x, A(x)] = Vh(x)'Vf(x) + Vh(x)'Vh(x)A(x) = 0.
Since V. L[x;, A(x,)] = O(|x, — x*|) and Vh(x,) = Vh(x*) + O(|x; — x*|),
Eq. 88) yields
Vh(x*)'V Lx;, Ax)] = o(|x, — x*]).
Also by differentiating (88) at x*, we obtain
Vh(x*)[VZ, L(x*, A*) + Vh(x*)VA(x*)'] = 0.

The last two equations yield
(89)  VA(x*){[Vi L(x*, A*) + VA(x*)VA(x*)JAx, + V. L[x, Ax)1}

= o(lx, — x*|).
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We shall now show that

(90)  Z*{[VEL(x* 4*) + VA(x*VAG*YIAx, + V,L[x, A}
= o(|x; — x*]).
Since the n x n matrix
[Vh(x*) Z*]

is invertible, Eqgs. (89) and (90) will imply the desired relation (87) and hence
also (80).

In order to show (90), we note that Egs. (79) and (81) and the fact that
Z*¥Vh(x*) = 0 imply
(O1) Z¥[VZ,L(x*, A*) + Vh(x*)VA(x*)]Ax, = Z* H,Ax;, + o(|x, — x*|).
We also have, from the definition of Ax,,
92) HyAxy + Vh(x) [Aes 1 — Mx)] = =V LLxy, Ax)],

where 4, ,, is obtained from the solution of system (75). We can write this
equation as

Aewr = Ax) = —[Vh(x,) Vh(x)]1™ 'Vha(x) {H Axy + V. Lx,, A(x)1},
so by also using (81) and the boundedness assumption on {H,}, we obtain
A1 — Mx) = O(]x, — x*|).

Using the equation above and the fact that Z*'Vh(x,) = O(|x, — x*|), we
obtain, from (92),

93) Z¥H\ Ax, + Z¥'V L[x;, Mx)] = o(]x, — x*]).

By combining (91) and (93), we see that (90) holds and therefore our proof of
validity of (80) is complete.

To summarize, we have shown that the algorithm (74), (75) coupled with
the Armijo rule with unity initial stepsize and descent on P, has a rate of
convergence to a local minimum x* satisfying (S) which is superlinear
provided the following three conditions hold:

(a) The penalty parameter c is sufficiently large to ensure that x* is a
strong local minimum of the penalty function P(-; c).

(b) The sequence {H,} is bounded.

(c) The condition

Axi[Hy — V2 L(x*, 2%)1Z*/|Ax, | - 0

holds.
The algorithm (74), (75) has one main disadvantage when compared with
the earlier algorithms, which were based on the exact penalty function
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P(x, A; ¢, M), namely, that each function evaluation requires the computa-
tion of A(x) and hence the inverse [Vh(x)'Vh(x)]~*. This however may not be
serious, since the solution of system (75) requires O(n>) operations versus
O(m®)for computation of [Vh(x) Vh(x)] ™ *. Also the inverse [Vh(x,) Vh(x,)] ~*
may be computed at each iteration as part of the solution of the system (75).
Thus additional overhead results only at iterations requiring more than one
function call; and we have shown that under circumstances where super-
linear convergence is obtained, only one function call per iteration is necessary
when near convergence. In any case, it is possible to limit the number of extra
evaluations per iteration of [Vh(x)'Vh(x)]~* to at most one by performing
instead a line search on the function P(-,-; ¢ + 1, M) of the form

Xer1 = X + 04 AXy, hery = M%) + [0 + Ax) — Ax)],

starting at the pair (x, A(x)) for each k. We have already shown that
(Axy, [A(x, + Ax) — A(x,)]) is a descent direction at (x;, A(xy)) of P(-,-;
¢ + 1, M) [Proposition 4.29 and (77), (78)]. Since

P(x;c) = P[x, A(x);c + 1, M] V xe X*,

the preceding analysis shows that if the condition (79) holds, the stepsize
o, = 1 will be acceptable by the algorithm near convergence and that the rate
of convergence of the algorithm will be again superlinear.

We finally note that the algorithm (74), (75) can similarly be shown to be
superlinearly convergent if line search is based on other exact penalty func-
tions of the form

94) P(x; ¢) = min P(x, A; ¢, M).
A

For example, if
M(x) = [Vh(x)'Vh(x)]~*Vh(x),
then the minimizing vector in (94) is given by
Ax) = —(1 + t|h() )™ {h(x) + [VA(x)VA(x)]~ *Vh(x)'Vf (x)},
and a straightforward calculation shows that P, takes the form
P(x;¢) = L[x, A(x)] + 3(c + t1Ax) ) [AG) > + $Ih(x) + ©[h(x) PAX)1%.

For t = 0, we obtain Py(x; ¢) = P(x; ¢ — 1) where P is the penalty function
(68). It appears, however, that using a positive scalar 7 improves the numerical
stability of the resulting algorithm, so the function P, of (94) with t > 0 may
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offer some advantage over the function P of (68). More generally the mini-
mizing vector in (94) is given by
Ax) = — [Vh(x)M(x) M(x)Vh(x) + t|h(x)|*1]*
x [h(x) + Vh(x) M(x) M(x)Vf(x)].

When M(x) is defined for all x € R" [including those x for which Vh(x) does
not have full rank, such as for example when M(x) = Vh(x)], a choice
7 > 0 is particularly interesting since then A(x) is defined for all x € R" for
which either VA(x) has full rank or h(x) # 0. For example, for the two-
dimensional problem min{x,|x? + x = 1} the function P(x; c) of (68) is
not defined at the origin. It tends to — oo and + oo as x approaches the origin
along the directions (1, 0) and (— 1, 0) respectively. By contrast this peculiar

behavior does not arise when M(x) = Vh(x) and = > 0. In that case P(x; c)
is everywhere continuously differentiable.

Some Extensions to Inequality Constraints

We shall develop an extension of the Newton iteration (7), (8) to the in-
equality constrained problem

(ICP) minimize f(x)
subject to  g{(x) <0, j=1...,r,

where f, g; € C. The iteration employs an active set strategy and is similar
to some of the iterations examined in Section 4.4.3.

We will make use of the exact penalty function [compare with (70) in
Section 4.3.3]

(95) PI(x, ps ¢, @) = f(x) + 3| Vo L(x, @) |?

1 r
+ s X, U; ¢, &, T),
et P o R menD)

where

Q/(x, p; ¢, o, 7) = [max{0, u; + 2o} + (¢ + lul*)gx)}1?
— (j + 20u})* — dalc + tluPuigx),  j=1,...,r

Fix ¢ > 0,7 > 0, and o > 0 and define, for each (x, u) € R"*",
96) AT (x, ) = {jlp; + 20u} + (¢ + t|ulPgx) > 0,j=1,...,7},
O A C,w={jli¢A 0w j=1...,rh.
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For a given (x, u), assume (by reordering indices if necessary) that 4™ (x, w)
contains the first p indices where p is an integer with 0 < p < r. Define

[9:(x) [9,+1(x)
9% g+ =1 : [, g-(0= N P

| 9,(x) | 0.0

[ 11 -#p+1
99) we=|11. wo=| |,

Lﬂp | A
(100) L.(x, 1) = f(x) + psg+(x).

We note that p,g.,g_, u., u_, and L, depend on (x, ), but to simplify
notation we do not show explicitly this dependence.

In the extension of Newton’s method that we consider, given (x, ), we
denote the next iterate by (X, 4) where g = (4, ..., f,). We also write

/l.l ﬁp+1
(101) ge=|:1, A-=1 :

A, A,
The iteration, roughly speaking, consists of setting the multipliers of the

inactive constraints [je€ 4~ (x, u)] to zero, and treating the remaining con-

straints as equalities. More precisely, we set

(102) u_=0

and obtain X, 4, by solving the system

(103 [Vixu(x, ) Vg+(x)][ % - x ] _ [VXLAx, u)]
Vg (x) 0 Ae — pe g+(x) [

assuming, of course, that the matrix on the left above is invertible.

We consider the following combination of the Newton iteration (102),
(103) with the Armijo rule and a scaled steepest descent method for minimizing
the penalty function P (-, -; ¢, «) of (95). Let 6 € (0, %), B€(0, 1),y > 0, and
D be a positive definite matrix. Given (x, w), the next iterate (X, j) is given by

a0 HEMEGH!

where m is the first nonnegative integer m for which

(105) P/ (x, pusc,0) = P7(x + B"pes t + B7pys ¢, )
> —gf"p'VP (x, u; ¢, ).
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The direction p = (p,, p,) is given by the Newton direction, obtained from
(102) and (103),

(106) p=[ﬂ=[§'ﬂ,
Pu f—u

if the matrix on the left in (103) is invertible and

(107)  —(% = XYV PF(x, ps ¢, 0) = (f — p)'V, P (x, ps e, )

> p|VPI(x, us; ¢, )%,
where ¢ is a scalar with ¢ > 2. Otherwise
(108) p = —DVP(x, u;c, o).

Based on the results for unconstrained minimization methods developed in
Section 1.3, it can be shown that any limit point of a sequence generated by the
method described above is a critical point of P . There remains to show,
similarly as for equality constrained problems, that the direction generated by
the Newton iteration (102), (103) approaches asymptotically the Newton
direction for minimizing P as (x, u) approaches a K-T pair (x*, u*)
satisfying Assumptions (S¥). A superlinear convergence rate result then
follows.

Consider a K-T pair (x*, u*) of (ICP) satisfying Assumption (S¥). In
view of the strict complementarity assumption [u¥* > 0 if g;(x*) = 0], for
each ¢ > 0, 7 > 0, and « > 0, there exists a neighborhood of (x*, u*) within
which we have

(109) AT(x, ) = A*) = {jlg;(x*) = 0,j =1,...,r}.

Within this neighborhood, the Newton iteration (102), (103) reduces to the
Newton iteration for solving the system of necessary conditions

Vili(x, ) =0,  g.(x) =0,
corresponding to the equality constrained problem
minimize f(x)
subject to g .(x) = 0.

Based on this fact, it is easy to see that (x*, u*) is a point of attraction of itera-
tion (102), (103), and the rate of convergence is superlinear. Let ¢, 7, and
a be such that V2P (x*, u*; ¢, o) is positive definite. We shall show that, in a
neighborhood of (x*, u*) within which (109) holds, we have

(110) D:ﬂ=—Wﬁmm@TWHMMa@
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where H.(-, -; ¢, a) is a continuous matrix satisfying
(111) H (x*, u*; ¢, ) = V2P (x*, u*; ¢, ).

We show this fact for 7 = 0.
Consider the (n + r) X (n + r) matrix

(112) H=

V2 L, +cVg, Vg, +aVi L, szL+i Vg.+aV2, L, Vg, E aV2 L, Vg_ + aE

where all derivatives are evaluated at a point (x, 4) in a neighborhood of
(x*, u*) within which (109) holds, the (» — p) x (r — p) diagonal matrix F is
given by

(113) F =
— L1+ Aoy )(1 + 204ty )fe — dag,y 0

’

0 (1 + dap)(1 + 22)]c — dog,
and the n x (r — p) matrix E is given by
(114) E=[-V?g,.1V.L — 204,,Vg, 111 =V?g, V. L — 24, Vg,].
The function P* can also be written as

(115)  P7(x, psc,0) = Lo (x, ) + 3¢9+ (X)1* + 32|V, L(x, ) |?

2¢

j=p+1

o[ (uy + 20u3)?

Y ,:j—’ + 20ulg(x) |
By differentiating this expression, we obtain

(116)

ViL, +cVg.g, + aVZL LV, L —2aY"_ .4 13Vg;
VP*(x, u;c,a) = g+ +aVg,. V. L ,
oVg_V.L + Fu_
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where F is given by (113). We now observe that the solution (£ — x, i, — Uy)
of the system (103) also satisfies
117)

Vi.L. + Vg, Vg, + aV2 L, ViL, | Vg, +aViL, Vg,

| ]
_________________________ (I A
Vg, + aVg, VAL, | avg.Vg. o T He

g+ +aVgL V. L,
By using (112)—-(114) and (116), (117), it is straightforward to verify that

_ _[VxL+ +cVgigs + aVi L, VxL+]

£—x
H(f. — pi| = =VP(x, 45 ¢, 0),
a-—p-

and hence the vector (%, f) generated by (102), (103) satisfies [compare with
(110)]

% —

[A x] = —H VP*(x, u; ¢, o).
fp—p

Denote by H* the matrix H of (112) evaluated at (x*, u*). Taking into account

the fact that V L(x*, p*) = Oand p¥ = 0,j = p + 1,..., r,itis easy to verify

that

H* = V2Pt (x*, u*; c, ).

We have shown therefore that, for T = 0,(110)and (111) hold with H(x, ; ¢, ®)
being the matrix (112). The proof for the case where t > 0 is similar but very
tedious as the reader may surmise from the analysis of the case where 7 = 0.
We shall omit the details.

It is worth noting that if the algorithm (104)-(108) is modified at the
expense of a slight loss in reliability, so that the test (107) is replaced by

_(2 - X),VxP:(X, u;c a) - (ﬁ - :u),VuP:(xa u;c, a) > O’

then, near a K-T pair (x*, u*) satisfying Assumption (S™), it is not necessary to
compute the gradient matrix Vg _(x) corresponding to the inactive constraints.
To see this, note that computation of the Newton direction [compare with
(102) and (103)] does not require knowledge of Vg_(x). Next, with the aid of
(116), observe that if u_ = 0 [and hence also (4_ — u_) = 0], then computa-
tion of the inner products in (107) and (108) also does not require knowledge
of Vg_(x). If the algorithm converges to a K-T pair (x*, u*) satisfying
Assumption (S*), then the Newton iteration will be accepted and the set of
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inactive constraints will remain the same for all iterations after some index.
After thisindex, we shallhave u_ = 0,and there will be no need for computing
Vg _(x) with potentially significant computational savings resulting.

The role of the parameter a in preventing convergence to a local maximum
can be observed from the definition of the active constraint set. For inequality
constrained problems, local maxima typically have negative Lagrange
multipliers associated with active constraints. Now the Newton iteration (103)
ignores all constraints j for which [compare with (97)]

B + 2o + (¢ + t|pPgfx) < 0.

This means that if o is sufficiently small, then within a neighborhood of a local
maximum-Lagrange multiplier pair (x*, u*)for which strict complementarity
holds (uf < 0ifg;(x*) = 0)allconstraints areignored by the Newton iteration
(103) which then becomes an iteration of Newton’s method for unconstrained
minimization of f(x). Thus even though the method may be initially attracted
to a local maximum-Lagrange multiplier pair and may approach it during
several iterations while it attempts to reach the feasible region, it has the ability
to eventually recognize such local maxima and to take large steps away from
them.

We mention also that it may be advantageous to exploit the a priori
knowledge that Lagrange multipliers corresponding to inequality constraints
are nonnegative. Thus, instead of minimizing P subject to no constraints on
(x, w), it is possible to use special methods that can handle efficiently simple
constraints in order to minimize P, subject to u > 0 (compare with Section
1.5). This eases the problem of selection of an appropriate value for the param-
eter a, since by enforcing the constraint u > 0 we preclude the possibility that
the method will converge to a K-T pair with a negative Lagrange multiplier
such as the usual type of local maximum. When f and g; are convex functions,
then for all x and u > 0, the matrix V2,L is positive semidefinite and the
appropriate extension of Proposition 4.15 shows that any positive value of « is
suitable. Thus for convex programming problems, the selection of the parameter
o presents no difficulties as long as minimization of P is carried out subject to
the constraint u > 0. This makes the method described above particularly
attractive for convex programming problems for which second derivatives
of the objective and constraint functions are readily available.

4.5.3 Combinations with Nondifferentiable Exact Penalty
Methods—Powell’s Variable Metric Approach

As shown in Section 4.4.2 [compare with (26) and Proposition 4.25a], the
Newton iteration for solving the system of necessary conditions for (ECP) can
be viewed as a special case of the linearization method of Section 4.2 with
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unity stepsize. The same can be said of the inequality constrained version of
Newton’s method based on quadratic programming and given in Section4.4.3.
We also saw in Section 4.4.3 a somewhat different type of method for inequality
constraints which is based on an active set approach and solution of quadratic
programming subproblems of the type appearing in the linearization method
[compare with (90) in Section 4.4.3]. It is possible to exploit these relations
with the linearization method in an effort to enlarge the region of convergence
of Newton-like iterations, and this is the subject of the present section.

Methods that Utilize Second Derivatives

The main idea in such methods is to perform the Newton iteration and test
whether some criterion of merit is improved. If so, the results of the iteration
are accepted. If not, we fall back to the linearization method. We shall discuss
two distinct approaches for the problem

(NLP) minimize f(x)
subjectto h(x) =0, g;x) <0, i=1,....m, j=1,...,r,
based on the exact penalty function, of Sections 4.1 and 4.2,
() + cP(x) = f(x) + ¢ max{0, g,(x), ..., g/x), (X, ..., [ () |},

where ¢ > 0 is the penalty parameter. Throughout this section we assume that
f’ hia gj € Cz'

First Approach: This method is dueto Pschenichny (private communica-
tion) and is based on the second active set approach described in Section 4.4.3.
Fixed scalars & > 0 and y € (0, 1) are selected. Given x € R", we consider the
quadratic program

(QP), minimize Vf(x)d + %|d|?

subject to  hy(x) + Vhy(x)d =0, i=1,...,m,
g(x) + Vgi(x)d <0, jeJyx),
where

(118) Js(x) = {jlgx) = P(x) — 6,j = 1,...,1}.

For simplicity, we assume that this problem has at least one feasible solution
for every x € R" (and hence also a unique optimal solution). Otherwise,
modifications of the type described in Section 4.2 must be introduced. Given
x; € R" after the kth iteration, let d, be the optimal solution of (QP),, and let
Ax), f (xi), jeJs(x;), be corresponding Lagrange multipliers. Let also
fifx;) = Oforj ¢ J;(x,). Define

A(xy) = {jla(x) > 0},
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and assume without loss of generality that A(x,) contains the first P indices,
where p, < r. Define the n x (m + p,) matrix N, by
Ny = [Vhy(x0), - - -, Vh(x), Vg1(xp), . . ., Vg, (x)]-
Let
(119) E = Nk(NI,cNk)_lN;c
and define

(120)

X =x —{E,+ U - Ek)VJZch[xk, j»(xk), Mx)]1}~ IVxL[xka Z(xk): Alx)]
if the inverses appearing above exist. Solve (QP)s, and let d; be the correspond-
ing optimal solution. The next point x, , , is obtained as follows:

If the inverses in (119) and (120) exist and

[de| < yldl,
then
(121) Xpt1 = Xp.
Otherwise

Xp+1 = X + dy,

where the stepsize o, is obtained as in the linearization method of Section 4.2
based on descent of the exact penalty function f + cP, where ¢ > 0 is the
penalty parameter.

It is easily seen that limit points of the generated sequence {x,} must be
either K-T pairs of (NLP) or at least critical points of the exact penalty
function f + cP.Based on the theory of Section 4.3, it is also easily shown that
if the starting point x,, is sufficiently close to a local minimum x* of (NLP)
satisfying the sufficiency condition (S*) then X+ 1 18 generated by (120) and
(121),forallk =0, 1,..., and {|x, — x*|} converges to zero superlinearly.

Second Approach: This approach is basically the linearization method of
Section 4.2.2 with the matrices H, being either equal to V2, L(xy, A, w), if
this is judged appropriate by the algorithm, or equal to some positive definite
matrix. (For equality constrained problems, H, can be taken to be a positive
definite modification of V2, L(x,, A, 1) along the tangent plane as discussed
in the previous section.) Here 4, y, are approximations to Lagrange multi-
pliers of the problem obtained for example in the previous iteration. Thus,
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given x, after iteration k, the basic method consists of solving the quadratic
program

(122) minimize Vf(x,)d + 3d'H,d
subject to  hy(x;) + Vhi(x,)d =0 Vi=1,...,m,
g (x0) + Vg x)d <0 Vjedixp),
followed by the iteration
(123) Xpe1 = X + o4 dy,

where & > 0is a fixed scalar, J4(x;) is given by (118), d, is the unique solution
of (122), and «, is obtained by a line search procedure based on descent of the
exact penalty function f + cP. For simplicity, we assume that problem (122)
has at least one feasible solution for each k and that a suitably large value of
the penalty parameter c is known. It is possible, of course, to handle situations
where these assumptions are not satisfied as described in Section 4.2.2.

The algorithm should be set up in such a way that near a K-T pair
(x*, u*), satisfying Assumption (S*), H, is chosen to be equal to
V2, L(x;, A&, i) in which case Eq. (123) is closely related to the Lagrangian
method of Section 4.4.3, which is based on the quadratic programming
approach. The main additional feature is the introduction of the stepsize o
which enforces descent of the exact penalty function f + cP and thereby
enlarges the region of convergence of the method. If the stepsize o; turns out to
equal unity for all k sufficiently large and the method converges to a local
minimum x* satisfying the sufficiency Assumption (S*), then according to the
theory of Section 4.4.3, the rate of convergence is superlinear. Unfortunately,
it is impossible to guarantee that a unity stepsize will result in a reduction of
the exact penalty function f + cP even when the algorithm is arbitrarily close
to a solution. We shall demonstrate this fact later in this section, and we shall
discuss possible remedies.

Powell’s Variable Metric Approach

Consider again (NLP), the exact penalty function
f(x) + CP(X) = f(x) +c maX{O, gl(x)7 R gr(x)s Ihl(x)ls AR ] Ihm('x)l}
and the linearization method

(124) X1 = X + edy,
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where d, together with corresponding Lagrange multipliers 4,, y, is the
solution of the problem

(QP)o(x, Hy, Ji)  minimize Vf(x)d + 3d'H,d
subject to  h(x,) + Vh(x,)d =0 Vi=1,...,m,
9 x) + Vg x)d <0  VjeJ,

and «, is chosen by one of the line search rules of Section 4.2.1 based on
descent of the exact penalty function f* + cP. We assume for simplicity that
problem (QP)y(x;, Hy, J,) has at least one feasible solution—otherwise the
algorithm should be modified as in Section 4.2. We also make the assumptions

0 < Hy, Jo(xi) = Jy,

where Js(x,) = {jlg/(xx) = P(x,) — 6} and ¢ is a fixed positive scalar.

As already discussed in this section, if the starting point x,, is sufficiently
close to a solution x* satisfying together with Lagrange multipliers A*, u*
Assumption (S*), H, is for all k sufficiently close and converges to V2, L(x*,
A*, p*), and the stepsize o, equals unity for all k, then the resulting method is
superlinearly convergent. Note however that since V2, L(x*, A*, 4*) need not
be positive definite, if we require that H, — V2 L(x*, A*, u*), then we may
violate the positive definiteness requirement on H,. Powell (1978a) observed
that in order to attain superlinear convergence in the linearization algorithm,
it is sufficient that

lim [V2, L(x*, »*, u*) — H]Z* = 0,

k=0
where Z* is a matrix of basis vectors for the tangent plane at x* (compare with
the discussion in the previous section). He concluded that it is possible to
achieve superlinear convergence by choosing H,, to be for all k a positive
definite matrix and showed that this can be done by updating H, via variable
metric formulas utilizing only first derivatives of the objective and constraint
functions. He suggested the following updating scheme based on the BFGS
formula (see Section 1.3.5)

H, pipic Hy + KTk

125 H =H, — — >
(123) ket , pHypi DkTx
where
(126) e = 0qe + (1 — 6)H, py,

the vectors p, and g, are given by
(127) Pk = Xg+1 — Xk,
(128) 9k = VxL(-xk-i- 1> /’{k’ [lk) - VxL(xka /lln :uk)y
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where 4, u, are Lagrange multipliers of (QP)o(xx, Hy, Ji), and the scalar 6,
is given by
1 if  piqi = 0.2pi Hypxs
(129) 0, = 0.8p Hy pi
PiHpx — Pid
When 6, = 1, then from (126), r, = g, and the updating formula (125) is the
same as the BFGS formula for updating the approximation to V2.L. The
scalar 6, is introduced in order to ensure that p;r, > 0 which, by Proposition

1.20, ensures that positive definiteness of H, implies positive definiteness
of H, ., via (125). Indeed, with r, chosen by (126), we have

if  prax < 02pHypy-

Pt = Okprax + (1 — 0P Hyc ks

so it is easily seen that if 6, is chosen by (129) and H, is positive definite then we
have pyr, > 0.

