Proceedings of 25th Conference
on Decision and Control
Athens, Greece *+ December 1986

FP9 - 5:30

Distributed Relaxation Methods for Linear Network Flow Problems*

Dimitri P, Bertsel

Dept. of Electrical Engineering and Computer Science
Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, Mass. 02139

Abstract

We consider distributed solution of the classical linear minimum
cost network flow problem. We formulate a dual problem which is
unconstrained, piecewise linear, and involves a dual variable for each
node. We propose a dual algorithm that resembles a Gauss-Seidel
relaxation method. At each iteration the dual variable of a single node
is changed based on local information from adjacent nodes. In a
distributed setting each node can change its variable independently of
the variable changes of other nodes. The algorithm is efficient for
some classes of problems, notably for the max-flow problem for
which it resembles a recent algorithm by Goldberg [11].

1. Introduction

Consider a directed graph with set of nodes N and set of arcs A.
Each arc (i,j) has associated with it an integer a;; referred to as the

cost coeficient of (i,]). We denote by fij the flow of the arc (i,j) and
consider the problem

minimize Z(i’j)gA aijfij MCF)
subject to
ZGieA fi-EijeA fij=si VieN
{Conservation of flow))]
bij < fij < cjj vaij)e A
(Capacity constraints) 2)

where ajj, bjj, ¢jj, and sj, are given integers. We assume throughout
that there exists at least one feasible solution of this problem. For
simplicity we also assume that there is at most one arc associated
with each ordered pair of nodes (i,j). However this is not an essential
restriction and the algorithms and results of the paper can be trivially
modified to account for the possibility of multiple arcs joining a pair
of nodes.

We first formulate a dual problem associated with (MCF). This
problem is the basis for a number of recent works on network flow
relaxation methods [2], [3], [5], [6], [7]. We associate a Lagrange
multiplier p; with the ith conservation of flow constraint (1). By

denoting by f and p the vectors with elements f;;, (i,j) € A, and p;,
ieN respectively, we can write the corresponding Lagrangian
function as
L(Ep) = Z(i,j)eA aijfij
+ZieNDPi EGeA fi-ZdjeA fij-sD
= Z(ijeA @j+pj-Pfij- ZieN $iPi (3)
The dual function value q(p) at a vector p is obtained by minimizing
L(f,p) over all f satisfying the capacity constraints (3). This leads to
the dual problem

maximize q(p) 4
subject to no constraint on p,
with the dual functional q given by

21

qp) = n}in {L{f.p) | bij < fij <¢ (j)eA}

=Z(i,j)e A %j(Pi-P) - ZieN Sip; (Sa)
where
%j(Pi - pj) = min { (ajj + pj - pi) fij | byj < fij < 45}

fij

(5b)

The function qj; is shown in Fig. 1. This formulation of the dual
problem is consistent with classical duality frameworks [15], [16]
but can also be obtained via standard linear programming duality ’
theory (10], ,[13], [14]. We henceforth refer to (MCF) as the primal
problem, and note that, based on standard duality results, the optimal
primal cost equals the optimal dual cost. The dual variable p; will be

referred to as the price of node i.

Primal cost a;f..
for arc (i,j) % 4
Slope aij
>
by Cij £
Dual cogt_qij(g -B)
for arc (i.j)
y e -qj
% >
A3

Slope S

Figure 1: Primal and dual costs for arc (i,j)

CH2344--0/86/0000-2101 $1,00 @ 1888 IEEE

Authorized licensed use limited to: ASU Library. Downloaded on August 07,2022 at 21:58:02 UTC from IEEE Xplore. Restrictions apply.

The form of the dual cost (5) motivates solution by Gauss-Seidel
relaxation (or coordinate descent methods). The idea here is to
choose a single node i and change its price p; in a direction of

improvement of the dual cost while keeping the other prices
unchanged. A key fact [cf. (5)] is that maximization of the dual cost
with respect to p; requires knowledge of the prices of just the

adjacent nodes of i. As a result the prices of two nonadjacent nodes
can be changed in parallel. This leads to distributed methods where
the price of each node is adjusted by a separate processor on the basis
of price information received from adjacent nodes/processors.

