
Auction Algorithms for

Path Planning, Network Transport, and

Reinforcement Learning
by

Dimitri P. Bertsekas

Chapter 2

Auction Algorithms for the
Assignment Problem

This monograph represents “work in progress,” and will be periodically
updated. It more than likely contains errors (hopefully not serious ones).
Furthermore, the references to the literature are incomplete. Your com-
ments and suggestions to the author at dbertsek@asu.edu are welcome.

March 15, 2025

2

Auction Algorithms for the

Assignment Problem

Contents

2.1. The Auction Algorithm for Symmetric Assignment
Problems . p. 2
2.1.1. The Main Auction Algorithm p. 3
2.1.2. Approximate Coordinate Descent Interpretation . . p. 7
2.1.3. ε-Scaling p. 7
2.1.4. Dealing with Infeasibility p. 9

2.2. Extensions of the Auction Algorithm p. 10
2.2.1. Reverse Auction p. 11
2.2.2. Auction Algorithms for Asymmetric Assignment p. 16
2.2.3. Auction Algorithms with Similar Persons p. 23
2.2.4. Combinations with Dual Ascent Methods p. 27

2.3. Theoretical Aspects p. 27
2.4. Notes and Sources p. 34

1

2 Auction Algorithms for the Assignment Problem Chap. 2

In this chapter we will discuss auction algorithms for various types of assign-
ment problems. These algorithms aim to solve simultaneously the primal
and the dual problems. However, contrary to other network optimization
algorithms such as simplex methods and dual ascent methods (see [Ber98]),
they do not rely on cost improvement. At any one iteration, they may dete-
riorate both the primal and the dual cost. On the other hand, they can be
interpreted as approximate coordinate ascent methods for solving he dual
problem, as will be discuss in this chapter.

In Section 2.1, we develop some of the major characteristics of the
algorithm for symmetric assignment problems. In Section 2.2, we develop
auction algorithms for special types of assignment problems, as well as
algorithmic variations and combinations with other types of assignment
algorithms. In Section 2.3, we discuss theoretical aspects of the methods
developed in Sections 2.1 and 2.2, including issues of computational com-
plexity.

2.1 THE AUCTION ALGORITHM FOR THE SYMMETRIC
ASSIGNMENT PROBLEM

In this section we consider the assignment problem whereby we want to
match n persons and n objects on a one-to-one basis. We are given a
“value” aij for matching person i with object j, and we want to assign
persons to objects so as to maximize the total value. The set of objects to
which person i can be assigned is a nonempty set denoted A(i). The set of
all possible pairs that can be assigned is denoted by A,

A =
{

(i, j) | j ∈ A(i), i = 1, . . . , n
}
.

Note that A is the set of arcs of the underlying bipartite assignment graph.
Our terminology is as follows. An assignment S is a (possibly empty)

set of person-object pairs (i, j) such that j ∈ A(i) for all (i, j) ∈ S; more-
over, we require that for each person i there can be at most one pair
(i, j) ∈ S, and for every object j there can be at most one pair (i, j) ∈ S.
Given an assignment S, we say that person i is assigned if there exists
a pair (i, j) ∈ S; otherwise we say that i is unassigned . We use similar
terminology for objects. An assignment is said to be feasible or complete
if it contains n pairs, so that every person and every object is assigned;
otherwise the assignment is called partial .

We call the problem just described the symmetric assignment prob-
lem, to distinguish it from the asymmetric assignment problem where the
number of persons is smaller than the number of objects. We will discuss
the asymmetric problem and associated auction algorithms later in Section
2.2.

Sec. 2.1 The Auction Algorithm for the Symmetric Assignment Problem 3

2.1.1 The Main Auction Algorithm

We recall the auction algorithm, described in Section 1.4.1. It was moti-
vated by the simpler but flawed naive auction algorithm. A key notion,
which made possible the correct operation of the algorithm was the ε-
complementary slackness property (ε-CS for short), which relates a partial
assignment S and a price vector p = (p1, . . . , pn). In particular, we say
that S and p satisfy ε-CS if for every pair (i, j) ∈ S, object j is within ε of
being the “best” object for person i, i.e.,

aij − pj ≥ max
k∈A(i)

{aik − pk} − ε, ∀ (i, j) ∈ S. (2.1)

In this section, we will consider a more general version of the auc-
tion algorithm, which is also well-suited for parallel or distributed imple-
mentation, as it allows simultaneous bids by multiple unassigned persons,
instead of a bid by a single unassigned person, as in Section 1.4.1. In fact,
a distributed implementation was a major motivation for introducing the
algorithm in the paper [Ber79].

The algorithm proceeds iteratively and terminates when a complete
assignment is obtained. At the start of the generic iteration we have a par-
tial assignment S and a price vector p that satisfy ε-CS. As an initial choice,
we may use an arbitrary set of prices together with the empty assignment,
which trivially satisfies ε-CS. We will show later that the iteration preserves
the ε-CS condition. The iteration consists of two phases: the bidding phase
and the assignment phase, which we now describe.

Bidding Phase of the Auction Iteration

Let I be a nonempty subset of persons that are unassigned under
the assignment S. For each person i ∈ I:

1. Find a “best” object ji having maximum value, i.e.,

ji = arg max
j∈A(i)

{aij − pj},

and the corresponding value

vi = max
j∈A(i)

{aij − pj}, (2.2)

and find the best value offered by objects other than ji

wi = max
j∈A(i), j 6=ji

{aij − pj}. (2.3)

4 Auction Algorithms for the Assignment Problem Chap. 2

[If ji is the only object in A(i), we define wi to be −∞, or for
computational purposes, a number that is much smaller than
vi.]

2. Compute the “bid” of person i given by

biji = pji + vi − wi + ε = aiji − wi + ε. (2.4)

(Abusing terminology somewhat, we say that “person i bid for
object ji,” and that “object ji received a bid from person i.”)

Assignment Phase of the Auction Iteration

For each object j, let P (j) be the set of persons from which j received
a bid in the bidding phase of the iteration. If P (j) is nonempty,
increase pj to the highest bid,

pj := max
i∈P (j)

bij , (2.5)

remove from the assignment S any pair (i, j) (if j was assigned to
some i under S), and add to S the pair (ij , j), where ij is a person
in P (j) attaining the maximum above.

Note that there is some freedom in choosing the subset of persons
I that bid during an iteration. One possibility is to let I consist of a
single unassigned person, as in the algorithm of Section 1.4.1. We call this
version the Gauss-Seidel version because of its similarity with Gauss-Seidel
methods for solving systems of nonlinear equations; it usually works best
in a serial computing environment. The version where I consists of all
unassigned persons is the one best suited for parallel computation; it is
known as the Jacobi version because of its similarity with Jacobi methods
for solving systems of nonlinear equations.

During an iteration, the objects whose prices are changed are the
ones that received a bid during the iteration. Each price change involves
an increase of at least ε. To see this, note that if person i bids for object
ji, from Eqs. (2.2)-(2.4) the corresponding bid is

biji = aiji − wi + ε ≥ aiji − vi + ε = pji + ε,

and exceeds the object’s current price by at least ε. At the end of the
iteration, we have a new assignment that differs from the preceding one in

Sec. 2.1 The Auction Algorithm for the Symmetric Assignment Problem 5

that each object that received a bid is now assigned to some person that
was unassigned at the start of the iteration. However, the assignment at
the end of the iteration need not have more pairs than the one at the start
of the iteration, because it is possible that all objects that received a bid
were assigned at the start of the iteration.

The choice of bidding increment [cf. Eq. (2.4)] is such that ε-CS is
preserved by the algorithm, as shown by the following proposition (in fact,
it can be seen that it is the largest bidding increment for which this is so).

Proposition 2.1.1: The auction algorithm preserves ε-CS through-
out its execution; that is, if the assignment and the price vector avail-
able at the start of an iteration satisfy ε-CS, the same is true for the
assignment and the price vector obtained at the end of the iteration.

Proof: Let pj and p′j be the object prices before and after a given iteration,
respectively. Suppose that object j∗ received a bid from person i and was
assigned to i during the iteration. Then we have [see Eqs. (2.4) and (2.5)]

p′j∗ = aij∗ − wi + ε.

Using this equation, we obtain

aij∗ − p′j∗ = wi − ε = max
j∈A(i), j 6=j∗

{aij − pj} − ε.

Since p′j ≥ pj for all j, this equation implies that

aij∗ − p′j∗ ≥ max
j∈A(i)

{aij − p′j} − ε, (2.6)

which shows that the ε-CS condition (2.1) continues to hold after the assign-
ment phase of an iteration for all pairs (i, j∗) that entered the assignment
during the iteration.