There are two main advantages of Powell’s algorithm. The first is that there
is no need for computation of second derivatives—a typical feature of variable
metric methods. The second is that the algorithm maintains positive definite-
ness of the matrix H,, and this eliminates the possibility of difficult indefinite
quadratic programs arising in the computations as is possible with some of
the Newton and quasi-Newton methods of Sections 4.4.3 and 4.4.4.

Powell (1978b) shows that if the stepsize oy is unity for all k sufficiently
large and some additional mild conditions hold, then the rate of convergence
of the algorithm to a solution x* satisfying Assumption (S*) is superlinear.
This is a far from obvious result since the sequence of matrices {H,} typically
does not converge to the Hessian of the Lagrangian at the corresponding
K-T pair. The result owes its validity primarily to the fact that near con-
vergence many of the steps taken by the algorithm tend to be parallel to
the tangent plane at the solution. As a result the variable metric formula
(125)-(129) tends to provide a good approximation of the Hessian of the
Lagrangian function along this subspace, and this is sufficient to induce
superlinear convergence.

On the other hand, we have already mentioned in this section that even
when arbitrarily close to x* it may not be possible to select o, = 1 and still
achieve a reduction of the exact penalty function f + cP. We proceed to
discuss this difficulty.

Rate of Convergence Issues

We first provide an example showing that it may not be possible to selecta
unity stepsize in algorithms (123) and (124) while achieving a reduction of the
exact penalty function f + cP, even arbitrarily close to a solution and with
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an “optimal” scaling matrix H,. This fact seems to have been first observed by
Maratos (1978), (see also Chamberlain et al., 1978).

Example: Consider (NLP) for the case of a single equality constraint
h(x) =0, h:R*>R (ie, m=1and r = 0). Let d be the solution of the
quadratic program

minimize Vf(x)d + id’'Hd
subject to  h(x) + Vh(x)d = 0,

where we assume that Vh(x) # 0. Let also A be the corresponding Lagrange
multiplier. We have then

(130) Vf(x) + Vh(x)A + Hd = 0,
(131) h(x) + Vh(x)'d = 0.
From the mean value theorem, we have
(132) S+ d) = f(x) + Vf(x)yd + 3d'V?f (%)d,
(133) h(x + d) = h(x) + Vh(x)d + 1d'V>h(%)d,

where X and X are points on the line segment connecting x and (x + d). By
combining (130), (131), and (132), we obtain

(134) J&x +d)=f(x) + Ah(x) — d'Hd + 1d'V*f(x)d,
while by using (131) in (133), we have
(135) h(x + d) = 3d'V*h(%)d.

The last two equations yield

(136) f(x +d) + clh(x + d)| = [f(x) + c|h(x)]]
= Ah(x) — clh(x)| + 3[d'V*f(X)d + c|d'V*h(x)d| — 2d'Hd].

Let (x*, 1*)bealocal minimum-Langrange multiplier pair satisfying Assump-
tion (S). Assume that x is very close to x*, but x # x*, h(x) = 0, and further-
more H is chosen to be the “optimal” scaling matrix V2.L(x*, A*). Then
d # 0,x = x*, X = x* and the sign of the expression in the right-hand side of
(136) depends on the magnitude of ¢ and the curvature of h. In particular, if
V2h(x*) is positive definite (or negative definite), there exists a threshold
value ¢ such that for all ¢ > ¢ we have

fx+d) + clh(x + d)| > f(x) + c|h(x)],

and the Newton step leads to an increase of the exact penalty function
f+ cP. This example reveals also the nature of the difficulty which is that in
moving from x to (x + d) we may attain a decrease of the objective function f
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but also an increase of the penalty |h| of comparable magnitude, with a net
increase of f + cP for sufficiently large values of the penalty parameter c.
As shown by (136), this situation is more likely to occur when x is near the
constraint boundary [h(x) = 0] in which case the quadratic term in the right-
hand side of (136) dominates. It is interesting to note in this connection that
some of the difficulties with establishing the descent property of the Newton
direction for differentiable exact penalty functions also occur when x is near
the constraint boundary, and this necessitated the introduction of condition
(28) in Proposition 4.29.

The phenomenon illustrated in the example above has potentially serious
consequences, since it may prevent superlinear convergence of algorithms
(123) and (124) even under very favorable circumstances. Two different
techniques for overcoming this difficulty are proposed in Chamberlain et al.
(1979), in Mayne and Polak (1978), and in Gabay (1979). In the first approach,
a unity stepsize is accepted even if it does not result in a reduction of the exact
penalty function provided additional tests based on descent of the Lagrangian
function L(-, A, i) are passed. The overall technique is supplemented by
safeguards that ensure satisfactory theoretical convergence properties. The
complete details can be found in Chamberlain et al. (1979) and in the thesis by
Chamberlain (1980).

In the approach of Mayne and Polak (1978) and Gabay (1979), the
stepsize search is performed not along the line {z|z = x; + od, « > 0} but
rather along an arc of points which attempts to follow the constraint boundary.
We describe this technique for the case of the equality constrained problem

(ECP) minimize f(x)
subject to  h(x) = 0.

Similarly as earlier, given x,, we obtain the solution d, of the quadratic
programming problem

(137) minimize Vf(x,)d + 3d'H,d
subject to  h(x;) + Vh(x,)d = 0.
We then obtain the solution p, of the quadratic programming problem
(138) minimize |p|?
subject to  h(x; + d) + Vh(x,)p = 0.
The next point x, ,  is given by

(139) Xes1 = X + 0dy + 0F Py,
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where the stepsize o, is obtained by an Armijo-type line search along the arc
{x¢ + ad; + o«®p;|ax € [0, 1]}. More specifically

(140) o = ™,
where my, is the first integer m satisfying

(141)  f(q) + cP(x) — [f (e + Brdy + B*"pi) + cP(xy + Bdy + B*"pi)]
> —ol (xy; Brdy)

and ¢(x; d) is given by [compare with (18) in Section 4.2.1]
(142)
Cx; d) = Vf(x)d + ¢ max{|h(x) + Vh(x)d||i=1,...,m} — cP(x).

The scalars f and o satisfy S € (0, 1) and o € (0, 1).

It is assumed that the symmetric scaling matrix H, is uniformly positive
definite on the tangent plane; i.e., for some positive scalars y and I and all k,
we have

(143) y|z|* < ZHyz < T|z]? V z € R" with Vh(x,)'z = 0.

To simplify matters it is also assumed that Vh(x) has rank m for all x. This
together with (143) implies that both quadratic programs (137) and (138)
have a unique optimal solution.

The solution p, of the quadratic program (138) may be viewed as an
approximate Newton step from (x; + d,) towards satisfying the constraint
h(x) = 0. The result that follows can also be proved if (138) is replaced by the
quadratic program

(144) minimize [p|?
subject to  h(x, + d) + Vh(x, + d)'p = O.

The solution of this program can be viewed as a more exact Newton step from
(xx + dy) towards the constraint surface than the solution p, of (138). The
advantage of using (138) in place of (144) is that the computation of
Vh(x, + d,)is saved. Nonetheless, it is quite possible that, in some situations,
using (144) rather than (138) can result in more efficient computation, par-
ticularly in the initial stages of the algorithm. Note that the solution p, of
problem (138) can be written explicitly as

(145) px = — Vh(x) [Vh(x,) Vh()] ™ h(x, + di)

and that the inverse [Vh(x,)'Vh(x,)] ™! is normally available as a by-product
of the solution of the quadratic program (137).
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It is not difficult to modify the proof of Proposition 4.13 and show that,
under the preceding assumptions and if ¢ is sufficiently large, all limit points of
the sequence {x,} generated by algorithm (137)-(142) are critical points of
f + cP.We shall leave the verification of this fact to the reader. The following
proposition addresses the convergence rate properties of the algorithm.

Proposition 4.32: Let {x,} be a sequence generated by algorithm (137)-
(142). Assume that {x,} converges to a local minimum x* of (ECP) which
together with a Lagrange multiplier A* satisfies the sufficiency Assumption (S),
and furthermore ¢ > Y7, |A¥|. Assume also that the sequence {H,} is
bounded and satisfies (143) and that

(146) lim [V2, L(x*, 2*) — H,]Z* = 0,

k— 0

where Z* is an n x (n — m) matrix of basis vectors for the tangent plane
%* = {z|Vh(x*)'z = 0}.

Then for all k sufficiently large, the stepsize o, equals unity, and {x, } converges
to x* superlinearly.

The proof of Proposition 4.32 is quite long. For this reason we isolate some
of the basic steps in the following lemma.

Lemma 4.33: Let the assumptions of Proposition 4.32 hold, and let 4, be
the Langrange multiplier of the quadratic program (137). Then

@) PO + d) = 0(|di[?).

(®)  pe = 0(dc).

(©) PGy + di + pi) = o(|di ).

(d) There exists a scalar y > 0 such that, for all k sufficiently large,

Elas dy) < — yldil
(e) There holds
Hy = VZL(x, &) + SillHi — Vi L(x, 4)1Si + O(1/k),
where
Sk = Vh(x) [VA(x) Vh(x,)]™ ' Vh(xy) -
(f) There holds

fOq + diy + p) + cP(xy + di + p) — f(x) — cP(xp)
= &0 d) + 34 V2 L(xy, A)dy + o(|di|?).

(g) There holds
Elxis di) + A V2 L(xi, A)dy < o(|dy|?).
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Proof: (a) From Taylor’s theorem we have
h(x, + di) = h(x,) + Vh(x)'d; + O(|d,|?),

and since d, is the solution of (137), we also have h(x,) + Vh(x,)'d, = 0. The
result follows.

(b) Part (b) follows from (145) and part (a).

(¢) From Taylor’s theorem, we have

h(x, + di + po) = h(x, + di) + Vh(x, + d)pi + O(|pe]?).

Since p, solves problem (138), we have h(x; + d,) = —Vh(x;)p, and sub-
stitution in the preceding equation yields

h(x, + di + pi) = [Vh(x, + di) — Vh(x)]1' P + O(|pil?).
Since Vh(x, + d) — Vh(x,) = O(|d,|) and from part (b), p, = O(|d,|?), we
obtain
h(x, + di + p) = o(|di |?)

from which the result follows.
(d) From (142) and the fact that hy(x,) + Vh(x,)d, = 0, we obtain

(147) Selxi; di) = Vf (xi)'di — cP(xy).
Let ¢ be a scalar such that the matrix H, given by
(148) H, = H, + ¢Vh(x,)Vh(x,)

is positive definite for all k with eigenvalues uniformly bounded below by a
positive scalar. [Such a scalar exists in view of the assumption (143) and the
boundedness assumption on {H,}.] From the necessary conditions for
optimality of d; in problem (137), we have

(149) Vf(x) + Vh(x )2 + Hid, = 0.
Using this equation, (148), and the fact that Vh(x,)d, = —h(x,), we obtain
V() dy — [ + ch(x )] h(x,) + diH,d, = 0.
Combining this equation with (147), we obtain
Clxis di) = [A + Ch(x )1 h(x,) — cP(x,) — di H, d,.

Using the assumption ¢ > Y7 | |1*| and the fact that Ae + Ch(x,) — A*, we
obtain, for sufficiently large k,

(150) Celxs di) < —dl,cﬁkdk,

and the result follows.
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(¢) Denote
Ay = Hy — VZL(x, &) — Si[Hy — Vi L, 4)1S;-
We have
A Z* = [Hy — VZL(x¢, A)1Z* — Si[Hy — Vi L(x, A)]Si Z*.

By assumption, [H, — V2, L(x, 4)]Z* = O(1/k) and Vh(x,)Z* = O(1/k).
Hence, S,Z* = O(1/k), and we obtain

(151) A, Z* = O(1/k).
Also
Vh(x*Y A, Vh(x*) = Vh(x*)[H) — V2, L(x;, A4)]Vh(x*)
— Vh(x*)Si[Hy — Vi L(x, 4)1S, VA(x*).
Since Vh(x*)'S, = Vh(x*) + O(1/k), we obtain
(152) Vh(x*Y A, Vh(x*) = O(1/k).

Every vector w € R” can be uniquely decomposed as w = Z*y + Vh(x*)z, so
using (151) and (152), we have

WA,w = [Z*y + Vh(x*)z]' A [Z*y + Vh(x*)z] = O(1/k).

It follows that 4, = O(1/k), and the result is proved.
(f) We have, from Taylor’s theorem and part (b),

(153) fOa + di + po) = f(x0) + Vf (i) (d + P
+ 3d + PV () @k + po) + o(ldy + pil?)
= f(xa) + Vf (x)di + Vf (x,) Py
+ 3 Vf ()dy + o(ldic ).
Also from (149) and the fact that h(x, + d,) = — Vh(x,)'px, We obtain
(154) Vf (x) P = —Pi Vh(x)A — PiH\.dy
= h(x; + d)'A — PiHdy.
Using part (b) and the fact that
hi(x + di) = hi(x) + Vh(x)'dy + 3d; V2hy(x)dy, + o(|di]?)
= 3, V2 h(x)dy + o|d, [)
in (154), we have

m

/1i
(155) V(P = 3. 5 diV2hixdy + o(|dl?).
i=1



296 4. EXACT PENALTY METHODS AND LAGRANGIAN METHODS

Combining Eqgs. (147), (153), and (155), we have
f(x + di + p) = fOa) + cP(x) + &% dy)
+ 34 Vi L%, A)dy + o(|d]?).

Using part (c), we obtain from this equation the desired result.
(g) From (149), we have

Vf(x)'dy + di Vh(x )4 + diHyd, = 0.
Using (147) and the fact that Vh(x,)d, = —h(x,) in this equation, we obtain
$exis i) + cP(xi) — h(x)' A + dyHydy = 0.

Substituting the expression for H,, in part (e) and using the fact that Vh(x,)'d,
= —h(x,), we obtain

(156) Celoxs d) + Vi Llxi, A)di = h(xi) Th + Mich(x,)]
— ¢P(x) + o(|d,[?),
where the matrix M, is given by
My = [Vh(xi)'Vh(x)] ™ 'Vh(x,) [VZ L(x, 4) — HiJVA(x,)
x [Vh(x) Vh(x)] ™.

Since A, + M h(x,) - A*and ¢ > Y ™, |A¥|, we have, for sufficiently large k,
(157) h(x) [A + M h(x)] — cP(x) < 0.
By combining (156) and (157), the result follows. Q.ED.

We are now ready to complete the proof of Proposition 4.32.

Proof of Proposition4.32: From parts (d), (f), and (g) of Lemma 4.33, we
obtain, for sufficiently large k,

S+ di + pi) + PO + di + pi) — f(x3) — cP(xy)
< 365 di) + o(1d|?)
< oxi; di) — (3 = o ldel* + o(|d,|?)
< 0d(xi; dy)-
It follows from the definition (140)-(141) of the stepsize rule that we have
o = 1 for all k sufficiently large.
In order to show the superlinear convergence property of the algorithm,

we note that the assumption (146) implies (see the analysis following Pro-
position 4.31) that

[Xi + dp — x*| = O(1/k)|x; — x*|.
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It is also easily shown that d, = O(|x, — x*|), and therefore, using part (b) of
Lemma 4.33,

e = O(Ix, — x*?).
The two equations above yield
[Xe + di + o — X*| < [x + d — x| + | P
= 0(1/k)|x; — x*| + O(|x; — x*[?)
= O(1/k)|x; — x*|.
For k sufficiently large, the stepsize &, is unity and therefore
Xp+1 = X + dy + Py
Combining the last two relations, we obtain
[Xe+1 — X*| < O1/k) | x; — x*|. Q.E.D.
We note that if the matrices H, satisfy the stronger condition
vz < ZHz < T|z)? VzeR"

for some positive scalars 7, I', in place of (143) then the result of Proposition
4.32 can be proved also for the case where the right side of (141) is replaced
by f"d, H, d, [compare with (150)]. This form of the Armijo rule is consistent
with the one of Section 4.2.

While the idea of introducing an additional step towards the constraint
surface was motivated by the desire to improve the rate of convergence
properties of the algorithm when near a solution, there are indications that
this step frequently improves these properties even when far from the solution.
The reason is that in order to keep decreasing the value of the exact penalty
function f + cP the algorithm must follow closely the constraint surface,
particularly for large values of c. The extra step towards the constraint surface
helps to achieve this without an excessive number of stepsize reductions and
attendant function evaluations at each iteration.

We finally note that it is possible to extend the algorithm just given to
inequality constraints by using an active set strategy whereby the active
inequality constraints are the ones for which the Lagrange multipliers, ob-
tained from the quadratic program analogous to (137) [compare with (122)],
are positive. An alternative approach together with convergence analysis is
given in Mayne and Polak (1978).

4.6 Notes and Sources

Notes on Section 4.1: Nondifferentiable exact penalty functions have
been analyzed by several authors including Zangwill (1967b), Ermoliev and
Shor (1967), Pietrzykowski (1969), Luenberger (1970), Evans et al. (1973),



298 4. EXACT PENALTY METHODS AND LAGRANGIAN METHODS

Howe (1973), Bertsekas (1975b), and Dolecki and Rolewicz (1979). Detailed
references and a thorough discussion for nonconvex problems is given in
Han and Mangasarian (1979). Proposition 4.7 is taken from Mayne and
Polak (1978), and the proof of Proposition 4.9 uses an adaptation of an
argument in Pschenichny and Danilin (1975, p. 196).

Notes on Section 4.2: The linearization algorithm for minimax and
nonlinear programming problems including a global convergence result
based on the Armijo rule and descent of the exact penalty function f + cP
was first given in Pschenichny (1970). This convergence result is given here as
Proposition 4.13. Our proof of this result is new and does not require a
Lipschitz assumption on the gradients of the objective and constraints that
was necessary in the original proof of Pschenichny. The linearization
algorithm was rediscovered in weaker form by Han (1977b), and several
related algorithms were given by Mayne and Maratos (1979). Convergence
results relating to the linearization algorithm have also been given by Mayne
and Polak (1978) and Bazaraa and Goode (1979). The convergence rate of the
algorithm is analyzed in detail in Pschenichny and Danilin (1975).

Notes on Section 4.3: The exact penalty functions P(x, 1; ¢, «) and
P(x, A; ¢, M) were introduced by DiPillo and Grippo (1979a). The proofs of
all the results of Section 4.3.1 are taken from DiPillo et al. (1979) with the
exception of Proposition 4.15 which is new. Related penalty functions have
been proposed by Boggs and Tolle (1980) and Han and Mangasarian (1981).

The exact penalty function P(x; c) of Section 4.3.2 was first introduced by
Fletcher (1970) and further discussed in connection with specific algorithms
in Fletcher and Lill (1971), Fletcher (1973), Mukai and Polak (1975), Glad
and Polak (1979), and McCormick (1978). The line of analysis given here is
new and is based on the connection with the penalty functions of DiPillo and
Grippo first reported in Bertsekas (1980a).

The algorithms based on second derivatives of Section 4.3.3 are due to
DiPillo et al. (1979) and Fletcher (1973) with the exception of those algorithms
that are based on Newton’s method for solving the system VL(x, 1) =0,
which were first considered in Bertsekas (1980a). The analysis of the penalty
parameter choice for the penalty function P(x; ¢) is due to Fletcher (1970),
while the corresponding analysis for the penalty functions P(x, 4; ¢, ) and
P(x, A; ¢, M)isnew. The main idea of the automatic penalty parameter adjust-
ment schemes is due to Polak (1976) and has been applied by several authors
(Mukai and Polak, 1975; Glad and Polak, 1979; Mayne and Maratos, 1979;
Mayne and Polak, 1978). The scheme given here is new. An alternative scheme
has been given by DiPillo et al. (1979).
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Notes on Section 4.4  The first extensive work on Lagrangian methods
is Arrow et al. (1958). Proposition 4.23 is due to Poljak (1970). Analysis
relating to first-order methods for inequality constrained convex problems
may be found in Zangwill (1969), Maistrovskii (1976), Campos-Filho (1971),
Golshtein (1972), and Korpelevich (1976). A class of Lagrangian functions for
inequality constrained problems which leads to unconstrained saddle point
problems was introduced by Mangasarian (1974, 1975). Some early interest-
ing work on Lagrange multiplier iterations using augmented Lagrangian
functions can be found in Miele et al. (1971a, b, 1972).

Newton-like and quasi-Newton methods of the Lagrangian type were
systematically analyzed only recently. Important works in this area are
Garcia-Palomares and Mangasarian (1976), Tapia (1977), Glad (1979), Han
(1977a), Biggs (1978), Gabay (1979), and Powell (1978a, b). Early works using
quasi-Newton updating formulas for equality constrained problems are
Kwakernaak and Strijbos (1972) and Biggs (1972). The proof of local con-
vergence of iteration (45), (46) is due to Glad (1979). Newton’s method in the
space of primal variables [cf. 48)] was first discussed in Tapia (1977) and
Pschenischny and Danilin (1975). Proposition 4.26 is due to Pschenichny
and Danilin (1975). The quadratic programming version of Newton’s
method for inequality constrained problems was first suggested by Wilson
(1963). Its convergence rate has been established by Robinson (1974). Corre-
sponding quasi-Newton methods were first proposed by Garcia-Palomares
and Mangasarian (1976). Conditions for superlinear convergence of quasi-
Newton methods for constrained minimization are given in Boggs, Tolle,
and Wang (1982).

Notes on Section 4.5: Some good quasi-Newton algorithms combining
Lagrangian methods and mulitiplier methods are given in Glad (1979).

The results and algorithms of Section 4.5.2 are due to Bertsekas (1980a, b)
with the exception of the quasi-Newton algorithm (58)-(62), which was first
proposed by Dixon (1980).

Basic references for the material of Section 4.5.3 are Mayne and Polak
(1978), Powell (1978a, b), Gabay (1979), Chamberlain (1980), and Chamber-
lain et al. (1979). A related approach is proposed in Coleman and Conn
(1980a, b). Proposition 4.32 was proved by Mayne and Polak (1978) and
Gabay (1979). Mayne and Polak (1978) have also treated inequality con-
strained problems.

It is difficult to compare accurately the performance of exact penalty
methods, such as those described in Section 4.5, with methods of multipliers
discussed in Chapters 2 and 3. The computational evidence available suggests
that if relatively good choices of the penalty parameter and the starting point
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are known, then exact penalty methods are as reliable as multiplier methods
and typically require fewer iterations for problems where the sufficiency
assumptions (S) or (S™) are satisfied. On the other hand, the overhead per
iteration of exact penalty methods can be significantly higher than the one of
multiplier methods—particularly when the dimension of the problem is large.
Wecan however conclude that if good initial information regarding the penalty
parameter and the starting point is available, and the dimension of the problem
is"small, then exact penalty methods hold an advantage over multiplier
methods. In the absence of good initial information, multiplier methods tend
to be more reliable, easier to “tune,” and in the author’s experience, often
require fewer iterations to converge—particularly when combined with
Lagrangian methods as described in Section 4.5.1. We can thus conclude that
multiplier methods hold the advantage for problems of large dimension, and
for problems where the initial information is of poor quality. The preceding
statements should only be viewed as general guidelines, and it should be
kept in mind that the relative significance of overhead per iteration depends
very much on the computation required for evaluating the function values
and gradients needed at each iteration. Furthermore an important factor in
comparing the merits of each class of methods is the nature of the application
at hand. If repetitive solution of the same problem with minor variations is
envisioned, then it may be reasonably assumed that good initial information
will eventually become available and this favors the use of an exact penalty
method. If only a limited amount of computation needs to be performed
after development of the optimization code, one is typically better off using
a method of multipliers.

