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Network flow problems are one of the most important and frequently en-
countered class of optimization problems. They arise naturally in the anal-
ysis and design of large engineering systems, such as communication, trans-
portation, and manufacturing networks. They can also be used to model
important classes of combinatorial problems, such as assignment, shortest
path, and traveling salesman problems, which in turn arise in a broad va-
riety of applications. Moreover, they are an integral part of several types
of artificial intelligence software, such as those involving knowledge graphs
and path planning.

Loosely speaking, network flow problems consist of supply and de-
mand points (also called sources and sinks respectively), together with
several routes that connect these points and are used to transfer the sup-
ply to the demand. These routes may contain intermediate transhipment
points. Often, the supply, demand, and transhipment points can be mod-
eled by the nodes of a graph, which are connected through arcs. There are
costs for traversing the arcs, which encode our preferences for using some of
the arcs in place of others. There may also be constraints on the carrying
capacities of the arcs. Problems of this type are naturally modeled using
network optimization, whereby we aim to select routes that minimize the
cost of transfer of the supply to the demand.

We pay special attention to three major mathematical network opti-
mization problems:

(a) The assignment problem, which involves matching the elements of
two finite sets, on a one-to-one basis, at minimum cost.

(a) The shortest path problem, which involves finding a minimum cost
path(s) between designated origin(s) and destination(s).

(¢) The transhipment problem, also known as the network transport prob-
lem, which involves supply and demand points, but also arc capacity
constraints.

The transhipment problem, contains the other two as special cases,
but it can also be reformulated as an assignment problem. Moreover the
shortest path problem can also be reformulated as an assignment problem.
Because of these relations, algorithms that are used to solve one type of
problem, can be adapted to solve any other problem. This is a fundamental
conceptual point, which will be important for our development.

In this book we focus on a special class of network optimization meth-
ods. The starting point is an intuitive algorithm for the assignment prob-
lem, the auction algorithm, introduced by the author in the 1979 paper
[Ber79] and studied together with its variations since then, including in
the book [Ber98]. We will adapt this algorithm to solve other network
optimization problems in new ways.

Much of the new research in this book relates to adaptations of the
auction algorithm for the assignment problem, to apply to path construc-
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tion problems, including the classical shortest path problem. Auction al-
gorithms for path construction have an intuitive form, and will be used as
the basis for solution of other problems, including max-flow, transporta-
tion, and transhipment problems. Auction/path construction algorithms
will also be used, in both exact and approximate form, in an important
application area: reinforcement learning and sequential decision making,
particularly in contexts where the popular Monte Carlo tree search and
real-time dynamic programming methods have been used.

The present chapter has an introductory character, and aims at an
intuitive introduction of the principal conceptual ideas underlying auction
algorithms. In Sections 1.1 and 1.2, we will describe our principal problem
formulations and their interrelations. In Section 1.3, we will discuss another
fundamental concept, duality, which forms the mathematical foundation for
much of our development. Then in Section 1.4, we will outline and justify
auction algorithms, and their relation to primal and dual optimization,
focusing primarily on our two principal paradigms, assignment and shortest
path. In Section 1.4.4 we will provide a preview of ways that auction
algorithms can be fruitfully incorporated within the broad framework of
the reinforcement learning methodology.

Detailed discussions of auction algorithms for assignment and short-
est path problems will be given in Chapters 2 and 3, respectively. The
extension of the algorithmic ideas of Chapters 2 and 3 to transhipment
and network transport problems will be given in Chapter 4. The applica-
tion and adaptation of auction algorithms to reinforcement learning will be
discussed in Chapter 5. The material in this last chapter is optional and is
not needed for the developments of earlier chapters.

The author’s 1998 network optimization book [Ber98] (freely avail-
able on-line) serves to provide support for some of the more mathematical
aspects of the present book, including some proofs and computational com-
plexity analyses. It uses similar notation and terminology, and it discusses
a broader range of network algorithms and applications.

THREE FUNDAMENTAL NETWORK OPTIMIZATION
PROBLEMS

The problems discussed in this book involve a directed graph. The arcs of
the graph are denoted by (4, 7), where i and j are referred to as the start
and end nodes of the arc. The sets of nodes and the set of arcs are denoted
by N and A, respectively, and the graph itself is represented by the pair
(N, A). TIf (i,7) is an arc, it is possible that (j,4) is also an arc [separate
from (4,7)]. No self arcs of the form (i,¢) are allowed. For convenience of
presentation, we assume that for any two nodes 7 and j, there is at most
one arc with start node ¢ and end node j. For any node i we say that node
j is a downstream neighbor of i if (,7) is an arc.
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A path in a directed graph is a sequence of nodes (n1,n2,...,n;) with
k > 2 and a corresponding sequence of k—1 arcs such that the ith arc in the
sequence is (n;,n;+1). The nodes n1 and ny are called the origin (or start
node) and the destination (or end node) of the path, respectively. Note
that according to our definition, a path is directed in that all its arcs are
oriented in the direction from the origin to the destination.t A cycle is a
path with more than two nodes for which the start and end nodes are the
same (n1 = ng). Some additional terminology relating to graphs, paths,
flows, and other related notions will be introduced as we progress through
this chapter.

Graph concepts are fairly intuitive, and can be understood in terms
of suggestive figures, but often involve hidden subtleties. An extended
presentation is given in the appendix to this chapter; see also the author’s
network optimization book [Ber98]. We will now introduce three major
classes of problems that we will be dealing with.

1.1.1 The Assignment Problem

Suppose that there are n persons and n objects that we have to match on
a one-to-one basis. There is a value a;; for matching person i with object
J, and we want to assign persons to objects so as to maximize the total
value. There is also a restriction that person ¢ can be assigned to object j
only if (4,7) belongs to a given set of pairs A. The problem is represented
by the graph shown in Fig. 1.1.1.

Mathematically, we want to find a set of person-object pairs

(L,71)y -+, (nydn)

from A such that the objects ji,...,jn are all distinct, and the total value
>, aij; is maximized. Here we have considered the case where the num-
bers of persons and objects are equal. This is called the symmetric assign-
ment problem, to distinguish it from the asymmetric assignment problem
where the numbers of persons and objects are different.

The assignment problem is important in many practical contexts.
The most obvious ones are resource allocation problems, such as assigning
employees to jobs, machines to tasks, etc. There are also situations where
the assignment problem appears as a subproblem in methods for solving
more complex combinatorial problems.

1 In a more general definition of a path each arc of the path can have either
one of the two possible directions. This definition is used in the book [Ber98],
where a distinction is made between a path and a forward path, whose arcs are
all oriented in the forward direction from origin to destination. In the appendix
to this chapter, we will introduce this distinction, but for the moment our simpler
one-directional definition of a path will suffice.
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Figure 1.1.1: The graph representa-
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1.1.2 The Shortest Path Problem

Suppose that each arc (i,7) of a graph is assigned a scalar cost a;j, and
suppose that we define the cost of a path to be the sum of the costs of
its arcs. Given a pair of nodes, the shortest path problem is to find a
path that connects these nodes and has minimum cost. An analogy here is
made between arcs and their costs, and roads in a transportation network
and their lengths, respectively. Within this transportation context, the
problem becomes one of finding the shortest route between two geographical
points. Based on this analogy, the problem is referred to as the shortest
path problem, and the arc costs and path costs are also referred to as the
arc lengths and path lengths, respectively.

The shortest path problem arises in a surprisingly large number of
contexts. For example in a data communication network, a;; may denote
the average delay of a packet to cross the communication link (4,7), in
which case a shortest path is a minimum average delay path that can be
used for routing the packet from its origin to its destination.

As another example, if p;; is the probability that a given arc (i, 7) in
a communication network is usable, and each arc is usable independently
of all other arcs, then the product of the probabilities of the arcs of a path
provides a measure of reliability of the path. With this in mind, it is seen
that finding the most reliable path connecting two nodes is equivalent to
finding the shortest path between the two nodes with arc lengths (— In p;;).
In this context, the length of the path is equal to minus the logarithm of
the product of the probabilities of the arcs of the path. Thus finding a
shortest path is equivalent to finding the most reliable path (one for which
the product of the corresponding probabilities is maximized).

The shortest path problem also arises often as a subroutine in algo-
rithms that solve other more complicated problems. Within this context,
special considerations may come into play, such as for example whether
multiple instances of the shortest path problem need to be solved, in real
time and with similar data. We will see that auction algorithms are par-
ticularly well-suited for applications of this type, as they allow the use of
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the solution of a shortest path problem instance as a starting point for the
solution of a related problem instance.

1.1.3 The Network Transhipment Problem

To define the transhipment problem, we need the concept of the flow of
an arc, which can be viewed as a variable that measures the quantity that
is moving through the arc. Examples are electric current in an electric
circuit, water flow in a hydraulic network, car traffic on a street network,
material movement within a manufacturing system, etc. Mathematically,
the flow of an arc (4, 7) is simply a scalar (real number), which we usually
denote by x;;.

Given a graph (N, A), a set of flows « = {z4; | (i,j) € A} is referred
to as a flow vector (or simply flow when confusion cannot arise). For a
given flow vector and a node ¢, we call the scalar

Yi = Z Tij — Z Tjis (1.1)

{31G.3)eA} {3l eA}

the excess of @ (the terms imbalance of i and divergence of i have also been
used in the literature). Thus, y; is the total flow departing from node i
minus the total flow arriving at 7.

We say that node 7 is a source (respectively, sink) for the flow vector
x if the corresponding excess satisfies y; > 0 (respectively, y; < 0). If y; =0
for all i € NV, then z is called a circulation. These definitions are illustrated
in Fig. 1.1.2. Note that by adding Eq. (1.1) over all i € N, we obtain

Z yi = 0.
iEN

Every excess vector must satisfy this equation.

The network transhipment problem is to find a set of arc flows that
minimize a linear cost function, subject to the constraints that they produce
given node excesses and they lie within some given bounds; that is,

minimize Z i Tij (1.2)
(i,)eA
subject to the constraints
Z Tij — Z Tji = Si, VieN, (1.3)
{3l(i,5)e A} {3l(5,1) €A}
bij <z < ¢y, v (Z,]) S .A, (14)

where a;j, bij, cij, and s; are given scalars. We call Eq. (1.3) the conser-
vation of flow equation. We also use the following terminology:
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T12 =
ore:
(Source) (Neither a source
r13 =0 234 =0 nor a sink)
yz =3
(Source)

(a)

Y3 =
(b) A circulation

Figure 1.1.2: Illustration of flows x;; and the corresponding excesses y;. The
flow vector of (b) is a circulation because y; = 0 for all i.

ai; the cost coefficient (or simply cost) of (i, 7),
bij and c¢q5: the flow bounds of (i, j),
[bij, cij]: the capacity range of (i, j),

si: the supply of node i (when s; is negative, the scalar —s; is also
called the demand of 7).

Note the difference in terminology: the excess of a node corresponds to a
given flow vector, while the supply of a node is part of the problem data:
it is the target excess for the given problem. The conservation of flow
equation states that for a feasible flow vector the node excesses should be
equal to the node supplies.

For a typical application of the transhipment problem, think of the
nodes as locations (cities, warehouses, or factories) where a certain product
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is produced or consumed. Think of the arcs as transportation links between
the locations, each with transportation cost a;; per unit transported. The
problem then is to move the product from the production points to the con-
sumption points at minimum cost while observing the capacity constraints
of the transportation links.

The transhipment problem has many applications that are well be-
yond the transportation context just described. This will be shown in the
next section with a variety of examples, which illustrate how some im-
portant discrete/combinatorial problems can be modeled as transhipment
problems, and highlight the important connection between continuous and
discrete network optimization.

Alternative Transhipment Problem Formats - Uncapacitated
Transhipment Problem

There is a variant of the transhipment problem that deserves special men-
tion. This variant, called the uncapacitated format, arises in cases where
there is just a nonnegativity constraint on the flow of each arc (i, j), i.e.,
the arc flow constraints have the form

rather than
bij < iy < cij

[cf. Eq. (1.4)]. For example, there are problems where the arc flows are
naturally nonnegative and unbounded above, while the upper flow bounds
are implied by the conservation of flow Eq. (1.3), in which case we may
choose not to introduce them. In particular, the assignment and the short-
est path problems can be transformed into both the uncapacitated and the
capacitated transhipment formats, as we will see in the next section.

In practice, we may choose to adopt the uncapacitated format for
reasons of conceptual and algorithmic simplification. In this regard, it is
important to note that a capacitated transhipment problem can be con-
verted into an uncapacitated one with a suitable transformation (see the
book [Ber98], Section 4.1). Another possible transformation (also described
in [Ber98], Section 4.1) is to reduce the transhipment problem (1.2)-(1.4)
into the circulation format, whereby all the node supplies s; are 0.

Other transformations between different problem types and problem
formats are possible, and they will be discussed in some detail in the next
section. They are important for our purposes as they provide conceptual
unification. For example, when a theoretical concept, such as duality (see
Section 1.3), is developed for one network problem type, we can be sure
that a similar concept has a counterpart for related network problem types.
Moreover, once an algorithm, such as auction, has been developed for one
problem type, it is reasonable to expect that similar algorithms can be
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developed for related problems. The precise form of the transformation
from one format to another can be helpful in this algorithmic development
process.

PROBLEM RELATIONS AND TRANSFORMATIONS

In this section, we will illustrate how the three problems, assignment, short-
est path, and transhipment, are mathematically interrelated. In particular,
in Section 1.2.1 we will introduce some additional special cases and exten-
sions of the transhipment problem, including the classical transportation
problem, which provides the connecting link between the assignment and
transhipment problems.

In Section 1.2.2, we will discuss the mathematical connections be-
tween the different types of problems. In summary, we will show that:

(a) The assignment and shortest path problems (and several other in-
teresting types of network flow problems) can be viewed as special
cases of the network transhipment problem (both capacitated and
uncapacitated).

(b) The transhipment problem can be reformulated to an equivalent as-
signment problem, provided the supplies s;, and the lower and upper
capacity bounds b;; and c¢;; are integer.

(¢) The shortest path problem can be reformulated as an equivalent as-
signment problem.

The details of these transformations are somewhat tedious, and the reader
may wish to go through them lightly and return to them later as needed.
However, the transformations are conceptually important and practically
useful for translating the auction algorithm ideas from the assignment con-
text, where they are most intuitive, to other contexts, such as the shortest
path and transhipment problems.

