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In this chapter, we focus on path construction problems, including shortest
path problems of various types. The starting point for our development
is an algorithm, given in Section 3.1, which aims to compute some (not
necessarily shortest) path from an origin to a destination node, and uses
node prices to guide the search for the path. Algorithms of this type, and
their relation to the auction algorithm for the assignment problem were
discussed in Section 1.4, but in this chapter we undertake a more detailed
development. Among others, our path construction algorithm will be used
for constructing augmenting paths in the context of a max-flow algorithm
in Section 4.2.

In Section 3.2, we will discuss extensions of the path construction
algorithm of Section 3.1, which use arc lengths and produce a path that is
“nearly shortest” with respect to these lengths (and shortest under some
conditions). These extensions include the auction shortest path algorithm
discussed in Section 1.4.3. We will discuss uses of our path construction
algorithms for solving matching, assignment, max-flow, transportation, and
transhipment problems in Chapter 4.

3.1 PATH CONSTRUCTION IN A DIRECTED GRAPH

In this section, we will introduce an algorithm, called auction path con-
struction (APC for short), for finding a path from the origin node s to
the destination node t in a directed graph, without aiming for any kind of
optimality properties. The arcs of the graph are denoted by (i, j), where
i and j are referred to as the start and end nodes of the arc. The sets of
nodes and the set of arcs are denoted by N and A, respectively. If (i, j) is
an arc, it is possible that (j, i) is also an arc. No self arcs of the form (i, i)
are allowed. We assume that for any two nodes i and j, there is at most
one arc with start node i and end node j. For any node i we say that node
j is a downstream neighbor of i if (i, j) is an arc.

The algorithm maintains a path starting at the origin, which at each
iteration, is either extended by adding a new node, or contracted by deleting
its terminal node. The decision to extend or contract is based on a set of
variables, one for each node, which are called prices. Roughly speaking,
the price of a node is viewed as a measure of the desirability of revisiting
and advancing from that node in the future (low-price nodes are viewed as
more desirable). Once the destination becomes the terminal node of the
path, the algorithm terminates.

A node i is called deadend if it has no downstream neighbors. Note
that s is not deadend, since we have assumed that there is a path from s
to t.

Our algorithm maintains and updates a scalar price pi for each node
i. We say that under the current set of prices an arc (i, j) is:

(a) Downhill : If pi > pj .
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(b) Level : If pi = pj .

(c) Uphill : If pi < pj .

Our algorithm also maintains and updates a directed path P = (s, n1, . . . , nk)
that starts at the origin, and contains no cycles. The path is either the
degenerate path P = (s), or it ends at some node nk 6= s, which is called
the terminal node of P . If P = (s), we also say that the terminal node of
P is s.

Each iteration of the APC algorithm starts with a path and a price
for each node, which are updated during the iteration using rules that we
will now describe. The algorithm starts with the degenerate path P = (s),
and with some initial prices, which are arbitrary. † It terminates when a
path has been found from s to t.

At each iteration when the algorithm starts with a path of the non-
degenerate form P = (s, n1, . . . , nk), it either removes from P the terminal
node nk to obtain the new path P = (s, n1, . . . , nk−1), or it adds to P a
node nk+1 to obtain the new path P = (s, n1, . . . , nk, nk+1). In the former
case the operation is called a contraction to nk−1, and in the latter case it
is called an extension to nk+1.

At any one iteration the algorithm starts with a path P and a price pi
for each node i. At the end of the iteration a new path P is obtained from
P through a contraction or an extension. Also the price of the terminal
node of P [or the price ps if P = (s)] is increased by a certain amount
when there is a contraction. For iterations where the algorithm starts with
the degenerate path P = (s), only an extension is possible, i.e., P = (s) is
replaced by a path of the form P = (s, n1).

A key feature of the algorithm, which in fact motivates its design, is
that P and the prices pi satisfy the following property at the start of each
iteration for which P 6= (s).

Downhill Path Property:
All arcs of the path P = (s, n1, . . . , nk) maintained by the APC
algorithm are level or downhill. Moreover, the last arc (nk−1, nk) of
P is downhill following an extension to nk.

† The arbitrary nature of the initial prices is a major difference of our algo-

rithm from earlier auction/path construction algorithms given in [Ber98], Section

2.6 and 3.3. Allowing arbitrary initial prices allows more flexibility in reusing

prices from solution of one path finding problem to another similar problem. It

also facilitates the use of “learned” prices that are favorable in similar problem

contexts. This property can be important for computational efficiency in many

applications.
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The significance of the downhill path property is that when an exten-
sion occurs, a cycle cannot be created , in the sense that the terminal node
nk is different than all the predecessor nodes s, n1, . . . , nk−1 on the path
P . The reason is that the downhill path property implies that following an
extension, we must have

pnk < pnk−1 ≤ pnk−2 ≤ · · · ≤ pn1 ≤ ps,

showing that the terminal node nk following an extension cannot be equal
to any of the preceding nodes of P .

In addition to maintaining the downhill path property, the algorithm
is structured so that following a contraction, which changes a nondegener-
ate path of the form P = (s, n1, . . . , nk) to P = (s, n1, . . . , nk−1), the price
of nk is increased by a positive amount. In conjunction with the fact that
P never contains a cycle, this implies that either the algorithm terminates,
or some node prices will increase to infinity. This is the key idea that un-
derlies the validity of the algorithm, and forms the basis for its proof of
termination.

To describe formally the algorithm, consider the case where P 6= (s)
and P has the form P = (s, n1, . . . , nk). We then denote by

pred(nk) = nk−1

the predecessor node of the terminal node nk in the path P . [In the case
where P = (s, n1), we use the notation pred(n1) = s.] If the terminal node
nk of P is not deadend, we denote by succ(nk) a downstream neighbor of
nk that has minimal price:

succ(nk) ∈ arg min
{j | (nk,j)∈A}

pj .