It is also difficult to compare globally convergent Newton and quasi-
Newton methods based on differentiable and nondifferentiable penalty
functions (Sections 4.5.2 and 4.5.3, respectively). Both types of methods
essentially behave identically near a solution when the superlinear con-
vergence property takes effect. Far from a solution, their behavior can be
quite different in the sense that in any given iteration the stepsize may have to
be reduced by different amounts from its initial value of unity in order to
achieve descent for each penalty function. It is significant in this respect that
the threshold values for the penalty parameter on any given problem can be
greatly different for differentiable and nondifferentiable penalty functions
(compare the estimates given in Sections 4.1 and 4.3.3). Methods based on
differentiable exact penalty functions require more overhead in view of the fact
that they involve first derivatives of the constraints in the penalty function.
However this overhead need not include evaluation of second derivatives
of objective and constraint functions and is not as much as may appear at
first sight (see the discussion of Section 4.5.2). Another aspect of differenti-
able exact penalty which may constitute a tangible practical disadvantage
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is the fact that their extensions currently available for handling inequality
constraints are not as “clean” as those available for nondifferentiable
penalty functions. On the other hand, methods based on differentiable
penalty functions have the theoretical advantage that they do not require
any modifications such as those of Mayne and Polak (1978), Gabay (1979),
and Chamberlain et al. (1979) in order to obtain superlinear convergence.

We finally note that in quadratic programming based quasi-Newton
schemes, such as Powell’s, where an exact penalty function is used as a descent
function, one should try to avoid gradient evaluations of the penalty function.
For nondifferentiable penalty functions these gradients-are of little value
even at points where they exist. The computation of a gradient of a differ-
entiable penalty function is undesirable since it involves either exact second
derivatives or their finite difference approximations. Therefore one should
try to use one-dimensional line search procedures that require function
values only. The simplest possibility is to use the Armijo rule with ¢ = 0,
1.e., a rule that reduces the stepsize by a certain factor until a reduction in the
exact penalty function value is observed. While this simplification of the
Armijo rule involves a theoretical risk of nonconvergence, this risk, for
practical purposes, appears to be negligible.



Chapter 5

Nonquadratic Penalty Functions —
Convex Programming

5.1 Classes of Penalty Functions and Corresponding Methods of
Multipliers

The quadratic penalty function is the most widely used in practical
implementations of methods of multipliers. However, there is occasionally
a tangible advantage in using a different penalty function. We describe some
situations where this is the case:

(a) It may occur that while the objective function is bounded below
along the constraint set, the augmented Lagrangian is unbounded (over the
entire space) for every value of the penalty parameter. For example, the
augmented Lagrangian for the trivial scalar problem

minimize —x*
subjectto x =0
is given by

L(x, ) = —x* + Ax + %c|x|2.

302
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Clearly L (-, 2) is unbounded below for every ¢ and as a result the uncon-
strained minimization algorithm used for minimizing L (-, A) diverges unless
the starting point is close to the unique local minimum of L(-, 4). This
situation can often be corrected by using a penalty function with sufficiently
high order of growth. For the preceding example a penalty function of the
form

ze(|x? + [x[°)

in place of 3c|x|* will resolve the difficulty.

(b) The augmented Lagrangian functions for inequality constraints and
some of the approximating functions developed in Chapter 3 do not have
continuous second derivatives. On the other hand, the methods most likely to
be used for unconstrained minimization of the augmented Lagrangian rely
conceptually on continuity of second derivatives. Despite this fact, it appears
that for many practical problems the second derivative discontinuities do
not have a significant adverse effect on the performance of methods, such as
the conjugate gradient method, quasi-Newton methods, and Newton’s
method. Nonetheless under extreme circumstances, these discontinuities can
slow down considerably the rate of convergence of these methods and can
be the cause of algorithmic failure. In this case, it is preferable to use a twice
continuously differentiable augmented Lagrangian of the type to be intro-
duced shortly.

(c) Multiplier methods corresponding to different types of penalty
functions can exhibit drastically different rates of convergence. The speed of
convergence may be much faster or much slower depending on the penalty
function employed as illustrated in the examples of Section 2.2.4. This
perhaps surprising feature, which is not present in ordinary penalty methods,
raises the interesting possibility of delineating a penalty function which
matches best the problem at hand in terms of computational efficiency.

In what follows in this section, we introduce various classes of penalty
functions that are suitable for use in multiplier methods, and develop some of
their properties that will be useful for the analysis of subsequent sections.

5.1.1 Penalty Functions for Equality Constraints

Consider the equality constrained problem
(ECP) minimize f(x)
subject to  h(x) = 0.

We consider the following class of penalty functions:



304 5. NONQUADRATIC PENALTY FUNCTIONS—CONVEX PROGRAMMING

Class of Penalty Functions P;: All functions ¢: R — R having the fol-
lowing properties.

(@) ¢ is continuously differentiable and strictly convex on R.
(b) ¢(0) = 0 and V¢(0) = 0.
(© lim,,_, V¢(t) = — oo and lim,_, , V¢(t) = oo.

Examples of functions in the class Py are:

() ¢(@) = it? (quadratic).
(i) ¢@) = p~'[t]°, p > 1 (p-order of growth).
(i) ¢@) = p~ el + 4% p > L
@iv) ¢(t) = cosh(t) — 1.
We associate with a given penalty function ¢ in the class Pg the augmented
Lagrangian function

0 L ) = ) + ¥h9) + ¢ 3 9Lch(o]

The first-order method of multipliers corresponding to ¢ consists of sequential
unconstrained minimization of the form

)] minimize L, (x, 4;)

subject to xeR",
yielding a vector x;. Minimization is followed by the multiplier iteration
3 Mev1 = A + Vol hi(x)], i=1...,m

Note that, for ¢(r) = 12, iteration (3) reduces to 4, ., = A + ch(xy), and we
obtain the quadratic method of multipliers studied in Chapter 2. Similarly as
for that method, it is possible to consider inexact minimization of the aug-
mented Lagrangian (1). It is also possible to develop second-order iterations
under a second-order differentiability assumption on ¢. Other variations
include the use of a different penalty function and/or penalty parameter for
each constraint.

There is a subclass of P; which admits an analysis which is almost
identical to the one for the quadratic penalty function. This is the class of
penalty functions ¢ which are twice continuously differentiable with V2¢(0)
= 1. We call such penalty functions essentially quadratic since near a solution
they behave in essentially the same way as the quadratic penalty function. The
entire analysis of Chapter 2 can be shown to hold with minor modifications
for essentially quadratic penalty functions as the reader can easily verify. In
particular, under Assumption (S), one can prove convergence results for the
corresponding multiplier method similar to those for the quadratic method.
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The rate of convergence is at least linear if {c,} is bounded above and super-
linear if ¢, — oo.

The rate of convergence of the multiplier method corresponding to the
penalty function

“) ¢(0) = p~ el + 3t

is superlinear for p € (1, 2) under Assumption (S). We shall demonstrate this
fact in Section 5.4 in the context of a convex programming problem. For
p > 2, §(2) is essentially quadratic and no better than a linear rate of con-
vergence can be expected in general. It may appear that a choice pe (1, 2)
would be always preferable but it should be noted that in this case ¢(t) is not
twice differentiable at ¢t = 0 and in fact V2¢(t) tends to oo as t tends to zero.
This has the effect of making the unconstrained minimization of the augmented
Lagrangian ill-conditioned. Thus, the advantage of superlinear convergence
of the multiplier iteration may be offset by ill-conditioning difficulties in
unconstrained minimization. Nonetheless, we know of problems where the
use of the function (4) with p (1, 2) has yielded better results than the
quadratic penalty function. Also, in problems which are solved repetitively
with minor variations, it may be possible through the use of good starting
points, special powerful unconstrained minimization methods, and “fine-
tuning” to reduce significantly the effects of ill-conditioning. Under these
circumstances, the method of multipliers that employs the penalty function
(4) with p (1, 2) can substantially outperform the quadratic method.

5.1.2  Penalty Functions for Inequality Constraints

Consider the inequality constrained problem
(ICP) minimize f(x)
subject to  g(x) < 0.

We first consider the following class of penalty functions.

Class of Penalty Functions P;: All functions p: R? - R having the
following properties.

(a) p is continuous on R x [0, +00), continuously differentiable on

R x (0, + o), and possesses for all ¢ € R the right partial derivative

I p(t; w) — p(t; 0)
m -—-.
u—=0" /*‘
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Furthermore, p(-; 0) is continuously differentiable with respect to ¢ on R.
[The partial derivative with respect to the first argument is denoted by
V.p(-; -) and the one with respect to the second argument by V.p(-;-).]
(b) p(t;-) is concave on [0, + o) for each fixed ¢ € R.
(c) For each u >0, p(-; p) is convex on R and satisfies the following
strict convexity condition:

If
Bto>0 or (i) V,p(to; u) > 0,

then
p(t; 1) — pltos w) > (t — to)V,p(tos ) Vit # to.

d pO;m)=0 Vu=0,

© VipO;w=p Yu=0,

() lim,._Vipt; ) =0 Ypu>0,
(& lm,.,,V,p(t;u) =+ Vpux>0,
(h) inf gp(t; ) > —c0 Vu>0.

In Fig. 5.1, we show the shape of a typical function in P;. The predominant
effect of the multiplier 4 is to alter the slope as p(- ; 1) passes through the origin
[properties (d) and (e)]. For ¢ near zero, p(t; u) ~ ut, but elsewhere the penalty
effect dominates. The main consideration is that p(-; u) passes through the
origin with slope u. As t — o, p(t; 1) grows to infinity with unbounded slope.
Ast — —o0, p(t; p) approaches or reaches a finite infimum which is less than
or equal to zero.

p(t;p.)

FIG. 5.1 Form of penalty function p in the class P,
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The augmented Lagrangian corresponding to a function p € P, is given by
1 g .
Q) Ll w) = f() + 2 X pleg (x); w1
i=1

The first-order multiplier method corresponding to p consists of sequential
unconstrained minimization of the form

(6) minimize L, (x, )
subject to x€ X,

yielding a vector x,;. Minimization is followed by the multiplier iteration

@) ﬂi+1 = th[ckgj(xk); #il i=1...,r
Note that iteration (7) is such that the equality
V, Lck(xk’ M) = Vi L(Xy, thiv 1)

is satisfied for all k, where L is the ordinary Lagrangian function given by
L(x, u) = f(x) + w'g(x). The initial multiplier satisfies u, > 0. Note that
from Eq. (7) and properties (c), (f), and (g), it follows that y, > 0 for
all k.

Figure 5.2 shows the term ¢~ ' p(ct; 1) in the augmented Lagrangian (5) and
the effect of the parameter ¢ in particular. The penalty effect increases with

Loletip) ¢
C2>¢Cy

FIG. 5.2 Penalty functions cj *p(c,t; ) and ¢ *p(c,t; u) for ¢, < c,



308 5. NONQUADRATIC PENALTY FUNCTIONS—CONVEX PROGRAMMING

increasing c¢. Indeed for yu > 0, the convexity of p(-; u) and the fact that
p(0; 1) = 0 can be used to show that

0<c; <cy=ciipleit;m) <c3'plest;u)  VieR, pu>0.
Examples of penalty functions in the class P; are as follows:

Example 1 (Class Pg): This subclass of P; is defined as the class of
functions p: R? — R of the form

ut + ¢(t) if p+ V() =0,
min, g {ut + ¢(7)} otherwise,

®) p(t; w) = {

where ¢: R — R belongs to the class of penalty functions Pg for equality
constraints defined in the previous subsection. As an example, if () = 4t2,
we obtain the piecewise quadratic function

o fm+ i i >
€)) p(t,u)—{_%ﬂz ifor< —p

The corresponding augmented Lagrangian (5) can be written as

L) = 1)+ ¥ plea: ]

= 169 + 3, 5 (tmax(0, ' + eq )T - )%

and is identical to the one used for one-sided inequality constraints in Section
3.1. The multiplier iteration (7), corresponding to (9), takes the form

#IJ;H = max{0, l‘f; + ckgj(xk)}a i=1...,n
and again is identical to the one of Section 3.1. More generally, we have, using
@®

p+Ve@) if u+ Ve() =0,
0 otherwise,

Vip(t; p) = {
or equivalently

V.p(t; ) = max{0, u + Vo(r)},

so the multiplier iteration (7) corresponding to the penalty function p € P¢ of
(8) is given by

(10) #iﬂ = max{0, #IJ; + V¢[ckgj(xk)]}> ji=1...,r

Furthermore the reader can verify that each function p of the form (8) is
obtained from the corresponding function ¢ € Pg in the same manner as (9) was
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obtained from the quadratic penalty function ¢(t) = 3t? in Section 3.1, i.e., by
converting the inequality constraints to equality constraints by using additional
variables and by subsequently eliminating these variables from the actual
computation. Thus the class P¢ corresponds to multiplier methods for (ICP)
after it has been converted to an equality constrained problem. The next
example yields penalty functions designed exclusively for inequality con-
straints. An advantage of such functions is that they lead to twice continuously
differentiable augmented Lagrangians. This property cannot be attained with
functions in the class Pg.

Example 2 (Twice Differentiable): Consider any function y:R — R,
withy e C2, V2y(r) > Ofor all te R, y(0) = 0, Vy(0) = 1, lim,_, _ , Y(t) > — 0,
lim,,_, V{¥(t) =0, and lim,., V¥(t) = o0, and any convex function
&R - R, with € C? VZ{(0) = 0, é(t) = Oforall t < 0, &(t) > O for t > 0,
and lim,, , V&(¢) = co. Each such pair (i, ) defines a function p e P; by
means of

p(t; 1) = wp(e) + &)
As an example, take
(@) =¢ -1, &) = 3[max{0, £}1°.
We have
p(t; p) = p(e' — 1) + 3[max{0, 1}1°,
V.p(t; p) = pe' + [max{0, t}1%,  8°p(t; p)/ot*> = ue' + 2 max{0, t}.

Another example of a twice differentiable penalty function, which can
be evaluated with simple arithmetic operations, is given by

ut + ut? + 3 if t>0,
ut/(1 — t) if t<o.

It is easy to verify that all functions of Examples 1 and 2 satisfy the con-
ditions (a)-(h) and do indeed belong to P;.

There is another class of penalty functions defined below that is often
useful even though the analysis relating to them is not as powerful as the one
relating to the class P;.

p(t; p) = {

Class of Penalty Functions P;: All functions p: R? - R of the form

p(t; 1) = wp(v),
where : R > R is any function such that ¢ € C%, V2j(t) > O for all te R,
Y(0) =0, Vy(0) =1, lim,,_,¥(@) > —co0, lim,__, V() =0, and
lim,_, , V{(t) = 0.
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Note that all functions in the class P, are twice differentiable. A prominent
example is the exponential penalty function

(11) pt; p) = p(e’ — 1).

Functions in the class P, satisfy all conditions (a)-(h) of the definition of the

class P; with the exception of (c) and (g) which are satisfied only for u > 0.
The augmented Lagrangian corresponding to the class P; is similarly

given by

Lo ) = 569+ T pleq0: 1] = 09+ T ibleq )

The first-order multiplier method consists of sequential unconstrained
minimization of L,(-, 44) over X yielding a vector x,. Minimization is
followed by the multiplier iteration
M1 = Veplagfxd; Wl = WiV¥legx)],  j=1,....r

The initial multiplier must be positive, i.e., u, > 0. Note that the properties
lim,_, _,, Vy(t) = 0 and V*y(t) > 0 imply that Vi(t) > 0 for all ¢ € R, so it
follows that the sequence {1} generated by the iteration above satisfies y, > 0
for all k.

In the remainder of this chapter, we shall provide a convergence analysis
of multiplier methods corresponding to the classes P; and P; as applied to
convex programming problems. For this analysis, we shall need a number of
properties of the classes Pyand P, which we collect in the following proposition.

Proposition 5.1: Let either pe P;, u > 0,and te Ror pe P, u > 0, and
teR. Then

@ Vupt;p) =1,

() tVip(t; 1) = p(t; p) = PV, p(t; p) > pt,

(© plt;w—plt; ) =tu—pg Vielo,pul
(d) The following five conditions are equivalent:

(d1) tV,p(t; p) = p(t; W,
d2) pt; ) = e

d3) p(t;w) =0,

(d4) V.pt; ) = p

(d5) t<Oandut=0.

Proof We consider only the class P;. The proofs are valid also for the
class P; since properties (a)-(h) in the definition of P, are satisfied by p € P, if
u>0.

(a,b) FixteR and p > 0. By property (d) and the convexity of p(-; u),
we have

0 = p(0; p) > p(t; ) + (0 — )V, p(t;
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or
(12) tV,p(t; 1) = p(t; ).
Similarly, using properties (d) and (e), we obtain
(13) p(t; o) = jit VteR, p=>0.
By concavity of p(t; -), we have

pit; W) < p(t; W) + (@ — wV,pt; ) V=0
Combining the last two inequalities, we obtain

p<plt;)+@—wv,pt;) V=0

By setting i1 = 0, we have

(14) uV,p(t; 1) < p(t; ),
while by letting iz — oo we obtain
(15) t < V,p(t; p).

Combining (12), (14), and (15) we obtain a proof of (a) and (b).
(c) From part (a) we have, for fixed t e R,

L V0 dé > f tde

or equivalently
p(t; ) — p(t; 1) > t(u — p).
(d) To show the equivalence of (d1)-(d5), first assume that (d5) holds.
There are two cases to consider:

CaSeE L. (t = 0): In this case, (d1)-(d4) follow immediately from proper-
ties (d) and (e).

Casell. (t < Oand u = 0): Properties (e) and (f) together with the fact
that V,p(-; 0) is nondecreasing (by convexity) yield V,p(t; 0) = 0 for t < 0.
That together with property (d) implies

p(t;0) = V,p(t;0) = p = 0.

This proves (d1)-(d4).
It will now suffice to show that if (d5) does not hold, then the same is true
for (d1)-(d4). If (d5) does not hold then there are two cases.
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Casel. (t > 0): The proof of (12) and (13), together with the strict
convexity property (c), imply that
(16) tV,p(t; ) > p(t; w) > pt > 0.
Since t > 0, these inequalities imply that (d1)-(d4) do not hold.

CaselIl. (t <0Oand u > 0): By property (e), we have V,p(0; u) = u, and
since V, p(-; u) is continuous on R, there is an open interval of scalars 7 con-
taining the origin in which V,p(7; u) > 0. By property (c), strict convexity
holds for 7 in this interval. Using this fact in the proofs of (12) and (13), we
obtain again (16) which shows that (d1)-(d4) do not hold. Q.E.D.

5.1.3 Approximation Procedures Based on Nonquadratic Penalty
Functions

The approximation procedure described in Section 3.3 is based on a
quadratic penalty function. As a result some of the approximating functions
described there, such as the one corresponding to the function (compare with
Example 6, Section 3.3)

(17) Y(t) = max{tla t2, EEE ] tt}’

are not twice differentiable. By using a suitable nonquadratic penalty func-
tion, it is possible in some cases to obtain more convenient or twice differ-
entiable approximating functions.

Lety: R" — (— o0, + 00] be a lower semicontinuous, convex function with
y(t) < oo for at least one t € R". Assume further that y is monotonically non-
decreasing in the sense that for any ¢4, t, € R” we have

18) ty < ty=y(ty) < p(t2)-
Then for g: R" - R’, the problem
(19) minimize y[g(x)]
subjectto xeX
is equivalent to the problem
minimize y[g(x) — u]
subject to xe X, u<0.

By eliminating the inequality constraints u < 0 by means of a penalty
function ¢~ !p(cu; p), ¢ > 0 and u > 0, such as the ones considered in the
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previous section, we obtain the approximating problem

(20) minimize  Q.[g(x); 4]

subjectto xeX,

where the approximate objective function Q, is given by
. 17 .
@) Q(t; w) = min {v(t — ) + = ¥ plow; u‘)}.
ueR" i=1

The general approximation procedure for problems containing several
functions of the form y[g(x)] consists of replacing these functions by the
approximating functions Q.[g(x); u] wherever they appear, followed by
solution of the approximating problem. The process is repeated after suitable
updating of the multipliers and the penalty parameter.

As an example, consider the function

(22) (t) = ae, a>0

[compare with (10) of Section 3.3], and the exponential penalty function
[compare with (11)]

(23) ¢ pleus p) = ¢~ (e — 1).
A straightforward calculation yields that the approximating function of (21) is

given by

Q(t; ) = u/’/(€+ﬂ)(aﬂ)0/(c+ﬂ) _C+_ﬂ oBillc+B)
B

The corresponding multiplier iteration is given by

T 'u’l‘f/(Ck + B)(aﬂ)fk/(ck +B) gerBg(xid/(cic+ )
This last fact can be verified by the reader by adapting the reasoning of Section
3.3 to the present case and by carrying out the straightforward calculations
(see also Bertsekas, 1976e).

The exponential penalty function (23) can also be used in connection with
the function

4 7[g(x)] = max{g,(x), g2(x), - - . , g:(x)}

to yield via (21) the twice differentiable approximating function

(25) 0.0g(x): 4] = 1og{._§1 ,gecg..(x)}

C
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The corresponding multiplier iteration can be calculated to be
r
(26) Pir1 = Wy e9 / Yoperst i=1,
i=1

During calculation of Q [g(x); 1], as in (25), it is possible that computer
overflow (or underflow) will occur if cgy(x) is too large (small). This difficulty
can be eliminated by computing Q_[g(x); u], using the formula

: A
Qclg(x); u] = %log{;mei(x, I8 0)} + )] - —

with ey(x, u, ¢) given by
(oo = {ETIII A — D] - 6] > — 4,
G =10 otherwise,

where y[g(x)] is given by (24), and A > 0 is a large scalar such that both e™4
and e” lie within the computer’s range. Similarly, the updated multipliers
Ui+ of (26) should be computed by using the formula

#;;+1 = ﬂiei(xk» Hic» Ck)/jzr:lﬂiej(xka B> Cio)-

As an example of using the penalty function (25), consider the following
simple method for finding a solution of the system of nonlinear inequalities
27 g:(x) <0, i=1...,r
This problem is equivalent to the problem

minimize y[g(x)]
subject to x€eR",

where y[g(x)] is given by (24). Consider a method consisting of sequential
unconstrained minimizations of the form [compare with (25)]

1 o
(28) minimize z log{ Z P eCkgi(X)}

i=1
subjectto x€R",

where pi, i = 1,..., r are multipliers satisfying
u. >0, i=1,...,r Zui:l Vk=0,1,...,
i=1

and ¢, > Oisapenalty parameter. Let vf be the optimal value of problem (28).
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If there exists a feasible solution to the system (27), then it is easily seen that
<0 Vk=0,1,...,

while if there exists a strictly feasible solution X with y[g(X)] < O then
<0 Vk=0,1,....

On the other hand, suppose that there is no feasible solution to the system (27)
and assume that

(29) Ck_)wa
and for some ¢ > 0, we have
(30) wo>e Vi=1,...,r, k=0,1,....

Then it is easily seen that, for all k sufficiently large, we have v} > 0. These
observations can be used to show that if the method is operated so that (29)
and (30) hold, and for each k, x, is an optimal solution of problem (28), then

(a) If the system (27) is feasible, every limit point of {x,} is a feasible
solution.

(b) If the system (27) is strictly feasible, then there exists an index k such
that x; is a strictly feasible solution.