1.2.1 Examples of Network Optimization Problems

We will now describe more formally the types of problems, which collec-
tively delineate the range of problems that we will be dealing with in this
book. Auction algorithms for these problems will be outlined in Section
1.4, and will be discussed in greater detail in subsequent chapters.

Example 1.2.1: The Assignment Problem

Let us consider the problem of assignment of n persons to n objects. We may
associate any assignment with a vector z = {x;; | (4,5) € A}, where z;; = 1
if person i is assigned to object j and z;; = 0 otherwise. The value of this
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assignment is Z(i,j)eA a;jxi;. The restriction of one object per person can
be stated as

Z iy =1, Vi=1,...,n, Z =1, Vji=1,...,n

{31G.5)eA} {il(i,5)€ A}

We may then formulate the assignment problem as the linear programming
problem

maximize E Q43545

(3,5)€A
subject to Z i =1, Vi=1,...,n,
{41(.4) €A} (1.5)
Z :E’ijzl, Vj:l,.‘.,n,
{il(4,5) €A}

0<m; <1, v (i,j) € A

Note that we have not restricted x;; to be either 0 or 1. As it turns out, this
is not necessary: the above linear program has the property that if it has a
feasible solution at all, then it has an optimal solution where all x;; are either
0 or 1. Moreover, the set of its optimal solutions includes all the optimal
assignments. This can be proved with the help of duality theory, which will
be discussed in Section 1.3.

We now argue that the assignment/linear program (1.5) is a tranship-
ment problem involving the graph shown in Fig. 1.1.1. Indeed, there are 2n
nodes: n corresponding to persons and n corresponding to objects. Also, for
every possible pair (i, 7) € A, there is an arc connecting person ¢ with object j.
The variable x;; is the flow of arc (4, 7). The constraint Z{jl(i,j)eA} zi; =1
indicates that the excess of person/node i should be equal to 1, while the
constraint Z{z’\(i,j)eA} x;; = 1 indicates that the excess of object/node j
should be equal to -1. Finally, we may view (—a;;) as the cost coefficient
of the arc (i,7) (by reversing the sign of a;;, we convert the problem from a
maximization to a minimization).

It is also possible to eliminate the upper bound constraints x;; < 1 from
the problem (1.5), since these constraints are implied by the conservation of
flow constraints Z{j\(i,j)eA} xij = 1. The resulting assignment problem can
be viewed as a special case of the uncapacitated transhipment problem.

Example 1.2.2: The Shortest Path Problem

It is possible to cast the problem of finding a shortest path from an origin
node r to destination node t in a directed graph as a transhipment problem
by specifying;:

(a) The supply of r and the demand of ¢ to be 1, with all other node supplies
being 0.
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(b) The capacity range of each arc (¢, j) to be [0, 1].
(¢) The cost coefficient of each arc (4,7) to be a;;, the length of arc (i, ).
This leads to the problem:

minimize E Qi Tij

(ij)EA
1 ifi=r,
subject to Z Tij — Z Tji = { -1 ifi=t, (1.6)
{31(.5) €A} {3lG.)eA} 0 otherwise,

OS.Z‘USL V(i,j)GA,

which we recognize as a transhipment problem.

However, for this problem to be equivalent to the shortest path problem,
a certain assumption must be satisfied: all cycles of the given graph must
have nonnegative length (the sum of their arc lengths must be nonnegative).
The reason is that the transhipment problem (1.6) allows feasible solutions
with positive flow along a cycle, whereas the shortest path problem does
not allow paths with cycles to be feasible solutions. The nonnegative length
cycle assumption ensures that the transhipment problem (1.6) has optimal
solutions that do not contain cycles with positive flow.

For another view of the relation between the shortest path problem and
the transhipment problem (1.6), let us consider any path P from r to ¢ that
contains no cycles, and the flow vector x with components given by

- { 1 if (z,]).belongs to P, (7
0 otherwise.

Then z is feasible for problem (1.6) and its cost is equal to the length of P.

Thus, if a flow vector = of the form (1.7) is an optimal solution of problem

(1.6), the corresponding path P is shortest.

Conversely, it can be shown that if problem (1.6) has at least one feasible
solution, then it has an optimal solution of the form (1.7), with a correspond-
ing path P that is shortest. This is not immediately apparent, but its proof
can be traced to a remarkable fact that can be shown in general about tran-
shipment problems with node supplies and arc flow bounds that are integer:
such problems, if they have an optimal solution, they have an integer optimal
solution, that is, a set of optimal arc flows that are integer. From this it can
be seen that if problem (1.6) has an optimal solution, it has one with arc
flows that are 0 or 1, and which is of the form (1.7) for some path P. This
path is shortest because its length is equal to the optimal cost of problem
(1.6), so it must be less or equal to the cost of any other flow vector of the
form (1.7), and therefore also less or equal to the length of any other path
from r to ¢t. Thus the shortest path problem is essentially equivalent with the
transhipment problem (1.6).

It is also possible to eliminate the upper bound constraints z;; < 1
from the transhipment problem (1.6), since these constraints are implied by

the conservation of flow constraints Z{j‘(i feay Tis = 1. Then the shortest
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path problem can be viewed as a special case of the uncapacitated tranship-
ment problem. Note that eliminating the upper bound constraints z;; < 1 is
essential for variants of the shortest path problem where there are multiple
origins, each with supply 1, and a single destination with demand equal to
the number of origins. In this case, each arc should be able to carry flows as
large as the number of origins, and it is just easier to allow this by discarding
any arc capacity constraints.

Example 1.2.3: The Fixed-Flow Problem

The fixed-flow problem is simply the special case of the transhipment prob-
lem, where there is a single source/origin, with given supply s > 0, a single
sink/destination, and all arc costs a;; are 0. Thus the objective here is fea-
sibility, i.e., transfer s units of flow from the origin to the destination, while
satisfying the arc capacity constraints; see Fig. 1.2.1 for an illustrative exam-
ple.

The uncapacitated case (z;; > 0) where s = 1 is the simplest of feasi-
bility problems, which we refer to as the path construction problem. Here we
are interested to find some path from source to sink, without regard to any
optimality properties.

Actually any feasibility instance of the transhipment problem (one where
all arc costs are 0 and the given supply of node i is s;) and nonzero lower arc
flow bounds b;; can be transformed into a fixed flow problem with zero lower
flow bounds. This can be done in two steps:

The first step is to set the lower flow bounds to zero by a translation
of variables, that is, by replacing x;; by x;; — b;;, and by adjusting the upper
flow bounds and the supplies according to

Cij = cij — bij,
S 1= 8; — Z bij + Z bji.
{71(.5) €A} {31, eA}

Optimal flows and the optimal value of the original problem are obtained by
adding b;; to the optimal flow of each arc (7, 7) and adding Z(i‘j)eA a;jbij to
the optimal value of the transformed problem, respectively.

The second step is to introduce an artificial origin node r and destina-
tion node t, arcs connecting r with every node ¢ with supply s; > 0 and arcs
(i,t) connecting every node i with supply s; < 0 to ¢, with corresponding
capacity constraints

Oél’mgsi, ngitg—si.

An example of this transcription is shown in Fig. 1.2.2 for the case of a
matching problem, the feasibility case of an assignment problem, where the
value a;; of any pair (4,7) is 0.

Note that the preceding transformation techniques can also be used to
convert any capacitated transhipment problem to one that has a single source
node, a single sink node, and lower arc flow bounds that are equal to 0.
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All arc capacities = 2

Figure 1.2.1: An example of a feasible solution of a fixed flow problem. There
is a single source (node 1), a single sink (node 4), there are no arc costs, and the
flow of each arc is constrained to lie between 0 and the arc capacity (2 in this
case).

LG (P

L5 2} Ls
L.(1 ) -
N \_/

Figure 1.2.2: An example of a problem of matching persons i to objects ',
transformed to a fixed flow problem. Artificial supply and demand nodes r and
t have been introduced, together with connecting arcs (r,4) and (i’,t) whose flow
is constrained to lie within the capacity range [0, 1].

Example 1.2.4: The Max-Flow Problem

The max-flow problem is closely related to the fixed flow problem, the only
difference being that instead of sending a fixed amount of supply from the
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source node r to the sink node ¢, we try to send the mazimum amount of supply
that the arc capacities will allow. Mathematically, we want to find a flow
vector that makes the excess of all nodes other than r and ¢ equal to 0 while
maximizing the excess of r. This is equivalent to solving the transhipment
problem illustrated in Fig. 1.2.3. As can be expected, algorithms for solving
the fixed flow problem can be adapted to solve the max-flow problem. A
simple approach for doing so is to solve a sequence of fixed flow problems with
ever increasing amounts of supply, up to the point where the supply becomes
so large that feasibility is violated. Of course this approach may have to be
streamlined for computational efficiency, depending on the context.

All arc cost coefficients are
zero except for ayy,

Source Sink

Artificial arc

Cost coefficient = -1

Figure 1.2.3: The representation of a max-flow problem as a transhipment
problem. We introduce an artificial arc with cost equal to -1 (or any other
negative number) from the sink ¢ to the source r. At the optimum, the flow z¢,
equals the maximum flow that can be sent from r to ¢ through the subgraph
obtained by deleting the artificial arc (¢, 7).

The max-flow problem arises in several practical contexts, such as cal-
culating the throughput of a highway system or a communication network. It
also arises often as a subproblem in more complicated problems or algorithms.
In particular, it bears a fundamental connection to the question of existence
of a feasible solution of a general transhipment problem (see the discussion
in [Ber98], Chapter 3). Moreover, several discrete/combinatorial optimiza-
tion problems can be formulated as max-flow problems (see the Exercises in
[Ber98], Chapter 3).

Example 1.2.5: The Transportation Problem

This problem has played a historically important role in the development of
network optimization, and finds wide use in applications, including in the con-
text of network transport (see Example 1.2.7). The transportation problem
has a graph structure similar to the one of the assignment problem. However,
the node supplies and demands need not be 1, and the numbers of sources
and sinks need not be equal. Instead, the supplies and demands are some
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positive numbers a; and f;, respectively. This in turn implies that the flow
of each arc from a source ¢ to a sink j should be no more than «; and ;.
Mathematically, the problem has the form

minimize E QijTij

(i,5)€A
subject to Z Ti; = o, Vi=1,...,m,
{1, e A} (1.8)
Z zij = By, Vji=1,...,n,
{il(i,5) €A}

0<zy < min{ai,ﬁj}, A (Z,j) e A.

The supplies a; and ; are given positive scalars, which for feasibility must

satisfy
Z ;= Z Bi,
i=1 j=1

(add the conservation of flow constraints).}

Clearly, this problem is a special case of a transhipment problem. In an
alternative formulation, the upper bound constraints x;; < min{as, 8;} are
discarded, since they are implied by the conservation of flow and the nonneg-
ativity constraints, thereby giving rise to a reformulation as an uncapacitated
transhipment problem.

For a practical example of a transportation problem that has a combi-
natorial flavor, suppose that we have m communication terminals, each to be
connected to one of n traffic concentrators. We introduce variables z;;, which
take the value 1 if terminal 7 is connected to concentrator j. Assuming that
concentrator j can be connected to no more than b; terminals, we obtain the
constraints

Z {Eijgbj, Vj:L...,’n,.
{il(i,5)e A}

Also, since each terminal must be connected to exactly one concentrator, we

have the constraints
Z xijzl, Vi:l,.‘.,m‘
{il(i,5)eA}

1 The 1975 Nobel prize in economics was awarded to the mathematician L.
Kantorovich and the economist T. Koopmans for the formulation and analysis of
the transportation problem and its variants. Important related work was done in
the 19th century by the mathematician G. Monge, hence the name “Kantorovich-
Monge problem” is often used. The transportation problem and a simplex-like
method for its solution are also credited to the M.I.T. professor F. L. Hitchcock
[Hit41]. According to the network optimization theorist D. R. Fulkerson [Ful56],
“The transportation problem was first formulated by the mathematician F. L.
Hitchcock in 1941; he also gave a computational procedure, much akin to the gen-
eral simplex method, for solving the problem.” Fulkerson also gives independent
credit to Koopmans; he was apparently unaware of Kantorovich’s work.
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Assuming that there is a cost a;; for connecting terminal ¢ to concentrator j,
the problem is to find the connection of minimum cost, that is, to minimize

E Q45 Tij5

{71(,5) €A}

subject to the preceding constraints.
This problem is not yet a transportation problem of the form (1.8) for
two reasons:

(a) The arc flows z;; are constrained to be 0 or 1.
(b) The constraints Z{jl(i feay Tij < b; are not equality constraints, as
required in problem (1.8).

It turns out, however, that we can ignore the 0-1 constraint on z;;j. As
discussed in connection with the shortest path and assignment problems,
even if we relax this constraint and replace it with the capacity constraint
0 < z;; <1, there is an optimal solution such that each z;; is either 0 or 1.

Furthermore, to convert the inequality constraints to equalities, we can
introduce a total of Z;:I b; —m “dummy” terminals that can be connected
at zero cost to all of the concentrators. In particular, we introduce a special
supply node 0 together with the constraint

n n
E Zoj = E bj —m,
j=1 j=1

and we change the inequality constraints Z;L:1 zij < b; to

m
Zoj =+ E Tij = bj.
i=1

The resulting problem has the transportation structure of problem (1.8), and
is equivalent to the original problem.

Example 1.2.6: Network Flow Problems with Convex Cost

A more general version of the transhipment problem arises when the cost

function is convex rather than linear. An important special case is the prob-
lem

minimize Z fij(x45)

(1,75)eA
subject to Z Tij — Z Zji = Si, VieN,
{71(.5)eA} {71(5,9)e A}

xij € Xij, Y (i,j) € A,
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where f;; is a convex real-valued function of the flow xz;; of arc (4,7), s; are
given scalars, and X;; are convex (bounded or unbounded) intervals of real
numbers. We refer to this as the separable convex cost network flow problem,
because the cost function separates into the sum of cost functions, one per
arc.

Convex separable network optimization problems have special proper-
ties not shared by more general convex optimization problems, particularly
with respect to duality. They admit solution with specialized methods that
take advantage of separability, and which we are going to discuss in Chapter
4. A convex cost function may arise naturally for some problems, but it may
also be obtained from a linear cost function through some form of regular-
ization. By this we mean the addition of a convex function to the linear cost
function, in order to transform the problem to a format that is algorithmically
more convenient. This approach is often advocated for the problem discussed
in the next example.