If multiple downstream neighbors of nk have minimal price, the algorithm
designates arbitrarily one of these neighbors as succ(nk).

The algorithm also uses a positive scalar ε. The choice of ε does
not affect the path produced by the algorithm (so we could use ε = 1 for
example), but the choice of ε will play an important role in the weighted
path construction algorithm of the next section.

The rules by which the path P and the prices pi are updated at each
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iteration are as follows; see Fig. 3.1.1.

Auction Path Construction Algorithm:

We distinguish three mutually exclusive cases.

(a) P = (s): We then set the price ps to max{ps, psucc(s) + ε}, and
extend P to succ(s).
(b) P = (s, n1, . . . , nk) and node nk is deadend : We then set the
price pnk to ∞ (or a very high number for practical purposes), and
contract P to nk−1.
(c) P = (s, n1, . . . , nk) and node nk is not deadend . We then con-
sider the following two cases.

(1) ppred(nk)
> psucc(nk). We then extend P to succ(nk) and set

pnk to any price level that makes the arc
(
pred(nk), nk

)
level

or downhill and the arc
(
nk, succ(nk)

)
downhill. [Setting

pnk = ppred(nk)
,

thus raising pnk to the maximum possible level, is a possibility,
in which case the arc

(
pred(nk), nk

)
becomes level; see Fig.

3.1.2.]

(2) ppred(nk)
≤ psucc(nk). We then contract P to pred(nk) and

raise the price of nk to the price of succ(nk) plus ε [thus mak-
ing the arc

(
pred(nk), nk

)
uphill and the arc

(
nk, succ(nk)

)
downhill].

The algorithm terminates once the destination becomes the terminal
node of P . We will show that eventually the algorithm terminates, under
our standing assumption that there is at least one path from the origin to
the destination.

The contraction/extension mechanism of the algorithm may be inter-
preted as a competitive process: we can view pred(nk) as being in com-
petition with the downstream nodes of nk for becoming the next terminal
node of path P , after nk. In particular, the terminal node of P moves to
the node that offers minimal price [with ties that involve pred(nk) broken
in favor of pred(nk) in order to maintain the downhill path property].

Figure 3.1.1 illustrates the extension and contraction mechanism of
case (c) above, and shows how the downhill path property of the algo-
rithm is maintained throughout its operation. In particular, the initial
path P = (s) satisfies the downhill path property trivially, since it contains
no arcs. Furthermore, using Fig. 3.1.1 and the algorithm description, we
can verify that if P and the node prices satisfy the downhill path property
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Figure 3.1.1 Illustration of the price levels of the terminal node nk of the path
P = (s, n1, . . . , nk), and the price levels of its predecessor and its successor,

before and after an extension or a contraction; cf. cases (c1) and (c2) of the algo-
rithm description. In the case where ppred(nk)

> psucc(nk)
, which corresponds

to an extension, there may or may not be an increase of pnk . In the case where

ppred(nk)
≤ psucc(nk)

, which corresponds to a contraction, there is always an
increase of pnk by at least ε.

at the beginning of an iteration, then the new path and node prices at the
beginning of the next iteration also satisfy the downhill path property. Fig-
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Figure 3.1.2 Illustration of the special case of the APC algorithm that sets

pnk = ppred(nk)
, raising pnk to the maximum possible level pnk = ppred(nk)

in

the case of the extension step (c1). In this case the predecessor arc
(
pred(nk), nk

)
is forced to become level, and the arcs of path P are all level, except for the last

arc following an extension.

ure 3.1.2 illustrates the extension and contraction mechanism in the special
case where pnk is raised to the maximum possible level pnk = ppred(nk)

fol-

lowing an extension, thus making the predecessor arc
(
pred(nk), nk

)
level.
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3.1.1 Algorithm Justification

We will prove that eventually the destination will become the terminal node
of P , at which time the algorithm will terminate. To this end we argue by
contradiction and we use our assumption that there is at least one path
from the origin to the destination.

Indeed, suppose, to arrive at a contradiction, that the algorithm does
not terminate. Then, since the path P does not contain a cycle and hence
cannot extend indefinitely, the algorithm must perform an infinite number
of contractions. LetN∞ be the nonempty set of nodes whose price increases
(by at least ε) infinitely often due to a contraction (and hence their price
increases to ∞). Let also N∞ = {i | i /∈ N∞} be the complementary set of
nodes whose price increases due to a contraction finitely often (and hence
do not become the terminal node of P after some iteration). Clearly, by the
rules of the algorithm, there is no arc connecting a node of N∞ to a node
of N∞. Moreover, the destination t clearly belongs to N∞, and we claim
that the origin s belongs to N∞. Indeed, if s ∈ N∞ there would exist a
subpath P ′ = (s, n1, . . . , nk) such that the nodes s, n1, . . . , nk−1 belong to
N∞, the last node nk belongs to N∞, and P ′ is the initial portion of P for
all iterations after finitely many. Since nk will be the terminal node of P
infinitely often, it follows that nk−1 will be the predecessor pred(nk) of nk
infinitely often, while the price of nk increases to infinity and the price of
nk−1 stays finite. By the rules of the algorithm, this is not possible. Thus
we must have s ∈ N∞, t ∈ N∞, and no arc connecting a node of N∞ to a
node of N∞. This contradicts the assumption that there is a path from s
to t, and shows that the algorithm will terminate.

We summarize the preceding arguments in the following proposition.

Proposition 3.1.1: If there exists at least one path from the origin
to the destination, the APC algorithm terminates with a path from s
to t. Otherwise the algorithm never terminates and we have pi →∞
for all nodes i in a subset N∞ that contains s.