(c) If the system (27) is infeasible, then there exists an index k such that
v¥ > 0 thereby confirming the fact that no feasible solution exists.

We note also that it is possible to show that if the functions g;, i = 1,...,r,
are convex then, under a mild assumption, the conclusions (a), (b), and (c) hold
even if the conditions (29) and (30) are not enforced (see Proposition 5.12 in
Section 5.3).

5.2 Convex Programming and Duality

We consider the following convex programming problem
(CPP) minimize f(x)
subjectto xeX, gix) <0, j=1,...,r,
where we make the following standing assumptions.

Assumption (A1): The set X is a nonempty convex subset of R" and the
functions f: R" - R, g;: R" = R, j = 1,..., 1 are convex over X.

Assumption (A2): There exists at least one feasible solution for (CPP).



316 5. NONQUADRATIC PENALTY FUNCTIONS—CONVEX PROGRAMMING

Assumption (A3): The optimal value f* of (CPP) is finite, i.e.,
ff=inf{f(x)[xeX,gx)<0,j=1,...,r} > —c0.

It is possible to extend the definition of (CPP) to include linear equality
constraints, but, for simplicity, we shall not consider this possibility. The
methods we shall discuss together with the corresponding analysis can be
suitably extended with essentially trivial modifications. '

We shall employ, throughout the remainder of this chapter, the standard
terminology of convex analysis. An excellent source for this material is
Rockafellar (1970). Thus a function f: R* — [ — 0o, o0] is said to be convex
if the epigraph of f, i.e., the set {(x, p)| f(x) < p, x € R", p € R} is convex. We
say that f'is proper if f(x) > — oo for all x e R" and f(x) < oo for at least one
X € R". We say that f is closed if it is lower semicontinuous. The conjugate
convex function of a convex function f: R" - [ — o0, + 0] is defined by

@) = sup {zx — f()}.
The function f* is convex and closed. It is proper if and only if f'is proper. If f
is closed, then the conjugate of f* is f. The subdifferential df (x) of a convex
function f is defined for each x € R" by

of(x) ={z|f(X) = f(x) + Z/(X — x), VXeR"}.

The subdifferential df (x) is a closed (possibly empty) convex set for each x.
If f'is real valued, then df(x) is nonempty and compact for each x. The pre-
ceding discussion is intended to provide only limited orientation, and we
shall make frequent references to Rockafellar’s text for additional notions
and specific results. It is thus necessary that the reader should be somewhat
familiar with the contents of this source in order to follow the subsequent
development.

We review some known results for (CPP). Consider the ordinary Lagrang-
ian function

1) L(x, p) = f(x) + wg(x).
Definition: A vector u* € R" is said to be a Lagrange multiplier for (CPP)
if y* > 0 and
(@) inf L(x, u*) = f*
xeX

We have the following well-known results (see Rockafellar, 1970).

Proposition 5.2: Let u* be a Lagrange multiplier for (CPP). Then
x* € R"is an optimal solution for (CPP) if and only if the following conditions
hold:

3 L(x*, u*) = inf L(x, p*),

xeX

@ XeX, g <0, prg(x*) = 0.
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Proposition 5.3: The vectors x* and p* form an optimal solution—
Lagrange multiplier pair for (CPP) if and only if x* € X, u* > 0, and (x*, u*)
is a saddle point of the Lagrangian L in the sense

) L(x*, p) < L(x*, p*) < L(x,p*) VxeX, p=0.
Consider the dual functional d: R" — [ — o0, c0) of (CPP) defined by

inf {L(x, p)|x € X} if u=>0,
— 0 otherwise.

(6) d(p) = {

The following proposition holds.

Proposition 5.4: (a) If there exists at least one Lagrange multiplier then
(M f* = sup d(u).

u=0
(b) If(7)holds, then a vector p* is a Lagrange multiplier for (CPP)ifand
only if it is an optimal solution of the dual problem

®) maximize d(u)
subjectto p > 0.

When (7) holds, we say that there is no duality gap. It is easily seen that
d(u) < f* for all ue R". Therefore the fact that existence of a Lagrange
multiplier implies that no duality gap is present follows from the definition
of a Lagrange multiplier. Corollary 28.2.1 of Rockafellar’s text shows that
a sufficient condition for existence of a Lagrange multiplier is the Slater
condition that there exists an X € X such that g(X) < 0, for all j. The Slater
condition guarantees also that the set of all Lagrange multipliers is compact
as well as nonempty (see Corollary 29.1.5 of Rockafellar’s text).

Consider now the primal functional q: R” — [ — o0, + co] defined by

) q(u) = inf{f(x)|x € X, g(x) < u} YueR"

The primal and dual functionals are intimately related as we now show. We
have, for u > 0,

(10) d(w) = inf{f(x) + pg(x)|x € X}
= infinf{f(x) + W'g(x)|x€ X, g(x) < u}
ueR"
= infinf{f(x) + pulxe X, g(x) < u}
= inf {g(u) + pu}
ueR"

= —sup{(—pu — q)},

ueR"
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so that
(11) dw) = —g*(-p)  Yu=0,

where g* is the conjugate convex function of g.

Now notice that g is monotonically nondecreasing in u in the sense that
for allue R" and & > 0 we have q(u) > q(u + i1). Hence, if u = Wy ey ity)
is such that p; < 0 for some j, we have

inf {q(u) + pu} = —

ueR"
It follows using (6), and (11) that
(12) dp) = —q*(—pu)  VpeR.

The nature of the primal functional provides the key to questions regarding
existence of Lagrangc multipliers. It is shown in Rockafellar’s text (Theorem
29.1) that a vector p* is a Lagrange multiplier if and only if — u* € dq(0). If qis
closed then we have f* = sup, ., d(u) (see Rockafellar’s text, Theorem 30. 3).
The primal functional q is in turn closed if X is a closed set and the set of optimal
solutions for (CPP) is nonempty and compact. This last fact can be verified by
using Theorem 9.2 of Rockafellar’s text (see also Theorem 30.4 of the same
-reference).

The Augmented Lagrangian and the Penalized Dual Functional

Consider now the augmented Lagrangian L. corresponding to a scalar
¢ > 0 and a penalty function p, where p belongs to the class P; or the class
P, defined in Section 5.1.2. We have

(13) L(x, ) = f(x) + P[Lg(x); pl,

where we use for convenience the notation

|

(14) P(z;p) = .le(cz J3 M-

Consider the conjugate convex function of P,( -; u) defined by

(15) P¥(s;u) = sup{z's — Pz; )} YV u =0.

zeR"

In view of the form (14) it is easily seen that we have

(16) P¥(s; p) = Zp (sj3m) V=0,

ﬁl’—‘
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where s; and y; denote the jth coordinates of s and u respectively, and
p*(-; u;) is the conjugate convex function of p( - ; p;) given by
17) p*(sj; ;) = sup{s;t — p(t; u))} Vu; =0.

teR

When p belongs to the class Pf defined in Section 5.1.2, its conjugate can be
characterized more precisely. A function p € Pg has the form

uit + () if pj+ Vé(t) =0,
min {y;T + ¢(7)} otherwise,
teR

(18) p(t; y) = {

where ¢ belongs to the class Pg of Section 5.1.1. Note that this expression
makes sense even if y; < 0. From (16) and (17) we obtain via a straight-
forward calculation for all ;€ R

1 .
19) p(s; 1) = ;d’*(sj —u) if 520
js W) =
x© otherwise,

and for all pe R”

1 2 .
(20 Px(s; ) =1 ¢ '21 ¢*(s; — up) if s>0,
¢\ j=

0 otherwise,

where ¢* is the conjugate convex function of ¢ defined by

21 P*(y) = su}g{yt - ¢} VyeR
te
Since, by definition of the class Pg in Section 5.1.1, we have ¢(t) = 0 for all
te R, lim,._, Vo(t) = —oo,lim,, Vé(t) = o0, $(0) = 0,V$(0) = 0,itcan
be easily seen that
0 < o*(y) < VyeR,

min ¢*(y) = ¢*(0) = 0.

yeR
Since ¢ is strictly convex and differentiable, it follows from Theorem 26.3 of
Rockafellar (1970) that ¢* is also strictly convex, and differentiable. Finally
the facts that ¢ is the convex conjugate of ¢* and ¢ is real-valued imply
that lim,_. , V¢*(t) = — oo and lim,_,, V¢*(t) = oo. The conclusion is that
¢ € Pg if and only if ¢* € Pg. We shall make frequent use of the properties
of ¢* just shown.

The penalized dual functional, denoted d., is defined on the set {ulu = 0}

by

22) d(x) = inf{L(x, lxe X} ¥u=0.
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If pe Pg this definition also makes sense for every u e R" (not just for
u = 0), and for p € P£ we shall view d, in what follows as a function defined
by (22) for all u € R". A calculation similar to the one in (10) yields
(23) d(w) = inf {q(u) + P.(u; p)},
ueR"
where ¢( -) is the primal functional of (CPP).
The following proposition provides some basic facts.

Proposition 5.5. Let ¢ > 0.
(a) Assume that y >0and pe P, or u>0and pe P, or ue R and
p € Pg. The conjugate convex function PX( - ; u) satisfies

(24) 0 < P¥(s; u) < 0 Vs>0,
(25) P¥(s; u) = o0 if s;<0 forsome j=1,...,r

Furthermore PX(-; p) is strictly convex on the set {s|s > 0}.
(b) Assume that y > 0and pe Pj,or u>0and pe P, or ue R and
p € Pg. Assume also that /* = sup,, o d(x). Then
(26) d(u) = max{d(s) — PX(s; p)},
seR"
and the maximum above is attained at a unique point s(y, ¢) > 0. Further-
more if the infimum in the definition

27 d(uw) = inf L(x, w)
xeX

is attained at a point x(u, ) (not necessarily unique) we have

- (28) s(u, ©) = V. P Lg[x(u, ©)T; pl,

where s(u, ¢) is the unique point attaining the maximum in (26).
(c) Assume that pe Pg, and that f* = sup,,, d(u). Then d, is con-
tinuously differentiable on R” and

ad, .
@ Ve -] VueR, j=1.r

J

where s(u, ¢) is the jth coordinate of the vector s(u, ¢) defined in (b) above.

Proof: (a) From the properties of P, P,, and P/} it can be seen
that in all cases p(0; ;) < 0. Therefore from (17) we have p*(s;; 1) = 0
for all's; > 0. Also in all cases lim,_, _, V,p(t, ) = 0 and lim,_, , V,p(t; p) =
co. It follows that the supremum in (17) is attained if s ;> 0, while for s; = 0
we have p*(0; p;) = —infg p(t; p;) < 0. Hence p*(s;;u;) < oo for all
s; = 0 and (24) follows.
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Since in all cases p(-;u;) is nondecreasing and bounded below, (17)
yields p*(s;; pj) = o if s; < 0, from which (25) follows.

In all cases p(-;pu;) is a real-valued, differentiable convex function.
Therefore by Theorem 26.3 of Rockafellar (1970), we obtain that p*(-; u;)
is strictly convex on the set of s; for which the subdifferential of p*( - ; u;) with
respect to s; is nonempty. Since p*(-; u;) is defined on the real line it follows
that p¥( -; ;) is strictly convex on {s;1p*(s;5 1)) < oo}. Therefore, by (24),
P*(-; p) is strictly convex on the set {s|s > 0}.

(b) Assumptions (A1)-(A3) and the fact that f* = sup,s d(u) imply
that the functions g, ¢*, and d are proper convex functions. Furthermore
P, ; p) is real-valued. These facts guarantee that assumption (a) of the
Fenchel duality theorem (Rockafellar, 1970, Theorem 31.1) is satisfied. It
follows from (23) and the conclusion of this theorem that
(30) d(n) = m}gx{—Q*(—S) — Px(s; W}
and that the maximum is attained at some point s(, ¢). This point must be
unique in view of the fact that P¥(-;s) is strictly convex and real-valued
on {s|s = 0} as shown in part (a). Equation (26) follows from (12) and (30).

If x(y, ¢) attains the infimum in (27), then the vector u(u, ¢) = g[x(y, ¢)]
attains the infimum in (23). We have, using (23) and (30),

qluu, )] + PLu(u, ¢); pul
—g*[—s(u, ©)] — P¥s(, ©); 1l
= —sup {—s(u ¢)'u — q(u)} — sup {s(u, ©)u — P(u; u)}

ue R" ue R

< s(u, oYu(u, ©) + qlu(u, )] — s(u, ©)u + Plu; p) ~ VuekR.
Hence
PC(U; /J') = Pc[u(#’ C), lu'] + S(.u’ c)l[u - u(#a C)] Vue Rra

s0 s(u, ¢) is a subgradient of P(-; u) at u(y, ¢). Since P,( -; w) is differentiable
and u(y, ¢) = g[x(u, ¢)] we obtain (28).

(c) Since sup,so d(u) = f* and f*> —oo [by Assumption (A3)] it
follows from (24) and (26) that
31 —o <d(p <f* VueR.

Hence d, is real-valued and as a result the subdifferential dd.(u) is nonempty
and compact for all p e R". Fix ye R"and let w € dd(u). Then for all i€ R,
we have, using (26),

(32) dls(u, )] — P*[s(u, €); 7] < de(@) < dep) + w'(@ — 1)
= d[s(, )] — P¥lsw )il + W —p)  ViEeR.
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Using (20) we obtain

|-

PEsn 3 7] = ¢ 3 ¢°501.0) = )

o | =

P*[s(u, ¢); u] = ._ilq&*[s,(u, o) — ul.

Combining the above two equations and (32) we obtain for all j and ji; € R
¢*[Sj(,u7 c) — ﬁ;] = ¢*[5j(,ua ) — #j] + (—Wj)(ﬁj - #j)-

This implies that (—w;) is a subgradient of the function h;(y;) =
¢*[s{(u, ©) — p;] at ;. Hence

W} = V¢*[SJ(#’ C) - lu_[] v.] = 1, TR

and (29) follows. Q.E.D.

The differentiability property of d., shown in Proposition 5.5c, does not
hold for p ¢ Pg, since d_ is not even defined outside the set {u|u > 0}. It is
possible, however, to show that if the assumptions of Proposition 5.5¢ are
satisfied and p € P or p € P, then the penalized dual functional d, is con-
tinuously differentiable on the set {u|u > 0}. The proof of this is very similar
to the proof of Proposition 5.5¢ and is left for the reader.

We can now prove the following proposition relating optimal solutions
and Lagrange multipliers of (CPP) with minimizing points of the augmented
Lagrangian and optimal solutions of the following penalized dual problem

maximize d(u)

subjectto u > 0.

Proposition 5.6. Let ¢ > 0, and assume that pe P, or p € P,.

(a) Assume f* =sup,,, d(u). Then the set of maximizing points of
both d and d, over {u|u > 0} coincides with the set of Lagrange multipliers
of (CPP).

(b) Assume that p € P; and let u* be a Lagrange multiplier for (CPP).
Then a vector x* is an optimal solution of (CPP) if and only if it minimizes
L(-,u*) over xe X.

(c) Assume that p € P;. Then (x*, u*) is an optimal solution-Lagrange
multiplier pair of (CPP) if and only if x* € X, u* > 0, and (x*, u*)is a saddle
point of L, in the sense that

(33) Lo(x*, p) < L(x*, p*) < L(x, p*)  VxeX, u=0.
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If in addition p € P, then (x*, u*) is an optimal solution-Lagrange mul-
tiplier pair if and only if x* € X, y* € R’, and

(34) L(x*, p) < L(x*, u*) < L(x, u*) VxeX, pueR.

Proof: (a) We first note that by a similar argument as the one used
in the proof of Proposition 5.5 we can show that the relations

(35) 0 < P¥(s; ) Vs=>0
(36) d(p) = mif{d(S) — P¥(s; w}

hold for all u > 0 (i.e.,evenif p € P, and p; = 0 for some j). Furthermore the
maximum in (36) is attained for some s(x, ¢) > 0 (not necessarily unique if
p e Pyand p; = 0 for some j). Therefore using also Proposition 5.1b

(37 dpw <d(w) <f*  Vpuz0

From Proposition 5.4 and (37) it follows that if 4* is a Lagrange multiplier
it must maximize both d and d, over {u|u > 0}, while if 4* maximizes d it
must be a Lagrange multiplier.

Let u* > 0 maximize d, over {u|u > 0}. We will show that p* is a
Lagrange multiplier. Indeed in view of (37) and the fact that f* = sup,,, o d(1)
we have

(33) f* = dw*) = dls(*, )] — P¥[s(u*, ¢); p*].
From (35), (37), (38) and the fact that f* > — oo we obtain
(39) dls(u*, o)) = f*

and

(40) P¢[s(u*, c); u*] = 0.

From (40) we obtain

1 :
Sup{tsj(,u*a C) - zp(“;ﬂf)} =0 v.] = 1,"'?r

teR

and
41) cts(u*, ¢) < p(ct; uf) Vji=1,...,r, teR.

Since p(0; u¥) = 0, it follows from (41) that s(u*, c) is a subgradient of
p(-; uf)att = 0. But V,p(0; uf) = pf for all uf > 0, s0 it follows that

si(u*, ) = uf Vi=1,...,r
From (39) and Proposition 5.4 it follows that p* is a Lagrange multiplier.
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(b) We have by part (a)
(42) * =d(u*) = inf L(x, p*) < L(x*, p*)

xeX
= f(x*) + P(x*; u*) vV x*eX.
If x* is an optimal solution of (CPP) we have f* = f(x*) and P.(x*; u*) < 0.
It follows from (42) that x* minimizes L ( -, u*) over X.

Conversely, assume that x* minimizes L (-, u*) over X. Using Proposi-
tion 5.1b and the fact that u* is a Lagrange multiplier we have

(43) L p*) = L(x*, pu*) 2 d(u*) = d(u*) = inf L(x, u*).

xeX

Since x* minimizes L ( -, u*) over X, equality must hold throughout in (43).
Therefore

P [g(x*); u*] = p¥g(x*)
and, using Proposition 5.1d, it follows that

(44) gx*) <0,  p¥g(x*) = 0.

Since equality holds in (43) we have

(45) L(x*, p*) = d(u*) = inf L(x, u*).
xeX

Using (44), (45), and Proposition 5.2 it follows that x* is an optimal solution
of (CPP).

(¢) If (x* u*)is an optimal solution-Lagrange multiplier pair we have
by part (b)

(46) L(x* p*) < L(x,p*) VxeX.
Also, since g(x*) < 0, we have P [g(x*); u] < 0 for all u > 0. Therefore
(47) L(x* p) < f(x*) = L(x* p*)  Yu=0.

From (46) and (47) we obtain (33). If p € PZ, then we have P [g(x*); u] <0
for all u € R” and similarly (34) follows.
Conversely, assume that x* € X, u* > 0 and (33) is satisfied. Then

(48) L(x*, p*) = sup L(x*, u) = sup L(x*, p)
un=0 u>0
_ f(x*) if gx*)<0
T+ otherwise.

Therefore we must have g(x*) < 0 and it follows that

P.[g(x*); u*] < P.[g(x*); 0] = 0.
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Hence
(49) Lo(x*, u*) = f(x*) + P.Lg(x*); p*] < f(x*) = Lx*, 0).
Using (33) it follows that equality holds throughout in (49), and therefore

(50) P.[g(x*); u*] = 0.
From Proposition 5.1d we obtain
(51 g(x*) <0,  p¥g(x*) = 0.

We have from (50) and (33)
(52)  f(x*) = Lx* pu*)= inf L(x, u*)

xeX

< inf L(x, u*) <f(x) VxeX, g(x)<0.
.11(;?;(0
Combining (51) and (52) we obtain that x* is an optimal solution of (CPP).
Denote u* = g(x*). Then from (52) we have that u* attains the infimum
in the equation
(53) f* = inf {q(u) + P.(u; p*)}.
ue R"
It follows that g is proper and, since P.(-; u*) is real-valued, application
of the Fenchel duality theorem (Rockafellar, 1970, Theorem 31.1) yields for
some vector s*

(54)  q(u*) + P(u*; p)

—q*(—s*) = PX(s*; u%)
—sup{—u's* — q(w)} — sup{u's* — P(u; u*)}.

ue R" ue R"

From (54) we obtain

qu*) + P(u*; p*) < u¥s* + qu*) — u's* + P(u; u*) VueR,
or

P(u*; pu*) + (u — u*)'s* < P(u; u*) VueR.

Hence s* is a subgradient of P,( -; u*) at u*. In view of (50) and Proposition
5.1d we obtain
(55) s* = p*.
From (54) we also obtain

(56)  q(u*) + P(u*; p*) < u's* + q(u) — u®'s* + P(u*; u*) YueR".
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Combining (55) and (56) we obtain

qu*®) + u*'u* < q(u) + u'p* VueR,
or equivalently

qu*) + u*u* = inf L(x, u*).

xeX

Since q(u*) = f* and u*u* = 0 by (51) it follows that u* is a Lagrange
multiplier for (CPP).

It is easily seen that, if p € Pg, then, for all u € R", we have L (x*, u*) >
L(x*, p) where pu* is the vector with coordinates max{0, yu;},j = 1,...,r
with strict inequality holding if u; < O for some j. Therefore (34) implies
that p* > 0, and the preceding proof shows that (x*, u*) is an optimal
solution-Lagrange multiplier pair. Q.E.D.

Note that, by Proposition 5.6b, it is sufficient for optimality that x*
minimizes L (-, u*) over X. By contrast, it is not enough for a vector x* to
minimize L(-, u*) over X. The additional conditions g(x*) < 0 and p*'g(x*)
= 0 are also needed (compare with Proposition 5.2). Proposition 5.6¢c
shows that when X = R"and p € Pg, the search for local minima-Lagrange
multiplier pairs can be reduced to a search for unconstrained saddle points
of L.. We refer to the paper by Mangasarian (1975) for related algorithms and
analysis. Note that the results of parts (b) and (c) of Proposition 5.6 do not
hold if p € P,. Nonetheless this fact does not seem to impair the utility of
the class P, for algorithmic purposes as will be discussed in the next section.

5.3 Convergence Analysis of Multiplier Methods

The algorithms that we consider are based on exact or approximate
minimization of the augmented Lagrangian

L ) = 109 + PL0s ] = () + < 3 pleg,x): )

where pe Pyor pe P;.

Throughout this and the next section, we shall adopt the following
assumption in addition to the assumptions (A1)-(A3) made in the beginning
of Section 5.2.

Assumption (A4): The set X is closed and (CPP) has a nonempty and
compact optimal solution set denoted X*. Furthermore the set of all Lagrange
multipliers for (CPP) denoted M* is nonempty and compact.
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Actually some of the subsequent results can be obtained under assumptions
weaker than (A4). The reader can easily identify these results, and thus we
prefer to assume (A4) at the outset so as to avoid overburdening the pre-
sentation.

We consider two algorithms, denoted A and B, employing exact and
inexact minimization of L (-, n), respectively.

Algorithm A (Exact Minimization): Select an initial penalty parameter
¢o > 0 and an initial multiplier p, satisfying uo > 0 if pe Py and po > 0 if
pEP;.

STep 1: Given y and ¢, find an x; solving the problem
minimize L, (x, W)
subjectto xe€X.

STep2: Set
1) Phsy = V:P[Ckgj(xk)§ Ml ji=1...,r
Select ¢+ = ¢, and return to Step 1.

Notice that if p € P;, we have, from (1), y, > 0 for all k, while if p € Py we
have y, > 0 for all k. Also note that (1) can be written as

2 s = VP [9(x); el
This equation together with Proposition 5.5 [compare with (26) and (28)]
imply that p ., is the unique point attaining the maximum in the equation
3) de, () = max{d(s) — PE(s; wo)}-

seR"
A geometric interpretation of this fact for the case where p € Pg is given in
Fig. 5.3.