The relaxation idea is straightforward to apply if the arc costs
ajjfyj are strictly convex (rather than linear) functions of the arc flows

fij In this case it can be shown that the dual arc cost functions qjj of

(5) are differentiable, so that standard coordinate descent methods
from unconstrained nonlinear programming can be applied (see e.g.
{131, {18]). It turns out that these methods have remarkable
convergence properties explored in [6] and {7]. Indeed these methods
work satisfactorily even in a distributed totally asynchronous setting
whereby some nodes change their prices faster than others, some
nodes communicate their prices faster than others, and there may be
arbitrarily large communication delays. The underlying reason for
convergence under totally asynchronous conditions is the
monotonicity of the algorithmic mapping corresponding to the
relaxation process as explained in [7].

The monotonicity property referred to above is also present when
the arc costs are linear as assumed in the present paper.)
Unfortunately there is a fundamental difficulty; the dual costq 18
nondifferentiable (in fact piecewise linear), and the relaxation idea
may encounter difficulty at some "corner points” as illustrated in Fig.
2. The problem here is that (in contrast with the case of strictly
convex arc costs where the dual functional is differentiable) there are
nonoptimal price vectors at which the dual cost cannot be improved
by changing any single node price. Two remedies suggest
themselves. The first is to allow simultaneous changes of prices of
several nodes whenever a single node price change cannot improve
the dual cost. Methods of this type have been developed recently, and
have proved surprisingly effective, outperforming substantially some
of the best primal simplex, and out-of-kilter implementations
presently available on standard benchmark problems {3}, {S]. The‘
second remedy, suggested in this paper, is to allow single node price
changes even if these lead to a deterioration of the dual cost. The idea
is illustrated in Fig. 3 which suggests that if the dual cost
deterioration due to single node price changes is small, then the
algorithm can approach eventually the optimal solution. Indeed we
will show that not only this is so, but in fact an exact solution of the
problem is obtained in a finite number of iterations owing to the

integer nature of the problem data.

P2 N
Surfaces of
<+ equal
dual cost
—
Py

Figure 2: At the indicated point it is impossible to improve
the cost by changing any one of the prices.

2102

Surfaces of
equal
dual cost

>

Py
Figure 3: By making small changes in the coordinate
directions it is possible to approach the optimal

solution even if some steps do not result in a dual
cost improvement.

. The advantage of the approach of this paper is its suitability for
distributed implementation. We envision here the possibility of a
separate processor assigned to each node, and changing the node's
price on the basis of price and flow information received from
adjacent nodes. Similarly as in the case of a strictly convex cost [7),
we can show convergence in a distributed asynchronous setting. This
is stralghtforward_ based on a general framework for showing
convergence of distributed asynchronous algorithms 8], [9], but the
analysis is not given in the present paper. We do not claim that our
algorithm is faster than other methods for the general minimum cost
flow problem.The sequential version of the algorithm is, however,
competitive with the best sequential methods for some classes of
problems as discussed in Section 4. When applied to the max-flow
problem the algorithm closely resembles the one developed by
Goldberg [11], and refined by Goldberg and Tarjan [12]. The latter
algorithm is somewhat more complicated than ours in that it uses two
separate phases to obtain an optimal primal solution. Like Goldberg,

we show an O(N3) worst case complexity bound.

'The algorithm of this paper was described for the special case of
assignment problems in a 1979 unpublished report by the author. For
such problems the algorithm has an interesting interpretation as an
auction whereby economic agents compete for resources by making
succ;sswely higher bids (see (2], [4]). The optimal solution is
obtained when the prices of the resources are such that each agent
acquires a resource offering maximum profit margin. The algorithm
of the present paper can be interpreted similarly as a process of price
adjustment that terminates when the supply and demand of flow at
each node become equal.

2. Optimality Conditions and e-Complementary Slackness

The necessary and sufficient conditions for a pair (£,p) to b

_ . A € an
optimal primal and dual solution pair are primal fegsibilits)and
complementary slackness. To state these conditions we first
introduce some terminology.

For any price vector p we say that 1,j)1

Inactive if > ¢ an e @ps

i Pi < 2jj + Pj (6a)
Balanced 1f Pi=ajj+pj (6b)
Active if Pi > ajj + P (6c)

For any flow vector f and node i the scalar
di=si+ZGheA fij-IGieA fi ©)

is called the deficit of node i. It represents the difference of total flow
exported and total flow imported by the node.

