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Abstract 
We consider  distributed  solution of the  classical  linear  minimum 

cost  network  flow  problem.  We  formulate  a dual problem  which  is 
unconstrained,  piecewise  linear, and involves a dual  variable for each 
node. We propose  a dual algorithm  that  resembles  a  Gauss-Seidel 
relaxation  method.  At  each  iteration  the  dual  variable  of  a  single  node 
is changed  based on local  information  from  adjacent  nodes. In a 
distributed  setting  each  node  can  change its variable  independently of 
the  variable  changes of other  nodes. The algorithm  is  efficient  for 
some classes  of  problems,  notably for the ma-flow problem for 
which it resembles  a  recent  algorithm by Goldberg [I I]. 

1. btroducticm 

Consider  a  directed  graph  with  set of nodes N and  set of arcs A. 
Each  arc (ij) has  associated  with it an  integer  aij  referred  to  as  the 
cost coeficient of (ij).  We denote  by  fij  the  flow  of  the  arc (ij) and 
consider  the  problem 

minimize  c(i,j)EA aijfij (MCF) 
subject  to 
C ~ , i ) c  A fji - X(i,,)E A fij = si V i E N 

(Conservation of flow) (1) 

(Capacity  constraints) (2) 
bij fij I Cij V (ij) E A 

where  aij, bi,, cij, and si, are given  integers.  We  assume  throughout 
that  there  exists at least one feasible  solution of  this  problem.  For 
simplicity  we  also  assume  that  there is at most one arc  associated 
with  each ordered pair of nodes (ij). However this  is not an essential 
restriction  and  the  algorithms  and  results of the  paper  can be trivially 
modified to account for the  possibility of multiple  arcs  joining  a  pair 
of nodes. 

We first  formulate  a  dual  problem  associated  with  (MCF). This 
problem  is the basis for a  number of recent  works on network  flow 
relaxation  methods [ 21, [ 31, [ 51, [6], [7]. We associate  a Lagrange 
multiplier  pi  with  the  ith  conservation of flow  constraint (1). By 
denoting by f and p the  vectors  with  elements  fij, (ij) E A , and pi, 
ie  N respectively,  we  can  write  the  corresponding  Lagrangian 
function  as 

L(f,P) = c(i,j)&A  aijfij 

+ xi E N  Pi  (CQ,i)E A fji - z(i,j)E A fij - si) 
= z(i,j)E A (aij + Pj - Pi) fij - & E N  SiPi (3) 

The dual  function  value q(p) at  a  vector  p is obtained by minimizing 
L(f,p) over all  f  satisfying  the  capacity  constraints (3). This leads to 
the dual uroblem 

maximize q(p) (4) 
subject to no constraint on p, 

with  the  dual  functional q given by 

q(P) = min {L(f,p) I bij s fij s Cij, (ij) Q A 1 
f 

= x(i,j)E A Si,( Pi - Pj) - ZiE N SiPi (5 a) 

ClijC Pi - Pj) = min { (ai, + Pj - Pi) fij I bij s fij s Cij1 (5b) 
where 

fij 

The function Qj is shown  in  Fig. 1. This formulation of the  dual 
problem is consistent  with  classical  duality  frameworks [15], [16] ,  
but  can  also  be  obtained  via  standard  linear  programming  duality 
theory [IO], ,[13], [14]. We henceforth  refer to (MCF)  as t h e m  
problem,  and note that,  based on standard  duality  results,  the  optimal 
primal  cost  equals  the  optimal  dual  cost. The dual  variable  pi  will  be 
referred  to as the  price of node i. 

t 

Slope -qj ? 
Figure 1: Primal and dual costs for arc (ij) 
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The form of the dual cost (5 )  motivates  solution by Gauss-Seidel 
relaxation (or coordinate  descent  methods). The idea  here is to 
choose  a  single  node  i  and  change  its  price pi in  a  direction  of 
improvement of the  dual  cost  while  keeping  the  other  prices 
unchanged.  A  key  fact  [cf. (S)] is  that maximization of  the  dual cost 
with  respect  to  pi  requires  knowledge of the  prices of just the 
adjacent  nodes of i. As  a  result  the  prices  of  two  nonadjacent  nodes 
can  be  changed in parallel. This leads  to  distributed  methods  where 
the  price  of each node is adjusted by  a separate  processor on the  basis 
of price  information  received from adjacent  nodes/processors. 