Example 1.2.7: The Matrix Balancing/Network Transport
Problem

Here the problem is to find an m x n matrix X that has given row sums and
column sums, and approximates a given m X n matrix M in some optimal
manner.

We can formulate such a problem in terms of a graph consisting of m
sources and n sinks. In this graph, the set of arcs A consists of the pairs
(i,7) for which the corresponding entry z;; of the matrix X is allowed to be
nonzero. The given row sums r; and the given column sums c; are expressed
as the constraints

E Tij = T, izl,...,m,

{3lGi,5)eA}

E Tij = ¢j, j=1...,n.

{il(i,5)e A}

There may be also bounds for the entries x;; of X. Thus, the structure of
this problem is similar to the structure of a transportation problem. The cost
function to be optimized has the form

> fuil@i),

(i,5)eA

and expresses the objective of making the entries of X close to the corre-
sponding entries of the given matrix M. A common example is the quadratic
function

Fuilwig) = Y wig(wg —miy)?,

(i,7)€A

where w;; are given nonnegative weights.
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Another interesting cost function is the logarithmic

Jij(ig) = @i [ln (ZL) - 1] 7

where we assume that m;; > 0 for all (,j) € A. Note that this function
is not defined for z;; < 0, so to obtain a problem that fits our framework,
we must use a constraint interval of the form X;; = (0,00) or X;; = (0, ¢s5],
where ¢;; is a positive scalar.

One of the first applications of this problem arose in telephone com-
munications, where it was used for predicting the distribution matrix X of
telephone traffic between m origins and n destinations. Here we are given the
total supplies r; of the origins and the total demands c; of the destinations,
and we are also given some matrix M that defines a nominal traffic pattern
obtained from historical data (the name “matrix balancing” originated from
this application context). The book by Censor and Zenios [CeZ97] discusses
several related applications of the matrix balancing problem, as well as algo-
rithms for its solution.

More recently the problem has received a lot of attention for the case
where X is constrained to be a stochastic matrix. Within this context, it can
be used to model instances of the famous Monge-Ampere problem, which dates
from the 19th century, and is also referred in the literature as the network
transport problem; see e.g., the books by Galichon [Gall6], Peyre and Cuturi
[PeC19], Santambrogio [Sanl5], and Villani [Vil09], [Vil21].

The starting points for some of the network transport literature are
mathematically more complex infinite-dimensional versions of the problems
that we consider here. In particular, the auction algorithms of this book apply
to network transport problems only after they have been discretized and have
been represented by a graph. Indeed, this is the most common approach in
practice, and auction algorithms have been used widely for network transport
computations; see e.g., the books noted above, and the papers by Brenier et
al. [BFHO3], Schmitzer [Sch16], [Sch19], Walsh and Dieci [WaD17], [WaD19],
Merigot and Thibert [MeT21].

1.2.2 Transformations and Equivalences

We have seen that the assignment, shortest path, and transportation prob-
lems can be viewed as special cases of the transhipment problem. We will
now describe reverse transformations, which can be used to convert a di-
rected graph with general structure to a graph with bipartite structure (a
graph whose nodes are divided into two subsets such that all arcs are out-
going from one subset and incoming to the other subset, as in assignment
and transportation problems). There are two main ideas underlying these
transformations:

(a) Arc splitting: Here we replace an arc (i, j) with zero arc lower bound
(bij = 0) with a node labeled (i,j), and two arcs (i, (i,j)) and



Sec. 1.2 Problem Relations and Transformations 19

Flow Lij
0 <zi; <cyj

l Cost Qij .

Flow
J Cij — Tij
j m Cost 0

Figure 1.2.4. Illustration of arc splitting for an arc (¢,j) with zero arc lower
bound (b;; = 0). For a given flow z;; of arc (¢,5) in the original graph, the flow

Cij
Flow z;

Cost a;

on the arc (i, (i,j)) is x;;, and the flow on the arc ((i,j),j) is ¢jj — @;5. Supply

and demand c;; is added to node j and to node (i, j), respectively.

(j, (3, ])) that are incoming to that node as shown in Fig. 1.2.4. Once
all arcs have been split as described, the graph takes a bipartite form
whereby the nodes are partitioned in two subsets: one that corre-
sponds to the nodes i € A of the original graph, and one that corre-
sponds to the arcs (i,7) € A of the original graph.

Node splitting: Here we replace a zero supply node i (s; = 0) with two
nodes, ¢ and #/. We then introduce an arc (,4’) connecting them, and
we replace arcs of the form (i,7) by arcs with start node ¢ (the exit
point of ) and end node j’ (the entry point of j), as shown in Fig.
1.2.5. This creates a bipartite graph structure whereby the nodes are
partitioned in two subsets: the original nodes ¢ whose incident arcs
are all outgoing, and the artificial nodes i’ whose incident arcs are all
incoming.

Note that Fig. 1.2.4 and 1.2.5 show the general form of the graph

structures involved, and neglect the presence of node supplies. These can
be suitably added as needed, while preserving the bipartite structure of the
graph that results from the transformation. Generally, arc splitting is used
when working with the capacitated transhipment format, and node split-
ting is used when working with the uncapacitated transhipment format.

From Transhipment to Transportation to Assignment

We will now illustrate how a transhipment problem (capacitated or unca-
pacitated) can be transformed first to a transportation problem and then
to an equivalent assignment problem; see Fig. 1.2.6. Indeed, we have seen
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Flow on arc (i,’)
is equal to — ), x;; and
is also equal to — 3 zi;

Figure 1.2.5. Illustration of node splitting for a node ¢ that has supply equal to
0 (s; = 0). For a given flow vector z in the original graph, the flow on the arc
(,7) is — Zj xj;, which in turn is equal to — Zj Tij.

that the feasibility case of the transhipment problem can be converted to a
fixed flow problem with arc flow lower bound equal to 0; cf. Example 1.2.3.
To convert this fixed flow problem to an equivalent transportation prob-
lem, we use arc splitting. In particular, we replace each arc (i, ) that is
not incident to the source or the sink by a node labeled (i, j), and two arcs
(i,(4,5)) and (4, (i, 7)) that are incoming to that node. This is illustrated
in Fig. 1.2.6 for the case where the lower flow bounds b;; are equal to 0.

In the more general case of the transhipment problem where there
are Nonzero arc costs a;j, we set to a;; the cost of each arc (i, (i,j)) in
the transportation problem, and to 0 the cost of each arc (j, (Z,j)) Note
that an arc flow 2;; in the minimum cost flow problem corresponds to flows
equal to x;; and c¢;; — b;; — x;; on the transportation problem arcs ((z, j)7j)
and ((i,j)J)7 respectively.

The transportation problem can in turn be transformed to an assign-
ment problem with multiple identical/similar persons as follows (see Fig.
1.2.6):

(a) Create Z{j | (j,i)e.A} Cji similar persons in place of each node/source
1 # r,t of the transportation problem, and y, persons in place of the
source node r.

(b) Create c;; duplicate objects in place of each arc/sink (i,7), j # t, of
the transportation problem, and g, duplicate objects in place of the
sink node t.

c) We set to —a;; the value of each pair of the form (i, (¢,7)) in the
J
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Capacity = 2

Capacity = 1

Capacity = 2 Capacity =3

PERSONS OBJECTS

— 4 G
)
., O,
K (4
N

Duplicate Objects
Similar Persons

Duplicate Objects

Similar Persons

Equivalent Transportation Problem Equivalent Assignment Problem

Figure 1.2.6. Transformation of a single-source/single-sink transhipment prob-
lem with zero arc flow lower bounds to a transportation problem (b;; = 0), and
then to an assignment problem.

To convert the transhipment problem to an equivalent transportation prob-
lem, we replace each arc (z,7) that is not incident to the source or the sink by
a node labeled (7,j), and two arcs that are incoming to that node as shown:
(i, (i,j)) (with cost a;;) and (j, (i,j)) (with cost 0).

We then convert the transportation problem to an equivalent assignment
problem, as shown. This requires that all node supplies of the transportation
problem are integer.

assignment problem, and to 0 the value of each pair of the form
This transformation requires that all node supplies are integer. This is
not a significant restriction, since any problem where the node supplies are
rational numbers can be converted to a problem with integer supplies by
multiplying all supplies and arc capacities with a suitably large number.
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Figure 1.2.7. Transformation of a shortest path problem to an assignment prob-
lem from an origin node r to a destination node t. We use node splitting for the
nodes 1 and 2. The arc costs are shown next to the arcs. For example, the path
(r,1,2,t) corresponds to the assignment

(T‘7 1/)7 (17 2’)7 (27 t)7

while the path (7, 1,t) corresponds to the assignment (r,1’),(1,t),(2,2’) and the
path (r,2,t) corresponds to the assignment (r,2'), (1,1"), (2, ).

From Shortest Path to Assignment

Let us also consider the problem of finding a shortest path from an origin
node r to a destination node t; cf. Example 1.2.2. We will show that
it can be transformed to an equivalent assignment problem. We will use
this transformation to motivate general forms of auction algorithms for the
shortest path problem in Section 1.4.

The idea is based on node splitting and is illustrated with an example
in Fig. 1.2.7. We split each node i # r,t into two nodes, ¢ and ¢/, and
connect them with an arc (4, 4’) of cost 0. Moreover, we replace the outgoing
arcs (Z,7) from all nodes ¢ # ¢ with arcs (¢,j’). Then the graph becomes
bipartite and the problem is transformed to an assignment problem with
persons representing the nodes ¢ # ¢, objects representing the nodes j’ and
t, the costs a,; being equal to the arc lengths a;j, and the costs a;t being
equal to the arc lengths a;.

Any path from r to ¢ of the form

(T,il,iz,...,ik,t)

in the original shortest path problem corresponds to a feasible assignment,
which contains the pairs

(r 2/1), (i1, ’le), (i2, ’Lg), ey (ik—l,%% (ik, t), (1.9

and also possibly contains some additional pairs, such as the pairs (i, ') for
i#1i1,...,1. Moreover, it can be seen that the assignment problem has a
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feasible solution only if there exists at least one path from r to ¢, which we
will assume in our discussion.

Let us now look at the structure of a feasible assignment in more
detail. It must consist of three groups of pairs:

(a) Pairs of the form (1.9), which correspond to a path (r,i1,142,. .., %k, t)
that does not contain a cycle. These pairs collectively have cost equal
to the path length.

(b) Pairs of the form (4,4’) that have cost 0.
(c) “Cycles” of pairs of the form

(i1,15), (t2,45), ..., (Tk—1,1}), (in, 1)), (1.10)

that collectively have cost equal to the lengths of the corresponding
cycles
(il,ig, ey Bk 1)

Note that one or both of the sets of pairs in (b) and (c) above may be
empty; for example in Fig. 1.2.7, for all the feasible assignments the set of
pairs in (c) above is empty.

Consider now a feasible solution of the assignment problem. It must
correspond to a path from r to ¢ [as in (a) above], plus pairs of the form (i, i)
[as in (b) above], which have zero length, plus pairs of the form (1.10) with
corresponding cycles (i1,42,...,%,%1) [as in (c) above]. In this solution,
the pairs (1.10) can be replaced by the zero cost pairs (i1,;),. .., (ix,%},)
without affecting feasibility, so that the pairs (1.10) must collectively have
cost that is either negative or zero in any optimal assignment. Thus, if we
assume that all cycles of the original graph have nonnegative length, the
pairs (1.10) must collectively have cost 0 in an optimal solution of the as-
signment problem. It follows that under the nonnegative cycle assumption,
by solving the assignment problem we obtain a shortest path, and the cost
of an optimal assignment is equal to the length of that path.

If the shortest path problem has a feasible solution but there are
cycles of negative length, the corresponding assignment problem will also
have an optimal solution that consist of pairs that yield a path from r to
t of the form (a) that does not contain a cycle, and pairs of the form (b)
and (c) above. However, the path from r to ¢t may not be shortest because
the solution of the assignment problem may be biased by the presence of
the negative length cycles of the form (c¢) above.

A Final Word on Transformations
In this section, we have described a wide range of transformations be-

tween different types of network optimization problems. A key point has
been that the assignment problem is the simplest general model, to which
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all others can be reduced (assuming integer supplies, demands, and flow
bounds). This fact has a special significance for the purposes of this book:
we can start from an algorithm for the assignment problem (such as the
intuitive auction algorithm to be described in Section 1.4), and apply it to
the transportation or transhipment problem (including the shortest path
and max-flow problems). We can then suitably streamline the algorithm
to eliminate inefficiencies in the computations that are introduced by the
problem transformation. Historically, this is the process through which
auction algorithms for transportation, transhipment, shortest paths, and
other problems have been discovered, understood, and analyzed; see the
papers [Ber86], [Ber75], for the transhipment problem, [BeC88] for the
transportation problem, [Ber91], [BeC92], [Ber22] for shortest path-type
problems, and [Ber95] for the max-flow problem.

Let us also note that shortest path problems arise as subproblems
within some important algorithmic approaches for the transhipment prob-
lem, such as the sequential shortest path/primal-dual method, which we
will discuss briefly later (Chapter 6 of the book [Ber98] provides a detailed
discussion). To solve these shortest path problems, we may use auction al-
gorithms (to be discussed in Section 1.4), thus resulting in additional types
of auction-like algorithms for transhipment.

PRIMAL AND DUAL PROBLEMS

Duality theory deals with the relation between the original network opti-
mization problem and another optimization problem called the dual. This
is an instance of linear programming duality, which is described in many
optimization books; see e.g., Bertsimas and Tsitsiklis [BeT97]. The du-
ality extends to convex network flow problems as well, as we will discuss
in Chapter 4. To develop an intuitive understanding of duality, we will
first focus on the n x n assignment problem and consider a closely related
economic equilibrium problem.

1.3.1 Duality for the Assignment Problem

In the context of the assignment problem, let us consider matching the
n objects with the n persons through a market mechanism, viewing each
person as an economic agent acting in his/her own best interest. Suppose
that object j has a price p; and that the person who receives the object
must pay the price p;. Then the net value of object j for person ¢ is a;; —pj,
and each person ¢ will logically want to be assigned to an object j; with
maximal value, that is, with

aij; — pj; = max {ai; — p;}, (1.11)
JEA(®9)
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where
A@) ={j | (4,7) € A}

is the set of objects that can be assigned to person 3.