The primal feasibility and compleme 1 iti
for 2 vecror e () artey p ntary slackness conditions

Authorized licensed use limited to: ASU Library. Downloaded on August 07,2022 at 21:58:02 UTC from IEEE Xplore. Restrictions apply.

d; =0, forall ie N (8a)
fij=bjj, forall inactive arcs (i) (8b)
bjjsfij<cij, forall balanced arcs (i,j) (8
fij=cjj forallactive arcs (i,)). (8d)

We introduce a notion of "approximate” complementary
slackness used also in other network relaxation algorithms (5], [6].
For any price vector p we say that an arc (i,j) is

g-Inactive if Pi<ajj+Dpj-€ (9a)
€™-Balanced if pi=ajj+pj-¢€ (9b)
€-Balanced if 3jj+Pj-€<pPi<j+pj+E (9c)
g*-Balanced if pi=2jj+pj+€ (9d)
e-Active if Pi > ajj+ pjtE (9¢)

Given € > 0 we say that a vector pair (f,p) satisfies e-complementary
slackness (e-CS for short) if for each arc (i,j)

fij = byj if (i,j) is e-inactive (10a)
bjj < fij < ¢jj if (i,j) is e-balanced (100}
fij = Cjj if (1,j) is e-active (10c)

The algorithm to be described in the next section maintains at all

times a price vector p and an integer flow vector f satisfying €-CS. It
terminates when the flow vector f satisfies the primal feasibility

condition d; = O forall i € N. A key fact is that if € is sufficiently

small then the final flow vector f is optimal. This is shown in the next
proposition.

Proposition 1; There exists €1 > 0 such that if € < €, and the integer
flow vector f together with the price vector p satisfy £-CS and primal
feasibility (d; = O for alli € N), then f is optimal for (MCF).

Proof; Using the primal feasibility and &-CS conditions together with
the definition (5) of the dual functional we have

L) aijfij = Zq,j) (@i +Pj - PG - Zisipi
= Z(1,j)(@ij +Pj - Pi)
€-active

+

Z(i,§) (ajj +pj - Pi)bjj + Z(i,j)(@jj +pj - P M) - Zi sipy
€-inactive €-balanced

i) (@ij +pj-PiJeij + I(ij) (aij +pj - Pi)bj
active inactive

+ Z(i,j)(@ij +pj - Pi)(fij - cij)+Z(i,j)(aij +pj - Pi)i -bi) - Zy sipi

¢-balanced €-balanced

& active & inactive

< I (85 +pj - pidejj + Zqi,j) @gj +pj - Pidbij +
active inactive

+E z(i,j) (Cij - bij) - Zisipi
e-balanced
=q(p)+ & Z(j (- by
€-balanced
<qF+ e X (g5 - by (an

where q* is the optimal dual cost, which is in turn equal to the
optimal primal cost. Take

€1 = 1/ Z(3,j) (cij - biy)
Then, for € < €1, Z(j j) ajjfjj is strictly within unity of the dual and
primal optimal cost. Because f is integer and the cost

coefficients are integer, so is X(j j) aj;fj;. It follows that f is optimal.
Q.E.D.

The proof of the proposition establishes the bound 1/ Zj 5y (¢jj -

bij for £. For specific classes of problems this bound can be

improved as will be seen in Section 4. Note that the price vector p
satisfying the assumptions of Proposition 1 is not optimal. However

the proof establishes that p is within O(g) of being optimal, and
within.close to unity of being optimal when £ is chosen close to the
bound 1/ Z(j j (¢jj - bj)-

3. Thes ial Version of the Algoritt

The algorithm starts with a fixed value for € >0 and with a pair

(f,p) satisfying e-CS. The flow vector f is taken integer initially, and
the algorithm preserves this property throughout. At the start of each
iteration a node i with nonzero deficit d; is chosen. (If all nodes have

zero deficit the algorithm terminates; then f is primal feasible and
together with p satisfies e-CS, so Proposition 1 applies.) At the end
of the iteration the deficit d; is driven to zero, while another pair (f,p)
satisfying &-CS is obtained. During an iteration all node prices stay
unchanged except possibly for the price of the chosen node i.
Similarly all arc flows stay unchanged except for the flows of some
of the arcs incident to node i. As a result of these flow changes, the

deficit of some of the nodes adjacent to i is increased or decreased
depending on whether the deficit d; was positive or negative

respectively at the start of the iteration. We describe below the
iteration for the two cases where node i has positive and negative
deficit.