In practice, the minimization in Step 1 of Algorithm A should be carried
out only approximately. Not only this is necessary in order for the algorithm
to be implementable, but in addition it usually results in substantial com-
putational savings. We provide below an implementable version of the
algorithm which employs inexact minimization. For ¢ >0 and u > 0,
consider the convex function L (-, 1) given by

L(x, 1) if xeX,
o0 if x¢X.
Denote by A, L(x, u) the element of minimum Euclidean norm of the sub-

differential (with respect to x) 8, L(x, u) for every x € R" for which 0, L(x, 1)
is nonempty. We have

e |AL(x, | = min |z].

z€dxLe(x, 1)

“ L(x,w) = {
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g g
e
\

*
%k(s;p.k)d»dck( )

ed() fb————— - d(s)

FIG. 5.3 Geometric interpretation of the multiplier iteration for p € P¢

Note that A, L(x, u) is just the ordinary gradient V,.L.(x, ), if L (-, p) is
differentiable and x lies in the interior of X. In the following algorithm,
minimization of L,(-, ) over X is terminated at a point x, where
|A L, (xi, w)| is sufficiently small. This type of stopping criterion makes
sense only if an algorithm is available that produces sequences {z;} with the
property lim;_, ,, |A, L, (z;, )| = 0. Such algorithms are available if X = R"
and f, g; € C'. They are also available in other situations, for example if X is
specified by upper and lower bounds on the coordinates of x (see Section 1.5).

Algorithm B (Inexact Minimization): Select a sequence {7, } with 7, > 0
for all k, ,, — 0, an initial penalty parameter ¢, > 0, and an initial multiplier
Uo satisfying po > Oif pe Pyand py, > 0if pe P,.

Step 1: Given y, and ¢, find an x, satisfying

r

_ . 1 .
(6) ALy ) <), {V,p[ckg )5 1edg ) — o plergfxo); ui]}

Jj=1

STEP 2: Set

™ Poer = Viplag(a)s ), j=1,...,r
Select ¢, 44 = ¢, and return to Step 1.

Again from (7), we obtain for all k, y, > 0if p € Pyand p, > 0if p € P;. Also
from Proposition 5.1b, it follows that the right-hand side of the stopping

criterion (6) is nonnegative. When #, = 0 in (6), then x; minimizes L,,(-, 1)
over X. Since x, — 0, the possibly inexact minimization indicated by (6) is
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asymptotically exact. We shall demonstrate shortly that when #, > 0, then
under a fairly mild assumption a vector x; satisfying (6) can be obtained by
means of a finite process. This assumption is stated below and will be in effect
only for the results relating to Algorithm B.

Assumption (AS) (For Algorithm B): There exists a positive scalar
o such that, for all x, X € R", and z € 9f (X),
®) fx) 2 f(%) + 2(x — %) + z|x — X|*.

In the remainder of this chapter every result for Algorithm A assumes
(A1)-(A4), while every result for Algorithm B assumes (A1)-(A4) and (AS5).
The following proposition shows that Step 1 in both Algorithms A and B
can be carried out. For the proof of the proposition, we shall need the notion
of a direction of recession. Let h: R* — (— o0, + 0] be a closed, proper
convex function. A vector z € R, z # 0, determines a direction in R", namely
the direction of the ray emanating from the origin and passing through z. For
x € R" such that h(x) < oo, the one-dimensional function #(t) = h(x + tz),
teR, is a cross section of h along the direction z passing through x. The
direction z is a called a direction of recession of h if 5(t) is nonincreasing over
the entire real line. It can be shown that the set of minimizing points of h (i.e., the
set {X|h(X) = inf, g~ h(x)}) is nonempty and compact if and only if h has no
directions of recession (Rockafellar, 1970, Corollary 8.7.1, Theorem 27.1d).
Another relevant fact is that if for some & € R the level set {x|h(x) < &} is
nonempty and compact then all level sets {x|h(x) < a}, « € R, are compact.
The recession function of h denoted h0™* is defined by
©) h0*(2) = lim ”(—xw = lim th(%) VzeR",

t— o0 tlo

where x is any vector such that h(x) < oo (see Rockafeller, 1970, Theorem 8.5,
Corollary 8.5.2). Thus h0*(z) does not depend on x as long as h(x) < co.
It may be shown that the direction z # 0 is a direction of recession of h at
every x for which h(x) < oo if and only if h0*(z) < 0. [In fact this statement
constitutes an equivalent definition of a direction of recession (see Rockafellar,
1970).] Part of Assumption (A4) is that (CPP) has a nonempty and compact
solution set, which is equivalent to assuming that the functions g, ..., g, and
the function f given by

f(x) if xeX,

(10) fe) = {oo if x¢X

have no common direction of recession. This can be seen from the fact that for
any collection hy, ..., h,, of closed proper convex functions for which the
sum (hy + --- + h,,) is not identically + co, we have

(11) (hy + -+ + h)0* = h,0* + -+ + h, 0",
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(see Rockafellar, 1970, Theorem 9.3). Our earlier assertion follows if we
apply this formula to the function fand the functions §, ..., 8, given by

0 if gi(x)<0

(12) 0/(x) = {OO if gj'(x) > 0, j=1,...,r

Proposition 5.7: (a) Let peP;and p > 0or pe P, and u > 0. Under
(A1)-(A4), the set of vectors minimizing L, u) over X is nonempty and
compact for every ¢ > 0. If in addition (A5) holds, then this set consists of a
single vector.

(b) Foreach k in Algorithm B, if , > 0, i is not a Lagrange multiplier,
{z;} is a sequence converging to the unique minimizing point of L (-, y),
and A, L, (z;, i) — 0, then there exists a vector x; € {z;, z,, . ..} satisfying the
stopping criterion (6).

Proof: (a) We shall show that for every ¢ > 0 the function L(-, u)
given by (4) has no direction of recession. In view of the earlier discussion, this
implies that the set of minimizing points of L (-, u) over X is nonempty and
compact. We need to compute the recession function of L(-, u). We have,
using (10) and (11),

13 L% 0 = JO° @)+ Y h07C)
i=1

where h; is given by

hix) = pleg(x); 1), j=1,....7
Using (9), we have

(14) B0 (2) = lim PO+ 12 ] = pleg (9 1]
J - 7 X

t— o0

Suppose z is a direction of recession of g;. Then
gix + tz) < g{(x) Vi=>0.

Using the properties of p, we have, for all t > 0

—oo < inf p(eu; pj) < plegix + tz); ;] < plegx); p;l-

It follows that the limit in (14) is zero. Now suppose z is not a direction of
recession of g;. By (9),

(15) 1,07 (z) = lim tp| cg; (= ); ;| = tim tp| ctg, () /15 ;.
110 t t10 t ’
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Since z is not a direction of recession of g; we have ;07 (z) = lim, o tg(z/t)
> 0, so there exist f > 0 and & > 0 such that tg(z/t) > & for all t € (0, £].
Then, from (15),
h;0%(z) > lim tp(ca/t; ;) = p0~ (c&; p;)-
tl0
Since lim, . , p(cu; u;) = oo, it follows that p0™(c&; u;) = o0, so h;0%(z) =
00. We have thus shown than
+ 0 if zis a direction of recession of g;,
hj0"(2) = . . . .
oo if zisnot a direction of recession of g;.

Using (13), we have
f0*(z)  if zis a direction of recession of each g,
L.O%(z, u) = j=1,...,1
0 otherwise,

Thus, L,0% (z, u) > Ofor all z # 0 [equivalently, the set of minimizing points
of L (-, u) is nonempty and compact] if and only if f and g, .. ., g, have no
common direction of recession. As stated earlier, this is equivalent to (CPP)
having a nonempty and compact solution set. This proves part (a) except for
the last assertion.

If (A5) holds, then it is easily seen that we have, for all x, X € R",¢ > 0, and
z€0,LAX, p),

L(x, @) = L% @) + 2(x — X) + galx — X[

If X minimizes L (-, ) then 0 € 0, L (X, p), so by taking z = 0 in the preceding
relation, we obtain
L(x,p) = L(%, w) + 3a|x —X|> VxeR"
from which the uniqueness of the minimizing point follows.
(b) If , is not a Lagrange multiplier and Z is the minimizing point of
L.(-, w) (and also the limit of {z;}), then we cannot have both g«z) <0
for alljand Y-, g{(Z)ui = 0. By using Proposition 5.1(b) and (d), we obtain

r

. . 1 .
lim Z {th[ckg] z;); #i]gj z;) — 2; P[Ckgj(zi)§ ﬂfc]}

i»o j=1

~

=3 {V,p[ckg,(f); 1192 — Clkp[ckg;(i); ﬂf]} > 0.

ji=1

Since A, L,,(z;, i) — 0 and 5, > 0, we obtain that the stopping criterion (6)
will be satisfied for sufficiently large i. Q.E.D.
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We turn now to proving that the vectors y, generated by Algorithms A
and B eventually ascend the ordinary dual functional d. This fact leads to the
interpretation of Algorithms A and B as primal-dual methods.

Proposition 5.8.  If {(x,, 14)} is a sequence generated by Algorithm A or
B then:

(a) For Algorithm A, we have
(16) d(w) < de () < d(e+y)  Vhk=01,...

with strict inequality throughout if 4, is not a Lagrange multiplier.
(b) For Algorithm B and all k such that 5, < 2, we have

a7 d() < Lo (s i) < d(ptyer 1)
with strict inequality throughout if 4, is not a Lagrange multiplier.

Proof: Wewill prove part (b). A similar (in fact simpler) argument proves
also part (a). In view of Eq. (7) defining ., , it is easy to show that

(1 8) Ax zck(-xk P :uk) = Ax I:(xk > M+ 1)
where

Lx, ) = {L(x, w if xeX,

if x¢X.
From (AS5) we have, for all x € R" and z € 8, L(x, ftx+1),
L(x, px+1) = L0t 1) + 2'(x — x3) + 3| x — x; |2,

from which by taking infima with respect to x, we find that

(19) A+ 1) = L0 pher 1) — (1/20) | A Llxi, s 1) 12
The stopping rule (6) can also be written as
(20 [A Lo (% ) < mpd L(X, s 1) — L, (xks )}

Combining (18)-(20), we obtain

_ 1 _
(@29 L(xy, 1) — d(ites 1) < Z [Ax L(Xk, phy+ 1)|2
1 i 2
= 52 18 Lok, )

< 35 ALk s 1) = Laoks 1)

< L(xk s+ 1) — Lo(Xks ).
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Since L(x, e+ 1) = L(X» M+ 1), we obtain

L, (s i) < A+ 1)-

We also have, by the definition of d and the properties of p,

(22) d(#k) < L(xk7 .uk) < Lck(xln :uk)a

so the proof of (17) is complete. If 1, is not a Lagrange multiplier, then Pro-
position 5.1 (b) and (d) and the definition of y.,; imply that L(xy, f+1) >
L., (X, 1), s0 in view of 7, < 20, the last inequality in (21) is strict. Similarly,
the right inequality in (22) is strict, so strict inequality is obtained throughout
in (17). Q.E.D.

Corollary 5.9: A sequence {u,} generated by Algorithm A or B is
bounded.

Proof: Since 5, — 0, there exists an index k such that 7, < 2« for all
k > k. By Proposition 5.8, for all k > k + 1, p, belongs to the level set
{uld(u) > d(uz+,)} and d(uz.,) = L. (xz, ug) > —oo. Since the set of
maximizing points of d [i.e., the set of Lagrange multipliers of (CPP)] is
compact by (A4), the same is true for all level sets of the form {u|d(x) > B}
where f > —oo (Rockafellar, 1970, Corollary 8.7.1). Thus, the level set
{u|d(p) > d(uz+ 1)} iscompact,and it follows that {; } is bounded. Q.E.D.

We continue the convergence analysis by first considering the case where
pe€ P;.

Proposition 5.10: Let p € P,. A sequence {x,} generated by Algorithm
A or B is bounded.

Proof: Let {u} be the corresponding multiplier sequence generated by
the algorithm. By Corollary 5.9, {1} is bounded, so there exists M > 0 such
that 0 < uf < M for all k and j. Using the properties of p, we have

1 1 1
— plept; ) = — plext; 0) = —pleot;0) V>0,
Cy Ck Co

1 ! 1 1.
— plext; uh) = — plext; M) = — p(cot; M) = —infp(r; M) Vi <O.
Ck Ck Co Co «

Using these inequalities and the fact that p(t;0) = 0 for all t <0 and
inf, p(t; M) < 0, we have, for all j and k,

1 1 .
= plects i) = — {p(cot; 0) + inf p(z; M)}  VieR.
k 0 T
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Hence

r

(23) L. (x, ) = f(x) +ci Y {p[cog,(X); 0] + inf p(z; M)}

0 j=1
=L (x,0) + CL inf p(t; M) V xeR".
0

Now the function L, (x, 0) has no direction of recession, as shown in the proof
of Proposition 5.7, and hence it has bounded level sets. By Proposition 5.8,
we have that, for k sufficiently large, L, (x,, 1) = L, (%, 1) < d(pyerq) < f*
Using (23), it follows that x, belongs to the level set

{xl L. (x0) <f*— éinf (e M)}.

Hence {x;} is bounded. Q.E.D.

The following is the main convergence result for Algorithms A and B and
for p chosen within the class P;.

Proposition 5.11: Let p € P;. Every limit point of a sequence {(x;, 1)}
generated by Algorithm A or B is an optimal solution-Lagrange multiplier
pair of (CPP). Furthermore at least one such limit point exists and we have
hmy. o f(x0) = limy ., (i) = f*.

Proof:  Let (X, jz) be a limit point of a subsequence {(x,, u,)}x. We first
show that X is feasible. Indeed since X is closed and x, € X for all k, we have
X € X, s0,if X is infeasible, there must existje {1, ..., r},d > 0,and an index k
such that g;(x,) > ¢ for all k € K with k > k. For such k, we have, by Prop-
osition 5.1c,

(24 Lck(xka M) — Ly, i) = ¢ 1P[ckg j(xk); /"fc] - lll{ g j(xk)
> ¢ 'pleeg (x); 01 = ¢ 'pleed; 0] > 0.

We may assume without loss of generality that #, < 2a for all kK > k. There-
fore by Proposition 5.8b we have d(u,) < d(uy.,) < f* for all k > k. It
follows that we must have {d(u; ,;) — d(y)} — 0, so (17) and (22) imply

(25) {Lck(xk, Iuk) - L(xk7 :uk)} - 0.

This contradicts (24), and therefore X is feasible.
Using Proposition 5.1b, we have, for all j,

& 'plag X0 1] = ¢y 1P[Cogj(xk)§ uil = plg ),
so (25) implies
¢o 'pleog(%); W] = g (%) Vi=1,...,r
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Using Proposition 5.1d, we obtain ji/g(X) = 0 for all j. Hence we have, by
using (17) and (22),

J

max d(u) > lim d(u) = lim L(x, p) = f(X) +
k=

Po(® = 1(®.
M k= =1
Since X is feasible, we also have f(X) > f* = max, d(p), so it follows that
f(%) = f*, X is optimal, and lim,_, , d() = d(t) = f*. The existence of
least one limit point follows from the boundedness of {(x;, 44)} (compare with
Corollary 5.9 and Proposition 5.10). Q.ED.

The preceding proposition establishes that first-order multiplier iterations
based on penalty functions from the class P have satisfactory convergence
properties. Unfortunately when the penalty function p is chosen from the
class P, the convergence results available are not as powerful. The main
reason is that p(z; 0) is zero for t > 0, and this affects materially the proofs of
Propositions 5.10 and 5.11. The author’s extensive computational experience
with penalty functions in P, (particularly the exponential penalty function)
suggests, however, that their convergence properties are as good in practice
as those of penalty functions in the class P, . The following analysis supports
the validity of this observation.

Let S be the set of all subsets of {1, ..., r}. For any index set J € S consider
the function d; defined by

(26) dy(p) = inf {f )+ X ﬂjgj(X)} Vu=0,
xeX jeJ
and d,(u) = — oo if 4/ < O for some jeJ. Clearly d, is the dual functional
corresponding to the problem
(CPP), minimize f(x)

subjectto xe€ X, gix) <0, jeld.

This problem is the same as (CPP) except that the inequality constraints
g{x) < 0,j¢J, have been eliminated. The corresponding dual optimal value
is
(27) d¥ = sup d;(p).
u20

It is easily seen from (26) that we have, for all J,, J, €S,

a3y, < dj, if J,<=J,.
In particular,
(28) dy <supd(p) = f*.

uz0
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Define

(29) S={JeS|-w <d¥ < f*}.

We shall prove the convergence of Algorithms A and B for the case where
p € P; under the following assumption.

Assumption (A6) (For Penalty Functions p € P)): For each J€ S, and
j€J there do not exist any two vectors i > 0 and ji > 0 maximizing d; and
such that i/ = 0 and i/ > 0.

Note that (A6) is not a very restrictive assumption. It is satisfied in
particular if each of the problems (CPP),, J €S, has a unique Lagrange
multiplier vector. We do not know whether it is possible to relax this assump-
tion and still be able to prove the result of the following proposition.

Proposition 5.12: Let pe P, and assume that (A6) holds. Then every
limit point of a sequence {yx,} generated by Algorithm A or B is a Lagrange
multiplier of (CPP). Furthermore at least one such limit point exists and we

have limy, , f(x,) = limy o, d(w) = f*.
Proof: We have, for all k,

(30) Lck(xk, W) — L(xg, ) = Z { plexg j(xk) ,uk] - /lkg ](xk)}

~

I'_‘ "M‘l

{ pleog;(x); 1] — uf;g,-(xk)}
= - T ullUeog (] ~ cog (x0)

Similarly, as in the proof of Proposition 5.11 [compare with (25)], we have,
for some k,

(B1)  d(mo) < L0, i) < Lo, (ks ) < d(pyes1) < f* Vk=>k,
(32) {Le, (x> ) — L(xy, i)} = 0.

Since for all k and j, we have uf > Oand y/[c,g {x)] = ¢og(x;) = 0[compare
with Proposition 5.1b], we obtain, from (30) and (32),

(33) I‘f;{‘p[cogj(xk)] - Cogj(xk)} -0 Vi=1,...,r
Using the properties of i, it is easy to see that (33) implies
(34) Mgx)—>0 Yji=1,...,r
Combining (31) and (34), we obtain

(335) lim d(u) = lim L(xy, ) = lim f(x) < f*

k— o0 k=0 k—
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If lim,_ . f(x,) = f*, we are done, so in the remainder of the proof we
assume that lim,_ o f(x) < f*.

Since, by Corollary 5.9, {s} is bounded, it has at least one limit point.
We shall first show that in order to prove the proposition it is sufficient to
prove the following statement (S).

(S) If for some limit point & of {y;} and index j we have =0,
then lim,_, , uj = 0.

Indeed if (S) holds, then we can extract a subsequence {i}x converging
to some vector j such that, for all j,
- (36) @ = 0= lim sup g;(x;) <0,

k= o0
keK

37 # > 0=1limgjx,) = 0.
k= o0
keK

To see this, note that if i/ = 0 for some limit point fi of {4}, then by (S),
lim,_., i = 0. Thus, we have pi > pf.; = piV¥[cg;(x,)] for an infinite
number of indices k. This implies that Vy/[c,g;(x,)] < 1 or equivalently,
g{(x) < 0 for an infinite number of indices, so a subsequence {u,}x con-
vergent to some vector i can be chosen satisfying (36). Relation (37) must also
be satisfied in view of (34). Now consider, for all k € K, the vector u;, with
coordinates

(38) ul = max{0,g(x)} Vj=1L...,7
We then have
q(u) = inf{f(x)|x€ X, g;(x) S uf,j=1,...,7} < f(x),

where ¢ is the primal functional. From (36)—(38) we have {u,}x — 0,and since
q is lower semicontinuous [in view of the assumption that the set of optimal
solution of (CPP) is nonempty and compact—see the discussion in Section
5.2], we have

f* = q(0) < lim inf g(ip) < lim f(x).

k= k—
keK keK

Combining this relation with (35), we obtain limy._, ,, d() = limy_ o, ()
= f*. Taking into account (36) and (37), we conclude that the proposition
will be proved if we can show statement (S).

To prove (S), we argue by contradiction. Suppose there exists an index j
and two subsequences {x,}z and {u}z converging to i and f, respectively,
such that

P=0, j>0.
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Consider the index sets

J = {jllim sup g{(x;) < 0, lim sup g;(x,) < 0} Jt=Ju{j}

k— o k= o
keK keK

In view of (34), we have
lim g5(x;) = 0,

k=
keK

and hence,
limsupgi(x,) <0 VjeJ™.

k—
keK

By using an argument similar to the one given earlier starting with (38), we
have

df(R) = d)(p) = max d,(p) = df = lim f(xy),

u>0 k— o0
d;+(fi) = max d;+(u) = d¥+ = lim f(x,).
uz0 k=

Thus d¥ = d*. and since i/ = 0, we also have

df. = df = dy(i) = inf {f(x) - Zﬁfg,(x)}

xeX jelJ
- inf {f(x) - ;+ﬁfg,<x)} = d,-(@).

So both ji and ji maximize d;. over u > 0, while for the index je J* we have
=0 and & > 0. By our earlier assumption, lim,_., f(x,) < f*. So
J* €8, and we obtain a contradiction of (A6). Thus we have proved (S), and
by the earlier discussion, the proof of the proposition is complete. Q.E.D.

Special Results for the Quadratic Penalty Function

The quadratic penalty function is given by

wit; + 3t if u 41, >0,
39 tou)=4"7" J ) J J
€ Pt 1) {—%,uf if u;+1t<0.

It belongs to P and a fortiori to P;, and it has already been considered
in Chapter 3. The conjugate convex function of ¢(t) = 1% is ¢*(y) = 42
as the reader can easily verify. Thus we have, by using Proposition 5.5,

r

1 1
(40) PZ"(S;u)=2—Clej—#jlz=2—cls—u|2 Vs> 0,

j_
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and
1
(41) d(p) = maX{d(S) —5ols - #Iz}-
seR” 2¢
If s(u, ¢) is the unique maximizing point in the equation above we have
from Proposition 5.5
Vd(w) = c™'[s(w, ©) —ul,  s(w ©) = V,PLg[x(k, c)]; 4]

where x(u, ¢) is any vector minimizing L (-, u) over X. Using (2) and the
relations above, we obtain, for any sequence {y,} generated by Algorithm
A and all k,

42) M1 = S(u, cx),
(43) Vdc,‘(lik) =¢ 1(,uk+1 — M-
Thus

Mre+1 = M + ¢ Vd, (),

and each iteration of Algorithm A may be viewed as a fixed stepsize Steepest
ascent iteration aimed at maximizing d,, .
For any ji € R” consider the quadratic function

h(w) = d[s(, )] — (1/2¢)|s(@i, ) — ul?.
It satisfies

(44) d{(i) = h(fz)

and

45) d.(u) = h(p) VueRr".

These two properties imply that

(46) Vd (i) = Vh(p).

Since h(u) is quadratic with Hessian —c¢ ™1, we have

47 h(u) = h(it) + Vh(a) (u — B) — (1/20) | — [

By combining (44)-(47), we obtain
(48) d(w) = d (i) + V(W) (u - B) — (120)|u — i* Yy geR"

This relation yields a short proof of convergence of the generalized multiplier
iteration

(49) Mev 1 = e + . Vd (),

where o is a stepsize satisfying

(50 dc <oy < (2 =)
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and § is any scalar with 0 < 6 < 1 (compare with the analysis of Section
2.3.1).

Proposition 5.13: Let p be the quadratic penalty function (39). Then the
sequence {u} generated by iteration (49) is bounded and each of its limit
points is a Lagrange multiplier for (CPP).