When this condition holds for all persons i, we say that the assignment
and the price vector p = (p1,...,pn) satisfy complementary slackness (CS
for short; this name is standard in linear programming). The economic
system is then at equilibrium, in the sense that no person would have an
incentive to unilaterally seek another object. Such equilibrium conditions
are naturally of great interest to economists, but there is also a fundamental
relation with the assignment problem.

We have the following classical proposition, which states that if we
are able to obtain a feasible assignment and a set of prices that satisfy CS,
then the assignment is optimal while the prices solve optimally a certain
dual problem.

Proposition 1.3.1: If a feasible assignment and a set of prices sat-
isfy the complementary slackness condition (1.11) for all persons 4,
then the assignment is optimal. Moreover the prices are an optimal
solution of a dual problem, which is to minimize over p = (p1, ..., pn)

the cost function
n n
> a)+ > pi,
i=1 j=1

where the functions ¢; are given by

((p) = max {aij — p; i =1,...,n.
ql(p) jrélA(}Z{'){aU p]}7 1 ) ,

Furthermore, the value of the optimal assignment and the optimal
cost of the dual problem are equal.

Proof: Let {(l,jz) | i = 1,...,n} and {p,; | j = 1,...,n} be the given
assignment and set of prices, which satisfy the CS condition, so that

aij; — Dy, zjlgljx()z;){aij -Di} i=1,...,n.

By adding this relation over all ¢, we obtain
S = 3 (mwx fos 5} 43, ) = 3w {7, + o,
i=1 1 i=1 J=1

JEA(L
(1.12)
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On the other hand, the total value of any feasible assignment { (4, k;) |
i=1,...,n} satisfies

> aik, = Y (i, P 2:: Z;ggf{aw pj}+ng (1.13)

By combining Eqs. (1.12) and (1.13), we have

n n
E ik, < E Qij;
i=1 i=1

for every feasible assignment {(i,ki) | i = 1,...,n}, implying that the
assignment {(i,7;) |i=1,...,n} is optimal.

Moreover, similar to Eq. (1.13), we have for every set of prices {p; |
Jj=1...,n}

n
> = 3o i)+ 3o = 3 sl i} + S
i=1 j=1

By combining this relation with Eq. (1.12), we obtain

n
zaw :Zgﬁ% faw - p]}+zpj < Zm (oo —ri} + 2o

It follows that the set of prices {p; | j = 1,...,n} is optimal for the dual
problem, while the optimal values of the primal and dual problems are
equal. Q.E.D.

The preceding proposition is a basis for a class of methods called
primal-dual, which iteratively adjust both the assigned pairs (the primal
variables) and the prices (the dual variables). Classical methods of this
type, such as the Hungarian method due to Kuhn [Kuh55], maintain a
set of object prices and an assignment that is not feasible (some persons
and objects are unassigned), but satisfy the CS condition. They then try
to improve iteratively the feasibility of the assignment, by progressively
adding more pairs to the assignment, while maintaining the CS condition.
The auction algorithm for the assignment problem is somewhat similar, but
it involves a significant exception: it maintains a more relaxed version of
the CS condition, called e-complementary slackness (e-CS for short), which
will be introduced in the next section. While this may seem like a small
difference, it leads to much different insights and algorithmic operation.
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1.3.2 Duality for the Transhipment Problem

We will now consider the capacitated transhipment problem, and generalize
the duality ideas just discussed for the assignment problem. In particular,
we will obtain a dual problem by using a procedure that is standard in
duality theory. We introduce a Lagrange multiplier p; for the conservation
of flow constraint for node i and we form the corresponding Lagrangian
function

Lix,p)= Y ayrij+y |si— > @i+ Y wil|p

(i,j)eA iEN {41G,5)eA} {315, 1)eA}
= Z (aij +pj — pi)Tij + Z SiDj-
(i,j)€A ieN

(1.14)

In analogy with the assignment problem, we will also call p; the price of
node i. We will also use p to denote the vector whose components are the
prices p;.

Let us now fix p and consider minimizing L(z,p) with respect to
x without the requirement to meet the conservation of flow constraints.
It is seen that p; may be viewed as a penalty per unit violation of the
conservation of flow constraint. If p; is too small (or too large), there is an
incentive for positive (or negative, respectively) violation of the constraint.
This suggests that we should search for the correct values p; for which,
when L(z,p) is minimized over all capacity-feasible x, there is no incentive
for either positive or negative violation of all the constraints.

We are thus motivated to introduce the dual function value ¢(p) at a
vector p, defined by

q(p) = ngn{L(:v,p) | bij < wij < cij, (i,5) € A} (1.15)

Because the Lagrangian function expression is separable in the arc flows
Zij, its minimization decomposes into a separate minimization for each
arc (i,7). Each of these minimizations can be carried out in closed form,
yielding

ap) = D aiipi—pi)+ > sipi, (1.16)

(i,j)eA 1EN

where
qij(pi — pj) = . grglgcij (aij +pj — pi)Tij
- { (aij +pj —pi)bi;  if pi < aij + pj,
(aij +pj —pi)cij i pi > aij + pj.

(1.17)
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Primal Cost Dual Cost ql..(pl. -p.)
for Arc (ij) for Arc (i) J

i |

Slope =- bil'

- %

B PP
Slope = - ¢

Figure 1.3.1: Form of the dual cost function g;; for arc (4, 5).

Figure 1.3.1 illustrates the form of the functions g;;. Since each g;; is
piecewise linear, the dual function ¢ is also piecewise linear. The dual func-
tion also has some additional interesting structure. In particular, suppose
that all node prices are changed by the same amount. Then the values of
the functions ¢;; do not change, since these functions depend on the price
differences p; — p;. If in addition we have )\, s; = 0, as we must if the
problem is feasible, we see that the term . sip; also does not change.
Thus, the dual function value does not change when all node prices are
changed by the same amount, implying that the equal cost surfaces of the
dual cost function are unbounded. Figure 1.3.2 illustrates the dual function
for a simple example.

Consider now the problem

maximize ¢(p)

subject to no constraint on p,

where ¢ is the dual function given by Egs. (1.16)-(1.17). We call this the
dual problem, and we refer to the original minimum cost flow problem as
the primal problem.

To develop our basic duality result for the transhipment problem, we
appropriately generalize the notion of complementary slackness, introduced
earlier in the context of the assignment problem. In particular, we say that
a flow-price vector pair (x,p) satisfies complementary slackness (or CS for
short) if = is capacity-feasible and

pi — pj < aij, Y (i,7) € A with zi; < ¢, (1.18)

pi —pj = aij, A4 (Z,j) ¢ A with bij < Ty . (1.19)
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Cost=3
Flow range: [0,1]

s=1 53= -1

Cost=1
Flow range: [0,1]

Cost=1
Flow range: [0,1]

Dual function

Price of Node 3 is Fixed at 0

Price of Node 1

(b)

Figure 1.3.2: Form of the dual cost function g for the 3-node problem in (a).
The optimal flow is £12 = 1, £23 = 1, 13 = 0. The dual function is

q(p1,p2,p3) =min{0,1 + p2 — p1} + min{0,1 + p3 — pa}
+min{0,3 + p3 —p1} +p1 — ps.
Diagram (b) shows the graph of the dual function in the space of p1 and p2, with

p3 fixed at 0. For a different value of p3, say 7, the graph is “translated” by the

vector (v,7); that is, we have g(p1,p2,0) = q(p1 + 7, p2 + 7,7) for all (p1,p2).
The dual function is maximized at the vectors p that satisfy CS together with the
optimal . These are the vectors of the form (p1 + v, p2 + 7, 7), where

1 <p1 —po2, p1 <3, 1 < p2.

Note that the CS conditions imply that

pi = a5 + pj, A (l,]) € A with bij < iy < cij.

An equivalent way to write the CS conditions is that, for all arcs (i, j),

29

we
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have b;; < x;; < ¢;; and

x"—{Cij ifpi>aij+pj,
* bij if pi < aij + pj.
Another equivalent way to state the CS conditions is that z;; attains the

minimum in the definition of ¢;;

xij =arg  min  (ai; + p; — pi)Zzij (1.20)

bij<z;ij<cij

for all arcs (7, j). Figure 1.3.3 provides a graphical interpretation of the CS
conditions.

Pi-P;j
A
a. | __
U I
I
0 bij cj  Xj

Figure 1.3.3: Illustration of CS for a flow-price pair (z,p). For each arc (i, ),
the pair (z;;,p; — pj) should lie on the graph shown.

The following proposition is a classical duality theorem, which gen-
eralizes Prop. 1.3.1 for the assignment problem. It can also be viewed as a
special case of well-known results in linear programming (see e.g., Bertsi-

mas and Tsitsiklis [BeT97]).

Proposition 1.3.2: A feasible flow vector z* and a price vector p*
satisfy CS for the transhipment problem if and only if z* and p*
are optimal primal and dual solutions, respectively, and the optimal
primal and dual costs are equal.

Proof: To show he forward part of the proposition, we will first show that
for any feasible flow vector x and any price vector p, the primal cost of z is
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no less than the dual cost of p. We will then use the CS condition to show
that the primal value corresponding to z* and the dual value corresponding
to p* are equal, thus completing the proof.

Indeed, we have from the definitions of L and g,

q(p) < L(z,p)

= Z aijﬂfij+z Si — Z Tij + Z Tji | Pi

(i,5)eA ieN {31@.5)e A} {d1GG:1)eA}

= ) aymi,
(i,g)eA
(1.21)
where the last equality follows from the feasibility of x.
If z* is feasible and satisfies CS together with p*, we have by the
definition (1.15) of ¢

q(p*) = min{L(z,p*) | bij < zi; < cij, (i, ) € A}
= L(z*,p*)

—_— s *
= E ai;xy;,

(i,5)eA

(1.22)

where the second equality is true because

(z*,p*) satisfies CS if and only if
x}; minimizes (a;; +p} — py)xi; over all xi; € [bij, cij, V (4,5) € A,
[cf. Eq. (1.20)], and the last equality follows from the Lagrangian expression
(1.14) and the feasibility of z*. Therefore, Eq. (1.22) implies that z* attains
the minimum of the primal cost on the right-hand side of Eq. (1.21), and
p* attains the maximum of ¢(p) on the left-hand side of Eq. (1.21), while
the optimal primal and dual values are equal.

Conversely, suppose that x* and p* are optimal primal and dual so-
lutions, respectively, and the two optimal costs are equal, that is,

ap*) = > iy
(i,)eA
We will show that z* and p* must satisfy CS. Indeed, we have by definition
q(p*> = II;HI{L(:QP*) | bij < Lij < Cij, (27.7) € 'A}7

and also, using the Lagrangian expression (1.14) and the feasibility of z*,

Z aijac;*j = L(]}*,p*).

(i,7)€A
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Combining the last three equations, we obtain
L(l‘*,p*) = m;D{L(Z‘,p*) | b’ij < Tij < Cij, (7’).7) € 'A}

Using the Lagrangian expression (1.14), it follows that for all arcs (i, j), we
have

*

il'lj

arg  min  (as +p; — pi)xsj.
bij<wij<cij

This is equivalent to the pair (z*, p*) satisfying CS. Q.E.D.

Interpretation of CS and the Dual Problem

Similar to the assignment problem, the CS conditions have a nice economic
interpretation. In particular, think of each node 4 as choosing the flow x;;
of each of its outgoing arcs (7,7) from the range [bi;, ci;], on the basis of
the following economic considerations: For each unit of the flow x;; that
node ¢ sends to node j along arc (7, ), node ¢ must pay a transportation
cost a;; plus a storage cost p; at node j; for each unit of the residual flow
¢ij — x;; that node ¢ does not send to j, node ¢ must pay a storage cost p;.
Thus, the total cost to node j is (aij —|—pj)l‘ij =+ (Cij — mij)pi, or

(aij +pj — pi)xij + CijPi-

It can be seen that the CS conditions (1.18) and (1.19) are equivalent to
requiring that node i act in its own best interest by selecting the flow that
minimizes the corresponding costs for each of its outgoing arcs (i, j); that
is,

(z,p) satisfies CS if and only if

Tij minimizes (aij +pj — pi)zij over all Zij € [bij, Cij], A4 (Z,j) S .A,

[cf. Eq. (1.20)].

To interpret the dual function ¢(p), we continue to view a;; and p;
as transportation and storage costs, respectively. Then, for a given price
vector p and supply vector s, the dual function

q(p) - <I§clilj-n§cij { ( Z GijTig

by
J—= ..
(i,7)€A ij)eA

+ Z Si — Z Tij + Z Tji pz}
ieN {ilG.5) A} {51, eA}
(1.23)
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is the minimum total transportation and storage cost to be incurred by the
nodes, by choosing flows that satisfy the capacity constraints.

Suppose now that we introduce an organization that sets the node
prices, and collects the transportation and storage costs from the nodes.
We see that if the organization wants to maximize its total revenue (given
that the nodes will act in their own best interest), it must choose prices
that solve the dual problem optimally.

Duality for Uncapacitated Transhipment and Shortest Path
Problems

In the case of the uncapacitated transhipment problem, a similar duality
development is possible. It is based on introducing the Lagrangian function

L(z,p) = Y (aij+pj—p)wij + Y sipis
(i,5)€A iEN
of Eq. (1.14), and defining the dual function as
a(p) = min{L(r.p) | 0 < 235, (i,) € A}, (1.24)

However, in the absence of the upper bound arc flow constraints, this min-
imization will yield —oo unless the price vector satisfies the constraint

pi — pj < aij, v (i,7) € A

There are also variants of CS and duality results for the uncapacitated
transhipment problem. In particular, the CS conditions take the form

Pi —Pj < ij, V (i,7) € A, (1.25)
Pi — Pj = Qij, Y (i,7) € A with 0 < x5, (1.26)

(see Fig. 1.3.4). This is also the form of the CS conditions for the unca-
pacitated formulation of the shortest path problem where the constraints
xi; <1 are discarded.

The counterpart of the duality result of most interest to us is the
following. Its proof is similar to the ones we have given for the assignment
problem in Prop. 1.3.1 and in Prop. 1.3.2 for the capacitated transhipment
problem.