Consider also any pair (i, j∗) that belonged to the assignment just
before the iteration, and also belongs to the assignment after the iteration.
Then, j∗ must not have received a bid during the iteration, so p′j∗ = pj∗ .
Therefore, Eq. (2.6) holds in view of the ε-CS condition that held prior to
the iteration and the fact p′j ≥ pj for all j. Hence, the ε-CS condition (2.1)
holds for all pairs (i, j∗) that belong to the assignment after the iteration,
proving the result. Q.E.D.

The next proposition establishes the validity of the algorithm. The
proof relies on the following observations:

6 Auction Algorithms for the Assignment Problem Chap. 2

(a) Once an object is assigned, it remains assigned throughout the re-
mainder of the algorithm’s duration. Furthermore, except at termi-
nation, there will always exist at least one object that has never been
assigned, and has a price equal to its initial price. The reason is that
a bidding and assignment phase can result in a reassignment of an
already assigned object to a different person, but cannot result in the
object becoming unassigned.

(b) Each time an object receives a bid, its price increases by at least ε
[see Eqs. (2.4) and (2.5)]. Therefore, if the object receives a bid an
infinite number of times, its price increases to ∞.

(c) Every |A(i)| bids by person i, where |A(i)| is the number of objects
in the set A(i), the scalar vi defined by the equation

vi = max
j∈A(i)

{aij − pj} (2.7)

decreases by at least ε. The reason is that a bid by person i either
decreases vi by at least ε, or else leaves vi unchanged because there is
more than one object j attaining the maximum in Eq. (2.7). However,
in the latter case, the price of the object ji receiving the bid will
increase by at least ε, and object ji will not receive another bid by
person i until vi decreases by at least ε. The conclusion is that if a
person i bids an infinite number of times, vi must decrease to −∞.

Proposition 2.1.2: If at least one feasible assignment exists, the
auction algorithm terminates with a feasible assignment that is within
nε of being optimal (and is optimal if the problem data are integer
and ε < 1/n).

Proof: We argue by contradiction. If termination did not occur, the subset
J∞ of objects that received an infinite number of bids is nonempty. Also,
the subset of persons I∞ that bid an infinite number of times is nonempty.
As argued in (b) above, the prices of the objects in J∞ must tend to ∞,
while as argued in (c) above, the scalars vi = maxj∈A(i){aij − pj} must
decrease to −∞ for all persons i ∈ I∞. In view of ε-CS, this implies that

A(i) ⊂ J∞, ∀ i ∈ I∞, (2.8)

and that after a finite number of iterations, each object in J∞ will be
assigned to a person from I∞. Since after a finite number of iterations at
least one person from I∞ will be unassigned at the start of each iteration, it

Sec. 2.1 The Auction Algorithm for the Symmetric Assignment Problem 7

follows that the number of persons in I∞ is strictly larger than the number
of objects in J∞. This contradicts the existence of a feasible assignment,
since by Eq. (2.8), persons in I∞ can only be assigned to objects in J∞.
Therefore, the algorithm must terminate. The feasible assignment obtained
upon termination satisfies ε-CS by Prop. 2.1.1, so by Prop. 1.4.1 of Section
1.4, this assignment is within nε of being optimal. Q.E.D.

2.1.2 Approximate Coordinate Descent Interpretation

The Gauss-Seidel version of the auction algorithm resembles coordinate
descent algorithms, because it involves the change of a single dual vari-
able/price, with all other prices held fixed. However, such a price change
may worsen strictly the value of the dual function

q(p) =

n∑
i=1

max
j∈A(i)

{
aij − pj

}
+

n∑
j=1

pj , (2.9)

which was introduced in Section 1.3.
Generally we can interpret the bidding and assignment phases as a

simultaneous “approximate” coordinate descent step for all price coordi-
nates that increase during the iteration. The coordinate steps are aimed
at minimizing approximately the dual function. In particular, it can be
shown that the price pj of each object j that receives a bid during the as-
signment phase is increased to either a value that minimizes q(p) when all
other prices are kept constant or else exceeds the largest such value by no
more than ε.

Figure 2.1.2 proves this property and suggests that the amount of
deterioration of the dual cost is at most ε. Indeed, for the Gauss-Seidel
version of the algorithm this can be deduced from the argument given in
Fig. 2.1.2 and is left as an exercise for the reader.

2.1.3 Variants of the Auction Algorithm

There are several variants of the auction algorithm that differ from each
other in small details. For example, as mentioned earlier, one or several
persons may bid simultaneously with objects being awarded to the highest
bidders, the price increment may be slightly different than the one of Eq.
(2.5), etc. The important ingredients of the method are that for each
iteration:

(a) ε-CS is maintained.

(b) At least one unassigned person gets assigned to some object, and the
price of this object is increased by at least βε, where β is some fixed
positive constant. Furthermore, the person previously assigned to

8 Auction Algorithms for the Assignment Problem Chap. 2

Figure 2.1.1: Form of the dual cost along the price coordinate pj . From the

definition (2.9) of the dual cost q, the right directional derivative of q along pj is

d+j = 1− (number of persons i with j ∈ A(i) and pj < yij),

where

yij = aij − max
k∈A(i), k 6=j

{aik − pk}

is the level of pj below which j is the best person for person i. The break points

are yij for all i such that j ∈ A(i). Let i be a person that attains the maximum

in max{i|j∈A(i)}{aij−pj} and let y = y
ij

. Let also î be a person that attains the

maximum in max{i|j∈A(i), i 6=i}{aij − pj} and let ŷ = yîj . Note that the interval

[ŷ, y] is the set of points that minimize q along the coordinate pj .

Let pj be the price of j just before an iteration at which j receives a bid and
let p′j be the price of j after the iteration. We claim that ŷ ≤ p′j ≤ y+ ε. Indeed,

if i is the person that bids and wins j during the iteration, then p′j = yij + ε,

implying that p′j ≤ y + ε. To prove that p′j ≥ ŷ, we note that if pj ≥ ŷ, we must

also have p′j ≥ ŷ, since p′j ≥ pj . On the other hand, if p′j < ŷ, there are two
possibilities:

(1) At the start of the iteration, i was not assigned to j. In this case, either i was
unassigned in which case i will bid for j so that p′j = y+ ε, or else i was assigned

to an object j 6= j, in which case by ε-CS,

a
ij
− pj − ε ≤ ai j − pj ≤ max

k∈A(i), k 6=j

{a
ik
− pk} = a

ij
− y.

Thus, pj ≥ y − ε, implying that p′j ≥ y (since a bid increases a price by at least

ε). In both cases we have p′j ≥ y ≥ ŷ.

(2) At the start of the iteration, i was assigned to j. In this case, î was not
assigned to j, so by repeating the argument of the preceding paragraph with î
and ŷ replacing i and y, respectively, we obtain p′j ≥ ŷ.

Sec. 2.1 The Auction Algorithm for the Symmetric Assignment Problem 9

an object that receives a bid during the iteration (if any) becomes
unassigned.

(c) No price is decreased and every object that was assigned at the start
of the iteration remains assigned at the end of the iteration (although
the person assigned to it may change).

Any variant of the auction algorithm that obeys these three rules can be
readily shown to have the termination property given in Prop. 2.1.2.

For example, in Section 2.2.3, we will focus on a special type of assign-
ment problem, which involves groups of persons that are indistinguishable
in the sense that they can be assigned to the same objects and with the
same corresponding values. We will develop there a special variant of the
auction algorithm that combines many bids into a “collective” bid for an
entire group of similar persons. Not only this improves the efficiency of the
method, but it also provides the vehicle for extending the auction algorithm
to other problems, such as max-flow, transportation, and transhipment, as
we will discuss in Chapter 4.

2.1.4 Computational Complexity – ε-Scaling

As noted in Section 1.3.3, the running time of the auction algorithm can
depend strongly on the value of ε as well as the maximum absolute object
value

C = max
(i,j)∈A

|aij |.

In practice, the dependence of the running time on ε and C can be signifi-
cant, as can be seen in the examples of Section 1.4.

The practical performance of the auction algorithm is often consid-
erably improved by using the idea of ε-scaling , which was briefly discussed
in Section 1.3.3. ε-scaling consists of applying the algorithm several times,
starting with a large value of ε and successively reducing ε up to some final
value ε such that nε is deemed sufficiently small (cf. Prop. 2.1.2). Each
application of the algorithm, called a scaling phase, provides good initial
prices for the next application. The value of ε used for the (k+ 1)st scaling
phase is denoted by εk. The sequence εk is generated by

εk+1 =
εk

θ
, k = 0, 1, . . . , (2.10)

where ε0 is a suitably chosen starting value of ε, and θ is an integer with
θ > 1.†

In Section 2.3 we will derive an estimate of the worst-case running
time of the auction algorithm with ε-scaling. This estimate isO

(
nA ln(ε0/ε)

)
,

† In practice, if aij are integer, they are usually first multiplied by n+ 1 and
the auction algorithm is applied with progressively lower values of ε, to the point
where ε becomes 1 or smaller. In this case, typical values for sparse problems,

10 Auction Algorithms for the Assignment Problem Chap. 2

where A is the number of arcs in the underlying graph of the assignment
problem, and ε0 and ε are the initial and final values of ε, respectively. Our
analysis requires a few assumptions about the way the auction algorithm
and the scaling process are implemented. In particular:

(a) We assume that a Gauss-Seidel implementation is used, where only
one person submits a bid at each iteration.