Proof : From (48)—(50) we have, for all k,

(51) A (s 1) = de(w) + o V(o) | — (02/20) | Vd () |?
= d () + [ou2c — o)/2c] |Vd (o) I?
> d (i) + $c6%|Vd () 1>

Hence d(u+1) = dpy) for all k, and {} belongs to the compact set
{uld () = d(po)}. Thus {w} is bounded. Since f* > d (i), from (51)
we also obtain |Vd ()| = 0 so all limit points of {1} maximize d. and are
thus Lagrange multipliers for (CPP). Q.E.D.

There is also an analog of Proposition 5.13 for an algorithm involving
inexact minimization of the augmented Lagrangian which can be found in
Bertsekas (1975a).

Another interesting fact regarding the quadratic penalty function is
that for sequences {1} generated by the corresponding Algorithms A and B
we can assert that they converge to a unique limit point [even though
(CPP) may have more than one Lagrange multiplier]. Actually such a
statement can be made under other conditions—for example, each time
we can assert that for some g > 0 and f € (0, 1), we have

(52) ltesr — el < B~

If (52) is satisfied, then {u} can be easily shown to be a Cauchy sequence
and therefore must converge to a unique limit. Conditions under which
(52) is satisfied will be derived in the next section (compare with Propositions
522 and 5.24 and Lemma 5.17). It is quite interesting however that these
conditions are not necessary when the penalty function is quadratic.

Propostion 5.14: Let p be the quadratic penalty function (39). Then
a sequence {x,} generated by Algorithm A converges to a Lagrange multi-
plier of (CPP).

Proof : It was shown earlier [compare with (42)] that g, ., equals the
unique maximizing point s(u, ¢;) in (41). Thus we have

As ) — (120) sy — il = d(s) — (120)1s — m|*  VseR.
For any s such that d(s) > d(u+ ), the relation above yields

| t+1 — #klz <|s-— .Uk|27
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SO pix+1 18 the projection of y, on the level set {u|d(y) > d(t+ 1)}, and we
have

sy — w)'(S = 1) =0 Vse{uldw) = A1)}
This yields
Is = wel> = Is = per |* + 2(s — Pir ) (v 1 — 1) + s 1 — 1el?
2 s — e * Vse{uldw) > d(u. )}
In particular, for every Lagrange multiplier 7, we have

(53) e — Bl < | — £l Vk=0,1,....
By Proposition 5.11, every limit point of {1} is a Lagrange multiplier and
at least one limit point exists. It follows that {1} can have at most one limit
point, since if & and /i were two distinct limit points then we could find
indices k and k > k such that
lwe — Bl < 3lE = Al lw — il < 3@ - al,

thereby obtaining

e — Bl 2 |E = Al = |me — B> 53— @ > |z — A
and violating (53). Q.E.D.

5.4 Rate of Convergence Analysis

In the rate of convergence analysis of this section we restrict attention
to methods utilizing penalty functions in the class Pg, so that

1 r

9] Pdz;p) = = Y plez;; ),
cj=1

where

min,. g {#;7 + ¢(7)} otherwise

for some penalty function ¢ € Pg. There are some convergence rate results
available for methods utilizing other penalty functions but these are frag-
mentary and they will not be presented.

We shall be interested in the rate at which a sequence {u,} generated
by Algorithm A or B converges to the set M* of Lagrange multiplier vectors
of (CPP). Denote

3) e = M*|| = min [u — p*|.

u*e M*
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We examine the convergence of {x} to the set M* in terms of the distance
|l — M*|. Note that, from the convergence result of Proposition 5.11,
we have

Il — M*|| — 0.
We shall make use of the following additional assumptions:

Assumption (A7): There exist scalars M, > M, >0 and p > 1 such
that for some open interval N, containing zero

“ M, [t~ < V(@) < MyftlP™"  VieNo,
where ¢ corresponds to p as in (2).

Assumption (A8): There exists a 6-neighborhood (6 > 0)

&) S(M*; 8) = {u|there exists p* € M* with |p — p*| < 0},
a scalar y > 0, and a scalar q = 1 such that the dual functional d satisfies
(6) d(p) < maxd(w) — ylu — M*|? ¥V pueS(M*;9).

weR"

Assumption (A7) may be explained as a growth assumption on ¢.
Roughly speaking, it states that in a neighborhood of zero, ¢(t) behaves
like |¢|°. Similarly (A8) is a growth assumption on the dual functional d.
It says that in a neighborhood of the maximum set M*, d(u) grows (down-
ward) at least as fast as y[[u — M*|/% This assumption is much weaker than
regularity assumptions which require d to be twice differentiable with
negative definite Hessian at a unique maximum (compare with Section 2.3).
In fact (A8) does not require once differentiability of  or even finiteness of d
in the entire neighborhood S(M*; 9).

We assume throughout this section that (A1)-(A4) and (A7) and (A8)
hold. In all the results where explicit reference is made to Algorithm B we
also assume that (A5) holds.

Preliminary Analysis

We first introduce some notation and conventions and subsequently
prove a few lemmas which set the stage for the proof of the main propositions.
For each yu € R” we denote by 2 the unique projection of pon M*;ie.,

@) [ = arg min |u — p*| YueR".

u*e M*
When considering results relating to Algorithm B, we use the notation

(8) Vg = ;7k/2a, k= 0, 1,....
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To simplify statements of results, we assume without essential loss of generality
(since ny, — 0) that for some v > 0 we have

©) O<v<i<l VYk=01,....

The results of all subsequent lemmas and propositions, where v, and v appear,
hold also with v, = 0 for the case of Algorithm A.

Consider the conjugate convex function PX(-; ) of the penalty function
P -; u). As shown in Section 5.2 we have, for all 4 € R",

(1/c) Y5=1 ¢*(s; —p)  if s>0
10 P* . — J J J
(10) s {oo otherwise.
For a sequence {4} generated by Algorithm A or B, denote by u, the vector
with coordinates

(11) ul = (e )Vor(wley — ), j=1,...,rn
Note that
(12) we = VP& (s 15 M) if gy >0,

and more generally u, is a subgradient of P¥ (. ; w) With respect to the
first argument. In terms of Fig. 5.3, u, can be identified with a support
hyperplane to the graphs of PX(-; w) + d.(w) and d(-) at the “point of
contact” corresponding to y, ,,. We shall derive an alternative characteriza-
tion of u,. We have, for all j,

d(ckuf) = sup{c,uft — ¢*(1)}.

teR
In view of (11), it follows that (u}, ; — pf) attains the supremum above so
¢(Ck“£) = Ck“i(#f;ﬂ - .ui) - ¢*(#l{+1 - #i)
= i+ 1 — p) — sup{t(ui+y — ul) — @)}
t
It follows that
dleeu) < couf(uey — p) — tuley — ) + ¢()  VieR,
or equivalently
(1) = plepuf) + (t — )iy — ) VieR

Hence (1, — pf) is a subgradient of ¢ at c,u¥, and since ¢ is differentiable
we have

(13) Ploy=p + Voo, j=1,...,r
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Now for both Algorithms A and B, we have, as shown earlier [Section 5.1.2,
Eq. (10)],

(14) ooy = max{0, 4 + Vo[eg ()]}, j=1....m

By comparing (13) and (14) and taking into account that ¢ is strictly convex,
it is easily seen that

(15) ui = max{gj(xk)7 Ti/ck}’ .] = 1, w1y
where
(16) 7 = argmin{yjt + ¢(7)}, Jj=1...,r

We now develop some preliminary results through a series of lemmas.

Lemma 5.15: Forall ueR", ¢ > 0, and x € R", we have

(17) L(x, ) = max{L(x, s) — P¥(s; u)}.

S

Furthermore if {(x;, 1)} is a sequence generated by Algorithm A or B, we
have, for all k.

(13) Lo, (ks ) = L5 e+ 1) — P 15 1415
where P¥ is given by (10).

Proof : In view of (10) and the fact that P¥ (-; u) is the conjugate convex
function of P(-; u), we have

(19) Ldx, ) = f(x) + PLg(x); u] = f(x) + max{s'g(x) — P¥(s; w)}

= max{L(x, s) — P¥(s; )},

N

where the maximum is attained by strict convexity of P¥(-; ).
We have, by definition for all k,

Hi+1 = Vchk[g(xk)Q#k]a
so g(x,) attains the maximum in the equation
P (the+ 15 1) = sup{is 1z — Po(z;5 1)}

It follows that
M+ 19(X) — P (ks 15 W) = P [g(x0); ]
= sup{s'g(x,) — P&(s; W}
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Therefore y., attains the maximum in (19) when x = x,, ¢ = ¢, and
U= W, and (18) follows. Q.E.D.

Lemma 5.16: Let {4} be a sequence generated by Algorithm A or B.
For all k sufficiently large, we have

20) O <lluxes — M*|* < PE; 1) — (1 = v)PE (i 15 40,

where f, is the projection of x4, on M* [compare with (7)], and v, = 7,/2x
[compare with (8)]. In addition, |, — | — O.

Proof: Using Lemma 5.15 and the fact that max, d(p) = d() <
L(x, i), we have

(21) Lck(xka,uk) = L(Xy, ts1) — P:‘(,uk+l;.uk)
> L(xy, ) — P& )
> max d(u) — P (fi; ).
"

The stopping rule for Algorithm B can also be written

IAxEck(xk’ :uk)lz < ”k{L(xk’ M+ 1) - L(xka uk)}a

while we have
Ax Eck(xk s :uk) = Ax E(xk > My + 1 )

Combining the two relations above with (18), we obtain

(22) [Ay L, e 1) I* < e P (thic+ 15 i)
We have already shown [compare with (19) in Section 5.3] that
(23) Lk, s 1) < (s 1) + (1/20) | A L(xy, pyer 1)1

The last two relations yield

L(x, e+ 1) < d(pyes 1) + Vi P (g + 15 1)

Combining this relation with (21) and (6) (which is in effect for k sufficiently
large), we obtain

max d(u) — P& (f; ) + P+ 15 1) < L(Xpe, e+ 1)

"
< maxd(u) — ylpe+r — M*|?

u"

+ VkP?:((llkH;,uk)
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from which (20) follows. Also from (20) and the expression (10) for P¥, we
have

(=) Y *(sr — D) < Y ¢*(@B — 1.
ji=1 j=1
Since (4 — pj) - 0 and v, is bounded away from unity, we obtain
¢*(uf ., — ui) — 0 for all j which implies |p; 4+, — | = O. Q.ED.
Lemma 5.17: Let {y,} be a sequence generated by Algorithm A or B.
There exists a scalar M, such that for all k
[+ 1 — el < Mol — M*|.
Proof: From (4),
M, tfP™! < |V < M,|tP™! ViteN,,
and by integration
(M,y/p)[tlP < ¢(t) < (M2/p)|tl”  VieN,.
Hence for any scalar s,
M M
sup {st -1 ltlp} > sup{st — ¢(t)} > sup {st - —2|t|”}.
teNo P teNo teNg p
Let [—a, ] = N, @ > 0. Then if |s| < M «?~!, the suprema above are
attained and by the definition of the conjugate convex function, we obtain
4)  (1JoM5HIsl < ¢*(s) < (/oM™ MIsl, sl < Mya?™?,

1

where ¢ is the conjugate exponent of p defined by ¢™' + p~! =1 or

equivalently
o =p/lp —1).
Since |41 — ] = 0 (by Lemma 5.16) and |p, — fi| — O (by Proposition
5.11), we have that for all j and all k sufficiently large both |uj,, — uil
and |uj — fif| are less than M ,o?~ 1. Applying (10), (20), and (24), we obtain
1
aoMg™!;

roo . 1 . .
Yol — WP <= o*uler — 1)
=1 Crj=1
= P¥ (s 15 1) < (1 — v) 7 'PE( 1)
1
<
(1 - vk)CkO'M(I_lj

S 1A — wl.
=1
Hence

[tes1 — tielo < (Mz/Ml)l/p(l - vk)“"’””lﬁk — tlo>
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where |-|, denotes the I,-norm. Passing to the standard norm |-], via the
topological equivalence theorem for all norms on R, and using the fact that.
v < 7 < 1, we obtain, for k sufficiently large and some M, > 0,

|1 — tl < Molfi — wel = Mol — M*|.

By increasing M, to a sufficiently high value, we obtain that this relation
holds for all k. Q.ED.

Lemma 5.18: Let {1} be a sequence generated by Algorithm A or B.
For all k sufficiently large, we have

(25) Miloaw !’ ™! < lthesr — el < r2 O M, e [P if p<2

and

(26) 2 P2M e T < Iy — el < Malcan ™! if p=>2,
where u, is given by (11), 7 is the number of constraints, and M, and M, are
as in Assumption (A7).

Proof: Using (13) and the fact that |y, — 4| — 0 (Lemma 5.16),
we obtain V¢(c,ui) — 0. It follows by the continuity and strict monotonicity
of V¢ that c,ui — 0. Hence, c,ule N, for k sufficiently large. Applying
(A7) and (13), we have, for k sufficiently large,

M lcuilP™! < |Ve(erud)| = ey — phl < M| ul P~

By squaring and summing over j, we obtain

r

r
M2Y [uf P07 < ey — el < M3 Y [euf P70,
j=1 &

Now it is easy to prove that if 0 < p — 1 < 1 then
r . p—1 r . r . p—1
(Z |Ck”fc|2) < Y lguf P < rz-p(z |Ck“i|2> .
j=1 j=1 j=1
Combining the last two relations we obtain
M3 2?70 < sy — mel® < M3r*~? e 2071
from which, by taking square roots, (25) follows. If 1 < p — 1, we have
r . p—1 r . r . p—1
rz—p(z |Ckuf<|2> < Z Ickuilz(p_l) < ( |Ckuf<|2> >
ji=1 ji=1 ji=1
and similarly we obtain
rz_pMﬂCk“klz(p—l) < [fsr — .uk|2 < M%lckuk|2(p_l)

Again by taking square roots, we obtain (26). Q.ED.
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The following technical lemma provides some useful estimates.

Lemma 5.19: Let {y} be a sequence generated by Algorithm A or B.
For all k sufficiently large we have

(27) Vlterr — M*||T — ViePE (e 15 1) < ] ity — M*|),
(28)  lpx+1 — M*|% + Vel e+ 1 — M*||T — chkpéi(#kﬂ;#k)
< s — et — M*|| ey — M*|.

Proof :  Take k sufficiently large so that y, , ; € S(M*; 6). Then applying
(A8), (22), (23), and the fact that max, d(u) = d(f;+,) < L(xXy, fx+,), We
obtain

(29) Vllpr+r — M*||* < maxd(u) — d(p+ 1)
u

< L, fie+ 1) — LOxks s 1)
+ (1/20) | Ay Lxy, e 1)1
= g0 B+ 1 — trer 1) + (120 | AL L(xy, iy 1) 12
< 90 (s 1 — M 1) + ViePE(Uyer 15 14)-
We have fi ., > 0, while from (14)~(16) we obtain that if g;(x,) < uj then
We+1 = O while if g . > 0 then g(x;) = uj. It follows that

90) (s 1 — e+ 1) < w1 — Mir1)s

so (29) yields

(30) Wtter 1 — M*)? < wpl(fiy oy — His1) + VkP:;‘(/‘kH;#k)
< el s 1 — M*| + VkP:;(#kH;#k)-

This proves (27).

By multiplying with ¢, both sides of the first inequality in (30) and
adding (41 — #*)(Mx+1 — B +1), We obtain, for each u* € M*,
(v 1 = 0 (i1 = 1) + vellsy — M*||9
< (err — 25 — ) (s 1 — fies 1) + Vi PEGs 15 14)
< s — 15 — cetg] sy — M*|| + Vi P (M + 15 i)
Since [+ is the projection of y, . ; on M*, we have

(s 1 — 1) (g1 — frs 1)
> |yt ‘,ak+1lz= [l 4+ 1 "M*HZ V u*e M*,

so the last two inequalities yield
ltesr = M*|12 + el s — M*|4 — Vi P (e 15 1)
S ey — 1% = gl ey — M*|.
By taking the minimum over u* € M* we obtain (28). Q.E.D.
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Convergence Rate of Algorithm A (Exact Minimization)
Proposition 5.20 (Superlinear Convergence): Assume ¢ > 1 and denote
1
T -Dg-1D

- If {u} is a sequence generated by Algorithm A, p, ¢ M* for all k,and w > 1,
then

w

g1 — M*| .

lim sup < 0;

koo i — M*|™
i.e., the rate of convergence is superlinear of order at least w.

" Proof: Apply Lemmas 5.17 and 5.18 together with (27) (with v, = 0).
For sufficiently large k,

Mol — M*| = [y — il = Myl ™1
> M (el thes 1 — M*”q_l)p_l,
where M, = M, min{1, r?~/2} Hence
s 1 — M*|| < (1/pe )9 (M o/M )" | e — M*|™
from which the result follows. Q.E.D.

Proposition 5.21 (Finite Convergence): Assume ¢ = 1. If {&} is a
sequence generated by Algorithm A, then there exists an index k such that
W€ M* forallk > k.

Proof: From (27) (with v, = 0), we obtain for all k sufficiently large

(31 0 < (lugl = Dt 1 — M*|.

From Lemma 5.16, we have |y ; — ] — 0, so (11) yields |u,| — 0. Since
v > 0, we have |u,| — y < Ofor all k sufficiently large so the only way (31) can
hold is if ||y, . ; — M*| = 0 for all k sufficiently large. Q.E.D.

Proposition 5.22 (Linear Convergence): Assume that p = 2 in (A7) and
q = 2 in (A8). Assume further that ¢ is twice continuously differentiable
in a neighborhood of the origin and V2¢(0) = 1. If {i} is a sequence gen-
erated by Algorithm A and g, ¢ M* for all k, then

. - M* 1 P
lim sup I - | < - if lime¢ =¢< oo,
k= o ”:uk -M ” 1+ ye k= o0

and

. — M* e 1
lim ﬂ@—*ﬂ =0 if lim ¢, = 0.
k— o0 “Hk - M “ k— 0
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Proof: By Taylor’s theorem and using the fact that VZ¢p(0) = 1, we
have

Vo(ceul) = coul + o(cyuf),
where o(-) is such that lim,., o(x)/x = 0. Hence from (13),
M1 = pp + V@(ceul) = pf + couf, + o(cud)
or equivalently
Brer1 — e — Gl = e — Qi + 0(Crthy)-
Combining this equation with (28) (with v, = 0 and g = 2), we obtain
(B2) A+ yedllpers — M*| < |perr — B — ctie] < | — Bl + o(cimy)
= || e — M*|| + oci ).
By Lemma 5.17 and (25), we have
lcxthe] < M7 pgewn — el < (Mo/M )|l — M*|,
so (32) yields
lptes s = M*| < (1 + ye) ™ 'Ll — M*|| + ol — M*|)].
From this the result follows. Q.E.D.

Interpretation of Results

The last three propositions show that the rate of convergence of Algorithm
A is primarily determined by the two scalars g and p, introduced in Assump-
tions (A7) and (A8). The scalar g depends on the rate at which the dual

l

P (u
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| : M*

'/ ka2
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FIG. 54 g ~ 1, Fast convergence
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Pc'k(l-‘;ll-k)*dck(f‘-k)

[ B o )

351

FIG. 5.5 g > 1, Slow convergence

functional d grows (downward). If the graph of d is sharply pointed (¢ =~ 1),
the rate of convergence is fast. If d is relatively “flat” near the optimal set
M?* (q: large), the rate of convergence is slow. These observations are illus-
trated in Figs. 5.4 and 5.5, where we have chosen ¢ (and hence also ¢*) to be
quadratic. At the same time, the rate of growth of the penalty function ¢ is
equally important in determining the rate of convergence. When p is large,
then ¢ grows slowly and ¢* grows rapidly near the origin. As a result, the
rate of convergence is poor as shown in Fig. 5.6. Conversely, when p is small
then ¢ grows rapidly, ¢* grows slowly, and the rate of convergence is fast as

shown in Fig. 5.7.

P i+ ey (1K)

o tF P e (i)

FIG. 56 p > 1, Slow convergence
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A

Pék(#i #k)*dck(f’-k )

I
|
!
1
° Bk Pt Prez B \F

FIG.5.7 p ~ 1, Fast convergence

An extreme case occurs when g = 1. Then by Proposition 5.21, con-
vergence occurs in a finite number of iterations. In this case, the dual func-
tional d has a “corner” all around its boundary. More precisely, if u is any
vector in S(M*;d) and f is its projection on M*, then (A8) (with g = 1)
implies

d) < d@ — ylp — al.

For every we dd(u), we have d(g) < d(u) + w'(i — u) so wld — p >
d(@) — d(w) = y|p — fi|. Hence,

WHA —plZ2w@—p)2ylu—pal  Vweddp), peSM*;s).
It follows that, for ¢ = 1, (A8) implies
Iwl=y  Vwedd(y), peS(M*;0), u¢M*,

so all subgradients at points near but outside M* must have a norm ex-
ceeding 7. We show in Fig. 5.8 a situation where g = 1, and illustrate the
process of finite convergence. A typical case is when d is polyhedral as,
for example, where (CPP) is a linear (more generally polyhedral) program.
Then it is straightforward to show that (A8) is satisfied with q = 1 so con-
vergence of Algorithm A is obtained in a finite number of steps for every
pePE.

Some other conclusions from Propositions 5.20 and 5.22 are that when
g < 2 the quadratic penalty function leads to a superlinear rate of con-
vergence while if ¢ = 2 the convergence rate is at least linear (superlinear if
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P (s d
S By, (it e ()

| dlp)
1 |
| |
| |
Iy i
0 Fi Hket

|
|
|
|
|
|

k+2M'

FIG. 5.8 ¢ = 1, Finite convergence

¢, = o). When g > 2 then it is possible to show by example that the quad-
ratic penalty function leads to a convergence rate which is sublinear in
general. Thus, when g > 2 the only way one can achieve a linear or superlinear
convergence rate is by choosing a penalty function with p € (1, 2). More
generally Proposition 5.20 shows that any order of convergence can be
achieved by a suitable choice of the penalty function. There is a price for this
however. When p < 2, ¢ is not twice differentiable at the origin and the
minimization of the augmented Lagrangian L(-, u) may pose difficulties
due to ill-conditioning. As a result rapid convergence of {sx} is achieved at
the expense of ill-conditioning the unconstrained minimization. However, in
situations where one repeatedly solves the same basic problem with minor
variations, one may be able to “fine tune” the algorithm by choosing {c;}
and {n,} in a near optimal fashion. Since good estimates of the solution are
already known, ill-conditioning may not be a problem, and then one can
exploit the superior convergence rate of the order p < 2 penalty without
incurring undue cost in computing the unconstrained minima. It is worth
pointing out that our results imply that the order p <2 penalty functions
Jead to fast convergence only after the method is near convergence. When far
from the solution, Fig. 5.7 indicates that convergence may be slow unless
the penalty function ¢ contains, implicitly or explicitly, terms of the form
[t|P* where p, > 2. For this reason penalty functions of the form ¢(t) =
[t]P + |t]°*, with 1 < p < 2 and 2 < p,, seem to be preferable to functions
of the form ¢(t) = |t|° with 1 < p < 2.
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Comparison with Penalty Methods

If the multipliers 4, are not updated in Algorithm A but rather are held
fixed at a constant value, then an ordinary exterior penalty method is
obtained. We derive the rate of convergence of this method and show that
it is typically inferior to the one of the method of multipliers. For con-
venience we assume that g, = 0 so the penalty method consists of a sequence
of minimizations of the form
33) minimize L, (x,0)

subjectto xe X
for a sequence {c,} such that
(34 0<cp<cres Vk=0,1,..., Cx — 00.