Proposition 1.3.3: For the uncapacitated transhipment problem, a
feasible flow vector z* and a price vector p* satisfy the CS conditions
(1.25)-(1.26) if and only if z* and p* are optimal primal and dual
solutions, respectively, and the optimal primal and dual costs are
equal.
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Figure 1.3.4: Illustration of CS for a flow-price pair (z,p) in the uncapacitated
transhipment problem. The pair (x;5,p; — p;) should lie on the graph shown.

Let us now apply this result to a shortest path problem. It suggests
the following sufficiency condition for optimality.

Proposition 1.3.4: Consider the shortest path problem. If we have
a path P = (r,i1,...,im,t) that starts at the origin r and ends at
the destination ¢, and a price vector p satisfying the CS condition

p’bipjga’ij V(Z,])GA, and Pi —Pj = Qij, V(Z,])GP,

then P is a shortest path. Moreover, the shortest distance/length of
P is equal to the price differential p, — p;.

Proof: Consider any path P’ = (r,4],...,im,t) that starts at r and ends
at t. By adding the CS conditions

Pr — pi1 S a7i/1
Pit = Pit, < Qg
L, <as
pz;n71 by, = azlmilzén
Pir, — Pt < ay g

we obtain
pr — pt < Length of P’.
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When applied to the path P, the preceding CS conditions hold with equal-
ity, so that we obtain

pr — pt = Length of P < Length of P,

for all paths P’ that start at » and end at t. This proves the desired result.
Q.E.D.

AUCTION ALGORITHMS

In this section, we will provide an introduction to auction algorithms. We
will start with the assignment context, where the auction algorithm ideas
are most intuitive, and then adapt these ideas to the shortest path problem.
Both the assignment and the shortest path auction algorithms will play
an important role in the development of various auction algorithms for the
transhipment problem and some of its special cases, which will be discussed
in Chapter 4.

1.4.1 The Naive Auction Algorithm

Let us return to the assignment problem, involving n persons and n objects,
as described in Example 1.2.1. We will first consider a natural process for
finding an equilibrium assignment and price vector. We will call this process
the “naive” auction algorithm, because it has a serious flaw, as we will see
shortly. Nonetheless, this flaw will help motivate a more sophisticated and
correct algorithm.

The naive auction algorithm proceeds in iterations and generates a
sequence of price vectors and partial assignments. By a partial assignment
we mean an assignment where only a subset of the persons have been
matched with objects. A partial assignment should be contrasted with a
feasible or complete assignment where all the persons have been matched
with objects on a one-to-one basis. At the beginning of each iteration, the

CS condition
aij, — pj; = max {ai; — pj}, (1.27)
JEA(D)

[cf. Eq. (1.11)], is satisfied for all pairs (4, j;) of the partial assignment. If
all persons are assigned, the algorithm terminates. Otherwise some person
who is unassigned, say i, is selected. This person finds the “best” object j;

Ji = arg jgl%){aij — it

i.e., one that offers maximal value, and then:
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v The value of j It the best object for person i

Bidding increment y of person i for its best
object jl.

Values a; -p; /

of objects’j

for person i \
@)

?

Figure 1.4.1: In the naive auction algorithm, even after the price of the best
object j; is increased by the bidding increment ~;, j; continues to be the best
object for the bidder 4, so the CS condition (1.27) is satisfied at the end of the
iteration. However, we have ; = 0 if there is a tie between two or more objects
that are most preferred by <.

(a) Gets assigned to the best object j;; the person who was assigned to
Ji at the beginning of the iteration (if any) becomes unassigned.

(b) Sets the price of j; to the level at which he/she is indifferent between
ji and the second best object; that is, he/she sets pj; to

Dj; + Vi, (1.28)
where
Yi = Vi — Wy, (1.29)
v; is the best object value,
v; = max {a;; — pj}, 1.30
i jeA(i){ ij —Dj} ( )

and w; is the second best object value,

WS e e P (1.31)
This process is repeated in a sequence of iterations until each person has
been assigned to an object.

We may view this process as an auction where at each iteration the
bidder ¢ raises the price of a preferred object by the bidding increment ;.
The choice ~; is illustrated in Fig. 1.4.1. Note that ~;, as given by Eq.
(1.29), is nonnegative and it is the largest increment by which pj;; can be
increased, while maintaining the property that j; offers maximal value to
i. Just as in a real auction, bidding increments and price increases spur
competition by making the bidder’s own preferred object less attractive to
other potential bidders. As Fig. 1.4.1 illustrates, the CS condition (1.27)
is satisfied at the end of a naive auction iteration.
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Unfortunately, the naive auction algorithm does not always work.
The difficulty is that the bidding increment -; is 0 when two or more
objects are tied in offering maximum value for the bidder i. As a result, a
situation may be created where several persons contest a smaller number
of equally desirable objects without raising their prices, thereby creating a
never ending cycle. An example is shown in Fig. 1.4.2.

In the next section we will modify the naive auction algorithm to
correct this flaw. We note, however, that despite its convergence difficul-
ties, the naive auction algorithm is an excellent initialization procedure for
other methods, as we will discuss in more detail in Chapter 2. The reason
is that, with proper implementation, it is typically capable of producing
very quickly a partial assignment that contains all but very few persons
and objects, which can in turn be assigned by switching to a primal-dual
method that has guaranteed convergence. This approach was first pro-
posed and validated experimentally in the author’s paper [Ber81], and can
also be supported by computation complexity analysis that will be noted
in Chapter 2. The idea of using naive auction for initialization followed by
a primal dual method was pursued by Jonker and Volgenant in the paper
[JoV87], who (working from the author’s assignment code) made publicly
available a coded implementation, often referred to as the JV code, which
is widely used at present.

1.4.2 e-Complementary Slackness and the Auction Algorithm

In this section, we will introduce a perturbation mechanism to deal with
the cycling phenomenon illustrated in Fig. 1.4.2. It is motivated by real
auctions where each bid for an object must raise its price by a minimum
positive increment, and bidders must on occasion take risks to win their
preferred objects. In particular, let us fix a scalar € > 0, and say that a
partial assignment and a price vector p satisfy e-complementary slackness
(e-CS for short) if
aij —pj = krél%){aik —Dpr}—€

for all assigned pairs (i, ) within the given partial assignment. In words, to
satisfy e-CS, all assigned persons of the partial assignment must be assigned
to objects that are within e of being best.

We now reformulate the previous auction process so that the bidding
increment is always at least equal to €, while e-CS (rather than CS) is
maintained. The resulting method, the auction algorithm, is the same as
the naive auction algorithm, except that the bidding increment ~; is

Vi = Vi — Wi +€ (1.32)

rather than ~v; = v; — w; as in Eq. (1.29). With this choice, the e-CS
condition is satisfied, as illustrated in Fig. 1.4.3. The particular increment
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PERSONS OBJECTS

Initially assigned Initial price = 0

to object 1

Initially assigned

to object 2 Initial price =0
Here a,=C>0forall (jjwithi =123 andj=12
and ag=0forall (i) with i=1,23 and /=3

Initially )

unassigned Initial price =0

At Start of |Object | Assigned | Bidder |Preferred | Bidding
Iteration # Prices Pairs Object Increment
1 0,0,0 |(1,1), (2,2) 3 2
2 0,0,0 |(1,1), (3,2) 2 2
3 0,0,0 |(1,1), (2,2) 3 2 0

Figure 1.4.2: Illustration of how the naive auction algorithm may never termi-
nate for a problem involving three persons and three objects. Here objects 1 and
2 offer value C' > 0 to all persons, and object 3 offers value 0 to all persons. The
algorithm cycles as persons 2 and 3 alternately bid for object 2 without changing
its price because they prefer equally object 1 and object 2.

i = v; —w; +€ used in the auction algorithm is the maximum amount with
this property. Smaller increments -; would also work as long as v; > e,
but using the largest possible increment accelerates the convergence of the
algorithm. This is consistent with experience from real auctions, which
tend to terminate faster when the bidding is aggressive.

It can be shown that this reformulated auction process terminates,
necessarily with a feasible assignment and a set of prices that satisfy e-
CS. To get an intuitive sense of this, note that if an object receives a
bid during m iterations, its price must exceed its initial price by at least
me. Thus, for sufficiently large m, the object will become “expensive”
enough to be judged “inferior” to some object that has not received a bid
so far. It follows that an object can receive a bid only for a limited number
of iterations, while some other object still has not yet received any bid.
On the other hand, once every object has received at least one bid, the
auction terminates. (This argument assumes that any person can bid for
any object, but it can be generalized to the case where the set of feasible
person-object pairs is limited, as long as at least one feasible assignment
exists; see Chapter 2.) Figure 1.4.4 shows how the auction algorithm, based
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o MK The value of j, the best object for person i

Bidding increment 7; of person i for its best
object /'l,
"""" w; : The value of the second best object for person i
/ -
P

Values a_ -
of objectg J

for person i §

Figure 1.4.3: In the auction algorithm, even after the price of the preferred
object j; is increased by the bidding increment +;, j; will be within € of being
most preferred, so the e-CS condition holds at the end of the iteration.

on the bidding increment 7; = v; —w;+e€ of Eq. (1.32) overcomes the cycling
difficulty in the example of Fig. 1.4.2.

When the auction algorithm terminates, we have an assignment sat-
isfying e-CS, but is this assignment optimal? The answer depends strongly
on the size of €. In a real auction, a prudent bidder would not place an
excessively high bid for fear of winning the object at an unnecessarily high
price. Consistent with this intuition, we can show that if ¢ is small, then
the final assignment will be “almost optimal.” In particular, we will show
that the total value of the final assignment is within ne of being optimal.
The idea is that a feasible assignment and a set of prices satisfying e-CS
may be viewed as satisfying CS for a slightly different problem, where all
values a;; are the same as before except the values of the n assigned pairs,
which are modified by no more than e.

Proposition 1.4.1: A feasible assignment satisfying e-CS, together
with some price vector, attains within ne the optimal primal value.
Furthermore, the price vector attains within ne the optimal dual cost.

Proof: Let A* be the optimal total assignment value

n
A*x = max E ik
ki, i=1,....n 4 v

k;#km if i#m =1
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PERSONS OBJECTS

Initially assigned
to object 1

Here a =C>0forall(ijwithi =123andj=1.2
and ay-=010rdl(i,;)wilh i=123and j=3
Initially

unassigned Initial price =0

At Start of | Object | Assigned | Bidder | Preferred | Bidding
Iteration # Prices Pairs Object Increment
1 0,0,0 |(1,1), (2,2) 3 2 €
2 0,6,0 | (1,1), (3,2) 2 1 2¢
3 2¢,6,0 | (2,1), (3,2) 1 2 2¢
4 2¢,3¢,0 | (1,2), (2,1) 3 1 2¢
5 4€,3¢,0 | (1,2), (3,1) 2 2 2¢

6

Figure 1.4.4: Illustration of how the auction algorithm, by making the bidding
increment at least €, overcomes the cycling difficulty for the example of Fig. 1.4.2.
The table shows one possible sequence of bids and assignments generated by
the auction algorithm, starting with all prices equal to 0 and with the partial
assignment {(1,1),(2,2)}. At each iteration except the last, the person assigned
to object 3 bids for either object 1 or 2, increasing its price by € in the first iteration
and by 2e in each subsequent iteration. In the last iteration, after the prices of 1
and 2 reach or exceed C, object 3 receives a bid and the auction terminates.

and let D* be the optimal dual cost (cf. Prop. 1.3):

n

n
R DL A A P
ji=1,...,n i=1 Jj=1
If {(4,4;) | i = 1,...,n} is the given assignment satisfying the e-CS condi-

tion together with a price vector p, we have
max 1aij —D;} — € < Qjj; — D .
jEA()Z;){ 9 pj} € = Qg pjl
By adding this relation over all 4, we see that
n n
D* < ; (ma(x){aij —ﬁj} —|—pji> < Zam + ne < A* + ne.

icA
geal i=1
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Since we showed in Prop. 1.3.1 that A* = D*, it follows that the total
assignment value Y ., ajj, is within ne of the optimal value A*, while the
dual cost of p is within ne of the optimal dual cost. Q.E.D.

Suppose now that the values a;; are all integer, which is the typical
practical case. (If a;; are rational numbers, they can be scaled up to integer
by multiplication with a suitable common number.) Then the total value
of any assignment is integer, so if ne < 1, any complete assignment that is
within ne of being optimal must be optimal. It follows that if € < % and the
values a;j are all integer, then the assignment obtained upon termination
of the auction algorithm is optimal.

Figure 1.4.5 shows the sequence of generated object prices for the
example of Fig. 1.4.4 in relation to the contours of the dual cost function.
It can be seen from this figure that each bid has the effect of setting the
price of the object receiving the bid nearly equal (within €) to the price that
minimizes the dual cost with respect to that price, with all other prices held
fixed (this will be shown in Section 2.1). Successive minimization of a cost
function along single coordinates is a central feature of coordinate descent
and relaxation methods, which are popular for unconstrained minimization
of smooth functions and for solving systems of smooth equations. Thus, the
auction algorithm can be interpreted as an approzimate coordinate descent
method for solving the dual problem, as we will discuss in Chapter 2.

e-Scaling

Figure 1.4.5 also illustrates a generic feature of auction algorithms. The
amount of work needed to solve the problem can depend strongly on the
value of € and on the maximum absolute object value
C' = max |aij\.

(i,4)eA
Basically, for many types of problems, the number of iterations up to termi-
nation tends to be proportional to C'/e. This can be seen from the figure,
where the total number of iterations is roughly C/e, starting from zero
initial prices. Thus the algorithm can be quite slow, with a nonpolyno-
mial complexity, a potential inefficiency that we will aim to correct with
an approach that we will now describe.

As a first step in this direction, we note that there is a dependence
on the initial prices: if these prices are “near optimal,” we expect that the
number of iterations needed to solve the problem will be relatively small.
This can be seen from Fig. 1.4.5; if the initial prices satisfy p; ~ ps + C
and ps = p3 + C, the number of iterations up to termination is quite small.