(b) We require that each scaling phase begins with the empty assignment.

(c) We require that the initial prices for the first scaling phase are 0, and
the initial prices for each subsequent phase are the final prices of the
preceding phase. Furthermore, at each scaling phase, we introduce a
modification of the scalars aij , which will be discussed later.

(d) We introduce a data structure, which ensures that the bid of a person
is efficiently computed.

The above requirements are essential for obtaining a favorable worst-case
estimate of the running time. It is doubtful, however, that strict adherence
to these requirements is essential for good practical performance. Moreover,
it is possible that in a given problem, ε-scaling may not lead to more efficient
computation. A typical case where this can happen is when good initial
prices are already known through a combination of heuristics, preliminary
computations, or learned experience with similar assignment problems. In
such cases a small value of ε may lead to high quality and even optimal
solutions at small computational cost.

2.2 EXTENSIONS OF THE AUCTION ALGORITHM

The auction algorithm can be extended to deal effectively with the special
features of modified versions of the assignment problem. In this section,
we develop several such extensions.

where A << n2, are

nC

5
≤ ε0 ≤ nC, 4 ≤ θ ≤ 10.

For nonsparse problems, sometimes ε0 = 1, which in effect bypasses ε-scaling,

works quite well. Note also that practical implementations of the auction al-

gorithm sometimes use an adaptive form of ε-scaling, whereby, within the kth

scaling phase, the value of ε is gradually increased to the value εk given above,

starting from a relatively small value, based on the results of the computation.

Sec. 2.2 Extensions of the Auction Algorithm 11

2.2.1 Reverse Auction

In the auction algorithm, persons compete for objects by bidding and rais-
ing the price of their best object. It is possible to use an alternative form of
the auction algorithm, called reverse auction, where, roughly, the objects
compete for persons by essentially offering discounts.

To describe this algorithm, we introduce a profit variable πi for each
person i. Profits play for persons a role analogous to the role prices play
for objects. We can describe reverse auction in two equivalent ways: one
where unassigned objects lower their prices as much as possible to attract
an unassigned person or to lure a person away from its currently held object
without violating ε-CS, and another where unassigned objects select a best
person and raise his or her profit as much as possible without violating ε-
CS. For analytical convenience, we will adopt the second description rather
than the first, leaving the proof of their equivalence as an exercise for the
reader.

Let us consider the following ε-CS condition for a (partial) assignment
S and a profit vector π = (π1, . . . , πn):

aij − πi ≥ max
k∈B(j)

{akj − πk} − ε, ∀ (i, j) ∈ S, (2.11)

where B(j) is the set of persons that can be assigned to object j,

B(j) =
{
i | (i, j) ∈ A

}
.

We assume that this set is nonempty for all j, which is of course required
for feasibility of the problem. Note the symmetry of this condition with the
corresponding one for prices; cf. Eq. (2.1). The reverse auction algorithm
starts with and maintains an assignment and a profit vector π satisfying
the above ε-CS condition. It terminates when the assignment is feasible.
At the beginning of each iteration, we have an assignment S and a profit
vector π satisfying the ε-CS condition (2.11).

Iteration of Reverse Auction

Let J be a nonempty subset of objects j that are unassigned under
the assignment S. For each object j ∈ J :

1. Find a “best” person ij such that

ij = arg max
i∈B(j)

{aij − πi},

12 Auction Algorithms for the Assignment Problem Chap. 2

and the corresponding value

βj = max
i∈B(j)

{aij − πi},

and find
ωj = max

i∈B(j), i 6=ij
{aij − πi}.

[If ij is the only person in B(j), we define ωj to be −∞ or, for
computational purposes, a number that is much smaller than
βj .]

2. Each object j ∈ J bids for person ij an amount

bijj = πij + βj − ωj + ε = aijj − ωj + ε.

3. For each person i that received at least one bid, increase πi to
the highest bid,

πi := max
j∈P (i)

bij ,

where P (i) is the set of objects from which i received a bid;
remove from the assignment S any pair (i, j) (if i was assigned
to some j under S), and add to S the pair (i, ji), where ji is
an object in P (i) attaining the maximum above.

Note that reverse auction is identical to (forward) auction with the
roles of persons and objects, and the roles of profits and prices interchanged.
Thus, by using the corresponding (forward) auction result (cf. Prop. 2.1.2),
we have the following proposition.

Proposition 2.2.1: If at least one feasible assignment exists, the
reverse auction algorithm terminates with a feasible assignment that
is within nε of being optimal (and is optimal if the problem data are
integer and ε < 1/n).

Combined Forward and Reverse Auction

One of the reasons we are interested in reverse auction is to construct
algorithms that switch from forward to reverse auction and back. Such
algorithms must simultaneously maintain a price vector p satisfying the

Sec. 2.2 Extensions of the Auction Algorithm 13

ε-CS condition (2.1) and a profit vector π satisfying the ε-CS condition
(2.11). To this end we introduce an ε-CS condition for the pair (π, p),
which (as we will see) implies the other two. Maintaining this condition is
essential for switching gracefully between forward and reverse auction.

Definition 2.2.1: An assignment S and a pair (π, p) are said to
satisfy ε-CS if

πi + pj ≥ aij − ε, ∀ (i, j) ∈ A, (2.12)

πi + pj = aij , ∀ (i, j) ∈ S. (2.13)

We have the following proposition.

Proposition 2.2.2: Suppose that an assignment S together with a
profit-price pair (π, p) satisfy ε-CS. Then:

(a) S and π satisfy the ε-CS condition

aij − πi ≥ max
k∈B(j)

{akj − πk} − ε, ∀ (i, j) ∈ S. (2.14)

(b) S and p satisfy the ε-CS condition

aij − pj ≥ max
k∈A(i)

{aik − pk} − ε, ∀ (i, j) ∈ S. (2.15)

(c) If S is feasible, then S is within nε of being an optimal assign-
ment.

Proof: (a) In view of Eq. (2.13), for all (i, j) ∈ S, we have pj = aij − πi,
so Eq. (2.12) implies that aij − πi ≥ akj − πk − ε for all k ∈ B(j). This
shows Eq. (2.14).

(b) The proof is similar to part (a), with the roles of π and p interchanged.

(c) Since by part (b) the ε-CS condition (2.15) is satisfied, Prop. 1.4 of
Section 1.3.3 implies that S is within nε of being optimal. Q.E.D.

We now introduce a combined forward/reverse auction algorithm.
The algorithm starts with and maintains an assignment S and a profit-price

14 Auction Algorithms for the Assignment Problem Chap. 2

pair (π, p) satisfying the ε-CS conditions (2.12) and (2.13). It terminates
when the assignment is feasible.

Combined Forward/Reverse Auction Algorithm

Step 1 (Run forward auction): Execute a finite number of iter-
ations of the forward auction algorithm (subject to the termination
condition), and at the end of each iteration (after increasing the
prices of the objects that received a bid) set

πi = aiji − pji (2.16)

for every person-object pair (i, ji) that entered the assignment during
the iteration. Go to Step 2.
Step 2 (Run reverse auction): Execute a finite number of iter-
ations of the reverse auction algorithm (subject to the termination
condition), and at the end of each iteration (after increasing the
profits of the persons that received a bid) set

pj = aijj − πij (2.17)

for every person-object pair (ij , j) that entered the assignment during
the iteration. Go to Step 1.

Note that the additional overhead of the combined algorithm over
the forward or the reverse algorithm is minimal; just one update of the
form (2.16) or (2.17) is required per iteration for each object or person
that received a bid during the iteration. An important property is that
these updates maintain the ε-CS conditions (2.12) and (2.13) for the pair
(π, p), and therefore, by Prop. 2.2.2, maintain the required ε-CS conditions
(2.14) and (2.15) for π and p, respectively. This is shown in the following
proposition.

Proposition 2.2.3: If the assignment and the profit-price pair avail-
able at the start of an iteration of either the forward or the reverse
auction algorithm satisfy the ε-CS conditions (2.12) and (2.13), the
same is true for the assignment and the profit-price pair obtained at
the end of the iteration, provided Eq. (2.16) is used to update π (in
the case of forward auction), and Eq. (2.17) is used to update p (in
the case of reverse auction).