3.2 WEIGHTED PATH CONSTRUCTION

We will now consider the shortest path problem, which involves a length aij
for each arc (i, j). We consider a generalization of our path construction
algorithm, the auction weighted path construction algorithm (AWPC for
short), which we have also discussed briefly in Section 1.4. The arc lengths
serve to provide a bias towards producing paths with small total length.
In fact in many cases (but not always) the algorithm produces shortest
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paths with respect to the given lengths. We require that all cycles have
nonnegative length. By this we mean that for every cycle (i, n1, . . . , nk, i)
we have

ai,n1 + an1n2 + · · ·+ ank−1nk + anki ≥ 0. (3.1)

This is a common assumption in shortest path problems.
Extending the terminology of the preceding section, we say that under

the current set of prices and lengths an arc (i, j) is:

(a) Downhill : If pi > aij + pj .

(b) Level : If pi = aij + pj .

(c) Uphill : If pi < aij + pj .

We denote by

pred(nk) = nk−1

the predecessor node of the terminal node nk in the path P . [In the case
where P = (s, n1), we let pred(n1) = s.] If the terminal node nk of P is not
deadend, we denote by succ(nk) a downstream neighbor j of nk for which
ankj + pj is minimized:

succ(nk) ∈ arg min
{j | (nk,j)∈A}

{ankj + pj}.

If multiple downstream neighbors of nk attain the minimum, the algorithm
designates arbitrarily one of these neighbors as succ(nk).

The AWPC algorithm, introduced in Section 1.4, maintains and up-
dates a directed path P = (s, n1, . . . , nk) and a price pi for each node i.
The path is either the degenerate path P = (s), or it ends at some node
nk 6= s, which, as earlier, is called the terminal node of P . Each iteration
starts with a path and a price for each node, which are updated during the
iteration. The algorithm starts with the degenerate path P = (s), and the
initial prices are arbitrary. It terminates when the destination becomes the
terminal node of P .

We will now describe the rules by which the path and the prices are
updated. At any one iteration the algorithm starts with a path P and a
scalar price pi for each node i. At the end of the iteration a new path P
is obtained from P through a contraction or an extension as earlier. For
iterations where the algorithm starts with the degenerate path P = (s),
only an extension is possible, i.e., P = (s) is replaced by a path of the
form P = (s, n1). Also the price of the terminal node of P is increased
just before a contraction, and in some cases, just before an extension. The
amount of price rise is determined by a scalar parameter ε > 0.

The algorithm terminates when the destination becomes the terminal
node of P . The rules by which the path P and the prices pi are updated
at every iteration prior to termination are as follows.



10 Auction Algorithms for Path Planning Chap. 3

Auction Weighted Path Construction Iteration:

We distinguish three mutually exclusive cases.

(a) P = (s): We then set the price ps to max{ps, assucc(s) +
psucc(s) + ε}, and extend P to succ(s).

(b) P = (s, n1, . . . , nk) and node nk is deadend : We then set the
price pnk to ∞ (or a very high number for practical purposes), and
contract P to nk−1.

(c) P = (s, n1, . . . , nk) and node nk is not deadend . We consider the
following two cases.

(1) ppred(nk)
> apred(nk)nk

+anksucc(nk) +psucc(nk). We then ex-

tend P to succ(nk) and set pnk to any price level that makes the
arc

(
pred(nk), nk

)
level or downhill and the arc

(
nk, succ(nk)

)
downhill. [Setting

pnk = ppred(nk)
− apred(nk)nk

,

thus raising pnk to the maximum possible level, is a possibility,
in which case the arc

(
pred(nk), nk

)
becomes level; cf. Fig.

3.1.2.]

(2) ppred(nk)
≤ apred(nk)nk

+ anksucc(nk) + psucc(nk). We then

contract P to pred(nk) and raise the price of nk to

anksucc(nk) + psucc(nk) + ε

[thus making the arcs
(
pred(nk), nk

)
l and

(
nk, succ(nk)

)
uphill

and downhill, respectively].

A downhill/level/uphill type of interpretation, similar to Fig. 3.1.1,
applies to this algorithm as well [the relative heights of the prices of nodes
pred(nk), succ(nk), and nk, indicated in Fig. 3.1.1 should incorporate the
arc lengths apred(nk)nk

and anksucc(nk), as in the preceding algorithm

description]. There is a price increase of nk in the case of a contraction,
and also in the case of an extension if the arc

(
pred(nk), nk

)
is downhill.

However, the conditions for an arc (i, j) to be downhill, level, or uphill
involve the arc lengths aij . Similar to our earlier arguments, it can be seen
that P and the prices pi satisfy the following downhill path property at the
start of each iteration for which P 6= (s).
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Downhill Path Property:
All arcs of the path P = (s, n1, . . . , nk) maintained by the AWPC
algorithm are level or downhill. Moreover, the last arc (nk−1, nk) of
P is downhill following an extension to nk.

A consequence of this property (and our assumption that all cycles
have nonnegative length) is that when an extension occurs, a cycle cannot
be created, in the sense that the terminal node nk is different than all the
predecessor nodes s, n1, . . . , nk−1 on the path P = (s, n1, . . . , nk). Thus,
assuming that there is at least one path from the origin to the destination, it
can be shown that eventually the destination will become the terminal node
of P , at which time the algorithm will terminate. The proof is essentially
identical to the proof we gave earlier for the case of zero lengths in Prop.
3.1.1. For an illustration of the algorithm, see the example given in Section
1.4.

Proposition 3.2.1: If there exists at least one path from the origin
to the destination and the nonnegative cycle condition (3.1) holds,
the AWPC algorithm terminates with a path from s to t. Otherwise
the algorithm never terminates and we have pi → ∞ for all nodes i
in a subset N∞ that contains s.

Note that the proposition does not guarantee that the final path gen-
erated by the AWPC algorithm is shortest. The deviation from optimality
of the algorithm depends on the initial prices, as well as the parameter ε.
We will quantify this dependence in what follows.