This suggests the idea of e-scaling, which was noted in the original
proposal of the auction algorithm for the assignment problem [Ber79]. It
consists of applying the algorithm several times, with each application pro-
viding good initial prices for the next application. In the case when a;;



42 Auction Algorithms - An Introduction Chap. 1

Contours of the
dual function

Price Pa isfixed at0

B

A

Figure 1.4.5: A sequence of prices p1 and p2 generated by the auction algorithm
for the example of Figs. 1.4.2 and 1.4.4. The figure shows the equal dual cost
surfaces in the space of p; and pa, with p3 fixed at 0. The arrows indicate
the price iterates as given by the table of Fig. 1.4.4. Termination occurs when
the prices reach an e-neighborhood of the point (C,C), and object 3 becomes
“sufficiently inexpensive” to receive a bid and to get assigned. The total number
of iterations is roughly C/e, starting from zero initial prices.

are integer, reducing e until it is less than 1/n yields an optimal solution.
Moreover, e-scaling also allows the option of stopping the algorithm, with
a less refined solution, if the allotted time for computation is limited.

In practice, e-scaling is typically beneficial, and sometimes dramati-
cally so. It often accelerates the termination of the algorithm, particularly
for problems with a sparse structure (the set of possible pairs A is relatively
small), and it also leads to better (polynomial) complexity estimates, as
we will show in Chapter 2.

1.4.3 Auction Algorithms for Path Planning

We will now discuss auction-based algorithmic ideas for finding a shortest
path from an origin r to a destination ¢; c¢f. Example 1.2.2. These ideas are
based on the shortest path to assignment transformation described in Fig.
1.2.7, which uses node splitting for all nodes i # r,t, i.e., for each i # r,t
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we introduce a node 4, and an arc (4,4') of cost 0. Moreover, we replace
the outgoing arcs (4, j) from all nodes i # ¢ with arcs (i, j’). This creates a
bipartite graph structure and an assignment problem to which the auction
algorithm can be applied.

One possibility is to start the auction algorithm with the partial as-
signment that consists of all the pairs (i,4'), i # r, t, along with node prices
that satisfy e-CS. Another possibility is to consider the equivalent assign-
ment problem, and to simply start the auction algorithm with the empty
assignment and arbitrary node prices.

These two possibilities lead to somewhat different algorithms, but
they both entail a very similar structure. In particular, the resulting algo-
rithm involves the idea of maintaining node prices, and an acyclic path that
starts at the origin r and is iteratively extended or contracted by adding a
new node at the end of the path, or deleting the terminal node of the path.
The reader may verify that the extension and contraction operations are
related to the bidding operations of the auction algorithm, as applied to
the equivalent assignment problem illustrated in Fig. 1.2.7. Rather than
focus on the details of the corresponding algorithmic relations and equiv-
alences, we will simply adapt the auction process directly to the shortest
path problem, taking advantage of its intuitive character.

In particular, auction algorithms for the shortest path problem main-
tain a path that starts at the origin and is iteratively extended or con-
tracted. The decision to extend or to contract is based on a set of price
variables, one for each node. Roughly speaking, the price of a node is
viewed as a measure of the desirability of revisiting and advancing from
that node in the future (low-price nodes are viewed as more desirable).
Once the destination becomes the terminal node of the path, the algo-
rithm stops with a path from origin to destination, which is near optimal
or exactly optimal under certain conditions.

To get an intuitive sense of the algorithm, think of a mouse searching
through a graph-like maze, trying to reach the destination. The mouse
criss-crosses the maze, either advancing or backtracking along its current
path, guided by “learned” experience; see Fig. 1.4.7 for an illustration.

Our algorithm, called auction shortest path algorithm (ASP for short),
uses a “price” for each node, which provides a measure of desirability for
including the node into a shortest path. We will provide details later, but
roughly speaking, the mouse advances forward from high price to low price
nodes, going from a node to a downstream neighbor node only if that neigh-
bor has lower price (or equal price under some conditions). It backtracks
when it reaches a node whose downstream neighbors all have higher price.
In this case, it also suitably increases the price of that node, thus marking
the node as less desirable for future exploration, and providing an incentive
to explore alternative paths to the destination. An important side benefit
is that the prices provide the means to “transfer knowledge,” in the sense
that good learned prices from previous searches can be used as initial prices
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Figure 1.4.7: In this example the shortest path from s to ¢ is (s, 1, t) with shortest
distance 4. The mouse starts by going greedily to node 1, but also making a mental
note that there is an alternative choice to go to node 2 at cost 2. Upon reaching
node 1, the mouse sees that going to ¢ involves an additional cost 3. So the mouse
returns to s to explore the possibility that going through node 2 may be better,
but also makes a mental note that the path (s, 1,¢) has length 4. The mouse then
tries node 2, and discovers that the path to ¢t through node 2 has length 4.5, which
is greater than the length of the path (s, 1,t) already discovered. The mouse then
returns to s and then moves to node 1 and then to the destination ¢. The precise
details of the algorithm, using a system of node prices to guide the search, will
be given later in this section; see Fig. 1.4.9.

for subsequent related searches, with an attendant computational speedup.

We will now introduce our ASP algorithm. We assume that all
cycles have mnonnegative length. By this we mean that for every cycle
(i,n1,...,nk,1) we have

Qiny + Aning + -+ Gny_qny + Anyi > 0. (133)

This is a common assumption in shortest path problems, since a negative
length cycle can be incorporated an arbitrarily large times within a feasible
path to reduce its length to —oo. We also assume for simplicity that every
node i # t is not deadend, in the sense that its set of outgoing arcs,
{(i,4) | j € N'}, is nonempty.

The ASP Algorithm

The ASP algorithm maintains and updates a path with no cycles that starts
at the origin,
P=(rn,...,ng),

and a price p; for each node i. The algorithm terminates when nj; becomes
the destination t¢.
Let us introduce some terminology. If P is not the degenerate path
P = (r), its last node ny is called the terminal node of P, and its node
ng—1 is denoted by
pred(ng) = ng_1
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[in the case where P = (s,n1), we let pred(n;) = s]. We denote by succ(ny)
a downstream neighbor j of n, for which ay,; 4 p; is minimized:

succ(ng) € ar min An, i + Dt
(ny) € arg (nk,j)eA}{ wi T D5}
[if multiple downstream neighbors of nj attain the minimum, the algorithm
designates arbitrarily one of these neighbors as succ(ng)].
We say that under the current set of prices and lengths an arc (i, j)
is:
(a) Downhill: If p; > asj + pj.
(b) Level: If p; = a;j + pj.
(c) Uphill: If p; < aij + pj.

We will now describe the rules by which the path and the prices are
updated. At any one iteration the algorithm starts with a path P that
starts at the origin and a scalar price p; for each node i. At the end of
the iteration a new path P is obtained from P through a contraction or
an extension as earlier. For iterations where the algorithm starts with the
degenerate path P = (s), only an extension is possible, i.e., P = (s) is
replaced by a path of the form P = (s,n1). Also the price of the terminal
node of P is increased just before a contraction, and in some cases, just
before an extension.

The algorithm starts with the degenerate path P = (s), and termi-
nates when the destination becomes the terminal node of P. It makes
use of a positive parameter ¢, which plays a similar role to the one of the
corresponding paparemeter for the aufction algorithm for the assignment
problem. The rules by which the path P and the prices p; are updated at
each iteration are as follows.

ASP Iteration for Shortest Path Construction:
We distinguish two cases.

(a) P = (s): We then set the price ps to

max{ps, assucc(s) + Psucc(s) + €},

and extend P to succ(s).
(b) P = (s,n1,...,nk) with ng # s. We consider the following two
cases.

(1)

Ppred(ng) = %pred(ng)ny, T @npsucc(ny) T Psucc(ny)-
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We then extend P to succ(ng) and set pp, to any price level that
makes the arc (pred(ny), ni) level or downhill and the arc (ny, succ(ny))
downhill. [Setting

Pny = Ppred(ny,) — %pred(ng)ny’

thus raising pp, to the maximum possible level, is a possibility, in
which case the arc (pred(ny), ni) becomes level.]

(2)

Ppred(n,) < %red(ny)n, T dnsucc(ng,) T Psucc(ng)-

We then contract P to pred(ny) and raise the price of ny to
(nsucc(ny) T Psucc(ny,) + €

[thus making the arcs (pred(ng), ny) and (ng, succ(ny)) uphill
and downhill, respectively].

Figure 1.4.8 illustrates the price change operations of the algorithm
under an extension and under a contraction. A key fact that can be easily
verified is that P and the prices p; satisfy the following downhill path
property at the start of each iteration for which P # (s).

Downhill Path Property:

All arcs of the path P = (s,n1,...,n,) maintained by the ASP
algorithm are level or downhill. Moreover, the last arc (ng_1,ny) of
P is downhill following an extension to ng.

The significance of the downhill path property is that when an exten-
ston occurs, a cycle cannot be created, in the sense that the terminal node
ny is different than all the predecessor nodes s,n1,...,np—1 on the path
P. The reason is that the downhill path property implies that following an
extension, we must have

Ps 2 Usnq + Py,

Pnq > Aning + Png,

Prj_s 2 Ony_gng_q + Pry_ys

Prg_q > Any_yny + Pny-
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Ppred(ny) = pred(ng)n, T nisucc(ng) 1 Psucc(ny)

Extension

Ppred(ny)  %pred(niyn, T Pre

Apred(ng)ny, T Gnasucc(ng) + Psucc(ng)

e

Ppred(ng) < psucc(ng) Apred(ng)ns + an,succ(n,) T Psuce(ny)

Contraction
Apred(ngn, T dnxsucc(ng) + Psucc(ng)

Ppred(ny,)
e P |:>
})

Apred(ng)n, T Prx Price Rise

- > N

P Price Rise

Figure 1.4.8 Illustration of an iteration of the ASP algorithm for the case where
P = (s,n1,...,n) with ng # s. The figure shows the levels

Ppred(ny)’ %pred(ng)n, T Prks  Apred(ng)n;, T @ngsucc(ny,) T Psucc(ny)

before and after an extension (top figure), and before and after a contraction
(bottom figure).
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This shows that the terminal node nj following an extension cannot be
equal to any of the preceding nodes n; of P: if it were, by adding the
preceding inequalities along the cycle (n;,n;—1,...,nk), it follows that the
length of this cycle is negative, which a contradiction.

In addition to maintaining the downhill path property, the algo-
rithm is structured so that following a contraction of a nondegenerate path
P = (s,n1,...,ng), the price of its terminal node ny, is increased by a pos-
itive amount. In conjunction with the fact that P never contains a cycle,
this implies that either the algorithm terminates, or some node prices will
increase to infinity. This is the key idea that underlies the validity of the
algorithm, and forms the basis for its proof of termination, which will be
formally shown in Chapter 3.

The parameter € in the ASP algorithm is used to regulate the size of
price rises, similar to the auction algorithm for the assignment problem. In
particular, € is used to provide an important tradeoff between the ability of
the algorithm to construct paths with near-minimum length, and its rate
of convergence. Generally, as ¢ becomes smaller the quality of the path
produced improves, as we will show with examples and analysis in what
follows. On the other hand a small value of € tends to slow down the
algorithm. Thus the role of € is the ASP algorithm is similar to the role of
€ in the auction algorithm. This is not surprising, since the ASP algorithm
can be viewed as essentially a special case of the auction algorithm. We
will elaborate on these issues in Chapter 3. Figure 1.4.9 illustrates the ASP
algorithm with the example of Fig. 1.4.7.

Shortest Distances and Error Bounds

As noted earlier, the ASP algorithm need not produce a shortest path. The
deviation from optimality of depends on the initial prices, as well as the
parameter €. In Section 3.2, we will elaborate on this issue and quantify this
dependence. Particular, we will show that if the ASP algorithm terminatea
with a path P, and P’ is any other path from s to ¢, we have

Le+ Y diy<Lp+ Y di, (1.34)
(i,j)eP (i,5)€P’!

where Lp and Lps are the total lengths of P and P’, and d;; are given by
di; = max{0, p; — ai; — p;}, (i,7) € A. (1.35)

The scalars d;; will be referred to as the discrepancies of the arcs (i, j),
and they quantify the error from optimality of the path P generated by
the algorithm. In particular, if all the arc discrepancies d;;, (i,5) € A, are
zero, the path P is shortest.

An interesting empirical observation is that when the algorithm cre-
ates a new downhill arc (¢,7) that lies outside P, the corresponding dis-
crepancy d;; becomes equal to € or a small multiple of e. A reasonable
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Iteration # |Path P prior | Price vector (ps,p1,p2,p:) | Type of iteration
to iteration prior to iteration

1 (s) (0,0,0,0) Extension to 1

2 (s, 1) (1+€0,0,0) Contraction to s
3 (s) (1+¢€3+¢€0,0) Extension to 2

4 (s,2) (24 ¢3+¢0,0) Contraction to s
5 (s) (24+¢€3+¢€,25+¢,0) Extension to 1

6 (s,1) (44 2¢,3+¢€,2.5+¢,0) Extension to ¢

7 (s,1,1) (44 2¢,3+ 2¢,2.5+¢,0) Termination

Figure 1.4.9: A four-node example, with the arc lengths shown next to the arcs
in the left-side figure. The right-side figure and the table trace the steps of the
ASP algorithm starting with P = (s) and all initial prices equal to 0. In the
extension case (cl), we raise the price level of nj to the maximum possible level,
which is

Ppred(ny) = Ypred(ny)ny -

The price of the terminal node of the path is underlined. The trajectory of the
ASP algorithm shown in the table corresponds to values of € < 3. The final path
obtained is the shortest path (s,1,¢). If instead ¢ > 3, the algorithm will still
find the shortest path and faster: it will first perform an extension to 1, setting
ps = 1 + €. It will then perform an extension to t, since the condition

l+e= Ppred(1) = ®pred(1)1 + arsucc(1) t Psucc(1) =1+3+0=4

is satisfied, and terminate. The final path will be P = (s,1,t) and the final price
vector will be
(ps,p1,p2,pt) = (1+€,14¢0,0),

with the arc (s,1) being balanced and the arc (1,t) being downhill. Note also
that generally, there is no guarantee that the ASP algorithm will find a shortest
path for all initial prices and values of €. Conditions that provide such guarantees
will be given later.
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conjecture is that if all the discrepancies d;; are initially bounded by a
small multiple of €, then the path produced by the algorithm upon termi-
nation is shortest to within a small multiple of ne, where n is the number
of nodes. This bears similarity to the auction algorithms for the assign-
ment problem, where the solution obtained can be proved to be optimal to
within ne. Further discussion and analysis of this issue will be provided in
Section 3.2.

e-Complementary Slackness and e-Scaling

There is an e-complementary slackness notion that parallels the one given
for the case of the assignment problem. It is defined as follows.

e-Complementary Slackness:

For a given € > 0, the prices {p; | i € N'} and the path P satisfy
pi < aij +Dpj + e, for all arcs (4, 7),
i.e., every arc is uphill, or level, or downhill by at most ¢, and
Di > aij + Dy, for all arcs (4, ) of the path P,

i.e., every arc of P is level or downhill (by at most ¢).