The relaxation  idea is straightforward  to  apply if the  arc  costs 
aijfij are strictly  convex  (rather  than  linear)  functions of the arc flows 
fij. In this case  it can  be  shown  that  the dual arc cost  functions qij of 
(5 )  are differentiable, so that  standard  coordinate  descent  methods 
from unconstrained  nonlinear  programming  can be applied (see e.g. 
[13],  [18]).  It tums out that  these  methods  have  remarkable 
convergence  properties  explored  in  [6]  and [7]. Indeed  these  methods 
work  satisfactorily  even in a  distributed  totally  asynchronous  setting 
whereby some nodes  change  their  prices  faster  than  others,  some 
nodes  communicate  their  prices  faster  than  others,  and  there  may be 
arbitrarily  large  communication  delays.  The  underlying  reason  for 
convergence  under  totally  asynchronous  conditions is the 
monotonicity  of  the  algorithmic  mapping  corresponding to the 
relaxation  process  as  explained  in [q. 

The monotonicity  property  referred  to  above is also  present  when 
the  arc  costs are linear as a s s u m e d  in the  present  paper. 
Unfortunately  there  is  a  fundamental  difficulty;  the  dual  cost  q  is 
nondifferentiable  (in  fact  piecewise  linear),  and  the  relaxation  idea 
may  encounter  difficulty at some "comer  points"  as  illustrated  in  Fig. 
2. The  problem  here  is  that  (in  contrast  with  the case of  strictly 
convex  arc  costs  where  the  dual  functional is differentiable)  there  are 
nonoptimal  price  vectors  at  which  the  dual  cost  cannot  be  improved 
by changing  any  single node price. Two remedies  suggest 
themselves. The first is to  allow  simultaneous  changes of prices of 
several  nodes  whenever  a  single  node  price  change  cannot  improve 
the dual cost.  Methods of this  type  have  been  developed  recently,  and 
have  proved  surprisingly  effective,  outperforming  substantially  some 
of the  best  primal  simplex,  and  out-of-kilter  implementations 
presently  available on standard  benchmark  problems [3], [SI. The 
second  remedy,  suggested in this paper, is to allow single node price 
changes  even if these lead to a  deterioration of the  dual  cost. The idea 
is  illustrated in Fig. 3 which  suggests  that if the dual Cost 
deterioration due  to single  node  price  changes is small, then  the 
algorithm  can  approach  eventually  the  optimal  solution.  Indeed  we 
will  show  that not only  this is so, but in fact an SEAGI solution of the 
problem is obtained in a  number of iterations  owing to the 
integer  nature of the  problem data. 

Figure 2: At  the  indicated  point  it  is  impossible  to  improve 
the  cost by changing any one of  the  prices. 

b 

P1 
Figure 3:  By making  small  changes  in  the  coordinate 
directions it  is possible to approach  the  optimal 
solution  even if some steps do not  result  in  a dual 
cost  improvement. 

The advantage  of  the  approach of  this  paper is its  suitability for 
distributed  implementation.  We  envision  here  the  possibility  of  a 
separate processor assigned to each  node, and changing  the  node's 
price on the  basis  of  price and flow  information  received from 
adjacent  nodes.  Similarly  as  in  the  case of  a strictly  convex  cost [7], 
we can show convergence in a  distributed  asynchronous  setting.  This 
is  straightforward  based on a  general  framework for showing 
convergence  of  distributed  asynchronous  algorithms  [8],  [9],  but  the 
analysis is not  given  in  the  present  paper.  We do not  claim  that our 
algorithm  is  faster  than  other  methods for the  general  minimum  cost 
flow problem.The  sequential  version of the  algorithm is, however, 
competitive  with  the  best  sequential  methods for some  classes of 
problems  as  discussed in Section 4. When  applied  to  the  max-flow 
problem  the  algorithm  closely  resembles  the  one  developed by 
Goldberg [ll], and refined by Goldberg  and  Tarjan [12]. The latter 
algorithm is somewhat  more  complicated  than ours in that  it  uses two 
separate  phases to obtain  an  optimal  primal solution. Like Goldberg, 
we show an OW3) worst case complexity  bound. 

The algorithm  of this paper  was  described for the  special case of 
assignment  problems  in  a  1979  unpublished  report by the  author. For 
such  problems  the  algorithm  has an interesting  interpretation  as an 
auction  whereby  economic  agents  compete for resources by making 
successively  higher  bids  (see [2], [4]). The optimal  solution is 
obtained  when  the  prices of the  resources are such  that  each  agent 
acquires  a  resource  offering  maximum  profit  margin.  The  algorithm 
of  the  present  paper  can be interpreted  similarly  as  a  process  of  price 
adjustment  that  terminates  when  the  supply  and  demand  of  flow at 
each  node  become  equal. 