Sec. 2.2 Extensions of the Auction Algorithm 15

Proof: Assume for concreteness that forward auction is used, and let (π, p)
and (π, p) be the profit-price pair before and after the iteration, respec-
tively. Then, pj ≥ pj for all j (with strict inequality if and only if j
received a bid during the iteration). Therefore, we have πi + pj ≥ aij − ε
for all (i, j) such that πi = πi. Furthermore, we have πi+pj = πi+pj = aij
for all (i, j) that belong to the assignment before as well as after the itera-
tion. Also, in view of the update (2.16), we have πi +pji = aiji for all pairs
(i, ji) that entered the assignment during the iteration. What remains is
to verify that the condition

πi + pj ≥ aij − ε, ∀ j ∈ A(i), (2.18)

holds for all persons i that submitted a bid and were assigned to an object,
say ji, during the iteration. Indeed, for such a person i, we have, by Eq.
(2.4),

pji = aiji − max
j∈A(i), j 6=ji

{aij − pj}+ ε,

which implies that

πi = aiji − pji ≥ aij − pj − ε ≥ aij − pj − ε, ∀ j ∈ A(i).

This shows the desired relation (2.18). Q.E.D.

Note that during forward auction the object prices pj increase while
the profits πi decrease, but exactly the opposite happens in reverse auction.
For this reason, the termination proof that we used for forward and for
reverse auction does not apply to the combined method. Indeed, it is
possible to construct examples of feasible problems where the combined
method never terminates if the switch between forward and reverse auctions
is done arbitrarily. However, it is easy to provide a device guaranteeing that
the combined algorithm terminates for a feasible problem; it is sufficient to
ensure that some “irreversible progress” is made before switching between
forward and reverse auction. One easily implementable possibility is to
refrain from switching until the number of assigned person-object pairs
increases by at least one.

The combined forward/reverse auction algorithm often works sub-
stantially faster than the forward version. It seems to be affected less by
“price wars,” that is, protracted sequences of small price rises by a number
of persons bidding for a smaller number of objects. Price wars can still oc-
cur in the combined algorithm, but they arise through more complex and
unlikely problem structures than in the forward algorithm. For this reason
the combined forward/reverse auction algorithm depends less on ε-scaling
for good performance than its forward counterpart; in fact, starting with
ε = 1/(n+ 1), thus bypassing ε-scaling, is sometimes the best choice.

16 Auction Algorithms for the Assignment Problem Chap. 2

2.2.2 Auction Algorithms for Asymmetric Assignment

Reverse auction can be used in conjunction with forward auction to pro-
vide algorithms for solving the asymmetric assignment problem, where the
number of objects n is larger than the number of persons m. Here we still
require that each person be assigned to some object, but we allow objects
to remain unassigned. As before, an assignment S is a (possibly empty)
set of person-object pairs (i, j) such that j ∈ A(i) for all (i, j) ∈ S; for each
person i there can be at most one pair (i, j) ∈ S; and for every object j
there can be at most one pair (i, j) ∈ S. The assignment S is said to be
feasible if all persons are assigned under S.

The corresponding linear programming problem is

maximize
∑

(i,j)∈A

aijxij

subject to
∑

j∈A(i)

xij = 1, ∀ i = 1, . . . ,m,

∑
i∈B(j)

xij ≤ 1, ∀ j = 1, . . . , n,

0 ≤ xij , ∀ (i, j) ∈ A.

We can convert this program to the transhipment problem

minimize
∑

(i,j)∈A

(
−aij

)
xij

subject to
∑

j∈A(i)

xij = 1, ∀ i = 1, . . . ,m,

∑
i∈B(j)

xij + xsj = 1, ∀ j = 1, . . . , n,

n∑
j=1

xsj = n−m,

0 ≤ xij , ∀ (i, j) ∈ A,
0 ≤ xsj , ∀ j = 1, . . . , n,

by replacing maximization by minimization, by reversing the sign of aij ,
and by introducing a supersource node s, which is connected to each object
node j by an arc (s, j) of zero cost and feasible flow range [0,∞) (see Fig.
2.2.1).

Sec. 2.2 Extensions of the Auction Algorithm 17

Figure 2.2.1: Converting an asymmetric assignment problem into a minimum

cost flow problem involving a supersource node s and a zero cost artificial arc

(s, j) with feasible flow range [0,∞) for each object j.

Using the duality theory of Section 1.3, it can be seen that the corre-
sponding dual problem is

minimize

m∑
i=1

πi +

n∑
j=1

pj − (n−m)λ

subject to πi + pj ≥ aij , ∀ (i, j) ∈ A,
λ ≤ pj , ∀ j = 1, . . . , n,

(2.19)

where we have converted maximization to minimization, we have used −πi
in place of the price of each person node i, and we have denoted by λ the
price of the supersource node s.

We now introduce an ε-CS condition for an assignment S and a pair
(π, p).

18 Auction Algorithms for the Assignment Problem Chap. 2

Definition 2.2.2: An assignment S and a pair (π, p) are said to
satisfy ε-CS if

πi + pj ≥ aij − ε, ∀ (i, j) ∈ A, (2.20)

πi + pj = aij , ∀ (i, j) ∈ S, (2.21)

pj ≤ min
k: assigned under S

pk, ∀ j that are unassigned under S.

(2.22)

The following proposition clarifies the significance of the preceding
ε-CS condition.

Proposition 2.2.4: If a feasible assignment S satisfies the ε-CS
conditions (2.20)-(2.22) together with a pair (π, p), then S is within
mε of being optimal for the asymmetric assignment problem. The
triplet (π̂, p̂, λ), where

λ = min
k: assigned under S

pk, (2.23)

π̂i = πi + ε, ∀ i = 1, . . . ,m, (2.24)

p̂j =

{
pj if j is assigned under S,

λ if j is unassigned under S,
∀ j = 1, . . . , n, (2.25)

is within mε of being an optimal solution of the dual problem (2.19).

Proof: For any feasible assignment
{

(i, ki) | i = 1, . . . ,m
}

and for any
triplet (π, p, λ) satisfying the dual feasibility constraints πi + pj ≥ aij for
all (i, j) ∈ A and λ ≤ pj for all j, we have

m∑
i=1

aiki ≤
m∑
i=1

πi +

m∑
i=1

pki ≤
m∑
i=1

πi +

n∑
j=1

pj − (n−m)λ.

By maximizing over all feasible assignments
{

(i, ki) | i = 1, . . . ,m
}

and by
minimizing over all dual-feasible triplets (π, p, λ), we see that

A∗ ≤ D∗,

Sec. 2.2 Extensions of the Auction Algorithm 19

where A∗ is the optimal assignment value and D∗ is the minimal dual cost.
Let now S =

{
(i, ji) | i = 1, . . . ,m

}
be the given assignment satisfying

ε-CS together with (π, p), and consider the triplet (π̂, p̂, λ) defined by Eqs.
(2.23)-(2.25). Since for all i we have π̂i + p̂ji = aij + ε, we obtain

A∗ ≥
m∑
i=1

aiji

=

m∑
i=1

π̂i +

m∑
i=1

p̂ji −mε

≥
m∑
i=1

π̂i +

n∑
j=1

p̂j − (n−m)λ−mε

≥ D∗ −mε,

where the last inequality holds because the triplet (π̂, p̂, λ) is feasible for
the dual problem. Since we showed earlier that A∗ ≤ D∗, the desired
conclusion follows. Q.E.D.

Consider now trying to solve the asymmetric assignment problem by
means of auction. We can start with any assignment S and pair (π, p)
satisfying the first two ε-CS conditions (2.20) and (2.21), and perform a
forward auction (as defined earlier for the symmetric assignment problem)
up to the point where each person is assigned to a distinct object. For a
feasible problem, by essentially repeating the proof of Prop. 2.1.2 for the
symmetric case, it can be seen that this will yield, in a finite number of
iterations, a feasible assignment S satisfying the first two conditions (2.20)
and (2.21). However, this assignment may not be optimal, because the
prices of the unassigned objects j are not minimal; that is, they do not
satisfy the third ε-CS condition (2.22).

To remedy this situation, we introduce a modified form of reverse
auction to lower the prices of the unassigned objects so that, after several
iterations in which persons may be reassigned to other objects, the third
condition, (2.22), is satisfied. We will show that the assignment thus ob-
tained satisfies all the ε-CS conditions (2.20)-(2.22), and by Prop. 2.2.4, is
optimal within mε (and thus optimal if the problem data are integer and
ε < 1/m).

The modified reverse auction starts with a feasible assignment S and
with a pair (π, p) satisfying the first two ε-CS conditions (2.20) and (2.21).
[For a feasible problem, such an S and (π, p) can be obtained by regular
forward or reverse auction, as discussed earlier.] Let us denote by λ the
minimal assigned object price under the initial assignment,

λ = min
j: assigned under the
initial assignment S

pj .