The multiplier update formula is not used but it is still relevant, as it provides
a sequence {fi,} of Lagrange multiplier estimates

ﬂ{( = th[ckgj(xk);o]a J = 17 e by
where x, is a solution of problem (33). We shall derive an estimate of
e — M*|. .
By Proposition 5.5, fi, is the unique vector attaining the maximum in
the expression

max {d(s) — P¥(s; 0)},

seR"
so for any u* € M*, we have
(33) d(p*) — PEW*;0) < d(iy) — P (it 0).

The sequence {fi} is bounded since d has bounded level sets and d(fi;) >
d.,(0) > d.(0) (by Proposition 5.8). By taking limits as ¢, — oo in (35), we
obtain using (10)

d(ih) = dw*), I — M*| - 0.
It follows that for c, sufficiently large we have i, € S(M*; §), so by using (A8),
we have

(36)  d() < maxd(u) — yllf — M*|* = d(u*) — |l @ — M*||"

Combining (35) and (36), we obtain
(37 Y — M*||* < PE(u*;0) — PA(it; 0).

Since for s > 0, the function

r

o P(s;0) = ) ¢*(s)

j=1
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is real valued and convex, it is Lipschitz continuous on bounded sets, so if
N is the Lipschitz constant, for the set {u|d(u) > d.,(0)}, we have

(33) | P&(u*;0) — PE(fy; 0)| < (N/e) | p* — -

Combining (37) and (38), we obtain for all ¢, sufficiently large

(39) Vi — M*|* < (N/e)l o — p*| Vu*eM*

Taking the infimum over u* € M* we obtain, for g > 1,

(40) I3 — M*|| < (N/ep)te=b.

By comparing this estimate with the estimates of Propositions 5.20 and
5.22, we see that the convergence rate properties of the penalty method
are not as attractive as those of multiplier methods. Indeed the rate of
convergence of the penalty method depends on the rate at which the param-
eter ¢, is increased. Note that (40) indicates that for g near unity the
convergence is faster. The order of growth p of the penalty function does
not enter the estimate (40), and indeed it appears that the choice of the
penalty function is immaterial unless the multiplier update formula is
utilized.

An interesting situation occurs when g = 1. In this case, we obtain,
from (39),

0 < (N — anli — M*|,
so it follows that

€ M* if ¢ > N/y.
Thus, when q = 1, the penalty method (33), (34) yields a Lagrange multiplier
of (CPP) for ¢, sufficiently large. In particular, this occurs when the dual
functional is polyhedral. This situation is illustrated in Fig. 5.9.
Convergence Rate of Algorithm B (Inexact Minimization)

Proposition 5.23 (Superlinear Convergence): Assume g > 1 and denote

we_P
(p — 1)gq

If {u,} is generated by Algorithm B, y, ¢ M* for all k,and w > 1, then

. - M*
hmsupM < .

koo e — M¥|”
Proof: By Lemma 5.18, we have

ltr1 — el = MylculP™,
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FIG. 5.9 Finite convergence of the penalty method for ¢, sufficiently large

where M, = M, min{l, ®~#/2}, Using this inequality together with (27),
we obtain

1 o—1 _
(41) (A—j—lﬂm - #kl) > || = yeyllps, — M*[471
1
_ CkaP:;((#kH;#k)
e+ — M*| ’

where ¢ = p/(p — 1). From (24), we have for large k
wPE(us 13m0 = Y 0*(uvy — 1)
j=1

1
< c—1 o—1
oM{™ " ; oM{

where D = max{1, r>~?/2}, Combining this with (41), we obtain

r
Z M1 — Hl° < M1 — il
=1

|O’

Dvi  |psr — i

1 o—1 _
<=|”k+1 - ,lel) 2 Vckll.uk+1 - M*”q -

M, oM™ ey — M*|
Equivalently,
g—1 *||q 1 * M, !
42) M s — M*|? < — s s — M*||| == | ptas 1 — el
Ck M,

Dv

k o
[ i1 — Ml
k

+ —
ac
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By Lemma 5.17, we have
43) [tes 1 — sl < Mol — M*,

while using the triangle inequality

e — M*| < Ipers = Bl < Tterr — sl + 1 — Pl
= |tesr — sl + e — M*|.
The last two relations yield
(44) s — M*[| < (1 + Mol — M*|.
Combining (42)—(44),

_ 1+ M, (MM, \°"* Dy
PME sy — M¥|T < [——" <#) + —’st] e — M*°.
Ck Ml OCy
Given that ¢ = p/(p — 1) we have, for k sufficiently large,
Ity = M*|/ e — MF[PO7 D8 < M,
where M is some scalar, and the proposition is proved. Q.E.D.

Note from Proposition 5.23 that the order of convergence of Algorithm B
[p/(p — 1)q] is smaller than the one of Algorithm A [1/(p — 1)}(g — 1)].
It is possible however to increase the order of convergence of Algorithm B
up to 1/(p — 1)(g@ — 1) provided a mechanism is introduced that forces the
scalar #, in the stopping rule to decrease sufficiently fast. It can be shown
that if the stopping rule of Algorithm B is of the form

r

_ . 1 .
|Ax Loy (X ) 1> < 11 Y. {V,p[ckg,-(xk); wilg(xi) — c—p[ckg,-(xk); #i]},
j k

ji=1
where

me = min{ﬁk, BY |V.plergi(x); ui] — uil”}
ji=1

i=

and {7,}, B, and f satisfy

1—(p—1(¢g—-1
b—Dg-1 ~

then the order of convergence of Algorithm B is restored to 1/(p — 1)(g — 1) —

the same as for Algorithm A. A proof of this fact is given in Kort and Bertsekas
(1976, pp. 287-288).

Proposition 5.24 (Linear Convergence): Assume that p = 2 in (A7) and
g = 2 in (A8). Assume further that ¢ is twice continuously differentiable

0<fips; <% YVk=0,1,...,7%—0, B>0, f>
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in a neighborhood of the origin and V2¢(0) = 1. If {1} is a sequence gen-
erated by Algorithm B and y, ¢ M* for all k, then

. — M* 1 . .
lim sup A+ ™ | < — if limc¢,=¢< o0,
k- e — M*| 1+ yc k=
and
. — M* o
lim ”ﬂ";lfk—” =0 if lim ¢, = 0.
k= o0 ”#k -M ” k= o0

Proof:  As in the proof of Proposition 5.22, we have

Pr+1 — B — Cthe = e — Py + o(ciuy).
Using this equation together with (28) (for ¢ = 2), we obtain
@5 (1 + yellpsr — M*? — covie PE (s 15 14)
S s — B — et sy — M*|
< e — M*|| ey — M*[| + o(cewd)ll 1 — M.
By Lemma 5.17 and (25),
(46) lexue] < (Mo/M o)l — M*|.

By using (20) to upper-bound P¥ (. 1 ; i), substituting in (45), and using
also (46), we obtain

C
(ﬂ)mwmﬁfkww
Vi

< e = M*| e n = M+ Dl s — M*o(llpe — M*|).

Using (24) (for ¢ = 2), we also have

r

wmw=NWuMm&m P PR
j=1 1

The last two inequalities yield

C
(1 + T )”.Uk+1 - M*|? —

%12
- e

< e = M*| ey — M*(+ lttes 1 — M*[lo(f| g, — M*|)).
Dividing through by ||u, — M*|/?, we obtain
47) Ri(u R — 7)) < B
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where
Ry = |1 — M*|/llp — M*|,
VYCi 1 Vi o(ll e — M*|)
= 1 = — , = 1 _
w=l+10 B=mnt—y T T oM

Since B, — 0, from (47) we must have either R, — 0 or else

lim sup (ax R, — 1) < 0.

k— o0

If lim, . , ¢, = ¢ < 0, it follows in either case that

. lim,_, ,, 1
limsup R, < = koo Ve =.
k= oo im0 147C

If ¢, - oo then o, — o0, 7, — 1, and it follows that R, — 0. Q.E.D.

Note that under the assumptions of Proposition 5.24, the bound on the
convergence ratio

lptes 1 — M*1/ Il — M*|

is identical for both Algorithms A and B, so the ultimate speed of con-
vergence is unaffected by the fact that minimization of L,(-, ) is not
exact. This of course, is true for the particular stopping rule utilized in
Algorithm B. When other stopping rules are used, then there is no guarantee
that this property will be maintained. In fact it is possible to construct
examples (see Bertsekas, 1975¢) where the (natural) stopping rule

|Ax1:ck(xk>ﬂk)|2 < ska 0 < Er+1 < Ek» & — O,

is used, and the assumptions of Proposition 5.24 are satisfied, but the con-
vergence rate of the corresponding algorithm is sublinear.

5.5 Conditions for Penalty Methods to be Exact

It was shown in the previous section (Proposition 5.21) that the method
of multipliers with exact minimization under certain (rather restrictive)
assumptions yields a Lagrange multiplier of (CPP) in a finite number of
iterations. One extra minimization will be required in order to obtain an
optimal solution of (CPP) [compare with Proposition 5.6b]. On the other
hand, it is possible to obtain under much less restrictive assumptions an
optimal solution of (CPP) provided we use a nondifferentiable penalty
function. We developed the relevant theory for nonconvex problems in
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Section 4.1. In this section, we develop a generalized version of this theory
for convex problems.

We consider (CPP) and assume throughout that Assumptions (A1)—(A3)
of Section 5.2 are in effect. We also assume that f* = sup, , d(u). We con-
sider penalty functions p: R” — R which are real valued convex and satisfy

1) p) =0 Vi <0,
) p(t) >0 if t;>0 forsomej=1,...,r

It is easily seen that (1) implies that the conjugate
p*(s) = sup {s't — p(1)}
t
satisfies
3) p*(s) >0 VseR"

Typical conjugate convex pairs p and p* that are of interest within the
context of this section are shown in Fig. 5.10.

p(t) p*(s)
t ‘ s
o T im0
t—o* !
p(t) p*(s)
\ /
o oF  jim BN
t=o* t
p(t) p*(s)
12
2 —_—
22* 2¢°
ol ' ol s

FIG. 5.10 Typical conjugate pairs p and p*
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Consider the problem

@) minimize f(x) + p[g(x)]
subjectto x e X.

It is easy to verify, by essentially repeating the proof of Proposition 5.7a,
that if Assumption (A.4) holds then problem (4) has a nonempty and compact
solution set. We are interested in deriving conditions under which optimal
solutions of problem (4) are also optimal solutions of (CPP). The situation
can be visualized by using Fenchel’s duality theory (Rockafellar, 1970,
Theorem 31.1) to write

%) in)f( {f(x) + p[9(x)]} = inf{q(u) + p(u)}
= mi)f{d(s) — p*(s)},

where g is the primal functional of (CPP) [compare with (9) in Section 5.2]
and d is the dual functional. Notice the similarity of Eq. (5) with Egs. (23)
and (26) of Section 5.2 (compare with Proposition 5.5). It can be easily
shown (see also the proof of Proposition 5.5b) that our assumptions guaran-
tee that condition (a) of (Rockafellar, 1970, Theorem 31.1) is satisfied, and
this in turn implies that the maximum in (5) is attained (even though this
maximum may equal —oo). The maximization in (5) is illustrated in Fig.
5.11 where the scalar fis defined by
f= ini{f (x) + plg()]}-

It can be seen that in order for problem (4) to have the same optimal value
as (CPP), it is necessary for the conjugate p* to be “flat” along a sufficiently
large “area.” This is formalized in the following proposition.

Proposition 5.25: Assume that (A1)-(A3) hold and that
f* = sup,so d(w).

(a) In order for some optimal solution of problem (4) to be an optimal
solution of (CPP) it is necessary that there exists a Lagrange multiplier i of
(CPP) for which

(6) i < p(t) VteR'.

(b) In order for problem (4) and (CPP) to have exactly the same
optimal solutions, it is sufficient that

0 t'n < p(t) VteR" with t; >0 forsome j
for some Lagrange multiplier i of (CPP).
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n
F+ p*(s)
4

d(s)

S
412§{f(x)+p[g(x)] } \

FIG. 5.11 Geometric interpretation of
the maximization in (5)

Proof: (a) Let X be a common optimal solution of problem (4) and
(CPP). Since x is feasible for (CPP), we have f* = f(x) and p[g(x)] = 0.
Using (5) we obtain

f* = f(®) + plg(x)] = max{d(s) — p*(s)}-

seR”

Let ji be any vector attaining the maximum above. Then

®) f*=d@ — p*(n) < sup d(w) — p*() = f* — p*().

It
Hence p*(iz) < 0 and since from (3) we have p*(s) > 0 for all s, it follows that
® p*(i) = 0.

It follows from (8) that d(i) = f*, so i is a Lagrange multiplier. We can
rewrite (9) as

sup{'t — p(t)} = 0

SO
tp—pt) <0 VteR'

implying (6).
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(b) If%isan optimal solution of (CPP), then by (1), (7), and the definition
of a Lagrange multiplier, we have, for all x € X,

f® + plg®] = f(X) = f(X) + H9(X)
< f(0) + 7g(x) < f(x) + plg()]-

Hence, X is also a solution of problem (4).

Conversely, if X is a solution of problem (4), then X is either a feasible
point in which case it is also a solution of (CPP) (in view of p[g(x)] = 0 for
all feasible points x), or it is infeasible in which case g #(X) > 0 for some j.
Then by using (7) we have that there exists an ¢ > 0 such that

(10) fg(x) + & < plg(x)]-

Let & be a feasible solution of (CPP) such that f (%) < f* + ¢. Since p[g(X)] =0
and f* = inf,.x {f(x) + H'g(x)} we obtain

1 f&) + plg®] =f(X) <f*+e<[f(X) + H9(x) + &
By combining Egs. (10) and (11) we obtain
f&) + ple(®] < f(®) + ple(x)],

which contradicts the fact that X is an optimal solution of problem (4).
Hence problem (4) and (CPP) have exactly the same solutions. Q.E.D.

As an application of Proposition 5.25, consider the penalty function
p(t) =c¢ ilmax{O, ti}
i=
where ¢ > 0. Clearly it satisfies (1) and (2). Condition (6) can be written as
ilﬁjtj < cilmax{o, t;} VteR’
i= i=

and is clearly equivalent to

n<c Vji=1,...,r
Similarly, condition (7) is equivalent to

i <c Vi=1...,r

More generally, consider the case where
p@®) = 3 L)),
j=1

where p;: R — R are convex real-valued penalty functions satisfying

(12) pt)y=0 V<0, p®>0 Vi>0
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Then condition (6) can be written as

M-~
,M‘

Aty <
j=1 J

pt) VteR"

1
and is clearly equivalent to
ﬁ}tjsp.l(tj) theR, j=1,...,r.

In view of (12) and the convexity of p;, this condition can be easily seen to be
equivalent to

. t;
i < hmM Vi=1,...,r
t_,'"’o+ tj
Similarly condition (7) is equivalent to
. L;
i< hmlﬂ Vi=1...,r
lj"O*' tj

Consider also for ¢ > 0 the penalty function
p() = cmax{0,¢,...,t,}

discussed in Section 4.1. Condition (6) can be written as

Mw

iit; < cmax{0,t,,...,t,} VteR',
j=1

and a little thought shows that it is equivalent to

r
Z,ﬁj <ec.
ji=1

Similarly, condition (7) is equivalent to

Z i <ec.
j=1
The results of Proposition 5.25 for this penalty function should be compared
with the results of Section 4.1.

5.6 Large Scale Separable Integer Programming Problems and the
Exponential Method of Multipliers

We noted in Section 5.4 that multiplier methods are fully applicable to
linear or polyhedral programs and furthermore give convergence in a finite
number of iterations if the penalty function used belongs to the class Py and
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the minimization of the augmented Lagrangian is carried out exactly (Prop-
osition 5.21). Despite their finite convergence property, it seems that
multiplier methods are typically not competitive with the simplex method
for solution of linear programs of small dimension. There are however large
dimensional linear programs with special structure for which the simplex
method is hopelessly time consuming and for which other methods designed
for nondifferentiable optimization are much more effective. In this section
we discuss the application of approximation methods for nondifferentiable
optimization to an interesting class of polyhedral programs.

An important feature of nondifferentiable optimization methods is that,
by contrast with the simplex method, they are not oriented towards moving
from one extreme point of the feasible set to a neighboring extreme point.
As a result, they are typically not guaranteed to solve the problem in a
finite number of iterations. However, because they are not constrained to
follow a (usually conservative) path consisting of adjacent extreme points
they are often capable of locating rather quickly a good approximation to
an optimal solution. In most applications, this is sufficient for practical
purposes. The potential of nondifferentiable optimization methods for
solving important classes of polyhedral problems arising for example via a
duality transformation in integer programming was appreciated early in
the Soviet Union following the development of the subgradient method
(Shor, 1964; Poljak, 1969b) and space dilation methods (Shor, 1970; Shor
and Jourbenko, 1971). Considerable interest in nondifferentiable optimiza-
tion was also generated several years later in the West (Held and Karp, 1970;
Held et al, 1974) and new methods such as the e-subgradient method
(Bertsekas and Mitter, 1971, 1973 Lemarechal, 1974), conjugate subgradient
methods (Wolfe, 1975; Lemarechal, 1975), and other descent methods
(Goldstein, 1977, Mifflin, 1977) were developed (see Auslender, 1976, and
Shapiro, 1979, for an extensive account).

The approximation methods for nondifferentiable optimization discussed
in Sections 3.3 and 5.1.3 provide an interesting alternative for solving poly-
hedral optimization problems arising in integer programming via a duality
transformation. One of their advantages versus subgradient-type methods
is that, in addition to solving the nondifferentiable optimization problem
at hand, they provide additional information in the form of the multipliers
entering the approximation formulas. These multipliers often turn out to
be extremely valuable in generating a good suboptimal solution of the
original integer programming problem. In this section, we describe this
methodology as applied to an important class of integer programming
problems. It has been recently successful in solving problems involving
several thousands of integer variables that have resisted solution for many
years using other methods (see Bertsekas et al., 1981).
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The approximation approach to be described is based on the exponential
penalty function as in Section 5.1.3. By contrast with penalty functions in
the class Pg, the use of the exponential function does not lead to a finitely
convergent algorithm for polyhedral problems. Its main advantage is that
it leads to twice differentiable approximating problems, and it appears that
this is a very important factor when the problem to be approximated is
polyhedral.

A Class of Integer Programming Problems

We consider the following (primal) integer programming problem

I
(PIP) minimize Y fi(x;, n;)
i=1

I
subject to h(x;,n) <b meN;, x;eXm), i=1,...,1,
=

13

where for each i, n; is an integer variable constrained to take values in a
bounded integer set N;, and for each n; e N, X; is a vector in R?: constrained
to take values in a bounded polyhedron X (n,) which depends on n;. The
real-valued function f( -, n;) is assumed to be concave ( for example linear)
on X (n;) for all i and n; € N;. Also, for each i and n; € N, the function h(-,n)
maps R”*into R™. The vector b € R™ is given. We assume that each component
of the function hy( -, n;) is concave on X (n;).

One may interpret (PIP) as a problem of finding a minimum cost pro-
duction schedule by I production units while meeting the “demand” con-
straints implied by Y 7_, h(x;, n;)) < b. Each set X i(n;) may be viewed as a
“production region” within which the production cost is fix;, n). In this
way, a broad variety of production cost functions is allowed including
discontinuous, concave, and piecewise linear convex functions. An example
is shown in Fig. 5.12, where x; is a scalar and there are four production
regions.

A dynamic version of (PIP) is obtained by considering a time horizon of
T periods (T > 1) and “setup” costs for passing from one production
region to another at the beginning of each time period. The problem is

T I
(1) minimize Z Z {fit(xin ny) + Sit(ni,t— 1 i)}

t=11i=1

1
subject to hy(xy,ng) <b,, t=1,...,T,
i=1

i

niteNit(ni‘r—l)’ Xiz eXil(nil)’ i = 1’ LI 17 t = 19 ey T
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fixj,n;)
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1
1
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Xi(1) Xi2)  Xi3) Xi(4)

FIG. 5.12
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Here, for each i and t, f3, hy, and X satisfy similar assumptions as f;, h;,
and X; in (PIP), the integer constraint set N(n; ;) for n;, depends on
n; -, and $i(n;, 1, Niy) TEpIESENtS the setup cost for passing from the

production region n; ,; to the region n;, at time period ¢.

1y

We now introduce a dual problem for (PIP) and its dynamic version.

The Dual Problem
For u > 0 define

@ d(p) = min {

n;eN;
xi€ Xi(ni)

1
Y. L) + o] — u'b}.

1

The dual problem corresponding to (PIP) is
(DIP) maximize d(u)
subjectto u > 0.
Similarly for u = (yy, ..., ir), Where for all ¢, y, € R™, p, = 0, define

@) dw =

T I
min {Z Z [fu(Xie> i) + Si(Mi e 15 i) + pehi(is ni)] —

nic€ Nie(ni, e—1) t=11i=1

Xic € Xie(nir)
The dual problem corresponding to the dynamic problem (1) is
@ maximize d(u)

subjectto p > 0.

M bt}'
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The value of the dual functional d(x) can be calculated relatively easily.
In view of the separable nature of the objective and constraint functions, the
minimization in (2) can be carried out separately for each i. Because fi(-, n;)
and the components hy(-,n;) have been assumed concave over X {(ny), it is
sufficient to carry out each of the separate minimizations in (2) over the
extreme points of X,(n;). In what follows we shall implicitly assume that
these extreme points are readily available. If x(jsn), j=1,..., j,, are the
extreme points of X,(n;), we can write d(u) as

I
G dw =Y min {£[xG,n)n] + ZhixG, n), nd} — wb.
R

Similarly, given the extreme points of X i(n;) for each i and ¢, it is possible
to carry out the minimization in (3) separately for each i by means of a simple
dynamic programming recursion. In what follows we shall restrict ourselves
Jor simplicity to (PIP) but the analysis to be given fully extends to its dynamic
version (1) (see Bertsekas et al., 1981).

One of the most common approaches for solving integer programs such
as (PIP) is the so-called Lagrangian relaxation method (Geoffrion, 1974;
Shapiro, 1979) which is based on solution of the dual problem. The dual
optimal value provides a lower bound to the optimal value of the original
integer program. This lower bound together with the solution of the dual
problem is used in turn (possibly in conjunction with the branch-and-bound
technique) to provide a good approximate solution of the original problem.
Verification of the quality of this solution is based on its cost (which is an
upper bound to the optimal cost) and the lower bound obtained from the
dual problem.

An approach of this type is typically successful in solving problems of
large size only if the following two conditions are met:

(@) The difference between the optimal values of the primal and dual
problems (the duality gap) is relatively small.

(b) The method used for solving the dual problem provides sufficient
information for generating a nearly optimal feasible solution of the primal
problem.

It turns out that the duality gap for (PIP) is typically quite small (in
relative terms) if the number of separable terms I is large, and in fact becomes
smaller as I increases. We shall demonstrate this fact under some conditions
[see Assumption (A) that follows] in the next subsection.