An important observation is that when e-CS holds, the discrepancies
di; of Eq. (1.35) are at most equal to €, so if the ASP algorithm maintains
€-CS throughout its operation, it produces a path that is suboptimal by at
most (n+1)e, and hence also optimal for e sufficiently small [(n+1)e should
be less than the difference between the 2nd shortest path distance and the
shortest path distance]. Thus maintaining e-CS is desirable.

The ASP algorithm, as described earlier in this section, need not
maintain e-CS throughout its operation, because the increase of p,, prior
to an extension may violate the e-CS inequality pn, < an,; + pj + € for
j = succ(ny) and possibly for j equal to some other downstream neighbors
of ni. A simple remedy is to choose the price increase prior to an extension
in a specific way. In particular, in case (bl) of the ASP algorithm, we
raise the price p,, to the largest value that satisfies e-CS, while extending
P to succ(ny), rather than setting pn, to any value that makes the arc
(pred(nk), nk) level or downhill and the arc (nk, succ(nk)) downhill.

In Chapter 3, we will discuss and analyze further shortest path al-
gorithms that maintain e-CS. We will also discuss e-scaling, which is im-
plemented by running the algorithm with a relatively large value of € to
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estimate “good” prices, at least for a subset of “promising” transit nodes
from s to ¢, and then progressively refining the assessment of the “promise”
of these nodes. This is done by rerunning the algorithm with smaller values
of €, while using as initial prices at each run the final prices of the previous
run. Similar to the case of the assignment problem, we will demonstrate
in Chapter 3 that e-scaling improves the computational complexity of the
ASP algorithm.

1.4.4 Connections to Reinforcement Learning

Reinforcement learning (RL for short) is a popular approximation method-
ology for a large variety of sequential decision and control problems that
can in principle be dealt with by dynamic programming (DP for short).
It is well-known that every finite-state deterministic DP problem can be
posed as a shortest path problem over an acyclic graph, with the origin
node corresponding to the initial state of the DP problem. It is therefore
natural to expect that the shortest path algorithms of the preceding section
can find substantial application within the context of RL.

In this section, we will outline some of the connections of auction
algorithms (particularly for shortest paths) with the broad RL methodology
of approzimation in value space, which is based on replacing the optimal
cost function in the DP algorithm by an approximation. We will provide a
more detailed discussion in Chapter 5.

Approximation in value space with one-step or multistep lookahead
minimization lies at the heart of many prominent artificial intelligence suc-
cesses, including AlphaZero and other related game programs. It is also
representative of the methods of rolling and receding horizon control, in-
cluding model predictive control, which have been used with success for
many years in control system design and operations research applications.
Generally, in such problems we have a dynamic system that generates a se-
quence of transitions between states under the influence of decision/control
over a finite or infinite number of steps, and with a cost for every transition.
The objective is to select the decisions to minimize the sum of all the tran-
sition costs. For example in the s-to-t shortest path problem, the states are
the nodes, with s and ¢ being the initial and final states, respectively, the
decision/control at a node is the choice of a downstream neighbor node,
and the transition cost is the length of the corresponding arc.

A useful viewpoint, which has been emphasized in the author’s recent
books [Ber20a] and [Ber22], is to think of approximation in value space
schemes as consisting of two components:

(a) The off-line training algorithm, which “learns” a value function and
possibly a default policy by using data, either externally given or self-
generated by simulation. The value function provides an estimate of
the cost of starting at any one state, while the default policy supplies
a (suboptimal) decision/control at any one state.
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(b) The on-line play algorithm, which generates decisions in real time us-
ing the value function and possibly the policy that has been obtained
by off-line training. This algorithm is invoked to select a decision at
any state of the DP problem, once this state is generated in real time.

It is argued in the book [Ber22a] (and also more formally in the book
[Ber20al) that the on-line play algorithm amounts to a step of Newton’s
method for solving Bellman’s equation, while the starting point for the
Newton step is determined by the results of off-line training. This supports
a conceptual idea that applies in great generality and is central in the books
[Ber20a] and [Ber22a], namely that the performance of an off-line trained
policy can be greatly improved by on-line play.

We next discuss how our path construction algorithms of this paper
can be blended into approximation in value space schemes for deterministic
DP problems, as well as into some schemes that apply to stochastic DP
problems.

Path Construction in the Context of Off-Line Training

The analysis of Section 1.4.3 suggests that the initial prices p; in the ASP
algorithm should be chosen to be close to the shortest distances D}, or more
accurately, they should be chosen in a way that keeps the arcs nearly level or
uphill, and minimizes the arc discrepancies given by Eq. (1.35). Of course
we do not know the exact values D}, but in a given application we may
be able to use as initial prices approximate values, which can be obtained
off-line through a computationally inexpensive heuristic or other machine
learning methods. Collectively, these approximate values constitute a value
function obtained by off-line training, to be used subsequently by the on-
line play algorithm that is based on ASP.

In one possible approach we may use data to train a neural network or
other approximation architecture to learn approximations to the shortest
distances D} . The data may be obtained by using a shortest path algorithm
and arc lengths that are similar to the ones of the given problem. The
training should also aim to produce prices for which the discrepancies d;;
are small. This objective can and should be encoded into the training
problem. It is also possible to train multiple neural networks to use for
different patterns of arc lengths.

Path Construction in the Context of On-Line Play

There are also possibilities for using the ASP algorithm during on-line
play, since several RL methods rely on the computation of (nearly) short-
est paths on-line. An important such context arises in rollout algorithms.
This is a popular class of RL methods that has received a lot of attention
as an effective and easily implementable (suboptimal) methodology; see
the books [Berl9], [Ber20a]. In a rollout algorithm, at each encountered
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state, we minimize over the decisions of the current stage, and treat the
future stages approximately, through a relatively fast heuristic, called the
base heuristic. An auction algorithm, including ASP, could be a suitable
base heuristic. As an example, the paper [Ber20b] illustrates applications
of a combined auction/rollout algorithm for solution of multidimensional
assignment problems.

Generally, in a rollout algorithm the idea is to use as value function
the cost function of the base heuristic. The key property is that the per-
formance of the rollout algorithm improves on the performance of the base
heuristic. This is in the spirit of the fundamental DP method of policy
iteration, which is intimately connected to rollout (the book [Ber20a] has a
special focus on rollout and related methods that also apply to multiagent
problems).

On-line play schemes often use a multistep lookahead search for path
construction through an acyclic decision graph. The search involves a graph
traversal algorithm to reach the leaves of the graph, starting from the root
node, which corresponds to the current state of the DP problem being
solved on-line. It also uses a terminal cost at the leaves of the graph, which
is obtained by using an off-line trained value function or by using a base
heuristic on-line. The graph traversal may be done by using (nearly) short-
est path calculations (see RL books such as the author’s [Ber19], [Ber20a],
[Ber22b), as well as the books by Sutton and Barto [SuB18], and Lattimore
and Szepesvari [LaS20]). The techniques of real-time dynamic program-
ming, described in the papers by Korf [Kor90], and Barto, Bradtke, and
Singh [BBS95], among many others, are relevant in this context.

A popular class of methods for on-line play with multistep lookahead
is Monte Carlo tree search (MCTS for short). These methods evaluate
approximately the leaves of a tree of state transitions with root at the
current state, combine the results of the evaluations by backwards propa-
gation to the root of the tree, and progressively expand the depth of the
tree by adding new leaves. A standard way to describe MCTS (see the
surveys [BPW12] and [SGS21], and the book [LaS20]) is in terms of four
components: selection, expansion, simulation, and backup. Selection refers
to choosing a leaf node of the tree, to improve its evaluation, and possibly
to add its descendants to the tree. Often in MCTS the selection is done
by various criteria that try to balance exploration and exploitation, such
as the statistics-based UCB (upper confidence bound) criterion. Expan-
sion refers to the method used for tree enlargement, and may be based
on the UCB criterion or other more traditional iterative deepening tech-
niques (searching to adequate precision at a given level of lookahead before
starting to search at a deeper level of lookahead). Simulation refers to the
approximate evaluation of a leaf node by one or more stochastic Monte
Carlo simulation runs. Finally, backup refers to the backwards propaga-
tion of the results of the leaf node evaluations to the root of the tree. The
decision to be applied at the current state is the one corresponding to the
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best backed up evaluation. Note that while MCTS inherently assumes a
stochastic decision environment, it has been applied to deterministic prob-
lems as well by using problem-dependent heuristics for tree pruning and
expansion. Moreover, MCTS algorithms has been developed for adversarial
contexts and games (even deterministic such as chess), in conjunction with
techniques of minimax search such as alpha-beta pruning and others.

The problem that is solved approximately by MCTS is a shortest
path problem with the origin being the root of the tree (the current state
of the DP problem), and the destination being an artificial node to which
all leaf nodes are connected with arcs that have the leaf evaluations as
lengths. Thus for deterministic problems, one may consider the use of the
ASP algorithm as an alternative to MCTS for solving this shortest path
problem. In particular, the selection and backup processes are replaced
by the extension/contraction mechanism of the ASP algorithm, while the
simulation process may be performed by a deterministic base heuristic. The
interim leaf evaluation results may be used for tree expansion in some more
or less heuristic way. Each tree expansion may be followed by suitable price
modifications to enforce an e-CS condition, similar to the scheme discussed
in Section 3.4 for acyclic graphs. One may also use e-scaling at appropriate
points to refine the quality of the solution. At some point the tree search is
terminated, possibly upon reaching the limit of the computational budget.
The decision at the current state is chosen to be the first arc of the final
path generated by the ASP algorithm. The analysis and implementation of
the ASP algorithm within search contexts where MCTS has traditionally
been applied is an interesting subject for further research.

The ASP algorithm is inherently deterministic, but it can also be ap-
plied in stochastic multistep lookahead contexts, where the Monte Carlo
tree search methods have been used widely. This can be done by replacing
all steps of a multistep lookahead except for the first by deterministic ap-
proximations through the use of certainty equivalence (replacing stochastic
quantities by fixed deterministic substitutes; see e.g., the book [Ber19]).
The deterministic shortest path optimizations following the first step of
lookahead involve an acyclic graph, and can be handled with the ASP al-
gorithm. There is good reason for taking into account the stochastic nature
of the first step without approximation, in order to maintain the connec-
tion of the lookahead minimization with Newton’s method for solving the
Bellman equation, as has been explained in the book [Ber22b], Section 3.2.

Let us also mention a possibility that arises in a time-varying envi-
ronment where some of the arc lengths may be changing, possibly because
some arcs may become unavailable and new arcs may become available,
while new instances of shortest path problems arise. This is also typical
in problems of adaptive control. An interesting possibility may then be
to update the initial prices using machine learning methodology, and a
combination of off-line and on-line training with data.

In this regard, we should mention that the use of reinforcement learn-



1.5

Sec. 1.5 Notes and Sources 55

ing (RL) methods in conjunction with our path construction algorithms is
facilitated by the fact that the initial prices are unrestricted. This makes
our algorithms well-suited for large-scale and time-varying environments,
such as data mining and transportation, where requests for solution of path
construction problems arise continuously over time. Addressing the special
implementation and machine learning issues in the context of such environ-
ments is an interesting subject for further research. In conclusion, there are
several potentially fruitful possibilities to mesh the ASP algorithm within
the RL methodology. The key property is that these algorithms will pro-
duce a feasible path starting with arbitrary prices. This path will be near
optimal if the starting prices are close to the true (unknown) shortest dis-
tances or if they satisfy an e-CS condition with e relatively small. Moreover,
it is plausible that better paths can be obtained by more closely approxi-
mating the shortest distances using heuristics and training with data. This
conjecture is supported by experience with related auction algorithms, but
remains to be established empirically.

In conclusion, there are several potentially fruitful possibilities to
mesh the ASP algorithm within the RL methodology, which will be dis-
cussed in greater detail in Chapter 5. The key property is that these algo-
rithms will produce a feasible path starting with arbitrary prices. This path
will be near optimal if the starting prices are close to the true (unknown)
shortest distances or if they satisfy an e-CS condition with e relatively
small. Moreover, it is plausible that better paths can be obtained by more
closely approximating the shortest distances using heuristics and training
with data. This conjecture is supported by experience with related auction
algorithms.

NOTES AND SOURCES

In this chapter we have provided an introduction to our principal network
problem formulations, their interrelations, and their connection with pri-
mal and dual optimization. We have focused primarily on two principal
paradigms, assignment and shortest path, and we have described in in-
tuitive terms the application of auction algorithm and its market-based
mechanism. In Section 1.4.4, we have provided a preview of ways that auc-
tion algorithms can be fruitfully incorporated within the broad framework
of the reinforcement learning methodology. This subject will be revisited
in Chapter 5.

Projected Additions

The material of the following 2024 paper on auction algorithms will be
incorporated in time in this chapter:

D. P. Bertsekas, “New Auction Algorithms for the Assignment Problem
and Extensions,” Results in Control and Optimization, Vol. 14, 2024.
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Abstract: We consider the classical linear assignment problem, and we in-
troduce new auction algorithms for its optimal and suboptimal solution.
The algorithms are founded on duality theory, and are related to ideas of
competitive bidding by persons for objects and the attendant market equi-
librium, which underlie real-life auction processes. We distinguish between
two fundamentally different types of bidding mechanisms: aggressive and
cooperative. Mathematically, aggressive bidding relies on a notion of ap-
proximate coordinate descent in dual space, an e-complementary slackness
condition to regulate the amount of descent approximation, and the idea of
e-scaling to resolve efficiently the price wars that occur naturally as multi-
ple bidders compete for a smaller number of valuable objects. Cooperative
bidding avoids price wars through detection and cooperative resolution of
any competitive impasse that involves a group of persons.

We discuss the relations between the aggressive and the cooperative
bidding approaches, we derive new algorithms and variations that combine
ideas from both of them, and we also make connections with other primal-
dual methods, including the Hungarian method. Furthermore, our discus-
sion points the way to algorithmic extensions that apply more broadly to
network optimization, including shortest path, max-flow, transportation,
and minimum cost flow problems with both linear and convex cost func-
tions.