2. m v C o n p  . .  

optimal  primal  and  dual  solution  pair are primal  feasibility  and 
complementary  slackness. To state  these  conditions  we first 
introduce  some  terminology. 

The necessary  and  sufficient  conditions for a pair (f,p)  to  be  an 

For any price  vector  p  we  say  that an arc (ij) is 
Inactive  if pi < ai, + p j  Balanced if p i=  aij + p j  (6a) 
Active  if  pi > aij + pj (6b) 

di = si + x(i,j)E A fij - zc,i)e A fji 
is  called  the &&,it of node i. It represents  the  difference  of  total flow 
exported and total  flow  imported by the  node. 

The primal  feasibility  and  complementary  slackness  conditions 
for a  vector pair (f,p) are: 

For any  flow  vector  f  and  node  i  the  scalar 

(7) 
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di = 0, for  all i E N (8a) 
fij = bij, for all inactive arcs (ij) (8b) 

(8d) 
bij s fij Cij, for all balanced  arcs (iJ) (8c) 
f.. lJ - -. C" for all active arcs (ij). 
We introduce  a  notion  of  "approximate"  complementary 

slackness used also in other network  relaxation  algorithms [ 5 ] ,  [6]. 
For any  price  vector  p  we  say  that an arc (i j)  is 

€-Inactive if pi < aij + pj - E ( 9 4  

~--Balan~ed if  pi = ai, + pj - E (9b) 
 balanced if aij + pj - E 2 pi 2 ai, + pj + E ( 9 ~ )  

~+-~alanced  if pi = aij + pj + E ( 9 4  
€-Active if pi > ai, + pj t E (9e) 

Given E > 0 we  say  that  a  vector  pair  (f,p)  satisfies kc.cmplementq 
slacknes (E-CS for short) if for  each arc (ij) 

f.. - b. 
IJ - lj if (ij) is  €-inactive (loa) 

bij 2 fij 2 Cij  if (ij) is  €-balanced (lob) 
f.. - C' 
IJ - Ij  if (ij) is  E-active (10c) 

The algorithm to be described  in  the  next  section maintains at all 
times  a  price  vector  p  and an integer  flow  vector  f  satisfying E-CS. It 
terminates  when  the  flow  vector  f  satisfies  the  primal  feasibility 
condition di = 0 for all i E N. A  key  fact  is  that if E is  sufficiently 
small  then  the  final  flow  vector  f is optimal.  This is shown in the  next 
proposition. 
m i t i o n  1; There  exists €1 > 0 such  that  if E < €1,  and  the  integer 
flow  vector  f  together  with  the  price  vector  p  satisfy  E-CS  and  primal 
feasibility  (di = 0 for all  i E N ), then  f is optimal  for (MCF). 

the  definition ( 5 )  of the dual functional we have 
Using the  primal  feasibility  and E-CS conditions  together  with 

C(ij) aijfij = C(i,j) (aij +pj - pi )fij - Ci  Sipi 

= Z(i,j)(aij +Pj Pi  )Cij 
E-active 

+ C(ij) (ai, +Pj - Pi )bij + Z(ij)(aij +Pj - Pi )fij - ci SiPi 
E-inactive  €-balanced 

= z(i,j) (ai, +Pj - Pi )cij + x(ij)  (ai, +Pj - Pi )bij 
actwe inactive 

+ z(i,j)(aij  +pj - Pi  Xfij - cij)+x(ij)(aij +Pj - Pi )Cfij -bij) - ci sgi 
€-balanced  €-balanced 
& active & inactive 

2 x(i,j) (aij +Pj - Pi )cij + x(i,j) (ai, +Pj - Pi )bij + 
active  inactive 

+ E C(i,j) (cij - bij) - Ci  sipi 
e-balanced 

= q(P) + E x(i,j)  (cij - bij) 
&-balanced 

s q* + E C(i,j) (cij - bij) (1 1) 
where q* is the  optimal dual cost,  which is in equal to  the 
optimal  primal cost. Take 

€1 = I /  C(i,j) (Cij - bij) 
Then, for E < €1, C(i,j) aijfij is strictly  within  unity of tKe dual and 

coefficients  are  integer, so is Z(i,,) aijfij.  It  follows  that f is  optimal. 
Q.E.D. 