20 Auction Algorithms for the Assignment Problem Chap. 2

The typical iteration of modified reverse auction is the same as the one of
reverse auction, except that only unassigned objects j with pj > λ par-
ticipate in the auction. In particular, the algorithm maintains a feasible
assignment S and a pair (π, p) satisfying Eqs. (2.20) and (2.21), and ter-
minates when all unassigned objects j satisfy pj ≤ λ, in which case it will
be seen that the third ε-CS condition (2.22) is satisfied as well. The scalar
λ is kept fixed throughout the algorithm.

Iteration of Reverse Auction for Asymmetric Assignment

Select an object j that is unassigned under the assignment S and
satisfies pj > λ (if no such object can be found, the algorithm termi-
nates). Find a “best” person ij such that

ij = arg max
i∈B(j)

{aij − πi},

and the corresponding value

βj = max
i∈B(j)

{aij − πi}, (2.26)

and find
ωj = max

i∈B(j), i 6=ij
{aij − πi}. (2.27)

[If ij is the only person in B(j), we define ωj to be −∞.] If λ ≥ βj−ε,
set pj := λ and go to the next iteration. Otherwise, let

δ = min{βj − λ, βj − ωj + ε}. (2.28)

Set
pj := βj − δ, (2.29)

πij := πij + δ, (2.30)

add to the assignment S the pair (ij , j), and remove from S the pair
(ij , j′), where j′ is the object that was assigned to ij under S at the
start of the iteration.

Note that the formula (2.28) for the bidding increment δ is such that
the object j enters the assignment at a price which is no less that λ [and
is equal to λ if and only if the minimum in Eq. (2.28) is attained by the
first term]. Furthermore, when δ is calculated (that is, when λ > βj −
ε) we have δ ≥ ε, so it can be seen from Eqs. (2.29) and (2.30) that,
throughout the algorithm, prices are monotonically decreasing and profits

Sec. 2.2 Extensions of the Auction Algorithm 21

are monotonically increasing. The following proposition establishes the
validity of the method.

Proposition 2.2.5: The preceding reverse auction algorithm for the
asymmetric assignment problem terminates with an assignment that
is within mε of being optimal.

Proof: In view of Prop. 2.2.4, the result will follow once we prove the
following:

(a) The modified reverse auction iteration preserves the first two ε-CS
conditions (2.20) and (2.21), as well as the condition

λ ≤ min
j: assigned under the
current assignment S

pj , (2.31)

so upon termination of the algorithm (necessarily with the prices of
all unassigned objects less or equal to λ) the third ε-CS condition,
(2.22), is satisfied.

(b) The algorithm terminates.

We will prove these facts in sequence.
We assume that the conditions (2.20), (2.21), and (2.31) are satisfied

at the start of an iteration, and we will show that they are also satisfied at
the end of the iteration. First consider the case where there is no change
in the assignment, which happens when λ ≥ βj − ε. Then Eqs. (2.21)
and (2.31) are automatically satisfied at the end of the iteration; only pj
changes in the iteration according to

pj := λ ≥ βj − ε = max
i∈B(j)

{aij − πi} − ε,

so the condition (2.20) is also satisfied at the end of the iteration.
Next consider the case where there is a change in the assignment

during the iteration. Let (π, p) and (π, p) be the profit-price pair before and
after the iteration, respectively, and let j and ij be the object and person
involved in the iteration. By construction [cf. Eqs. (2.29) and (2.30)], we
have πij +pj = aijj , and since πi = πi and pk = pk for all i 6= ij and k 6= j,
we see that the condition (2.21) (πi + pk = aik) is satisfied for all assigned
pairs (i, k) at the end of the iteration.

To show that Eq. (2.20) holds at the end of the iteration, i.e.,

πi + pk ≥ aik − ε, ∀ (i, k) ∈ A, (2.32)

22 Auction Algorithms for the Assignment Problem Chap. 2

consider first objects k 6= j. Then, pk = pk and since πi ≥ πi for all i,
the above condition holds, since our hypothesis is that at the start of the
iteration we have πi + pk ≥ aik − ε for all (i, k). Consider next the case
k = j. Then condition (2.32) holds for i = ij , since πij + pj = aijj . Also
using Eqs. (2.26)-(2.29) and the fact δ ≥ ε, we have for all i 6= ij

πi + pj = πi + pj

≥ πi + βj − (βj − ωj + ε)

= πi + ωj − ε
≥ πi + (aij − πi)− ε
= aij − ε,

so condition (2.32) holds for i 6= ij and k = j, completing its proof. To
see that condition (2.31) is maintained by the iteration, note that by Eqs.
(2.26), (2.27), and (2.29), we have

pj = βj − δ ≥ βj − (βj − λ) = λ.

Finally, to show that the algorithm terminates, we note that in the
typical iteration involving object j and person ij there are two possibilities:

(1) The price of object j is set to λ without the object entering the
assignment; this occurs if λ ≥ βj − ε.

(2) The profit of person ij increases by at least ε [this is seen from the
definition (2.28) of δ; we have λ < βj − ε and βj ≥ ωj , so δ ≥ ε].

Since only objects j with pj > λ can participate in the auction, possibility
(1) can occur only a finite number of times. Thus, if the algorithm does
not terminate, the profits of some persons will increase to ∞. This is
impossible, since when person i is assigned to object j, we must have by
Eqs. (2.21) and (2.31)

πi = aij − pj ≤ aij − λ,

so the profits are bounded from above by max(i,j)∈A aij − λ. Thus the
algorithm must terminate. Q.E.D.

Note that one may bypass the modified reverse auction algorithm by
starting the forward auction with all object prices equal to zero. Upon ter-
mination of the forward auction, the prices of the unassigned objects will
still be at zero, while the prices of the assigned objects will be nonnega-
tive. Therefore the ε-CS condition (2.22) will be satisfied, and the modified
reverse auction will be unnecessary.

Unfortunately the requirement of zero initial object prices is incom-
patible with ε-scaling. The principal advantage offered by the modified
reverse auction algorithm is that it allows arbitrary initial object prices for
the forward auction, thereby also allowing the use of ε-scaling. This can

Sec. 2.2 Extensions of the Auction Algorithm 23

be shown to improve the theoretical worst-case complexity of the method,
and is often beneficial in practice.

The method for asymmetric assignment problems just described op-
erates principally as a forward algorithm and uses reverse auction only
near the end, after the forward algorithm has terminated, to rectify viola-
tions of the ε-CS conditions. An alternative is to switch more frequently
between forward and reverse auction, similar to the algorithm described
earlier in this section for symmetric problems. We refer to Bertsekas and
Castañon [1992] for methods of this type, together with computational
results suggesting a more favorable practical performance over the asym-
metric assignment method given earlier.

Reverse auction can also be used in the context of other types of
network flow problems. One example is the variation of the asymmetric
assignment problem where persons (as well as objects) need not be assigned
if this degrades the assignment’s value. Another assignment-like problem
where reverse auction finds use is the multiassignment problem.

2.2.3 Auction Algorithms with Similar Persons

In this section, we develop an auction algorithm to deal efficiently with
assignment problems that involve groups of persons that are indistinguish-
able in the sense that they can be assigned to the same objects and with
the same corresponding benefits. This algorithm provides a general ap-
proach to extend the auction algorithm to the minimum cost flow problem
and some of its special cases, such as the max-flow and the transportation
problems, as we will show in Section 2.3.3.

We introduce the following definition in the context of the asymmetric
or the symmetric assignment problem:

Definition 2.2.3: We say that two persons i and i′ are similar , if

A(i) = A(i′), and aij = ai′j ∀ j ∈ A(i).

For each person i, the set of all persons similar to i is called the
similarity class of i.

When there are similar persons, the auction algorithm can get bogged
down into a long sequence of bids (known as a “price war”), whereby a
number of similar persons compete for a smaller number of objects by
making small incremental price changes. An example is given in Fig. 2.2.2.
It turns out that if one is aware of the presence of similar persons, one
can “compress” a price war within a similarity class into a single iteration.

24 Auction Algorithms for the Assignment Problem Chap. 2

It is important to note that the corresponding algorithm is still a special
case of the auction algorithms of Section 2.1; the computations are merely
streamlined by combining many bids into a “collective” bid by the persons
of a similarity class.

Figure 2.2.3: An example of an assignment problem with similar persons. Here

the persons 1, 2, and 3 form a similarity class. This structure induces a price war
in the auction algorithm. The persons 1, 2, and 3 will keep on bidding up the

prices of objects 1 and 2 until the prices p1 and p2 reach a sufficiently high level

(at least C+3), so that either object 3 or object 4 receives a bid from one of these
persons. The price increments will be at most 2ε.