3.2.1 The Role of the Parameter ε - Convergence Rate and
Solution Accuracy Tradeoff

In auction algorithms, it is common to use a positive ε parameter to regulate
the size of price rises. In the AWPC algorithm, ε is used to provide an
important tradeoff between the ability of the algorithm to construct paths
with near-minimum length, and its rate of convergence. Generally, as ε
becomes smaller the quality of the path produced improves, as we will
show with examples and analysis in what follows. On the other hand a
small value of ε tends to slow down the algorithm.

In what follows in this section, we will use two examples to illustrate
how the choice of ε affects the rate of convergence of the AWPC algorithm,
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as well as the error from optimality of the path that it produces. For both
examples, in the extension case (c1), we set the price level of nk to the
maximum possible level,

pnk = ppred(nk)
− apred(nk)nk

,

cf. Fig. 3.1.2.

Example 3.2.1 (Nonpolynomial Behavior and ε-Scaling)

This is an example of a shortest path problem where there is a cycle of
relatively small length. It involves that graph of the top figure in Fig. 3.2.2.
The cycle consists of nodes 1, 2, and 3, and has length 0 [the algorithm’s
behavior is similar when the cycle has positive length that is small relative
to L, the length of the last arc of the unique s-to-t path]. Such cycles slow
down the algorithm, when ε has a small value. Indeed, it can be seen from
the table of Fig. 3.2.2 that for small values of ε and initial prices equal to 0,
the algorithm repeats the cycle

s→ 1→ 2→ 3→ 2→ 1→ s→ 1 · · ·

until the prices of nodes 2 and 3 reach levels p2 > L and p3 > L, so that the
arc (2, t) becomes downhill and an extension from 2 to t is performed. The
number of cycles for this to happen depends on ε and is roughly proportional
to L/ε, so for small values of ε, the computation is nonpolynomial (see the
middle part of the figure). On the other hand, it can be seen from the table
of Fig. 3.2.2 that when ε is large enough so that 3 + 4ε > L, the algorithm
moves to t once it reaches node 2 for the second time, after 8 iterations.

It can be shown that with an ε-scaling scheme, whereby ε is reduced by
a certain factor between successive runs of the algorithm, the computation
becomes polynomial, proportional to logL, rather than L. This is a com-
mon property of auction algorithms; see the book [Ber98] and the references
quoted there. Later we will discuss the use of ε-scaling and its use to provide
convergence acceleration as well as exact shortest path solutions.

In the preceding example, the poor performance of the algorithm is
caused by the presence of a cycle with small length. The next example illus-
trates how a similar phenomenon can also occur in acyclic graphs involving
many-node paths.

Example 3.2.2 (Convergence Rate and Solution Accuracy
Tradeoff)

Consider a graph involving a long chain of nodes that starts at the origin and
ends at the destination, as shown in Fig. 3.2.3. We assume that the initial
prices are all equal to 0. Then it can be verified that for large values of ε, the
algorithm will terminate with the suboptimal path (s, 1, 2, . . . , n, t); in fact for
ε > n, it will terminate in n+ 1 iterations through the sequence of extensions
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s t1
L

2

3

0 0

00

s t

Large ε

s t

Small ε

Iteration # Path P prior Prices prior Type of iteration

to iteration to iteration

1 (s) (0, 0, 0, 0, 0) Extension to 1

2 (s, 1) (ε, 0, 0, 0, 0) Extension to 2

3 (s, 1, 2) (ε, ε, 0, 0, 0) Extension to 3

4 (s, 1, 2, 3) (ε, ε, ε, 0, 0) Contraction to 2

5 (s, 1, 2) (ε, ε, ε, 2ε, 0) Contraction to 1

6 (s, 1) (ε, ε, 3ε, 2ε, 0) Contraction to s

7 (s) (ε, 4ε, 3ε, 2ε, 0) Extension to 1

8 (s, 1) (5ε, 4ε, 3ε, 2ε, 0) Extension to 2

9 (s, 1, 2) (5ε, 5ε, 3ε, 2ε, 0) Extension to t if 2ε > L

Extension to 2 otherwise

. . . . . . . . . Continue until p3 > L

Figure 3.2.2 The shortest path problem of Example 3.2.1 (top part of the figure).

The arc lengths are shown next to the arcs [all lengths are equal to 0, except for
the length of arc (2, t) which has a large length L]. There is only one point where
the algorithm can go wrong, at node 2 where there is a choice between going

to t or going to 3. The only s-to-t path is (s, 1, 2, t), but if ε is very small, the
algorithm explores the possibility of reaching the destination through node 3 for

many iterations, while repeating the cycle s → 1 → 2 → 3 → 2 → 1 → s → 1 . . .

(middle part of the figure). On the other hand, if 2ε > L, then at iteration
9, following an extension to node 2, the successor to node 2 is t, the algorithm

compares the prices of nodes 3 and t, performs an extension to t, and terminates
(bottom part of the figure).
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s t1 2
1 1 1 1

3
1 1

n

n

2′
− 1

...

Figure 3.2.3 The graph of the shortest path problem of Example 3.2.2. The

arc lengths are shown next to the arcs. All lengths are equal to 1, except for the

length of arc (2′, t) which is equal to −1 and the length of arc (1, 2′) which is
equal to n, the number of intermediate nodes in the top path from s to t. The

shortest path is (s, 2′, t), but for large values of ε, the algorithm will terminate

with the suboptimal path (s, 1, 2, . . . , n, t).

s → 1 → 2 → · · · → n → t. It can also be verified, by tracing the steps of
the algorithm that for small values of ε, the algorithm will find the optimal
path (s, 2′, t), but will need a large number of iterations (proportional to n2)
to do so. A suitable ε-scaling scheme can find the optimal path in O(n logn)
iterations.