primal optimal cosi. Because  f is integer  and  the  cost 

The proof of the  proposition  establishes  the  bound x(i,j) (Cij - 
bij) for E. For specific  classes of problems  this  bound  can  be 
improved  as  will be seen  in  Section 4. Note  that  the  price Vector P 
satisfying the  assumptions  of  Proposition  1  is  not  optimal.  However 
the  proof  establishes  that  p  is  within O(E) of being  optimal,  and 
within.close  to unity of being  optimal  when E is chosen  close to the 
bound 1/ E(ij) (Cij - bij). 

3. These- 

The algorithm s t a r t s  with  a  fixed  value  for E >O and  with  a  pair 
(f,p)  satisfying E-CS. The flow  vector  f  is  taken  integer  initially,  and 
the  algorithm  preserves  this  property  throughout.  At  the start of  each 
iteration  a node i  with  nonzero  deficit di is chosen. (Tf all nodes  have 
zero  deficit  the  algorithm  terminates;  then  f is primal  feasible  and 
together  with  p  satisfies E-CS, so Proposition 1 applies.)  At  the end 
of the  iteration  the  deficit di is  driven to zero,  while  another  pair (f,p) 
satisfying  E-CS is obtained. During an iteration  all  node  prices  stay 
unchanged except possibly  for  the  price of the  chosen node i. 
Similarly all arc flows stay unchanged  except for the flows of some 
of the  arcs  incident to node  i. As a  result of these  flow  changes,  the 
deficit  of  some  of  the  nodes  adjacent to i  is  increased or decreased 
depending on whether  the  deficit di was  positive  or  negative 
respectively at the start of the  iteration. We describe  below  the 
iteration for the two cases where  node  i  has  positive  and  negative 
deficit 

ve Deficit Node m n  (or UD 
k t  (f,p) satisfy E-CS, and  let  i  be  a  node  with di < 0. 

(scan adjacent arc) Select  a  node  j  such  that (ij) is an E+- 
balanced arc with fij < Cij and go to step 2, or  select  a  node  j  such  that 
O'i) is an &--balanced  arc  with fji > bji and go to step 3. If no such 
node can be found go to step 4. w: (Increase  deficit by increasing fi,) If di = 0 terminate the 
iteration;  else  set 

f . . :=f . .+6  4 1J 
di := di + 6, d j : = d j - 6  

where 6 = min{ -di, Cij - fij}, and go to step 1. w: (Increase  deficit by reducing  fji) If di = 0 terminate  the 
iteration;  else  set 

fji : = f .  6 11 
di := di + 6, djzZdj-6 

where 6 = min{-di, fij - bij}, and go to step 1. 
SteD 4; (Increase  price of node i) Set 

Pi := min {{Pj + aij + E 1 (ij) E A and fij c cij}, 
{pj - aji + E I G,i) E A and  bji < fji}} (12) 

Go to step 1. 

To s e e  that (12) leads to a  price  increase  note  that  when  Step 4 is 
entered  we  have fij = Cij for all (ij) such  that  pi 2 p, + aij + E, and  we 
have  bji = fji for all 6,i) such  that  pi L. p, - aji + E. Therefore  when 
Step 4 is  entered 

Pi < min{pj + aij + E I (i j)  E A and fij < cij} 
Pi < min {Pj - aji + E I U,i) E A and  bji < f,i} 

It follows that  pi  must be increased  via  (12).  Another  issue is that, 
for step 4 to be  well  defined,  we  must  exclude  the  case  where fi, = 
Cij for all (ij) outgoing from i, and bji = fji  for all (i,i)  incoming to  i, 
i.e.,  maximal flow is  going  out of i  and minimal flow is coming into 
i. Since we  must  have di 5 0 when Step 4 is entered,  and by 
assumption,  a  feasible  solution  exists,this  case  can  only  happen 
when di=O, and furthermore  the  current  flows of arcs  incident  to  i are 
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the  only  feasible. For convenience  we  assume  that  this  exceptional 
case  does  not  occur;  otherwise  we can simply  modify step 4 to leave 
pi  unchanged  and  terminate  the  iteration  when  this  case  arises. 

.. osltwe De- lor  Down Tteratlonl; 
Let (f,p)  satisfy E-CS, and let i be a  node  with di > 0. 