Negative Deficit Node [teration (or Up Iteration):

Let (f,p) satisfy e-CS, and let i be a node with d; < 0.
Stepl: (Scan aquacent arc) Select a node j such that (i,) is an e*-
balanced arc with fj; < ¢jj and go to step 2, or select a node j such that
(1) is an £-balanced arc with fji > bjj and go to step 3. If no such
node can be found go to step 4.
Step 2: (Increase deficit by increasing fi3) If d; = 0 terminate the
iteration; else set

fiji=fij+8

dj:=dj+ 39, dj:=d;-3
where 8 = min{-dj, cj; - fj;}, and go to step 1.
Step 3: (Increase deficit by reducing f};) If dj = O terminate the
iteration; else set

fji = fji -6

dj=dj+3§, dji=d;j-3
where 8 = min{-dj, fj; - bjj}, and go to step 1.
Step 4: (Increase price of node i) Set

pi := min {{pj +ajj+e [(,j)e A and fij < cij},
{pj-aji+el(i)e A and bji < fji}} (12)
Go to step 1.

To see that (12) leads to a price increase note that when Step 4 is
entered we have fj; = ¢jj for all (ij) such that p; > pj + 2jj + € and we
have bj.i = fj; for all (j,i) such that p; > Pj - 8jj + & Therefore when
Step 4 is entered

pi < min{p; + ajj+&[(ij) € A and fjj < cjj}

pi< min{pj-aji+e! (e A andbji<fji}

It follows that p; must be increased via (12). Another issue is that,
for Step 4 to be well defined, we must exclude the case where fij=
¢jj for ail (i,j) outgoing from i, and bji = fji for all (j,i) incoming to i,

i.e., maximal flow is going out of i and minimal flow is coming into
i. Since we must have di < 0 when Step 4 is entered, and by

assumption, a feasible solution exists,this case can only happen
when di=0, and furthermore the current flows of arcs incident to i are

2103

Authorized licensed use limited to: ASU Library. Downloaded on August 07,2022 at 21:58:02 UTC from IEEE Xplore. Restrictions apply.

the only feasible. For convenience we assume that this exceptional
case does not occur; otherwise we can simply modify step 4 to leave
pj unchanged and terminate the iteration when this case arises.

Positive Deficit Node I ion (or D I ion);
Let (f,p) satisfy €-CS, and let i be a node with d; > 0.

Stepl: (Scan adjacent arc) Select a node j such that (i,j) is an e™-
balanced arc with fj; > bjj and go to step 2, or select a node j such

that (j,i) is an e*-balanced arc with fj; < cjj and go to step 3. If no
such node can be found go to step 4. ‘
Step 2: (Reduce deficit by reducing fjj) If d; = O terminate the
iteration; else set
fij = fij -3
dj =d;j- 9, dj:=dj+8
where & = min{d;, fij - bij}, and go to step 1.
Step 3: (Reduce deficit by increasing fji) If d; = 0 terminate the
iteration; else set
fij = fji +)
d;:=dj- 9, dji=dj+8
where 8 = min{d;, cj; - fj;}, and go to step 1.
Step 4: (Reduce price of node i) Set
pi :=max {{pj +ajj- €| (ij) € A and bjj < fjj
{pj-aji+elGie A and fji <cji}}
Go to step 1.

For step 4 to be well defined we must exclude the case where fjj
= ¢jj for all (j,i) incoming to i, and bj; = fj; for all (i,j) outgoing from
i. Similar comments apply as for the earlier case of the up iteration.

The algorithm consists of successively executing up and down
iterations until termination. Unfortunately, however, onecan
construct an example (essentially the same example as the one given
in [17], Appendix C) showing that the algorithm may not terminate if
up and down iterations are mixed in arbitrary fashion, It is therefore
necessary to impose some further assumptions, either on the problem
structure or on the method by which up and down iterations are
interleaved. The simplest possibility is assumed in the following
proposition.