The method to resolve a price war within a similarity class is to let
the auction algorithm run its course, then look at the final results and see
how they can be essentially reproduced with less calculation. In particular,
suppose that we have an assignment-price pair (S, p) satisfying ε-CS, and
that a similarity class M has m persons, only q < m of which are assigned
under S. Suppose that we restrict the auction algorithm to run within M ;
that is, we require the bidding person to be from M , until all persons in
M are assigned. We call this the M -restricted auction.

The final results of an M -restricted auction are quite predictable. In

Sec. 2.2 Extensions of the Auction Algorithm 25

particular, the set

Anew = The m objects that are assigned to persons in M at the end

of the M -restricted auction

consists of the set

Aold = The q objects that were assigned to persons in M at the beginning

of the M -restricted auction

plus m − q extra objects that are not in Aold. These extra objects are
those objects not in Aold that offered the best value aij−pj for the persons
i ∈ M (under the price vector p that prevailed at the start of the M -
restricted auction). For a more precise description, let us label the set of
objects not in Aold in order of decreasing value, that is,

{j | j /∈ Aold} = {j1, . . . , jm−q, jm−q+1, . . . , jn−q}, (2.33)

where for all persons i ∈M ,

aijr − pjr ≥ aijr+1 − pjr+1 , r = 1, . . . , n− q − 1. (2.34)

Then
Anew = Aold ∪ {j1, . . . , jm−q}. (2.35)

The price changes of the objects as a result of theM -restricted auction
can also be predicted to a great extent. In particular, the prices of the
objects that are not in Anew will not change, since these objects do not
receive any bid during the M -restricted auction. The ultimate prices of
the objects j ∈ Anew will be such that the corresponding values aij − pj
for the persons i ∈M will all be within ε of each other, and will be no less
than the value aijm−q+1 − pjm−q+1 of the next best object jm−q+1 minus ε.
At this point, to simplify the calculations, we can just raise the prices of
the objects j ∈ Anew so that their final values aij − pj for persons i ∈ M
are exactly equal to the value aijm−q+1 − pjm−q+1 of the next best object
jm−q+1 minus ε; that is, we set

pj := aij −
(
aijm−q+1 − pjm−q+1

)
+ ε, ∀ j ∈ Anew, (2.36)

where i is any person in M . It can be seen that this maintains the ε-
CS property of the resulting assignment-price pair, and that the desirable
termination properties of the algorithm are maintained (see the discussion
of the variants of the auction algorithm in Section 2.1.3).

To establish some terminology, consider the operation that starts with
an assignment-price pair (p, S) satisfying ε-CS and a similarity class M that
has m persons, only q of which are assigned under S, and produces through

26 Auction Algorithms for the Assignment Problem Chap. 2

an M -restricted auction an assignment-price pair specified by Eqs. (2.33)-
(2.36). We call this operation an M -auction iteration. Note that when
the similarity class M consists of a single person, an M -auction iteration
produces the same results as the simpler auction iteration given earlier.
Thus the algorithm that consists of a sequence of M -auction iterations
generalizes the auction algorithm given earlier, and deals effectively with
the presence of similarity classes. The table of Fig. 2.2.4 illustrates this
algorithm.

Suppose now that this algorithm is started with an assignment-price
pair for which the following property holds:

If AM is the set of objects assigned to persons of a similarity class
M , the values

aij − pj , i ∈M, j ∈ AM ,

are all equal, and no less than the values offered by all other objects
j /∈ AM minus ε.

Then it can seen from Eqs. (2.33)-(2.36) that throughout the algorithm
this property is maintained. Thus, if in particular the benefits aij of the
objects in a subset A′M ⊂ AM are equal, the prices pj , j ∈ A′M must all be
equal. This property will be useful in Section 2.3.3, where we will develop
the connection between the auction algorithm and some other price-based
algorithms for the max-flow and the minimum cost flow problems.

At Start Object Assigned Bidder Preferred

of Itera- Prices Pairs Class M Object(s)

tion #

1 0,0,3,4 (1,1),(2,2) {1, 2, 3} 1,2,3

2 C + 4 + ε, C + 4 + ε, 4 + ε, 4 (1,1),(2,2),(3,3) {4} 3

3 C + 4 + ε, C + 4 + ε, C + 4 + ε, 4 (1,1),(2,2),(4,3) {1, 2, 3} 1,2,4

Final 2C + 4 + 2ε, 2C + 4 + 2ε (1,1),(2,2)
C + 4 + ε, C + 4 + 2ε (4,3),(3,4)

Figure 2.2.4: Illustration of the algorithm based on M -auction iterations for

the problem of Fig. 2.2.2. In this example, the initial price vector is (0, 0, 3, 4)
and the initial partial assignment consists of the pairs (1, 1) and (2, 2). We first

perform an M -auction iteration for the similarity class {1, 2, 3}. We then perform
an iteration for person 4, and then again an M -auction iteration for the similarity
class {1, 2, 3}. The last iteration assigns the remaining object 4, and the algorithm
terminates without a price war of the type discussed in Fig. 2.2.2.

Sec. 2.3 Theoretical Aspects 27

2.2.4 Combinations with Dual Ascent Methods

2.3 THEORETICAL ASPECTS

In this section we derive an estimate of the worst-case running time of the
auction algorithm with ε-scaling. This estimate is O

(
nA ln(ε0/ε)

)
, where

A is the number of arcs in the underlying graph of the assignment problem,
and ε0 and ε are the initial and final values of ε, respectively. Our analysis
requires a few requirements about the way the auction algorithm and the
scaling process are implemented. These requirements were mentioned in
Section 2.1 and are repeated here for convenience:

(a) We assume that a Gauss-Seidel implementation is used, where only
one person submits a bid at each iteration.

(b) We require that each scaling phase begins with the empty assignment.

(c) We require that the initial prices for the first scaling phase are 0, and
the initial prices for each subsequent phase are the final prices of the
preceding phase. Furthermore, at each scaling phase, we introduce a
modification of the scalars aij , which will be discussed later.

(d) We introduce a data structure, which ensures that the bid of a person
is efficiently computed.

We first focus on the case where ε is fixed . For the data structure
mentioned in (d) above to work properly, we must assume that the values
aij − pj are integer multiples of ε throughout the auction algorithm. This
will be so if the aij and the initial prices pj are integer multiples of ε, since
in this case it is seen that the bidding increment, as given by Eq. (2.4),
will be an integer multiple of ε. (We will discuss later how to fulfill the
requirement that ε evenly divides the aij and the initial pj .) To motivate
the data structure, suppose that each time a person i scans all the objects
j ∈ A(i) to calculate a bid for the best object ji, he/she records in a list
denoted Cand(i) all the objects j 6= ji that are tied for offering the best
value; that is, they attain the maximum in the relation [cf. Eq. (2.2)]

vi = max
j∈A(i)

{aij − pj}. (2.37)

Along with each object j ∈ Cand(i), the price p′j of j that prevailed for
j at the time of the last scan of j is also recorded. The list Cand(i) is
called the candidate list of i, and can be used to save some computation in
iterations where there are ties in the best object calculation of Eq. (2.37).
In particular, if node i is unassigned and its candidate list Cand(i) contains
an object j whose current price pj is equal to the price p′j , we know that j

28 Auction Algorithms for the Assignment Problem Chap. 2

is the best object for i. Furthermore, the presence of a second object j in
the list with pj = p′j indicates that the bidding increment is exactly equal
to ε. This suggests the following implementation for a bid of a person i,
which will be assumed in the subsequent Prop. 2.3.1.

Bid Calculation

Step 1: Choose an unassigned person i.

Step 2: Examine the pairs (j, p′j) corresponding to the candidate
list Cand(i), starting at the top. Discard any for which p′j < pj .
Continue until reaching the end of the list, or the second element for
which p′j = pj . If the end is reached, empty the candidate list and
go to Step 4.

Step 3: Let ji be the first element on the list for which p′j = pj .
Discard the contents of the list up to, but not including, the second
such element. Place a bid on ji at price level pji + ε, assigning i to
ji and breaking any prior assignment of ji.

Step 4: Scan the objects in A(i), determining an object ji of max-
imum value, the next best value wi, as given by Eq. (2.3), and all
objects (other than ji) tied at value level wi, and record these objects
in the candidate list together with their current prices. Submit a bid
for ji at price level biji , as given by Eq. (2.4), assigning i to ji and
breaking any prior assignment of ji.

We note that candidate lists are often used in the calculations of
various auction algorithms to improve theoretical efficiency. For example
they will also be used later in the algorithms of Sections 2.3 and 2.4.