(Scan  adjacent  arc)  Select  a  node  j  such  that (ij) is an E-- 
balanced arc with fij > bi, and go  to step 2, or select  a node j such 
that (j,i)is an  &+-balanced  arc  with  fji < cji  and go to step 3. If no 
such node can be  found go  to step 4. 

iteration;  else  set 
(Reduce  deficit by reducing  fij) If di = 0 terminate  the 

fij := fij - 6 
di := di - 6, dj := dj + 6 

where 6 = min{di, fij - bij}, and go to step 1. w: (Reduce  deficit by increasing  fji) If di = 0 terminate  the 
iteration;  else  set 

fji := fji + 6 
di := di - 6, dj := dj + 6 

where 6 = min{di, ci, - fij}, and go  to step 1. 
Step 4: (Reduce  price  of  node  i) Set 

pi := max  {{pj + ai, - E I (ij) E A and bij < fij, 
{pj - aji + E I Q,i) E A and  fji < Cji>> 

Go to step 1. 
For step 4 to  be well defied we  must  exclude  the  case  where fji 

= cji  for all u,i) incoming to  i, and bi, = fi, for all (ij) outgoing from 
i. Similar comments  apply as for the earher case  of  the  up  iteration. 

The algorithm  consists of successively  executing  up  and down 
iterations  until  termination.  Unfortunately,  however, one can 
construct an example  (essentially  the  same  example  as  the one given 
in [17], Appendix C) showing  that  the  algorithm  may  not  terminate if 
up and down  iterations are mixed  in  arbitrary  fashion,  It  is  therefore 
necessary  to impose some further  assumptions,  either on the  problem 
structure or on the  method by which  up  and  down  iterations are 
interleaved, The simplest  possibility is assumed  in  the  following 
proposition. 

-2: Assume  that in the  algorithm  either  only  up  iterations, 
or only  down  iterations are executed.  Then  the  algorithm  terminates 
with  (f,p)  satisfying E-CS, and  with  f  being  integer  and  primal 
feasible. 
gcQnfi Assume for concreteness  that  only  up  iterations are executed. 
A  similar  proof  is  possible  when  only  down  iterations  are  executed. 
It  should  be  mentioned  here  that by (7) we  have  &di = 0, so if there 
is a node with positive deficit, there  must  also  be  a  node  with 
negative  deficit and reversely. It  is therefore  possible  to  operate  the 
algorithm  using  up  iterations  exclusively. 

The following  facts  can  be  verified  based on the  construction  of 
the up iteration: 

1) The integrality off and the E-CS property of (f,p) are 
preserved  throughout  the  algorithm. 

2) The prices of all  nodes are monotonically  nondecreasing 

.. 

du&g the ilgorithm. 

nonpositive  thereafter. (This follows from the fact that  an up iteration 
drives  the deficit  of the  node  iterated  to  zero,  and  cannot  decrease  the 

3) Once  a  node  gets  nonpositive  deficit  its  deficit  stays 

deficit  of  its  adjacent  nodes.) 

been  iterated  upon  up to that  time,  and  therefore  its  price  must be 
equal  to its initial  price. ( T h i s  a  consequence of 3) above  and  the  fact 
that  only  nodes  with  negative  deficit  are  iterated  upon by up 

~~ ~~ 

4) If at some time  a node has  positive  deficit it must  have  never 

iterations.) 
Based on 2) above  there are two possibilities;  either a) the  prices 

of  a  nonempty  subset N" of N diverge to +-, or else b)  the  prices 
of all nodes in N stay  bounded  from  above. 

Suppose that case a)  holds. Then , since N" is  nonempty, it 
follows  that  the  algorithm  never  terminates  implying  that  at  all  times 
there must  exist  a  node  with  positive  deficit  which, by 4) above, 
must have a  constant  price.  It follows that N" is  a  strict  subset  of N. 
To preserve E-CS, we  must have after  a  sufficient  number  of 
iterations 

f.. -C" 
11 - 'I for  all (ij) E A with  i E N", j e N" 

f.. - b.. 
11- 1' for  all  (j,i) E A with  i E N", j e Nm 

while  the  sum of deficits  of  the  nodes  in N" must be negative. This 
means  that  even  with as much  flow  as arc capacities  allow  coming 
out of N" to nodes  j o N" , and  as  liitle  flow  as  arc  capacities 
allow  coming into N" from nodes  j o N-, the total  deficit C{di I i 
E N"} of  nodes  in N" is  negative. It follows  that  there is no 
feasible  flow  vector  contradicting  a  standing  assumption of this 
paper.  Therefore case b)  holds  (all  prices of nodes in N stay 
bounded). 