Proposition 2: Assume that in the algorithm either only up iterations,
or only down iterations are executed. Then the algorithm terminates
with (£,p) satisfying £-CS, and with f being integer and primal
feasible.

Proof; Assume for concreteness that only up iterations are executed.
A similar proof is possible when only down iterations are executed.

It should be mentioned here that by (7) we have Z;d; = 0, so if there

is a node with positive deficit , there must also be a node with
negative deficit and reversely. It is therefore possible to operate the
algorithm using up iterations exclusively.

The following facts can be verified based on the construction of
the up iteration:

1) The integrality of f and the €-CS property of (f,p) are
preserved throughout the algorithm.

2) The prices of all nodes are monotonically nondecreasing
during the algorithm.

3) Once a node gets nonpositive deficit its deficit stays
nonpositive thereafter. (This follows from the fact that an up iteration
drives the deficit of the node iterated to zero, and cannot decrease the
deficit of its adjacent nodes.)

4) If at some time a node has positive deficit it must have never
been iterated upon up to that time, and therefore its price must be
equal to its initial price. (This a consequence of 3) above and the fact
that only nodes with negative deficit are iterated upon by up
iterations.)

Based on 2) above there are two possibilities; either a) the prices

of a nonempty subset N° of N diverge to +eo, or else b) the prices
of all nodes in N stay bounded from above.

Suppose that case a) holds. Then, since N> is nonempty, it
follows that the algorithm never terminates implying that at all times
there must exist a node with positive deficit which, by 4) above,

must have a constant price. It follows that N* is a strict subset of N.

To preserve £-CS, we must have after a sufficient number of
iterations

forall (i,j)e A withie N*=,j¢ N>
forall (j,i)e A withie N*°,jg N

fij=c3
fii = bji

while the sum of deficits of the nodes in N°° must be negative. This
means that even with as much flow as arc capacities allow coming

out of N*° to nodes j & N*°, and as liitle flow as arc capacities
allow coming into N*° from nodes j & N°°, the total deficit {d; | i

€ N°} of nodes in N*° is negative. It follows that there is no
feasible flow vector contradicting a standing assumption of this
paper. Therefore case b) holds (all prices of nodes in N stay
bounded).

We now show by contradiction that the algorithm terminates. If

that were not so, then there must exist a node i € N at which an
infinite number of iterations are executed. There must also exist an

adjacent €--balanced arc (j,1), or £*-balanced arc (i,j) the flow of
which is decreased or increased respectively by an integer amount
during an infinite number of iterations. For this to happen, the flow
of (j,i) or (i,j) must be increased or decreased respectively an infinite
number of times due to iterations at the adjacent node j. This implies
that the arc (j,i) or (i,j) must become £*+-balanced or £™-balanced from

£"-balanced or £*-balanced respectively an infinite number of times.
For this to happen, the price of the adjacent node j must be increased

by at least 2¢ an infinite number of times. It follows that pj—ee

which contradicts the boundedness of all node prices shown earlier.
Therefore the algorithm must terminate. Q.E.D.

In other types of relaxation methods for network flow problems
[23, [3_], (5] - {7], there is an improvement in the dual cost each time
there is a price change. This is not true for the price changes effected
in Step 4 of the up and the down iterations. However, there is still an
interesting interpretation of Step 4 as a dual cost improvement. It can
be shown, using the main results of [3], that price changes in Step 4
yield a dua] cost improvement of a perfurbed problem obtained after

the cost coefficients of some of the incident e-balanced arcs of the

node iterated upon are changed by €. In effect, the algorithm
improves, with each price change, a slightly perturbed dual cost and
ends up with a slightly suboptimal dual solution. The corresponding
primal solution, however, is optimal thanks to the rounding
introduced by the integer nature of the problem data.

4. Applications to the Assignment and Max-Flow Problems

We mentioned earlier that for specific classes of problems one

may be able to improve on the estimate for € obtained in the proof of

Proposition 1. Two such problems are the assignment and max-flow
problems.