3.2.2 Shortest Distances and Error Bounds

An important issue in the AWPC algorithm is the choice of the initial
prices. We will argue that the algorithm operates effectively, in the sense
that it terminates fast and with small error from path optimality, if the ini-
tial prices are close to the shortest distances under the given set of lengths.
Indeed, the lengths {aij} define the shortest distances, denoted by D∗i , from
the nodes i to the destination t. These shortest distances satisfy D∗t = 0
and for all i 6= t,

D∗i = min
{j|(i,j)∈A}

{aij +D∗j };

this is an instance of the fundamental dynamic programming/Bellman
equation. It implies that all arcs are level or uphill, with respects to prices
pi = D∗i , and the arcs of a shortest path are level. Suppose that we choose
for all i a price pi that is exactly equal to D∗i . Then it can be verified that
starting from an arbitrary origin i, the algorithm generates a shortest path
from i to t through a sequence of extensions over level arcs, without any
intervening contractions. The price differential ps− pt is equal to the total
length of the path produced by the algorithm, which is shortest.

If the initial prices pi are not equal to the shortest distances D∗i , the
price differential ps − pt provides an upper bound to the total length LP
of the final path P produced by the algorithm:

LP =
∑

(i,j)∈P
aij ≤ ps − pt. (3.2)
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To see this, note that for P = (s, n1, . . . , nk) we have asn1 = ps − pn1 ,
ani−1ni = pni−1 −pni for all i = 1, . . . , k, and ankt ≤ pnk −pt, since in view
of the downhill property, all the arcs of P are level or downhill. It follows
that

LP = asn1 + an1n2 + · · ·+ ank−1nk + ankt

≤ (ps − pn1) + (pn1 − pn2) + · · ·+ (pnk−1 − pnk) + (pnk − pt)
= ps − pt,

thus verifying Eq. (3.2).
If all the arcs that do not belong to P are level or uphill upon ter-

mination, then it can be shown that P has minimum total length. More
generally, we will show an error bound that involves the amounts dij by
which aij must be increased to make the arc (i, j) level if it is downhill:

dij = max{0, pi − aij − pj}, (i, j) ∈ A. (3.3)

The scalars dij will be referred to as the discrepancies of the arcs (i, j).
They quantify the error from optimality of the path P generated by the
algorithm, as shown in the following proposition.

Proposition 3.2.2: Let the AWPC algorithm terminate with a
path P , and let P ′ be any other path from s to t. Then we have

LP +
∑

(i,j)∈P
dij ≤ LP ′ +

∑
(i,j)∈P ′

dij , (3.4)

where LP and LP ′ are the total lengths of P and P ′, and dij are the
arc discrepancies of Eq. (3.3), which are obtained upon termination.

Proof: Suppose that we increase the arc lengths aij by the corresponding
arc discrepancies dij that are obtained upon termination, thus changing
these lengths to

āij = aij + dij , (i, j) ∈ A.
Then upon termination, the path P produced by the AWPC algorithm is
shortest with respect to arc lengths āij . The reason is that the arcs that
belong to P are level with respect to the arc lengths āij , while the arcs that
do not belong to P are either level or uphill, again with respect to āij ; this
is the optimality condition for P to be shortest with respect to āij . The
inequality (3.4) then follows, since its left and right sides are the lengths
of P and P ′, respectively, with respect to āij . Q.E.D.
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The discrepancies dij provide an upper bound to the degree of sub-
optimality of the path obtained upon termination, as per Eq. (3.4). In
particular, if D is the maximum arc discrepancy upon termination of the
algorithm,

D = max
(i,j)∈A

dij ,

then, since dij ≥ 0 for all (i, j), Eq. (3.4) implies that

LP ≤ LP ′ + (n+ 1)D, (3.5)

where n is the number of nodes other than s and t. The reason is that a
path from s to t can contain at most (n+1) arcs, each having a discrepancy
that is at most D.

An interesting empirical observation is that when the algorithm cre-
ates a new downhill arc (i, j) that lies outside P , the corresponding dis-
crepancy dij becomes equal to ε or a small multiple of ε. A reasonable
conjecture is that if all the discrepancies dij are initially bounded by a
small multiple of ε, then the path produced by the algorithm upon termi-
nation is shortest to within a small multiple of nε, where n is the number
of nodes. This bears similarity to auction algorithms for assignment and
network flow problems, where the solution obtained can be proved to be
optimal to within nε.

3.2.3 ε-Complementary Slackness - Using ε-Scaling to Find a
Shortest Path

The tradeoff between speed of convergence and accuracy of solution that is
embodied in the choice of ε was recognized in the original proposal of the
auction algorithm for the assignment problem [Ber79], and the approach
of ε-scaling was proposed to deal with it. In this approach we start the
auction algorithm with a relatively large value of ε, to obtain quickly rough
estimates for appropriate values of the node prices, and then we progres-
sively reduce ε to refine the node prices and eventually obtain an optimal
solution. The use of ε-scaling also allows the option of stopping the algo-
rithm, with a less refined solution, if the allotted time for computation is
limited.

In the context of the AWPC algorithm, ε-scaling is implemented by
running the algorithm with a relatively large value of ε to estimate “good”
prices, at least for a subset of “promising” transit nodes from s to t, and
then progressively refining the assessment of the “promise” of these nodes.
This is done by rerunning the algorithm with smaller values of ε, while using
as initial prices at each run the final prices of the previous run. It is well-
known that ε-scaling improves the computational complexity of auction
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algorithms,† and it can be similarly applied to the AWPC algorithm, as we
will discuss in Section 3.3.

Empirically, this scheme seems to work well, but it does not offer a
guarantee that it will yield a shortest path. As an example in the problem
of Fig. 3.2.3, if all prices are chosen to be 0 except for the price of node 2’,
which is chosen to be a high positive number, the AWPC algorithm will
not find the shortest path for any value of ε.

We will now consider a variant of the AWPC algorithm and corre-
sponding ε-scaling scheme that guarantee that a shortest path can be ob-
tained. The ε-scaling scheme modifies the prices produced by the AWPC al-
gorithm for a given value of ε, before applying the algorithm with a smaller
value of ε. To this end, we will operate the AWPC algorithm so that it ini-
tially satisfies and subsequently maintains the following ε-complementary
slackness condition (ε-CS for short).