that  were not so, then  there  must exist a node i E N at  which  an 
infinite  number  of  iterations are executed.  There  must  also  exist an 
adjacent  &--balanced  arc  (j,i), or &+-balanced arc (ij) the  flow  of 
which  is  decreased  or  increased  respectively by an  integer  amount 
during  an  infinite number of iterations. For this  to  happen,  the  flow 
of (j,i) or (ij) must  be  increased  or  decreased  respectively  an  infinite 
number of times due to  iterations at the  adjacent  node j. This  implies 
that  the  arc  (j,i) or (ij) must  become  &+-balanced or &--balanced from 
&--balanced or &+-balanced  respectively  an infiite number of times. 
For this to  happen,  the  price of the  adjacent  node  j  must be increased 
by at least 2~ an infinite  number of times.  It  follows  that  pj+ 
which  contradicts the boundedness  of  all  node  prices  shown  earlier. 
Therefore the algorithm  must  terminate. Q.E.D. 

In other  types of relaxation  methods for network  flow  problems 
[2], [3], [5] - [7], there is an improvement in the  dual cost each  time 
there  is  a  price  change. This is not true  for  the  price  changes  effected 
in Step 4 of the up and the down iterations. However, there is still  an 
interesting  interpretation of Step 4 as a  dual  cost  improvement,  It  can 
be shown, using  the  main  results of [3], that  price  changes in Step 4 
yield  a duil cost  improvement  of  a  problem  obtained  after 
the  cost  coefficients  of  some  of  the  incident  &-balanced  arcs  of  the 
node iterated  upon  are  changed  by E. In effect,  the  algorithm 
improves,  with  each  price change, a  slightly  perturbed  dual cost and 
ends  up  with  a  slightly  suboptimal  dual  solution. The corresponding 
primal  solution,  however,  is  optimal  thanks to the  rounding 
introduced  by  the  integer  nature of the  problem data. 

We now show by contradiction  that  the  algorithm  terminates.  If 

We mentioned  earlier  that for specific  classes  of  problems one 
may be able  to  improve  on  the  estimate for E obtained  in  the  proof  of 
Proposition 1. Two such  problems are the  assignment  and  max-flow 
problems. 

Consider  first  the  assignment  problem.  Here  the  graph  is  bipartite 
with 2N nodes,  half of which are sources  generically  denoted by the 
letter i (si = - l),  and  half of which are sinks generically  denoted  by 
the letter j (Sj = 1). The problem is 

minimize & 3 aijfij 
subject  to 
Zjfij = 1, i = 1,2, .  . .,N 
q f i j  = 1, j = 1,2, . . .,N 
0 2 fij s 1, i, j = 1,2, . . .,N 

For simplicity we consider  the  case  of  a  fully  dense  graph  where 
every  source  is  connected to every  sink  with an arc. The more 
general  situation can be  reduced to the  fully  dense case by choosing 
the cost coefficients  of  the  nonexistent  arcs  sufficiently  large. We 
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assume without loss of generality  that aij 2 0, bij ='O, cij = 1, for all i 
and j, and  apply  the  algorithm of the  previous  section  with initial 
prices  and  flows equal to zero for all  nodes  and  arcs respectively. 

algorithm  will  terminate in a finite number of iterations  with  an 
integer flow  vector.  All arc flows  will  be 0 or 1 with  only one arc 
with  unity  flow incident to any  one  node.  Bearing this in  mind  we 
can strenghthen the calculations of the  proof of Proposition 1. Since 
only N of the flows fij are nonzero, the  sumations over all (ij) in 
(1 1) can  be  reduced to summations  over i yielding  the  bound 

Suppose we  use  only  up iterations. Then, by Proposition 2, the 

& 4 aijfij 5 q* + EN 
It is  therefore sufficient to take E < I N  to guarantee  optimality of the 
finally obtained assignment. 