_ Consider first the assignment problem. Here the graph is bipartite
with 2N nodes, half of which are sources generically denoted by the
letter i (s{ = -1),-and half of which are sinks generically denoted by
the letter j (sJ- = 1). The problem is

minimize Zj & ajjfy;

subject to

Zifij = 1, i=12,...N
Zifij =1, i=12,...N
0<fijj<1, i,j=12,...N

For simplicity we consider the case of a fully dense graph where
every source is connected to every sink with an arc. The more
general situation can be reduced to the fully dense case by choosing
the cost coefficients of the nonexistent arcs sufficiently large. We

2104

Authorized licensed use limited to: ASU Library. Downloaded on August 07,2022 at 21:58:02 UTC from IEEE Xplore. Restrictions apply.

assume without loss of generality that ajj 2 0, bij =0, cjj = 1, foralli
and j, and apply the algorithm of the previous section with initial
prices and flows equal to zero for all nodes and arcs respectively.
Suppose we use only up iterations. Then, by Proposition 2, the
algorithm will terminate in a finite number of iterations with an
integer flow vector. All arc flows will be 0 or 1 with only one arc
with unity flow incident to any one node. Bearing this in mind we
can strenghthen the calculations of the proof of Proposition 1, Since
only N of the flows fij are nonzero, the sumations over all (i,j) in

(11) can be reduced to summations over i yielding the bound

% Z] aijfij < q* + €N
Tt is therefore sufficient to take € < 1/N to guarantee optimality of the
finally obtained assignment.

We now assume that € = 1/(N-1) and estimate the worst case .
complexity of the algorithm. We first observe that the finally obtained
prices of all nodes cannot exceed max{aij i1,j =1,...,.N} + 2e. To see

this note that when the algorithm terminates, the last sinl; to be
assigned to a source will have positive deficit up to the time of
termination, and therefore at termination will still have price O (fact 4

in the the proof of Proposition 2). This, together with the &-CS
requirement imply the upper bound max{aj; |1 = 1,..,N}+ € for the
source prices. Adding € to this we obtain an upper bound on the sink
prices in view of e-CS. Since € = 1/(N-1), prices increase in
increments which are multiples of €. We therefore obtain an upper

bound of ON' 2 max{ajj [ij = 1,...,.N'}) for the total number of node
price changes. This bound can be shown by example to be tight [1],
and is somewhat disappointing in that it implies that the algorithm is
not polynomial. However when max{aij |i,j = 1,...,N} is relatively
small the algorithm may be competitive with other algorithms,
particularly when its potential for distributed implementation is
considered. For the case of the bipartite matching problem where aj;
is either O or 1, it can be seen using the preceding arguments that the
computational complexity of the sequential version of the algorithm is
om3).

Consider next the max-flow problem. We adopt here a
formulation shown in Fig. 4. In particular all arcs have 0 cost
coefficient, except for the artificial arc (t,5) connecting the sink t with
the source s which has cost coefficient -1. We assume that s; = 0 for

all i, and bij =0< ¢ for all arcs (i,j) other than (t,s). The flow
bounds beg and cyg are taken so that byg< 0 and Zicg; < c(s. We apply

the algorithm using up iterations only. The initial prices and arc flows
are 0 except for the following: The price of the source s is taken to be
1+€, the flows of all outgoing arcs (s,i) from s equal the
coresponding upper bound cgj, and the flow of the artificial arc (t,5)

equals Zicgi.

Source Sink

A
Artificial Arc
Cost Coefficient = -1

Figure 4: Formulation of the max-flow problem. All arcs have cost
coefficient 0 except for the artificial arc that has cost coefficient -1.
We assume that ijj = 0< Cijs for all arcs (i,j) other than (t,s), and we

take byg < 0 and ¢ > ;¢

This choice of initial conditions implies that all nodes have
initially zero or negative deficit, except for the sink node t which has
deficit equal to Zicg;. Since at least one node must have positive

deficit prior to termination, and all nodes with nonpositive initial
deficit will have nonpositive deficit throughout the algorithm, it
follows that the sink node t will have positive deficit at all times prior
to termination, and that the algorithm will terminate when the deficit
of t will become 0. As a result the price of t will stay constant at 0.