Regarding the possibility of generating a good suboptimal solution of
(PIP), the solution of the following problem is of particular interest.
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The Relaxed Problem

Consider a problem which is the same as (PIP) except that instead of
choosing, for each i, an integer n; € N; and a vector x; € X (n;) we choose a
probability distribution over all the extreme points of the sets X(n;), n; € N;.
In other words, for each i, we enlarge the feasible set {(x;, n;)|n; € N;, x; €
X (n)} to include all randomized decisions. If x,(j, n), j = 1, ..., jn,» denotes
the extreme points of X,(n;) and p,(j, n;) are the corresponding probabilities,
the relaxed version of (PIP) is stated as

(RIP) minimize EI: z jznipi(j, n) filx(, ns nil

i=1n;eN; j=1

I j"i
subjectto Y Y Y, pi(js mohlxiCsm), il < b,

i=1n;eN; j=1

Jni

Y YpGm)=1 i=1L...1

nieN; j=1
p,-(j,n,-)ZO, i=1,...,I, niGNi, j=1""’j"i'
There is also a relaxed problem for the dynamic problem (1) (see Bertsekas
et al., 1981), which admits an interpretation consistent with the theory of
relaxed optimal control.
The duality gap estimate of the next section and the subsequent analysis

is based on the following assumption which can be expected to hold for many
problems of practical interest:

Assumption (A): Given any feasible solution
{pi(j,ni)li = 1,...,1, niENi,j = 1""’jni}

of (RIP) there exists a feasible solution {(;, X)|i = 1,..., I} of (PIP) such
that

j'li
hy(x;, 1) < Z Z pi(j> nhi[x:(J, n), n] Vi=1,...,1
n;eN; j=1
We note that (RIP) is a linear program in the variables p,(j,n;), i =
1,....,I,meN;,and j=1,..., ju. If we write, using (5), the dual problem
(DIP) in the equivalent form

1
maximize Y, z; — p'b
i=1

subjectto  u >0, filxi(, ny), nid + whilx(j, n), nid = zi,
i=1,....0, meN; j=1..c.jn>
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then we find that (RIP) and (DIP) are dual linear programs and therefore have
the same optimal value. Furthermore, every feasible solution of (RIP) in
which all probabilities p,(j, n;) are either zero or unity correspond to a
feasible solution of (PIP). Therefore the duality gap can alternatively be
viewed as the decrease in optimal cost obtained by allowing randomized
decisions.

In view of the fact that (RIP) has I equality constraints and m inequality
constraints (except for the nonnegativity constraints), we have that in any
basic solution of (RIP) there can be at most (m + I) nonzero probabilities
pi(, ny). Since for each i at least one probability p,(j, n;) must be nonzero,
it follows (assuming I > m) that, for at least (I — m) indices i, all the prob-
abilities p,(j, n;) are either zero or unity, and for only a maximum of m
indices it is possible to have two or more probabilities p,(j, n;) being nonzero.
This suggests that, if I is much larger than m, then it should be possible to
devise heuristic rules for modifying an optimal solution of (RIP) to obtain a
feasible solution of (PIP) with value that is relatively close to the optimal
value of (RIP). The value of this feasible solution of (PIP) can then be
compared with the optimal value of (RIP) or equivalently, the optimal
value of (DIP). If these values are sufficiently close, the feasible solution will
be accepted as final. Otherwise one has to proceed with the branch-and-
bound technique. Actually the procedure we have described amounts to
examining the first node of the branch-and-bound tree in the context of the
Lagrangian relaxation process.

We claim that if I is much larger than m and use is made of the solution
of the relaxed problem, then an excellent suboptimal solution of (SIP) can
typically be obtained at the very first node of the branch-and-bound tree. We
shall demonstrate this fact via the computational example given in Section
5.1.3. The papers by Lauer et ql. (1981) and Bertsekas et al. ( 1981) provide
computational results substantiating this claim for the corresponding
methodology as applied to dynamic problems of the form (1) arising in
electric power system scheduling.

The main advantage that the approximation method of Section 5.1.3
offers over subgradient-type methods is that, when used to solve the dual
problem (DIP), it simultaneously provides an optimal solution of the
relaxed problem (RIP). This relaxed solution can then be used to generate a
good suboptimal solution of (PIP). We note that the capability of solving
simultaneously both the dual and the relaxed problem is also shared by the
simplex method. It is unclear whether in a specific instance of (PIP) it is
preferable to use the approximation method over the simplex method. The
advantages of the approximation method manifest themselves primarily in
the context in the dynamic problem (1) for which the simplex method
quickly becomes unwieldy as the number of time periods T increases.
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5.6.1 An Estimate of the Duality Gap

The estimate of the duality gap to be derived applies to a broad class
of problems that includes (PIP) as a special case. It is therefore worthwhile
as well as convenient to develop this estimate in a general setting.

Consider the following problem:

P) minimize XI: fi(x)
i=1

I
subjectto  x;€ X;, Y hi(x;) <b,
i=1

where I is a positive integer, b is a given vector in R™ (m is a positive integer),
X, is a subset of R (p; is a positive integer for each i), and f;: conv(X;) = R
and h;: conv(X;) - R™ are given functions defined on the convex hull of X;
denoted conv(X;). We assume the following:

Assumption (Al): There exists at least one feasible solution of problem
(P).
Assumption (A2): For each i, the subset of RPi*™*!

{0x;, hi(x), fi(x) | x; € X}
is compact.

Assumption (A2) implies that X; is compact. It is satisfied whenever X;
is compact and both f; and h; are continuous on X;. It is also satisfied for
the special case of the integer program (PIP) described earlier. Note that no
convexity assumptions are made on f;, h;, or X;.

For each i, define the function f;: conv(X,) - R by

pit1

(6) fi(%) = inf { Y, afi(x))

i=1

pit1 pit+1 .
F= Y axxeX;, Yad=102>0

j=1 j=1

Y X e conv(X)).

The function f; may be viewed as a “convexified” version of f; on conv(X)).
Figure 5.13 shows an example of f; and the corresponding f;, where X;
consists of the union of an interval and a single point. Similarly, define the
function /;: conv(X;) = R™ by

pit+1

(7 h(®) = inf{ Y olhy(x’)

j=1

pi+1 pitl )
=) oix), X eX, =10 >0
ji=1 j=1

V X e conv(X)),
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fi(x)\

N
E fi(x)
i : X
\ v
Xj

FIG. 5.13

where the infimum is taken separately for each of the m coordinates of the
function h;. Note that if f; is a convex function on(X;) and (X;) is convex,
then f; = f,. A similar statement can be made concerning h; and ;.

Our third assumption corresponds to Assumption (A) regarding (PIP).

Assumption (A3): For each i, given any vector X in conv(X,), there
exists x € X; such that h(x) < h(X).

Notethat (A3) issatisfied if X is convex andeachcomponentof 4; islalcon-
vex function.It can be expected to hold in many problems of practical interest.
Define for each i the function f;: conv(X;) - R by

(®) f{®) = inf{ fi(x)|h(x) < h(X), xe X;} V X € conv(X)).

Note that, by (A3), the constraint set for the minimization indicated in (8)
is nonempty. Our estimate of the duality gap is given in terms of the scalars

® p; = sup{ fi(x) — fi(x)|x € conv(X))}.
Since we have, for all x € conv(X)),
fix) < sup{fix)lx;e X}, fix) = inf{fi(x)]x; € X},
it follows that an easily obtainable overestimate of p; is
p; < sup{fi(x)|x;€ X;} — inf{fi(x)|x;€ X}.

Figures 5.14-5.17 show the scalar p; for X; consisting of the union of an
interval and a single point, and for specific cases of f; and h;.
Consider now the dual problem

I
(D) maximize d(x) = inf {Z [filx) + pwhix)] —#’b}

subject to u > 0.
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FIG. 517 h(x) = x,p; > 0

Let inf(P) and sup(D) denote the optimal values of the primal and dual
problems respectively. We have the following result.

Proposition 5.26: Under Assumptions (A1)-(A3) there holds

(10) inf(P) — sup(D) < (m + 1)E,
where
(11) E =max{p;li=1,...,1I}.
Proof: Define the sets
(12) Yy = {yilyi = [hlx), filx)], x;€ X}, i=1...,1
and their vector sum
(13) Y=Y, + Y, +---+ Y.

In view of (A2), Y, conv(Y), and Y;, conv(Y;),i = 1,..., I, are all compact
sets. By definition of Y, we have

(14) inf(P) = min{w|there exists (z, w) € Y with z < b}.

By using (A1), (A2), and a standard duality argument (see Magnanti et al.,
1976; Shapiro, 1979, p. 150) we can also show that

(15) sup(D) = min{w|there exists (z, w) € conv(Y) with z < b}.

We now use the following theorem (see Ekeland and Temam, 1976, Appendix
D).

Shapley—Folkman Theorem: Let Y;, i=1,...,1, be a collection of
subsets of R™*'. Then for every yeconv(} !, Y;), there exists a subset
I(y) = {1, ..., I} containing at most (m + 1) indices such that

ye[ DR EDY conv(Y,.)].

ig1(y) iel(y)
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Now let (Z, w) € conv(Y) be such that [compare with (15)]
(16) w = sup(D), Z<b.

By applying the Shapley-Folkman theorem to theset Y = ) [_, Y, given by
(12) and (13), we have that there exists a subset I < {1, ..., I}, with at most
(m + 1) indices, and vectors

(B;, W) econw(Y;), iel, xeX;, i¢l
such that [compare with (16)]

(17) gl_hf(xi) + Z =
(18) Z fix) + Z = sup(D).
i¢l iel

Using the Carathéodory theorem for representing elements of the convex
hull of a set, we have that, for each i € I, there must exist vectors x/, ...,
x"*2 e X, and scalars o}, ..., of"* % such that

—a{=1, >0, j=1,...,m+2,
j=1
_ m+2 ) ) m+2 )
b; = Z othy(x)), w; = Z of fi(x)).
j=1 ji=1
Using the definition of f;, h;, and p; [compare with (6)-(9)], we have
19) b, > Z—cx{x{>,
j=1
m+2 o . m+2 o
(20) W > ﬁ( afxf) z.f;-( ocfxf-) ~ .
j=1 j=1

By combining (16)-(20), we obtain

@D > h(X) + Y h (mizocfx{) <b

igl iel j=1
22) S A&+ Y ./’;-(”Z'oc{x{) < sup(D) + Yo,
igl iel j=1 iel

Given any ¢ > O and i € I, we can find [using (A3)] a vector X; € X; such that
[compare with (8)]

fix) < f(nli-“{xo + & h(x) < /;,-<"1i-°<{x{)~
j=1
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These relations together with (21) and (22) yield

(23) ZI: h{(x;)) < b,
i=1
24 3. fE) < supD) + T (5 + o),

Since by (23), (X;,..., %) is a feasible vector for (P), we have inf(P) <
Sy f{(%), and (24) yields

(25) inf(P) < sup(D) + Y. (p; + ).

iel

Since ¢ is arbitrary, I contains at most (m + 1) elements,and E = max{p,|i =
., I}, (25) proves the desired estimate (10). Q.E.D.

The significance of Proposition 5.26 lies in the fact that the estimate
(m + 1)E depends only on m and E but not on I. Thus if we consider instead
of problem (P), the problem

.. 1 &
minimize I, Z fix)

I
subjectto  x;€ X, Y hy(x;) < b,
i=1

the objective function of which represents “average cost per term,” the duality
gap estimate becomes

m+ 1

inf(P) — sup(D) < E.

Thus the duality gap goes to zero as I — co. Otherwise stated, if the optimal
value of problem (P) is proportional to I, the ratio of the duality gap over the
optimal value goes to zero as I — oo.

5.6.2 Solution of the Dual and Relaxed Problems

We consider solution of the dual problem (DIP) via the approximation
method based on the exponential penalty function [compare with Section
5.1.3, Egs. (25) and (26)]. Taking into account the expression (5) for the
dual functional, we form an approximate dual functional defined by

1 I
(26) d{p;p) = — - Z log{ Z z pi(j, n;)e ™ . n,)} — ub,

i=1 nieN; j=1
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where

(27) aiu, j, n) = filxi( n), ni] + Whlx(j, ny), n;,

¢ is a positive scalar parameter, and the multipliers p,(j, n;) are positive
scalars satisfying

Jny
28) Y Y pGn) =1, i=1,...,L
n,'GNi j=1
The approximation method consists of sequential solution of approximate
dual problems of the form

(29) maximize d,(u;p")
subjectto u >0

followed by multiplier iterations of the form

JA; -
(30)  piTI(, m) = PEG, me” et ) / Y 2 P el i,
A;eN; j=1
where y, solves problem (29). The initial multipliers p{(j, n;) are strictly
positive and satisfy (28), and the penalty parameter sequence {c,} satisfies
0 <c¢ <cpsqforallk.

We note that the approximate dual problem (29) is twice continuously
differentiable and thus can be solved by means of a constrained version of
Newton’s method—for example, the one discussed in Section 1.5. The
generated sequence {u,} can be expected to converge to an optimal solution
of the dual problem (compare with Proposition 5.12), and the multiplier
sequences {p(j,n;)} can also be expected to converge to limits p,(j,n;)
satisfying [compare with (28)]

b, n) =0, i=1,....,1, meN, j=1..,j.,
Jni

Z Zﬁi(jani)=1, l=1,...,I.

nieN; j=1

Furthermore, by applying Proposition 5.12 and using the fact that the relaxed
problem (RIP) and the dual problem (DIP) are dual linear programs, we
find that the set of multipliers {p(j, n)|i=1,...., I, ;e N, j=1,...,ju}
is an optimal solution of the relaxed problem. Thus the approximation method
can be expected to solve simultaneously both the dual and the relaxed problems.
We now demonstrate via example how the solution of the relaxed
problem can be used to generate a good suboptimal solution of (PIP).
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Example: Consider the problem

31) minimize ZI: fix)
i=1

I
subject to Y x; > b,
i=1
where b is a given scalar, for each i, x; is a scalar taking values in a set of the
form

X; = {0} v [«;, B],
and f;: X; — R has the form shown in Fig. 5.18. Clearly this problem is a

special case of (PIP). There are three production regions (n; € {1, 2, 3}) and
the corresponding production sets are

Xi(1) = {0}, X{(2) = [, 3(o; + B, Xi3) = [3(o + B, B

Thus, there is a total of five extreme points x,(j, n,), for each i,
x,-(l, 1) = 0, xi(l, 2) = ot,-,
xi(2,2) = Ho + B), xd(1,3) = 3o + B),  xd2,3) = B..

Suppose that after applying the approximation method, we obtain a
solution {p,(j, n;)} of the relaxed problem. We shall describe a reasonable
procedure for generating a feasible solution of problem (31). The main idea
is to assign, for each i, a production region 7; on the basis of the probabilities
pi(J, n;) and then choose optimally x; within the corresponding region. The

procedure is guaranteed to generate a feasible solution assuming that
problem (31) has at least one such solution.

fi(x;)
fs—1- /
fqa 1" -
f3-1- /
fa-1- - I
fl 4 1 ] 1
(o] t,ti Jz‘(dilﬁ-Bi) Bi Xj

FIG. 5.18
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Choose y = 0.5. For all i, set
n; =1 if p(1,1) >,
n #1 if p(l,1)<y.

Then test whether the condition

(32 i Bi=b
=1
i#F1

I

is satisfied. If not, increase y by 0.1 and repeat the procedure until (32) is
satisfied. Let I = {i|7; # 1}, and choose 6 = 0. For all i e I, set

ﬁi = 2 lf ﬁi(17 2) + I_’i(2> 2) > I_)i(la 3) + I-)i(za 3) + 59
A,=3  if p(1,2) + pd2,2) < pd1,3) + p(2,3) + &
Define I, = {i|n; = 2} and I; = {i|A; = 3}, and test whether the condition

33) I

iely iel

is satisfied. If not, increase & by 0.1, and repeat the procedure until (33) is
satisfied. Then solve the (trivial) linear program

1
(34) minimize Y. fi(x;)
i=1
I
subjectto Y. x; > b, xeX (@), i=1,...,1,
i=1

to obtain a feasible solution {X;|i = 1,..., I} of problem (31). It can be
~ easily seen that the procedure for selecting 7; described above guarantees
that problem (34) has at least one feasible solution.

In Table 5.1, we provide some computational results using this procedure
and randomly generated problems. The table shows the number of produc-
tion units I, and the ratio (UB — LB)/LB, where LB is the best lower bound
obtained from solution of the dual problem, and UB is the value of the
feasible solution of the primal problem (31) generated via the procedure
described above. Each entry represents an average over five randomly
generated problems with b = 2I and o;, B;, f1,..., fs (refer to Fig. 5.18)
chosen as

fi=ry f2=15r, f3=fo+ 153, fa=f3+05r4,
f5=f4+2r57 O(i=0'5r67 ﬁi=ai+3r7’
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where r,,...,r, are scalars chosen according to a uniform probability
distribution from the interval [0, 1]. It can be seen from Table 5.1 that the
relative difference between the upper and lower bound decreases as I in-
creases, which is consistent with the estimate of the duality gap of Proposition
5.26.

TABLE 5.1

Estimates of Relative
Duality Gap for
Various Problem Sizes

UB-LB
I LB
10 9.56 x 1072
50 221 x 1072
100 1.17 x 1072
150 0.574 x 1072
200 0.359 x 1072
250 0.309 x 1072
300 0.187 x 1072

5.7 Notes and Sources

Notes on Section 5.1: The class of penalty functions Pg and P, were
first proposed in Kort and Bertsekas (1972), while the class P; was proposed
in Kort and Bertsekas (1973). Rockafellar (1971) proposed earlier the use
of the augmented Lagrangian based on the quadratic penalty function
o(t) = (1/2)t%. The use of the exponential penalty function in approximation
procedures for minimax problems was suggested in Bertsekas (1977). For an
application of this function in optimization of multicommodity network
flows, see Vastola (1979), and for an application in electric diode network
analysis, see Bertsekas (1976¢). Convergence analysis for nonconvex prob-
lems relating to this function and the associated method of multipliers is
provided in Nguyen and Strodiot (1979). The application of the exponential
penalty function to the problem of finding a feasible point of a system of
inequalities was suggested by Schnabel (1980).

Notes on Section 5.2: Most of the results of this section were shown by
Rockafellar (1973a) for the case where ¢ is quadratic. They were extended
in Kort and Bertsekas (1973, 1976) and Kort (1975a).
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Notes on Section 5.3: The algorithms of this section together with
Propositions 5.7-5.11 are due to Kort and Bertsekas (1973, 1976). Some
additional material is given in the Ph.D. thesis by Kort (1975a). A conver-
gence analysis of the algorithm corresponding to the quadratic penalty
function was also given independently by Rockafellar (1973b). The inexact
minimization algorithm suggested by Rockafellar (1973b) uses a different
stopping rule which can be translated into a gradient-based stopping rule
such as ours, as shown later in Rockafellar (1976c). Relations of the methods
of multipliers with the proximal point algorithm were shown in Rockafellar
(1976a,b). The same references describe a modified version of the method
which is suitable for problems where Assumption (A5) is not satisfied.
Proposition 5.12 is an improved version of an unpublished result due to
Kort and Bertsekas. Proposition 5.13 was given in Bertsekas (1975a), but
the inequality (48) on which its proof rests is due to Rockafellar (1973a).
Proposition 5.14 is due to Rockafellar (1973b).

Notes on Section 5.4: The convergence rate analysis of this section is
due to Kort and Bertsekas (1976) with the exception of the result of Proposi-
tion 5.21. This result together with the finite convergence property of the
penalty method for c¢ sufficiently large are new in the general form given here
but stem from independent work of Poljak and Tretjakov (1974) and
Bertsekas (1975b, 1976¢) regarding polyhedral convex programming
problems and the quadratic penalty function. A convergence rate analysis
of the proximal point algorithm (which includes as a special case the method
of multipliers with a quadratic penalty function) is given in Luque (1981).
This work also considers situations where the rate is sublinear.

Notes on Section 5.5: Proposition 5.25 is a generalized version of a
result given in Bertsekas (1975b) but descends from earlier works on specific
exact nondifferentiable penalty functions referenced in Section 4.6.

Notes on Section 5.6: The material in this section is new and was
developed as the monograph was being written. It is based on a method for
power system scheduling described in Bertsekas et al. (1981) and Lauer
et al. (1981). The analysis of the duality gap bears similarity with the one of
Aubin and Ekeland (1976). Our estimate is based on different assumptions
and is considerably sharper than the one in that reference.
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A

Active set approaches, 248, 279, 285
Approximation procedures, 167, 312, 376
Armijo rule, 20
for minimax problems, 197, 201, 292, 297
for simple constraints, 81
Augmented Lagrangian function, 68, 96, 160,
318

B

Broyden-Fletcher—Goldfarb—-Shanno
method, 59, 256

C

Chain rule, 10

Cholesky factorization, 17, 46

Closed set, 8

Compact set, 9

Conjugate direction method, 49

Conjugate gradient method, 51
clustered eigenvalues, 56

convergence, 58
inaccurate line search, 58
preconditioned, 53
rate of convergence, 54
restart, 58
scaled, 53
Continuous function, 9
Continuously differentiable function, 9
Convergence rate
linear, 13
order of, 16
Q-linear, 15
Q-superlinear, 15
sublinear, 13
superlinear, 13

D

Davidon-Fletcher—Powell method, 59, 256
Dennis—Moré condition, 37

Descent direction, 20

Direction of recession, 329

Dual functional, 125, 317, 319, 367
Duality gap, 317, 371
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E

Exact differentiable penalty functions, 206,
216
automatic adjustment of penalty parameter,
225
choice of penalty parameter, 221
for inequality constraints, 227
for nonnegativity constraints, 229
Exact nondifferentiable penalty functions,
180, 359
Exponential penalty function, 310, 313, 314,
364, 376

G

Global minimum, 19, 67

Goldstein rule, 21

Gradient, 9

Gradient method, 20
global convergence, 24
local convergence, 29
rate of convergence, 30, 35
stepsize selection, 20
superlinear convergence, 36

H

Hessian, 9

I

Implicit function theorem, 11, 12

K

Kantorovich inequality, 32

L

Lagrange multiplier, 67, 316
Lagrangian function, 67, 316
Lagrangian methods, 231, 234, 240, 243
combined with differentiable exact penalty
methods, 260
combined with nondifferentiable exact pen-
alty methods, 284
combined with penalty and multiplier meth-
ods, 258
descent properties, 237, 263, 266, 272, 275

INDEX

first order, 232

global convergence, 257, 272, 275
local convergence, 232, 235, 242, 247
Newton-like, 234

quasi-Newton versions, 256, 288

rate of convergence, 232, 234, 247, 277, 289

Limit inferior, 8
Limit superior, 8
Linearization algorithm, 196, 201, 286
convergence, 198, 203
implementation aspects, 204
rate of convergence, 205, 234, 248, 289
Local minimum, 19, 66

M

Mean value theorem, 11
Minimax problems, 174, 176, 196, 367
Multicommodity flow problems, 49
Multiplier method, 104, 304, 308
computational aspects, 121
convergence, 115, 135, 152, 326
duality framework, 125, 162
finite convergence, 349
geometric interpretation, 105, 139
inexact minimization, 147, 328
one-sided inequality constraints, 158
partial elimination of constraints, 141
quasi-Newton versions, 138
rate of convergence, 116, 136, 152, 326
second order, 133, 152, 162
stepsize analysis, 126
two-sided inequality constraints, 164

N

Neighborhood, 8

Newton’s method, 40, 234
alternative implementations, 235
approximate, 47
descent properties, 237

for equality constraints, 234
for inequality constraints, 248, 252
periodic Hessian reevaluation, 47
for simple constraints, 90
in the space of primal variables, 243
variations, 240
Nondifferentiable optimization, 167, 365
Norm, 7



INDEX

(0]

Open set, 8
Ostrowski’s theorem, 231

P

Penalty method, 96, 121
convergence, 97, 99, 100, 354
ill-conditioning, 102
multiplier convergence, 100, 354
rate of convergence, 355

Positive definite matrix, 6

Positive semidefinitive matrix, 6

Primal-dual method, 153

Primal functional, 105, 113, 317

Q

Quadratic programming, 184, 186, 197, 202,
248, 252, 287, 288, 291
Quasi-Newton methods
BFGS, 59, 256
Broyden class, 59
computational aspects, 63
for constrained problems, 256, 287, 274

DFP, 59, 256

Powell’s method, 287

rate of convergence, 61, 63, 289
self-scaling, 64

Regular point, 67

Scaling, 39

Separable problems, 154, 157, 364
Slater condition, 317

Spacer step, 38, 58

Steepest descent, 39
Subdifferential, 316

T

Taylor series expansion, 11

8}

Unconstrained saddle point, 326
Uniformly gradient related direction, 24
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