We  now  assume  that E = l/(N-1) and estimate the  worst case 
complexity  of the algorithm.  We  first  observe  that  the  finally  obtained 
prices of all nodes cannot exceed max{aij 1 i j  =1, ..., N} + 2E. TO  see 
this  note  that  when  the  algorithm  terminates,  the  last  sink  to  be 
assigned to a source will  have  positive deficit up to the  time  of 
termination,  and  therefore  at  termination  will sti l l  have  price 0 (fact 4 
in  the  the  proof of Proposition 2). This, together  with  the E-CS 
requirement imply  the  upper  bound  max{aij 1 i j  = 1, ..., N}+ &for the 
source prices. Adding E to this we obtain an upper  bound on the  sink 
prices in  view  of E-CS. Since E = l/(N-l), prices increase in 
increments  which are multiples of E. We therefore  obtain  an  upper 
bound of O(N2 max{ai, I i j  = 1, ..., N}) for the total number of node 
price changes. This bound  can  be  shown by example to be tight [l], 
and is somewhat  disappointing  in  that  it  implies  that  the  algorithm is 
not polynomial. However when  max{aij ! i j  = 1, ...,N} is relatively 
small  the  algorithm may  be competitive w1th other  algorithms, 
particularly  when  its  potential  for  distributed  implementation is 
considered.  For  the case of the  bipartite  matching  problem  where aij 
is either 0 or 1, it can  be  seen  using  the  preceding  arguments that the 
computational  complexity of the  sequential  version of the  algorithm is 
0 ~ ~ 3 1 .  

Consider  next  the  max-flow  problem. We adopt  here a 
formulation shown  in Fig. 4. In particular all arcs have 0 cost 
coefficient, except for the  artificial  arc (t,s) connecting  the  sink t with 
the source s which  has cost coefficient -1. We assume  that  si = 0 for 
all i, and bij = 0 < cij for all  arcs (ij) other than (t,s). The flow 
bounds bt, and cts are taken so that bts< 0 and Zicsi < cts. We  apply 
the  algorithm  using  up iterations only. The initial prices  and arc flows 
are 0 except for the following: The price of the source s is  taken  to  be 
1 + ~ ,  the flows of all outgoing arcs (s,i) from s equal the 
coresponding  upper  bound csi, and  the  flow of the artificial arc (t,s) 
equals &Csi. 

Sink 

- 
Artificial Arc. 
Cost Coeficlent = - 1 

Figure 4: Formulation of the  max-flow  problem.  All arcs have  cost 
coefficient 0 except  for  the  artificial arc that has cost  coefficient -1.  
We assume  that bj = 0 < co,  for all arcs (i j)  other than (t,s), and we 
take&<Oand%s  qcSi 

This choice of initial conditions  implies  that all nodes  have 
initially  zero or negative deficit, except for the  sink  node t which  has 
deficit equal to qcsi. Since at  least one node must  have  positive 

deficit prior to  termination,  and all nodes  with  nonpositive initial 
deficit will  have  nonpositive deficit throughout  the  algorithm, it 
follows  that  the sink node twill have  positive deficit at all times  prior 
to  termination,  and  that the algorithm will terminate  when  the  deficit 
of t will  become 0. As a result  the  price of t  will stay constant at 0. 
Because  the  arc (t,s) is initidy &--balanced, and  bts< 0, any price 
increase of ps  will  make ds positive which  is  not  allowed by the 
algorithm.  It  follows  that  throughout  the  algorithm  the price of the 
source node s will  stay constant at 1 + E. 

We claim that if E < l/(N-2), where N is  the  number  of nodes, 
then  the  algorithm  terminates  with  an  optimal  flow  vector. To see this 
consider  the  flow  vector obtained at  termination. If it were  not 
optimal, there would exist an augmenting path (s, i, j, ..., k, t) from s 
to t where each arc on the  path  would  have  flow  less  than  the  upper 
bound, or more  than  the lower bound  depending on whether it is 
forward or backward oriented. In view of the E-CS requirement we 
must  have  at  termination 

I + &  = p s  

Ps - 5 Pi 
Pi - E I Pj 
. . . . .  
Pt-E -5 Pk 

Since pt = 0, and  the  number of arcs on the augmenting  path  can be 
at most N - 1, we obtain by adding  the  inequalities  above 

Therefore, if E is chosen to be less than l/(N-2), there  can  be no 
augmenting  path  at  termination,  and  the  flow  vector  obtained  must  be 
optimal. 

We  now assume that E = 1/(N - l), and estimate the worst case 
Complexity of the  algorithm. We first note  that  at  termination  we  have 
0 I pi s 2 for all nodes i. This follows from the fact that initially 
every  node is connected  to either s or t with a path of &-balanced arcs, 
and it is  seen  that this property is preserved  at each iteration of the 
algorithm. Since all price  changes  will be in increments of multiples 
of E (in view of E = 1/(N - l)), it follows that the price of each  node 
will be increased at  most 0 0  times during  the  algorithm. 

divided  in three parts: 

up iterations. 

of the corresponding arc is set to its upper or its lower bound. 

of the  corresponding  arc is set to a value strictly  between its upper 
and its  lower bound. 