Because the arc (t,5) is initially €™-balanced, and bs< 0, any price
increase of pg will make dg positive which is not allowed by the
algorithm. It follows that throughout the algorithm the price of the
source node s will stay constant at 1 + &.

We claim that if € < 1/(N-2), where N is the number of nodes,
then the algorithm terminates with an optimal flow vector. To see this
consider the flow vector obtained at termination. If it were not
optimal, there would exist an augmenting path (s, 1, j, ...k, t) from s
to t where each arc on the path would have flow less than the upper
bound, or more than the lower bound depending on whether it is

forward or backward oriented. In view of the e-CS requirement we
must have at termination

l+e =pg

Ps-€ < pj

Pt-€ < Pk
Since pt = 0, and the number of arcs on the augmenting path can be
at most N - 1, we obtain by adding the inequalities above

1 < (N-2)
Therefore, if € is chosen to be less than 1/(N-2), there can be no
augmenting path at termination, and the flow vector obtained must be
optimal.

We now assume that € = 1/(N - 1), and estimate the worst case

complexity of the algorithm. We first note that at termination we have
0 < pj < 2 for all nodes i. This follows from the fact that initially

every node is connected to either s or t with a path of e-balanced arcs,
and it is seen that this property is preserved at each iteration of the
algorithm. Since all price changes will be in increments of multiples

of & (in view of € = 1/(N - 1)), it follows that the price of each node
will be increased at most O(N) times during the algorithm.

The dominant computational requirements of the algorithm can be
divided in three parts:

1) The corhputation required for price increases in Step 4.of the
up iterations.

2) The computation required for Steps 2 or 3 for which the flow
of the corresponding arc is set to its upper or its lower bound.

3) The computation required for Steps 2 or 3 for which the flow
of the corresponding arc is set to a value strictly between its upper
and its lower bound.

Since there are O(N) price increases for each node, the
requirements in 1) above are O(INA) operations, where A is the
number of arcs.

Whenever an arc flow is set to either the upper or the lower
bound due to an iteration at one of the end nodes, it takes a price

increase of at least 2€ by the opposite end node before the arc flow
can change again. Therefore there are O(N) Steps 2 or 3 per arc for
which the flow of the arc is set to its upper or lower bound, and the
total requirements for 2) above are O(NA) operations.

There remains to estimate the computational requirements for 3)
above. For this we introduce an order for choosing nodes in
iterations. A ¢ycle is a set of iterations whereby all nodes are chosen
once in a given order, and an up iteration is executed at each node
having negative deficit at the time its turn comes. We henceforth
assume that the algorithm is operated in cycles, and proceed to show
that the number of cycles up to termination is O(N2). Let M =
max{p; | di < 0}, and consider the effect on M of a single cycle of
iterations. There are three possibilities:

a) Mincr i le. Then the price of some node
must increase during the cycle. To see this note that if all node prices
were to stay constant during the cycle and M were to increase, the
deficit of some node i with pj > M and d; =0 at the start of the cycle

must become negative during the cycle - this cannot happen because

2105

Authorized licensed use limited to: ASU Library. Downloaded on August 07,2022 at 21:58:02 UTC from IEEE Xplore. Restrictions apply.

all nodes with negative deficit at the start of the cycle have price
lower than pj, and a node can change its deficit from zero to negative

only through an iteration at an adjacent node with higher price.
Therefore there is at least one node price that will increase in each
cycle for which M increases. Since the number of price increases per
node is O(N), it follows that the number of cycles during which M

increases is ON 2). Furthermore the sum of increases in M is
bounded above by the sum of rice increases of all nodes which is

less than 2(N - 1), since 0 < pj<2foralliandpg=1+¢,p=0.
b) M decreases during the cycle. Since M > 0 the sum of

decreases in M can exceed the sum of increases in M by no more than
the maximum price value which was shown to be no more than 2.
Therefore the sum of decreases in M is less than 2N. Since M can

decrease only in multiples of € = 1/(N - 1), we obtain that the
number of cycles during which M decreases is O(N2).