ε-Complementary Slackness:

For a given ε > 0, the prices {pi | i ∈ N} and the path P satisfy

pi ≤ aij + pj + ε, for all arcs (i, j),

i.e., every arc is uphill, or level, or downhill by at most ε, and

pi ≥ aij + pj , for all arcs (i, j) of the path P ,

i.e., every arc of P is level or downhill (by at most ε).

The notion of ε-CS is fundamental in the context of auction algo-
rithms, and represents a relaxation of the classical complementary slack-
ness condition of linear programming (see, e.g., Bertsimas and Tsitsiklis
[BeT97]). In particular, when ε-CS holds, the discrepancies dij of Eq. (3.3)
are at most equal to ε, so if the AWPC algorithm maintains ε-CS through-
out its operation, it produces a path that is suboptimal by at most (n+ 1)ε
in view of Eq. (3.5), and hence also optimal for ε sufficiently small [(n+1)ε
should be less than the difference between the 2nd shortest path distance
and the shortest path distance]. Thus maintaining ε-CS is desirable.

On the other hand, the AWPC algorithm need not maintain ε-CS
throughout its operation, because the increase of pnk prior to an extension
may violate the ε-CS inequality pnk ≤ ankj + pj + ε for j = succ(nk) and
possibly for j equal to some other downstream neighbors of nk. A simple

† See the papers [BeE88], [Ber88], the book [Ber98], and the references quoted

there, for polynomial complexity analyses of auction algorithms for the assign-

ment problem and other related problems.
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remedy is to choose the price increase prior to an extension in a specific
way. In particular, in case (c1) of the AWPC algorithm, we raise the price
pnk to the largest value that satisfies ε-CS, while extending P to succ(nk),
rather than setting pnk to any value that makes the arc

(
pred(nk), nk

)
level

or downhill and the arc
(
nk, succ(nk)

)
downhill.

More specifically, there are three cases to consider when the relation

ppred(nk)
> apred(nk)nk

+ anksucc(nk) + psucc(nk), (3.6)

holds, which are illustrated in Fig. 3.2.4:

(a) The arc
(
pred(nk), nk

)
is level, i.e.,

0 = ppred(nk)
− apred(nk)nk

− pnk ,

0 < pnk − anksucc(nk) − psucc(nk).

Then we extend to succ(nk) and leave the price pnk unchanged (top
part of Fig. 3.2.4).

(b) The arc
(
pred(nk), nk

)
is downhill and the arc

(
nk, succ(nk)

)
is downhill or level, i.e.,

0 < ppred(nk)
− apred(nk)nk

− pnk ,

0 ≤ pnk − anksucc(nk) − psucc(nk).

Then we extend to succ(nk) and set the price pnk to

min
{
ppred(nk)

− apred(nk)nk
, anksucc(nk) + psucc(nk) + ε

}
,

thus making the arc
(
pred(nk), nk

)
is downhill or level and the arc(

nk, succ(nk)
)

downhill (middle part of Fig. 3.2.4).

(c) The arc
(
pred(nk), nk

)
is downhill and the arc

(
nk, succ(nk)

)
is uphill, i.e.,

0 < ppred(nk)
− apred(nk)nk

− pnk ,

pnk − anksucc(nk) − psucc(nk) < 0.

Then we extend to succ(nk) and set the price pnk to

ppred(nk)
− apred(nk)nk

,

thus making the arc
(
pred(nk), nk

)
level (if ε-CS is satisfied on this

arc) or downhill (if ε-CS is violated on this arc), and the arc
(
nk, succ(nk)

)
downhill (bottom part of Fig. 3.2.4).
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We refer to the AWPC algorithm with the specific price change rule
given above as the AWPC-CS algorithm. It is a special case of the AWPC
algorithm, and therefore it maintains the downhill path property, thus guar-
anteeing termination. It also ensures that the ε-CS property holds upon
termination, provided the initial price discrepancies are bounded by ε. As
a result the path obtained upon termination is shortest to within (n+ 1)ε;
cf. Eq. (3.5).

We summarize the preceding arguments in the following proposition.

Proposition 3.2.3: Assume that there exists at least one path from
the origin to the destination, and the nonnegative cycle condition
(3.1) holds. Then the AWPC-CS algorithm terminates with a path
from s to t. If in addition the initial prices satisfy ε-CS, then the
algorithm will maintain the ε-CS property throughout its operation,
and the path obtained termination will be shortest to within (n+1)ε,
where n is the number of nodes other than s and t. Otherwise the
algorithm will never terminate and we have pi → ∞ for all nodes i
in a subset N∞ that contains s.

When the starting prices violate ε-CS for some arcs, it is possible
that the ε-CS property is accidentally restored at some point during the
operation of the AWPC-CS algorithm, in which case ε-CS will hold upon
termination as per the preceding discussion. However, there is no guarantee
that this will happen. On the other hand, as Fig. 3.2.4 illustrates, the
AWPC-CS algorithm does not create new arcs that violate ε-CS. Thus the
algorithm has a tendency to self-correct . In fact the following property
of the algorithm can be verified: the maximum arc violation of ε-CS, as
measured by

Dε = max
(i,j)∈A

max{0, pi − aij − pj − ε},

is not increased at any iteration.

Implementing ε-Scaling

Given the final set of prices and path obtained by the AWPC-CS algorithm
for a given value of ε, there is an important issue in ε-scaling: how to modify
the prices of some of the nodes so that the resulting prices together with
the degenerate path (s) satisfy ε′-CS for a smaller positive value ε′ < ε.
Moreover the price modifications should be small in order for the new
prices to be good starting points for rerunning the algorithm with the new
value ε′.