Since there are 0 0  price inneases for each node, the 
requirements  in 1) above are O(NA) operations, where A is  the 
number  of arcs. 

Whenever  an  arc  flow is set to either the upper  or  the lower 
bound due to an iteration  at one of the  end  nodes,  it  takes a price 
increase of at  least 2& by the opposite end  node  before  the  arc  flow 
can  change  again. Therefore there are O(N) Steps 2 or 3 per an: for 
which  the flow of the arc is set to its upper or lower  bound, and the 
total  requirements for 2) above are O(NA) operations. 

There  remains to estimate  the  computational  requirements  for 3) 
above. For this we introduce an order for choosing  nodes in 
iterations. A W is a set of iterations  whereby  all  nodes are chosen 
once in a given order, and an  up iteration  is  executed  at  each  node 
having  negative deficit at  the  time  its turn comes.  We  henceforth 
assume  that  the  algorithm  is  operated in cycles, and proceed to  show 
that  the  number  of  cycles  up to termination is O(N2). Let  M = 
W { p i  I di < 0}, and consider the effect on M of a single cycle of 
iterations. There are three possibilities: 

a) M increws duringthe cvcle, Then  the  price  of  some  node 
must increase during  the cycle. To see this  note  that if all node  prices 
were to stay  constant  during  the cycle and M were to increase, the 
deficit of  some  node i with  pi > M and di = 0 at  the s t a r t  of the  cycle 
must  become  negative  during  the  cycle - this  cannot  happen  because 

1 2 (N-2)E 

The  dominant  computational  requirements of the  algorithm  can be 

1) The cofiputation required for price  increases in Step 4of the 

2) The computation  required for Steps 2 or 3 for which  Eheflow 

3) The computation  required for Steps 2 or 3 for which  the flow 
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all nodes  with  negative  deficit  at  the s t a r t  of the  cycle  have  price 
lower  than pi, and a node can change its deficit from zero to negative 
only  through  an  iteration  at an adjacent  node with higher  price. 
Therefore  there is at least one node  price  that  will  increase  in  each 
cycle for which M increases. Since the  number of price  increases  per 
node is OW), it follows  that  the  number of cycles  during  which M 
increases is O(N2). Furthermore  the  sum of increases in M is 
bounded  above by the  sum of price  increases of  all  nodes  which  is 
less than 2(N - l), since 0 5 pi s 2 for all i and  ps = 1 + E ,  pt = 0. 

b)  M decreases durinc the c v c k  Since M 2 0 the  sum of 
decreases  in M can  exceed  the  sum of increases in M by no  more  than 
the  maximum price value which  was  shown  to be no more  than 2. 
Therefore the s u m  of decreases in M is less  than 2N. Since M can 
decrease only  in  multiples  of E = 1/(N - l), we obtain  that  the 
number of cycles  during  which M decreases is O(N2). 

c)  stavs  the  same  durinv  the cycle Again  we claim that  the 
price of some  node  must  increase  during  the cycle because  the deficit 
of each  node i with  di s 0 and  pi = M at  the  beginning of the cycle 
will be zero  at  the  end of the  cycle. To see this note  that  the deficit of 
such a node  is either zero or is set  to  zero  when its iteration is 
performed, and can only  decrease  through an iteration  at some 
adjacent  node with negative  deficit  and  higher  price. If all  prices  stay 
constant  during  the cycle such an adjacent  node  does  not exist. 
Therefore  some  node price must  increase  during  the cycle, and, by 
the  argument  given  in a) above,  the  number of cycles during  which 
M stays  the same  is also O(N2). 

Thus we have  shown  that  the  total  number of cycles  performed 
by the  algorithm is O(N2). For  each  cycle  there  can be only  one arc 
flow  per  node set to a value  strictly  between  the  upper  and  lower arc 
flow  bound in Step 2 or 3. Therefore the  total  number of operations 
required for these steps [cf. 3) above]  is O(N3). Adding the 
computational  requirements  for 1)  and 2) calculated  earlier we obtain 
an O(N3) + O(NA) or O(N3) worst case complexity  bound for the 
version of the  algorithm that is operated in cycles. 
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