APPENDIX: BACKGROUND ON GRAPHS, PATHS AND
FLOWS

In this appendix, we introduce some of the basic definitions relating to
graphs, paths, flows, and other related notions. Graph concepts are fairly
intuitive, and can be understood in terms of suggestive figures, but often
involve hidden subtleties.

The material in this appendix provides more detailed background
than what is provided in Section 1.1. It will be used primarily in Chapter
4, and also for some of the theoretical discussions in Chapters 2 and 3. For
the moment, the reader may wish to just skim through this appendix, and
revisit it later as needed.

A directed graph, G = (N, A), consists of a set N of nodes and a set
A of pairs of distinct nodes from A called arcs. The numbers of nodes and
arcs are denoted by N and A, respectively, and it is assumed throughout
that 1 < N < oo and 0 < A < oo. An arc (i,j) is viewed as an ordered
pair, and is to be distinguished from the pair (j,4). If (4,7) is an arc, we
say that (4, ) is outgoing from node ¢ and incoming to node j; we also say
that j is an outward neighbor of ¢ and that i is an inward neighbor of j. We
say that arc (4, 7) is incident to i and to j, and that 7 is the start node and
j is the end node of the arc. We also say that ¢ and j are the end nodes of
arc (i,7). The degree of a node i is the number of arcs that are incident to
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i. A graph is said to be complete if it contains all possible arcs; that is, if
there exists an arc for each ordered pair of nodes.

We do not exclude the possibility that there is a separate arc connect-
ing a pair of nodes in each of the two directions. However, we do not allow
more than one arc between a pair of nodes in the same direction, so that we
can refer unambiguously to the arc with start ¢ and end j as arc (¢, 7). This
is done for notational convenience.t Our analysis can be simply extended
to handle multiple arcs with start ¢ and end j; the extension is based on
modifying the graph by introducing for each such arc, an additional node,
call it n, together with the two arcs (i,n) and (n,j). On occasion, we will
pause to provide examples of this type of extension.

We note that much of the literature of graph theory distinguishes
between directed graphs where an arc (7, j) is an ordered pair to be distin-
guished from arc (j,4), and undirected graphs where an arc is associated
with a pair of nodes regardless of order. One may use directed graphs, even
in contexts where the use of undirected graphs would be appropriate and
conceptually simpler. For this, one may need to replace an undirected arc
(i,7) with two directed arcs (i, j) and (j,4) having identical characteristics.
We have chosen to deal exclusively with directed graphs because in our
development there are only a few occasions where undirected graphs are
convenient. Thus, all our references to a graph implicitly assume that the
graph is directed. In fact we often omit the qualifier “directed” and refer
to a directed graph simply as a graph.

1.6.1 Paths and Cycles

A path P in a directed graph is a sequence of nodes (ni,ng,...,nx) with
k > 2 and a corresponding sequence of k—1 arcs such that the ith arc in the
sequence is either (n;,n;+1) (in which case it is called a forward arc of the
path) or (n;1+1,n;) (in which case it is called a backward arc of the path).
Nodes n; and ny, are called the start node (or origin) and the end node (or
destination) of P, respectively. A path is said to be forward (or backward)
if all of its arcs are forward (respectively, backward) arcs. We denote by
P+ and P~ the sets of forward and backward arcs of P, respectively.

A cycle is a path for which the start and end nodes are the same. A
path is said to be simple if it contains no repeated arcs and no repeated
nodes, except that the start and end nodes could be the same (in which
case the path is called a simple cycle). A Hamiltonian cycle is a simple
forward cycle that contains all the nodes of the graph. These definitions
are illustrated in Fig. 1.6.1. We mention that some authors use a slightly

T Some authors use a single symbol, such as a, to denote an arc, and use
something like s(a) and e(a) to denote the start and end nodes of a, respectively.
This notational method allows the existence of multiple arcs with the same start
and end nodes, but is also more cumbersome and less suggestive.
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Start Node @——@ @ @ End Node

(a) A simple forward path P=(nq, np,ng3,ng).

Set of backward arcs C”
Set of forward arcs C *

(b) A simple cycle C=(ny, np, ng3, n{) which is neither forward nor backward.

Start Node @ @ ny —Q End Node

(c) Path P=(ny, np , n3, n 4, ng) with corresponding sequence of arcs
((n,.nz).(ns,nz). (na.n‘).(ns_n‘)).

Figure 1.6.1: Illustration of various types of paths and cycles. The cycle in (b)
is not a Hamiltonian cycle; it is simple and contains all the nodes of the graph,
but it is not forward. Note that for the path (c), in order to resolve ambiguities,
it is necessary to specify the sequence of arcs of the path (rather than just the
sequence of nodes) because both (n3,n4) and (n4,n3) are arcs.

different terminology: they use the term “walk” to refer to a path and they
use the term “path” to refer to a simple path.

Note that the sequence of nodes (ni,n2,...,n,) is not sufficient to
specify a path; the sequence of arcs may also be important, as Fig. 1.6.1(c)
shows. The difficulty arises when for two successive nodes n; and n;+1 of
the path, both (n;,n;y+1) and (n;+1,n;) are arcs, so there is ambiguity as
to which of the two is the corresponding arc of the path. If a path is known
to be forward or is known to be backward, it is uniquely specified by the
sequence of its nodes. Otherwise, however, the intended sequence of arcs
must be explicitly defined.

A graph that contains no simple cycles is said to be acyclic. We say
that a graph G’ = (N7, A’) is a subgraph of a graph G = (M, A) if N/ C N
and A" C A. A tree is a acyclic graph with a special node r, called the
root, such that for every node n # r, there is a unique path starting at r
and ending at n. A spanning tree of a graph G is a subgraph of G, which is
a tree and includes all the nodes of G. It can be shown that a subgraph is
a spanning tree if and only if it is connected and it contains N — 1 arcs.

1.6.2 Flow and Excess
In many applications involving graphs, it is useful to introduce a variable

that measures the quantity flowing through each arc, like for example,
electric current in an electric circuit, or water flow in a hydraulic network.
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We refer to such a variable as the flow of an arc. Mathematically, the flow
of an arc (Z,7) is simply a scalar (real number), which we usually denote
by x;;. It is convenient to allow negative as well as positive values for flow.
In applications, a negative arc flow indicates that whatever is represented
by the flow (material, electric current, etc.), moves in a direction opposite
to the direction of the arc. We can always change the sign of a negative
arc flow to positive as long as we change the arc direction, so in many
situations we can assume without loss of generality that all arc flows are
nonnegative. For the development of a general methodology, however, this
device is often cumbersome, which is why we prefer to simply accept the
possibility of negative arc flows.

Given a graph (N, A), a set of flows {zi; | (i,7) € A} is referred to
as a flow vector. The excess vector y associated with a flow vector x is the
N-dimensional vector with coordinates

yi= Y. my— Yy mu,  VieN. (1.36)

{31G.5)eA} {31 eA}

Thus, y; is the total flow departing from node 7 less the total flow arriving
at 1; it is referred to as the excess of i.

We say that node 7 is a source (respectively, sink) for the flow vector
z if y; > 0 (respectively, y; < 0). If y; = 0 for all i € N/, then z is called
a circulation. These definitions are illustrated in Fig. 1.6.2. Note that by
adding Eq. (1.36) over all i € N/, we obtain

Zyi:().

1EN

Every excess vector y must satisfy this equation.
The flow vectors x that we will consider will often be constrained to
lie between given lower and upper bounds of the form

bij <z < ¢y, V(Z,j) e A

Given a flow vector x that satisfies these bounds, we say that a path P is
unblocked with respect to x if, roughly speaking, we can send some positive
flow along P without violating the bound constraints; that is, if flow can
be increased on the set Pt of the forward arcs of P, and can be decreased
on the set P~ of the backward arcs of P:

Tij < Cij, V(i,j)EPJr, bij < xij, V(i,j)EP*.
For example, in Fig. 1.6.2(a), suppose that all arcs (¢, 7) have flow bounds

bij = —2 and ¢;; = 2. Then the path consisting of the sequence of nodes
(1,2,4) is unblocked, while the reverse path (4,2, 1) is not unblocked.
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Yo =2 (Sink)

=0 (Neither a source
nor a sink)

(b) A circulation

Figure 1.6.2: Illustration of flows z;; and the corresponding excesses y;. The
flow in (b) is a circulation because y; = 0 for all 4.

1.6.3 Path Flows and Conformal Decomposition

A simple path flow is a flow vector that corresponds to sending a positive
amount of flow along a simple path; more precisely, it is a flow vector x
with components of the form

a if (i,j) € Pt,
i =4 —a if (i,j) € P, (1.37)
0 otherwise,

where a is a positive scalar, and P+ and P~ are the sets of forward and
backward arcs, respectively, of some simple path P. Note that the path P
may be a cycle, in which case x is also called a simple cycle flow.

It is often convenient to break down a flow vector into the sum of
simple path flows. This leads to the notion of a conformal realization,
which we proceed to discuss.

We say that a path P conforms to a flow vector z if z;; > 0 for all
forward arcs (i,7) of P and x;; < 0 for all backward arcs (4, j) of P, and
furthermore either P is a cycle or else the start and end nodes of P are a
source and a sink of x, respectively. Roughly, a path conforms to a flow
vector if it “carries flow in the forward direction,” i.e., in the direction
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Yo=-2 (Sink)

y4=1 (Source) y, =0 (Neither a source
° o - nor a sink)

Flow = 1

Flow =1

Figure 1.6.3: Decomposition of a flow vector = into three simple path flows
conforming to z. Consistent with the definition of conformance of a path flow,
each arc (4,j) of the three component paths carries positive (or negative) flow
only if z;; > 0 (or z;; < 0, respectively). The first two paths [(1,2) and (3,4,2)]
are not cycles, but they start at a source and end at a sink, as required. Arcs
(1,3) and (3,2) do not belong to any of these paths because they carry zero flow.
In this example, the decomposition is unique, but in general this need not be the
case.

from the start node to the end node. In particular, for a forward cycle to
conform to a flow vector, all its arcs must have positive flow. For a forward
path which is not a cycle to conform to a flow vector, its arcs must have
positive flow, and in addition the start and end nodes must be a source
and a sink, respectively; for example, in Fig. 1.6.2(a), the path consisting
of the sequence of arcs (1,2), (2,3), (3,4) does not conform to the flow vector
shown, because node 4, the end node of the path, is not a sink.

We say that a simple path flow 2% conforms to a flow vector x if the
path P corresponding to x5 via Eq. (1.37) conforms to x. This is equivalent
to requiring that

0 < zij for all arcs (4, j) with 0 < 7},

2i; <0 for all arcs (4, j) with 7, <0,

and that either P is a cycle or else the start and end nodes of P are a
source and a sink of x, respectively.

An important fact is that any flow vector can be decomposed into a
set of conforming simple path flows, as illustrated in Fig. 1.6.3. We state
this as a proposition. The proof is based on an algorithm that can be used
to construct the conforming components one by one; see [Ber98], Exercise
1.2 (with solution).
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Proposition 1.6.1: (Conformal Realization Theorem) A nonzero
flow vector x can be decomposed into the sum of ¢ simple path flow
vectors z!, 22,..., xt that conform to x, with ¢ being at most equal

to the sum of the numbers of arcs and nodes A + N. If x is integer,
then 1,22, ... 2t can also be chosen to be integer. If x is a circula-
tion, then z!, 22 ... z! can be chosen to be simple cycle flows, and
t< A.

Proof: Assume first that z is a circulation. Consider the following proce-
dure by which given z, we obtain a simple cycle flow z/ that conforms to
x and satisfies

0 < <y for all arcs (4, j) with 0 < x4,

xij < x;j <0 for all arcs (4, j) with a;; <0,

Tij = for at least one arc (4, j) with x;; # 0;
(see Fig. 1.6.4). Choose an arc (i,j) with z;; # 0. Assume that x;; > 0.
(A similar procedure can be used when z;; < 0.) Construct a sequence of
node subsets Tp, 11, . . ., as follows: Take Tp = {j}. For k =0,1,..., given
Tk, let

Tiy1={n ¢ U’;ZOTP | there is a node m € Ty, and either an arc (m,n)

such that x,, > 0 or an arc (n,m) such that zpm < O}7

and mark each node n € Ty with the label “(m,n)” or “(n,m),” where m
is a node of T}, such that z,;,n > 0 or .y < 0, respectively. The procedure
terminates when T}y is empty.

At the end of the procedure, trace labels backward from 4 until node
j is reached. (How do we know that ¢ belongs to one of the sets T7) In
particular, let “(i1,7)” or “(i,41)” be the label of ¢, let “(i2,41)” or “(i1,42)”
be the label of i1, etc., until a node iy with label “(ig,7)” or “(j,ir)” is
found. The cycle C = (j,ik,ik—1,-.-,%1,%,7) is simple, it contains (i, ) as
a forward arc, and is such that all its forward arcs have positive flow and
all its backward arcs have negative flow. Let a = min,, n)ec |Tmn| > 0.
Then the simple cycle flow x/, where

a if (i,5) € CH,
zl. =1 —a if (i,5) € C—,
0 otherwise,

has the required properties.
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Figure 1.6.4: Construction of a cycle of arcs with nonzero flow used in the proof
of the conformal realization theorem.

Now subtract 2’ from x. We have z;; —x}; > 0 only for arcs (7, j) with
zij > 0, 23 —x; < 0 only for ares (4, j) with z;; <0, and z;; —x}; = 0 for
at least one arc (i,7) with x;; # 0. If x is integer, then 2/ and x — 2/ will
also be integer. We then repeat the process (for at most A times) with the
circulation = replaced by the circulation x — 2’ and so on, until the zero
flow is obtained.

If z is not a circulation, we form an enlarged graph by introducing
a new node s and by introducing for each node i € N an arc (s,i) with
flow x4; equal to the divergence y;. The resulting flow vector is seen to be
a circulation in the enlarged graph (why?). This circulation, by the result
just shown, can be decomposed into at most A + N simple cycle flows of
the enlarged graph, conforming to the flow vector. Out of these cycle flows,
we consider those containing node s, and we remove s and its two incident
arcs while leaving the other cycle flows unchanged. As a result we obtain
a set of at most A + N path flows of the original graph, which add up to
. These path flows also conform to z, as required. Q.E.D.