The complexity analysis of the auction algorithm is based on the
following proposition, which estimates the amount of computation needed
to reduce the violation of CS by a given factor r > 1; that is, to obtain a
feasible assignment and price vector satisfying ε-CS, starting from a feasible
assignment and price pair satisfying rε− CS. Because each price increase
is of size at least ε, the value

vi = max
j∈A(i)

{aij − pj}

decreases by at least ε each time the prices pj of all the objects j ∈ A(i) that
attain the maximum above increase by at least ε. The significance of the
preceding method for bid calculation is that for vi to decrease by at least
ε, it is sufficient to scan the objects in A(i) in Step 4 only once. Assuming
that the problem is feasible, we will provide in the following proposition an

Sec. 2.3 Theoretical Aspects 29

upper bound on the amount by which vi can decrease, thereby bounding
the number of bids that a person can submit in the course of the algorithm,
and arriving at a running time estimate.

Proposition 2.3.2: Let the auction algorithm be applied to a fea-
sible assignment problem, with a given ε > 0 and with the bid cal-
culation method just described. Assume that:

(1) All the scalars aij and all the initial object prices are integer
multiples of ε.

(2) For some scalar r ≥ 1, the initial object prices satisfy rε-CS
together with some feasible assignment.

Then the running time of the algorithm is O(rnA).

Proof: Let p0 be the initial price vector and let S0 be the feasible as-
signment together with which p0 satisfies rε-CS. Let also (S, p) be an
assignment-price pair generated by the algorithm prior to termination (so
that S is infeasible). Define for all persons i

vi = max
j∈A(i)

{aij − pj}, v0i = max
j∈A(i)

{aij − p0j}.

The values vi are monotonically nonincreasing in the course of the algo-
rithm. We will show that the differences v0i − vi are upper bounded by
(r + 1)(n− 1)ε.

Let i be a person that is unassigned under S. We claim that there
exists a path of the form

(i, j1, i1, . . . , jm, im, jm+1)

where m ≥ 0 and:

(1) jm+1 is unassigned under S.

(2) If m > 0, then for k = 1, . . . ,m, ik is assigned to jk under S and is
assigned to jk+1 under S0.

This can be shown constructively using the following algorithm: Let j1 be
the object assigned to i under S0. If j1 is unassigned under S, stop; else
let i1 be the person assigned to j1 under S, and note that i1 6= i. Let j2
be the person assigned to i1 under S0, and note that j2 6= j1 since j1 is
assigned to i under S0 and i1 6= i. If j2 is unassigned under S, stop; else
continue similarly. This procedure cannot produce the same object twice,
so it must terminate with the properties (1) and (2) satisfied after m + 1
steps, where 0 ≤ m ≤ n− 2.

30 Auction Algorithms for the Assignment Problem Chap. 2

Since the pair (S0, p0) satisfies rε-CS, we have

v0i = max
j∈A(i)

{aij − pj} ≤ aij1 − p0j1 + rε,

ai1j1 − p0j1 ≤ ai1j2 − p
0
j2

+ rε,

. . .

aimjm − p0jm ≤ aimjm+1 − p0jm+1
+ rε.

Since the pair (S, p) satisfies ε-CS, we have

vi ≥ aij1 − pj1 − ε,

ai1j1 − pj1 ≥ ai1j2 − pj2 − ε,

. . .

aimjm − pjm ≥ aimjm+1 − pjm+1 − ε.

Since jm+1 is unassigned under S, we have pjm+1 = p0jm+1
, so by adding

the preceding inequalities, we obtain the desired relation

v0i − vi ≤ (r + 1)(m+ 1)ε ≤ (r + 1)(n− 1)ε, ∀ i. (2.38)

We finally note that because aij and p0j are integer multiples of ε,
all subsequent values of pj , aij − pj , and vi = maxj∈A(i){aij − pj} will
also be integer multiples of ε. Therefore, with the use of the candidate list
Cand(i), the typical bid calculation, as given earlier, scans only once the
objects in A(i) in Step 4 to induce a reduction of vi by at least ε. It follows
that the total number of computational operations for the bids of node i is
proportional to (r + 1)(n− 1)|A(i)|, where |A(i)| is the number of objects
in A(i). Thus, the algorithm’s running time is (r+ 1)(n− 1)

∑n
i=1 |A(i)| =

O(rnA), as claimed. Q.E.D.

Complexity with ε-Scaling

We will now estimate the running time of the auction algorithm with ε-
scaling. A difficulty here is that in order to use the estimate of Prop.
7.3, the aij and pj at each scaling phase must be integer multiples of the
prevailing ε for that phase. We bypass this difficulty as follows:

(a) We start the first scaling phase with pj = 0 for all j.

(b) We use the final prices of each scaling phase as the initial prices for
the next scaling phase.

(c) We choose ε, the final value of ε, to divide evenly all the aij . [We
assume that such a common divisor can be found. This will be true

Sec. 2.3 Theoretical Aspects 31

if the aij are rational. Otherwise, the aij may be approximated arbi-
trarily closely, say within some δ > 0, by rational numbers, and the
final assignment will be within n(ε + δ) of being optimal. If the aij
are integer, we choose ε = 1/(n+1), which also guarantees optimality
of the final assignment.] Furthermore, we choose ε0 to be equal to a
fraction of the range

C = max
(i,j)∈A

|aij |,

which is fixed and independent of the problem data.

(d) We replace each aij at the beginning of the (k + 1)st scaling phase
with a corrected value akij that is divisible by εk. The correction is of
size at most εk. In particular, we may use in place of aij ,

akij =
⌈aij
εk

⌉
εk, ∀ (i, j) ∈ A, k = 0, 1, . . .

However, no correction is made in the last scaling phase, since each
aij is divisible by ε [cf. (c) above].

It can be seen that since the a0ij and the initial (zero) pj used in the
first scaling phase are integer multiples of ε0, the final prices of the first
scaling phase are also integer multiples of ε0, and thus also integer multiples
of ε1 = ε0/θ (since θ is integer). Therefore, the a1ij and initial pj used in the
second scaling phase are integer multiples of ε1, which similarly guarantees
that the final prices of the second scaling phase are also integer multiples
of ε2 = ε1/θ. Continuing in this manner (or using induction), we see that
the object benefits and prices are integer multiples of the prevailing value
of ε throughout the algorithm.

Thus, we can use Prop. 7.3 to estimate the complexity of the (k+1)st
scaling phase as O(rknA), where rk is such that the initial prices pkj of the
scaling phase satisfy rkεk-CS with some feasible assignment Sk, and with
respect to the object benefits akij . Take Sk to be the final assignment of the
preceding (the kth) scaling phase, which must satisfy εk−1-CS (or θεk-CS)
with respect to the object benefits ak−1ij . Since, for all (i, j) ∈ A and k, we
have

|akij − a
k−1
ij | ≤ |akij − aij |+ |aij − a

k−1
ij | ≤ εk + εk−1 = (1 + θ)εk,

it can be seen, using the definition of ε-CS, that Sk and pkj must satisfy(
θ + 2(1 + θ)

)
εk-CS. It follows that we can use rk = θ + 2(1 + θ) in the

complexity estimate O(rknA) of the (k + 1)st scaling phase. Thus the
running time of all scaling phases except for the first is O(nA). Because ε0

is equal to a fixed fraction of the range C, the initial scaling phase will also
have a running time O(nA), since then the initial (zero) price vector will
satisfy rε0-CS with any feasible assignment, where r is some fixed constant.
Since εk = θεk−1 for all k = 0, 1, . . ., the total number of scaling phases is

32 Auction Algorithms for the Assignment Problem Chap. 2

O
(
log(ε0/ε)

)
, and it follows that the running time of the auction algorithm

with ε-scaling is O
(
nA log(ε0/ε)

)
.

Suppose now that the aij are integer, and that we use ε equal to
1/(n+1) and ε0 equal to a fixed fraction of the benefit range C. Then ε0/ε =
O(nC), and an optimal assignment will be found with O

(
nA log(nC)

)
com-

putation. This is a worst-case estimate. In practice, the average running
time of the algorithm with ε-scaling seems to grow proportionally to some-
thing like A log n log(nC).

We note that the implementation using the candidate lists was im-
portant for the proof of Prop. 7.3 and the O

(
nA log(ε0/ε)

)
running time of

the method with ε-scaling. However, it is doubtful that the overhead for
maintaining the candidate lists is justified. In practice, a simpler implemen-
tation is usually preferred, whereby each person scans all of its associated
objects at each bid, instead of using candidate lists. Also the approach of
modifying the aij to make them divisible by the prevailing value of ε, while
important for the complexity analysis, is of questionable practical use. It
is simpler and typically as effective in practice to forego this modification.
An alternative approach to the complexity analysis, which uses a slightly
different method for selecting the object that receives a bid, is described
in Section 9.6, in the context of auction algorithms for separable convex
problems.
Since termination of the auction algorithm can only occur with a feasible
assignment, when the problem is infeasible, the auction algorithm will keep
on iterating, as the user is wondering whether the problem is infeasible or
just hard to solve. Thus for problems where existence of a feasible assign-
ment is not known a priori, one must supplement the auction algorithm
with a mechanism to detect infeasibility. There are several such mecha-
nisms, which we will now discuss.