There are algorithms for computing price modifications to satisfy ε′-
CS for a smaller value ε′ < ε together with the degenerate path (s), which
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Path Extension: ppred(nk)
> apred(nk)nk

+ anksucc(nk) + psucc(nk)

ppred(nk) apred(nk)nk
+ pnk

apred(nk)nk
+ anksucc(nk) + psucc(nk)

. . .

P

ppred(nk)
apred(nk)nk
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apred(nk)nk
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. . .
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ε
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. . .
P

. . .

P

≤ ε

ε
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. . .

P

ppred(nk)

apred(nk)nk
+ pnk

apred(nk)nk
+ anksucc(nk) + psucc(nk)

Figure 3.2.4 Illustration of an iteration of the AWPC-CS algorithm, which

maintains ε-CS if started with prices satisfying ε-CS. The figure shows the levels

ppred(nk)
, apred(nk)nk

+ pnk , apred(nk)nk
+ anksucc(nk)

+ psucc(nk)
,

before and after an extension. The middle and bottom portions of the figure

illustrate how following the extension, it is possible that both arcs
(
pred(nk), nk

)
and

(
nk, succ(nk)

)
are downhill. In the case where ε-CS is satisfied on the arc(

pred(nk), nk

)
, the arc will become level following the price rise.

will be discussed in future reports. Moreover, often such algorithms can
take advantage of special structure of the problem’s graph. This is true
for example in assignment problems, where the bipartite character of the
graph allows great flexibility in the choice of the initial prices. In what fol-
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lows in this section, we discuss the case of shortest path problems involving
an acyclic graph, which arise prominently in on-line and off-line multistep
lookahead minimization, and tree search for reinforcement learning prob-
lems (see Section 3.5).

ε-Scaling in Acyclic Graphs

Let us consider the case of an acyclic graph; cf. Fig. 3.2.5. Suppose that
we are given arc lengths aij and a set of prices {pi | i ∈ N} that for a given
positive ε satisfy

pi ≤ aij + pj + ε, for all arcs (i, j), (3.7)

possibly resulting from application of the AWPC-CS algorithm to the corre-
sponding shortest path problem. We want to find a set of prices {p′i | i ∈ N}
that for a given positive ε′ < ε, satisfy

p′i ≤ aij + p′j + ε′, for all arcs (i, j), (3.8)

satisfy ε′-CS together with the degenerate path P = (s). Thus Eq. (3.7)
requires that arcs, when downhill, are downhill by at most ε, while Eq.
(3.8) requires them to be downhill by at most ε′.

The idea is to start at t and sequentially proceed backwards towards
s, by delineating arcs (i, j) that violate the condition (3.8) and raising the
price of j and possibly the prices of some descendants of j [since increasing
pj may violate ε′-CS for nodes that lie downstream of j]. Thus we must
check descendants of j all the way to the destination t, and raise their
prices by whatever amounts are necessary to enforce the ε′-CS condition
(3.8) on arc (i, j). Figure 3.2.6 provides an example.

The idea of successively raising the prices of the end nodes j of arcs
(i, j) that violate the condition (3.8), while keeping the price of the origin
s unchanged, also works for nonacyclic graphs. After a finite number of
price increases, the condition (3.8) will be satisfied for all arcs. However,
the number of price increases required cannot be easily predicted in the
absence of special structure.

ε-Scaling in Graphs with Cycles

Approximate ε-Scaling

While the AWPC-CS algorithm maintains the ε-CS property if this prop-
erty is initially satisfied, finding initial prices that satisfy ε-CS may not be
easy [except when aij ≥ 0 for all arcs (i, j), in which case we can take pi = 0
for all nodes i; algorithms for the more general case are given in [Ber91],
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Figure 3.2.5 Illustration of an acyclic graph involving paths that start at s and
end at t and arc lengths aij . A case of special interest in reinforcement learning

is a tree-like structure, illustrated in the bottom figure, where nodes are grouped
in layers, with arcs starting from one layer and ending at a node of the next layer,
and there is a single incoming arc to each node except s and t.

Props. 6 and 7]. Moreover, operating ε-scaling is complicated when arc
lengths change over time and on-line replanning is necessary. This moti-
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Figure 3.2.6 Illustration of ε-scaling in an acyclic graph, and the modifications

needed to pass from the path P = (s) and prices satisfying ε-CS to prices satisfying

ε′-CS, with ε′ < ε. All arcs have length equal to 1, and the prices pi are shown
next to the nodes i. Let ε = 1 and ε′ = 1/2. All arcs satisfy the 1-CS condition

(3.7), but arcs (1, 4), (3, 6), (3, 7), and (7, t) (shown in red) violate the 0.5-CS

condition (3.8). We obtain prices satisfying 0.5-CS, by increasing the prices of
the end nodes t, 6, 7, and 1 (in that order), and possibly their descendants in four

iterations:

(1) Set pt = −0.5 ↑ 0.

(2) Set p6 = 1.2 ↑ 1.7 and pt = 0 ↑ 0.2.

(3) Set p7 = 1.5 ↑ 1.7 (no need to increase pt further).

(4) Set p4 = 1 ↑ 1.5 (no need to increase p7 or p8, and hence also pt).

vates a heuristic scheme to select prices that satisfy the ε-CS inequality

pi ≤ aij + pj + ε,

for as many arcs (i, j) as is conveniently possible, and rely on the self-
correcting mechanism of the algorithm, discussed earlier, to produce a high
quality solution. A similar approach may be followed for the ε-scaling pro-
cess: it may be performed approximately, in some heuristic and computa-
tionally inexpensive way.