¢) Mstays the same during the cycle, Again we claim that the
price of some node must increase during the cycle because the deficit
of each node i with dj < 0 and p; = M at the beginning of the cycle

will be zero at the end of the cycle. To see this note that the deficit of
such a node is either zero or is set to zero when its iteration is
performed, and can only decrease through an iteration at some
adjacent node with negative deficit and higher price. If all prices stay
constant during the cycle such an adjacent node does not exist.
Therefore some node price must increase during the cycle, and, by
the argument given in a) above, the number of cycles during which

M stays the same is also O(N2).
Thus we have shown that the total number of cycles performed

by the algorithm is O(N2). For each cycle there can be only one arc
flow per node set to a value strictly between the upper and lower arc
flow bound in Step 2 or 3. Therefore the total number of operations

required for these steps [cf. 3) above] is O3y, Adding the
computational requirements for 1) and 2) calculated earlier we obtain

an O(N 3) + O(NA) or O(N 3) worst case complexity bound for the
version of the algorithm that is operated in cycles.

References

[1] Bertsekas, D. P., "A Distributed Algorithm for the Assignment
Problem”, Unpublished LIDS Report, M. I. T., March 1979

[2] Bertsekas, D. P., "A New Algorithm for the Assignment
Problem", Vol. 21, 1981, pp. 152-171

[3] Bertsekas, D. P., A Unified Framework for Primal-Dual
Methods in Minimum Cost Network Flow Problems", Math, Progr.,
Vol. 32, 1985, pp. 125-145

[4] Bertsekas, D. P., "A Distributed Asynchronous Relaxation
Algorithm for the Assrgnment Problem"”, Proc, 24th [EEE
Conference on Decision and Control, Ft Lauderdale, Fla., Dec.
1985.

[5] Bertsekas, D. P, and Tseng, P., "Relaxation Methods for
Minimum Cost Ordmary and Generahzed Network Flow Problems”,
LIDS Report P- 1462 M. L T., May 1985, to appear in Operations

[6] Bertsekas, D P., Hossein, P., and Tseng, P., "Relaxation
Methods for Network Flow Problems with Convex Arc Costs",LIDS
Reporg P-}523,Dec. 1985, to appear in SIAM 1. on Control and

Optimization o
[7] Bertsekas, D. P., and El Baz, D., "Distributed Asynchronous
Relaxation Methods for Convex Network Flow Problems", LIDS
Report P-1417, M. L. T, Oct. 1984, to appear in SIAM 1. on
n imization, 1986

[8] Bertsekas, D. P., "Distributed Asynchronous Computation of
Fixed Points", ing, Vol. 27, 1983, pp. 107-120
[9] Bertsekas, D. P,, Tsitsiklis, J. N., and Athans, M.,
"Convergence Theories of Distributed Asynchronous Computation:
A Survey", LIDS Report P-1412, M. L. T., Oct. 1984, also in

, by F. Archettr G Di Pillo, and M.
Lucertini (eds.), Sprmger Verlag, N. Y., 1986, pp. 107-139
{10] Dantzig, G. B., ming and Ex
Princeton Univ. Press, Princeton, N.J., 1963
[11] Goldberg, A. V.,," A New Max-Flow Algorithm", Tech. Mem.
MIT/LCS/TM-291, Laboratory for Computer Science, M. L. T,
1985

2106

Authorized licensed use limited to: ASU Library. Downloaded on August

[12] Goldberg, A. V., and Tarjan, R. E ”A New Approach to the

Maximum Flow Problem" SM,

[13] Luenberger, D. G.,

Addison-Wesley, Readmg, MA 1984.

[14) Papadumtnou,C H, and Sterghtz K., Combinational
1

Prentice Hall,
Englewood Cliffs, N. J 1982.
[15] Rockafellar, R. T., Convex Analysis, Princeton Univ. Press,
Princton, N. J., 1970.
[16] Rockafellar, R. T., Flows an 1 i

TOgr ing, J. Wiley, N. Y., 1984

[17] Tseng, P., "Relaxation Methods for Monotropic Programming
Problems", PhD Thesis, Dept. of Electrical Engineering and
Computer Science, M. L. T , May 1986
[18] Zangwill, W., T i
Prentice-Hall, Englewood Cliffs, N. I., 1969

lnr T, ing,

ifi ,

* Supported by Grant NSF - ECS - 8217668

07,2022 at 21:58:02 UTC from IEEE Xplore. Restrictions apply.