One criterion that can be used to detect infeasibility is based on the
maximum values

vi = max
j∈A(i)

{aij − pj}.

It can be shown that if the problem is feasible, then in the course of the
auction algorithm, all of these values will be bounded from below by a
precomputable bound, but if the problem is infeasible, some of these values
will be eventually reduced below this bound. In particular, suppose that
the auction algorithm is applied to a symmetric assignment problem with
initial object prices {p0j}. Then it can be shown (see the proof of Prop.
2.3.2) that if person i is unassigned with respect to the current assignment
S and the problem is feasible, then there is an augmenting path with respect
to S that starts at i. Furthermore, by adding the ε-CS condition along the
augmenting path, as in the proof of Prop. 2.3.2, we obtain

vi ≥ −(2n− 1)C − (n− 1)ε−max
j
{p0j}, (2.39)

Sec. 2.3 Theoretical Aspects 33

where C = max(i,j)∈A |aij |. If the problem is feasible, then as discussed
earlier, there exists at all times an augmenting path starting at each unas-
signed person, so the lower bound (2.39) on vi will hold for all unassigned
persons i throughout the auction algorithm. On the other hand, if the
problem is infeasible, some persons i will be submitting bids infinitely of-
ten, and the corresponding values vi will be decreasing towards −∞. Thus,
we can apply the auction algorithm and keep track of the values vi as they
decrease. Once some vi gets below its lower bound, we know that the
problem is infeasible.

Unfortunately, it may take many iterations for some vi to reach its
lower bound, so the preceding method may not work well in practice. An
alternative method to detect infeasibility is to convert the problem to a
feasible problem by adding a set of artificial pairs A to the original set A.
The benefits aij of the artificial pairs (i, j) should be very small, so that
none of these pairs participates in an optimal assignment unless the problem
is infeasible. In particular, it can be shown that if the original problem
is feasible, no pair (i, j) ∈ A will participate in the optimal assignment,
provided that

aij < −(2n− 1)C, ∀ (i, j) ∈ A, (2.40)

where C = max(i,j)∈A |aij |. To prove this by contradiction, assume that

by adding to the set A the set of artificial pairs A we create an optimal
assignment S∗ that contains a nonempty subset S of artificial pairs. Then,
for every assignment S consisting exclusively of pairs from the original set
A we must have ∑

(i,j)∈S

aij +
∑

(i,j)∈S∗−S

aij ≥
∑

(i,j)∈S

aij ,

from which ∑
(i,j)∈S

aij ≥
∑

(i,j)∈S

aij −
∑

(i,j)∈S∗−S

aij ≥ −(2n− 1)C.

This contradicts Eq. (2.40). Note that if aij ≥ 0 for all (i, j) ∈ A, the
preceding argument can be modified to show that it is sufficient to have
aij < −(n− 1)C for all artificial pairs (i, j).

On the other hand, the addition of artificial pairs with benefit −(2n−
1)C as per Eq. (2.40) expands the cost range of the problem by a factor
of (2n − 1). In the context of ε-scaling, this necessitates a much larger
starting value for ε and correspondingly large number of ε-scaling phases.
If the problem is feasible, these extra scaling phases are wasted. Thus for
problems which are normally expected to be feasible, it may be better to
introduce artificial pairs with benefits that are of the order of −C, and then
gradually scale downward these benefits towards the−(2n−1)C threshold if
artificial pairs persist in the assignments obtained by the auction algorithm.

34 Auction Algorithms for the Assignment Problem Chap. 2

This procedure of scaling downward the benefits of the artificial pairs can
be embedded in a number of ways within the ε-scaling procedure.

A third method to deal with infeasibility is based on the notion of
maximally feasible flows and the decomposition method discussed in Sec-
tion 3.1.4. It uses the property that even when the problem is infeasible,
the auction algorithm will find an assignment of maximal cardinality in a
finite number of iterations (this can be seen by a simple modification of the
proof of Prop. 2.3.2). The idea now is to modify the auction algorithm so
that during the first scaling phase we periodically check for the existence
of an augmenting path from some unassigned person to some unassigned
object. Once the cardinality of the current assignment becomes maximal
while some person still remains unassigned, this check will establish that
the problem is infeasible. With this modification, the auction algorithm
will either find a feasible assignment and a set of prices satisfying ε-CS, or
it will establish that the problem is infeasible and simultaneously obtain
an assignment of maximal cardinality. In the former case, the algorithm
will proceed with subsequent scaling phases of the algorithm, but with the
breadth-first feature suppressed. In the latter case, we can use the maxi-
mal cardinality assignment obtained to decompose the problem into two or
three component problems, as will be discussed later. Each of these prob-
lems is either a symmetric or an asymmetric assignment problem, which
can be solved separately.

Note a nice feature of the approach just described: In the case of a
feasible problem, it involves little additional computation (the breadth-first
searches of the first scaling phase) over the unmodified algorithm. In the
case of an infeasible problem, the computation of the first scaling phase is
not wasted, since it provides good starting prices for the subsequent scaling
phases.

2.4 NOTES AND SOURCES

The auction algorithm, and the notions of ε-complementary slackness and
ε-scaling were first proposed by the author (Bertsekas [1979a]; see also Bert-
sekas [1988]). Another paper by the author, [Ber81], has focused on the
naive auction algorithm, and its combination with a primal-dual method
as a means to over come its convergence difficulties (cf. Section 1.4.1). The
worst-case complexity of the auction algorithm was given by Bertsekas and
Eckstein [1988], who used an alternative method of scaling whereby ε is
kept constant and the values aij are successively scaled to their final val-
ues; see also the complexity analysis in Bertsekas and Tsitsiklis [1989].
Tutorial presentations of auction algorithms that supplement this chapter
are given in Bertsekas [1990], [1992a]. A comprehensive presentation, in-

Sec. 2.4 Notes and Sources 35

cluding several additional auction variants, is given in Chapter 7 of the
book [Ber98].

Auction algorithms are particularly well-suited for parallel computa-
tion because both the bidding and the assignment phases are highly par-
allelizable. In particular, the bids can be computed simultaneously and
in parallel for all persons participating in the auction. Similarly, the sub-
sequent awards to the highest bidders can be computed in parallel by all
objects that received a bid. In fact these operations maintain their valid-
ity in an asynchronous environment where the bidding phase is executed
with price information that is outdated because of communication delays
between the processors of the parallel computing system. The parallel
computation aspects of the auction algorithm have been explored by Bert-
sekas and Tsitsiklis [1989], Bertsekas and Castañon [1991], Wein and Zenios
[1991], Amini [1994], and Bertsekas, Castañon, Eckstein, and Zenios [1995].

The reverse auction algorithm and its application in asymmetric as-
signment problems is due to Bertsekas, Castañon, and Tsaknakis [1993].
An extensive computational study of forward and reverse auction algo-
rithms is given in Castañon [1993]. Still another auction algorithm of
the forward-reverse type for asymmetric assignment problems is given by
Bertsekas and Castañon [1992]. An extension of the auction algorithm to
transportation problems based on the notion of similar persons is given in
Bertsekas and Castañon [1989].

Projected Additions

The material of the following 2024 paper on auction algorithms will be
incorporated in time in this chapter:

D. P. Bertsekas, “New Auction Algorithms for the Assignment Problem
and Extensions,” Results in Control and Optimization, Vol. 14, 2024.

Abstract: We consider the classical linear assignment problem, and we in-
troduce new auction algorithms for its optimal and suboptimal solution.
The algorithms are founded on duality theory, and are related to ideas of
competitive bidding by persons for objects and the attendant market equi-
librium, which underlie real-life auction processes. We distinguish between
two fundamentally different types of bidding mechanisms: aggressive and
cooperative. Mathematically, aggressive bidding relies on a notion of ap-
proximate coordinate descent in dual space, an ε-complementary slackness
condition to regulate the amount of descent approximation, and the idea of
ε-scaling to resolve efficiently the price wars that occur naturally as multi-
ple bidders compete for a smaller number of valuable objects. Cooperative
bidding avoids price wars through detection and cooperative resolution of
any competitive impasse that involves a group of persons.

We discuss the relations between the aggressive and the cooperative
bidding approaches, we derive new algorithms and variations that combine

36 Auction Algorithms for the Assignment Problem Chap. 2

ideas from both of them, and we also make connections with other primal-
dual methods, including the Hungarian method. Furthermore, our discus-
sion points the way to algorithmic extensions that apply more broadly to
network optimization, including shortest path, max-flow, transportation,
and minimum cost flow problems with both linear and convex cost func-
tions.