A reasonable approach for enforcing the ε′-CS property selectively is
to raise the prices of just the nodes on the final path P earlier constructed
by the algorithm with a larger value ε > ε′. Here, we may start from s and
go forward towards t along P , while raising the prices of the nodes of P ,
as necessary to enforce ε′-CS on the arcs of P (but not on arcs outside of
P ). A potential benefit of this idea in some contexts is that it provides an
incentive for the algorithm to explore alternative paths to P .
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3.2.4 A Variant with Optimistic Extensions

Let us now discuss a variant of the AWPC algorithm, which aims to ac-
celerate convergence by performing an extension instead of a contraction
in the special case where the current path P = (s, n1, . . . , nk) consists of
multiple nodes [i.e., P 6= (s)], and we have

ppred(nk)
= apred(nk)nk

+ anksucc(nk) + psucc(nk). (3.9)

According to case (c2) of the AWPC algorithm, we must then perform a
contraction of P to pred(nk) and raise the price of nk to

anksucc(nk) + psucc(nk) + ε. (3.10)

In the variant considered in this section, called AWPC with optimistic
extensions (AWPC-OE for short), we consider two complementary cases:

(a) succ(nk) /∈ P , in which case we extend P to succ(nk), and we raise
the price of nk to

anksucc(nk) + psucc(nk)

[thus making both arcs
(
pred(nk), nk

)
and

(
nk, succ(nk)

)
level, while

maintaining the acyclicity of P ].

(b) succ(nk) ∈ P , in which case we perform a contraction of P to pred(nk),
and raise the price of succ(nk) to the level (3.10), as in the AWPC
algorithm.
While in this variant, the acyclicity of P is maintained at each itera-

tion, the downhill path property as stated earlier in this section does not
hold anymore, because while each arc of P is either level or downhill, it is
possible that all of them are level. Still, however, the convergence proof
of Prop. 3.2.1 goes through and the algorithm is valid, the critical part
being that the path P remains acyclic throughout the algorithm, so that
an infinite number of node contractions must be performed if the algorithm
does not terminate.

For an illustration, consider the problem of Example 3.2.1. In refer-
ence to Fig. 3.2.2, the AWPC-OE algorithm will generate the same itera-
tions as the AWPC algorithm in the first three iterations to obtain path
P = (s, 1, 2, 3), price vector (ps, p1, p2, p3, pt) = (ε, ε, ε, 0, 0), pred(3) = 2,
succ(3) = 1, and ppred(3)

= psucc(3) = ε. Then, Eq. (3.9) holds and the

AWPC-OE algorithm will consider an extension to node 1, but since node
1 belongs to P , it will forego the extension, and perform a contraction to
node 2, and continue exactly as the AWPC algorithm; cf. Fig. 3.2.2.

It is possible to refine the AWPC-OE algorithm for the case where Eq.
(3.9) holds and there are multiple downstream neighbors j of nk that have
minimum value of ankj+pj . Then we can select one of these neighbors that
does not belong to P and perform an extension, and perform a contraction
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if no such neighbor can be found. Thus if there are multiple neighbors that
are candidates for succ(nk), we break the tie in favor of one that does not
belong to P (if one exists) and perform an extension to that neighbor. This
refinement may provide additional acceleration in special types of problems,
such as unweighted path construction, where multiple neighbor candidates
arise frequently.

In summary, the AWPC-OE algorithm allows an extension in some
cases where the AWPC algorithm performs a contraction, and is likely to
terminate faster. For this it must check to make sure that no cycle is closed
through an extension in the case where Eq. (3.9) holds, since the downhill
path property as stated earlier may not hold.

3.3 THEORETICAL ASPECTS

Complexity analysis of the AWPC algorithm with and without ε-scaling.

3.4 NOTES AND SOURCES

The AWPC algorithm of this chapter was motivated by path construction
algorithms given in the author’s paper [Ber95a] as part of an auction al-
gorithm for max-flow, and was also described in the book [Ber98], Section
3.3.1. The algorithms proposed here allow unrestricted choice of the initial
prices, which among others, facilitates its use in reinforcement learning and
on-line replanning contexts.

The AWPC algorithm also resembles an auction/shortest path algo-
rithm that was proposed in the author’s 1991 paper [Ber91]. In particu-
lar, both algorithms employ a contraction/extension mechanism for path
construction. Contrary to this earlier algorithm, however, the AWPC al-
gorithm admits arbitrary initial prices, and uses the ε parameter to effect
larger price changes, which in turn speeds up its convergence. It pro-
duces a shortest path for sufficiently small ε, and it is also well-suited for
an ε-scaling approach, which improves computational efficiency. Another
important difference is that the earlier algorithm has nonpolynomial com-
plexity, whereas the algorithm of the present paper is polynomial thanks
to the use of ε-scaling, as discussed in Section 3.3.†

Moreover, the earlier auction/shortest path algorithm of [Ber91] re-
quires that all cycle lengths be strictly positive rather than nonnegative,

† A polynomial variant of the 1991 auction algorithm, given in the paper

[BPS95], performs very well for single origin-few destination problems with non-

negative arc lengths, but includes features that detract from the flexibility of the

new algorithms of this chapter.
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which is often a significant restriction. Another important difference, which
affects computational efficiency, is that there is no ε parameter in the algo-
rithm of [Ber91]. Indeed, this algorithm is closely related to the so called
“naive auction algorithm,” which is the auction algorithm for the assign-
ment problem with ε = 0; see [Ber91].

Actually, the APC and AWPC algorithms, can be operated with
ε = 0 provided a small change is made: in the case (c2) where ppred(nk)

=

psucc(nk), we do an extension while setting pnk = ppred(nk)
= psucc(nk),

rather than doing a contraction. Then the path P may not contain any up-
hill arcs, but it consists of just level arcs during operation of the algorithm.
However, still the critical property that a cycle cannot be created through
an extension is preserved, provided we assume that all cycle lengths are
strictly positive (an alternative is to use the optimistic extensions mecha-
nism, described in Section 3.2.4). Introducing a positive parameter ε allows
for nonnegative cycle lengths, and also provides a mechanism for controlling
the rate of convergence of the algorithm through the technique of ε-scaling,
as will be discussed later in this section.


