
Proceadlngs of 25th Conterence
on Decision and Control
Athens, Greece * DsCembar 1986 FP9 - 5:30

pimitri P. Bertseb

Dept. of Electrical Engineering and Computer Science
Laboratory for Information and Decision Systems

Massachusetts Institute of Technology
Cambridge, Mass. 02139

Abstract
We consider distributed solution of the classical linear minimum

cost network flow problem. We formulate a dual problem which is
unconstrained, piecewise linear, and involves a dual variable for each
node. We propose a dual algorithm that resembles a Gauss-Seidel
relaxation method. At each iteration the dual variable of a single node
is changed based on local information from adjacent nodes. In a
distributed setting each node can change its variable independently of
the variable changes of other nodes. The algorithm is efficient for
some classes of problems, notably for the ma-flow problem for
which it resembles a recent algorithm by Goldberg [I I].

1. btroducticm

Consider a directed graph with set of nodes N and set of arcs A.
Each arc (ij) has associated with it an integer aij referred to as the
cost coeficient of (ij). We denote by fij the flow of the arc (ij) and
consider the problem

minimize c(i,j)EA aijfij (MCF)
subject to
C ~ , i) c A fji - X(i,,)E A fij = si V i E N

(Conservation of flow) (1)

(Capacity constraints) (2)
bij fij I Cij V (ij) E A

where aij, bi,, cij, and si, are given integers. We assume throughout
that there exists at least one feasible solution of this problem. For
simplicity we also assume that there is at most one arc associated
with each ordered pair of nodes (ij). However this is not an essential
restriction and the algorithms and results of the paper can be trivially
modified to account for the possibility of multiple arcs joining a pair
of nodes.

We first formulate a dual problem associated with (MCF). This
problem is the basis for a number of recent works on network flow
relaxation methods [21, [31, [51, [6], [7]. We associate a Lagrange
multiplier pi with the ith conservation of flow constraint (1). By
denoting by f and p the vectors with elements fij, (ij) E A , and pi,
ie N respectively, we can write the corresponding Lagrangian
function as

L(f,P) = c(i,j)&A aijfij

+ xi E N Pi (CQ,i)E A fji - z(i,j)E A fij - si)
= z(i,j)E A (aij + Pj - Pi) fij - & E N SiPi (3)

The dual function value q(p) at a vector p is obtained by minimizing
L(f,p) over all f satisfying the capacity constraints (3). This leads to
the dual uroblem

maximize q(p) (4)
subject to no constraint on p,

with the dual functional q given by

q(P) = min {L(f,p) I bij s fij s Cij, (ij) Q A 1
f

= x(i,j)E A Si,(Pi - Pj) - ZiE N SiPi (5 a)

ClijC Pi - Pj) = min { (ai, + Pj - Pi) fij I bij s fij s Cij1 (5b)
where

fij

The function Qj is shown in Fig. 1. This formulation of the dual
problem is consistent with classical duality frameworks [15], [16] ,
but can also be obtained via standard linear programming duality
theory [IO], ,[13], [14]. We henceforth refer to (MCF) as t h e m
problem, and note that, based on standard duality results, the optimal
primal cost equals the optimal dual cost. The dual variable pi will be
referred to as the price of node i.

t

Slope -qj ?
Figure 1: Primal and dual costs for arc (ij)

Authorized licensed use limited to: ASU Library. Downloaded on August 07,2022 at 21:58:02 UTC from IEEE Xplore. Restrictions apply.

The form of the dual cost (5) motivates solution by Gauss-Seidel
relaxation (or coordinate descent methods). The idea here is to
choose a single node i and change its price pi in a direction of
improvement of the dual cost while keeping the other prices
unchanged. A key fact [cf. (S)] is that maximization of the dual cost
with respect to pi requires knowledge of the prices of just the
adjacent nodes of i. As a result the prices of two nonadjacent nodes
can be changed in parallel. This leads to distributed methods where
the price of each node is adjusted by a separate processor on the basis
of price information received from adjacent nodes/processors.

The relaxation idea is straightforward to apply if the arc costs
aijfij are strictly convex (rather than linear) functions of the arc flows
fij. In this case it can be shown that the dual arc cost functions qij of
(5) are differentiable, so that standard coordinate descent methods
from unconstrained nonlinear programming can be applied (see e.g.
[13], [18]). It tums out that these methods have remarkable
convergence properties explored in [6] and [7]. Indeed these methods
work satisfactorily even in a distributed totally asynchronous setting
whereby some nodes change their prices faster than others, some
nodes communicate their prices faster than others, and there may be
arbitrarily large communication delays. The underlying reason for
convergence under totally asynchronous conditions is the
monotonicity of the algorithmic mapping corresponding to the
relaxation process as explained in [q.

The monotonicity property referred to above is also present when
the arc costs are linear as a s s u m e d in the present paper.
Unfortunately there is a fundamental difficulty; the dual cost q is
nondifferentiable (in fact piecewise linear), and the relaxation idea
may encounter difficulty at some "comer points" as illustrated in Fig.
2. The problem here is that (in contrast with the case of strictly
convex arc costs where the dual functional is differentiable) there are
nonoptimal price vectors at which the dual cost cannot be improved
by changing any single node price. Two remedies suggest
themselves. The first is to allow simultaneous changes of prices of
several nodes whenever a single node price change cannot improve
the dual cost. Methods of this type have been developed recently, and
have proved surprisingly effective, outperforming substantially some
of the best primal simplex, and out-of-kilter implementations
presently available on standard benchmark problems [3], [SI. The
second remedy, suggested in this paper, is to allow single node price
changes even if these lead to a deterioration of the dual cost. The idea
is illustrated in Fig. 3 which suggests that if the dual Cost
deterioration due to single node price changes is small, then the
algorithm can approach eventually the optimal solution. Indeed we
will show that not only this is so, but in fact an SEAGI solution of the
problem is obtained in a number of iterations owing to the
integer nature of the problem data.

Figure 2: At the indicated point it is impossible to improve
the cost by changing any one of the prices.

b

P1
Figure 3: By making small changes in the coordinate
directions it is possible to approach the optimal
solution even if some steps do not result in a dual
cost improvement.

The advantage of the approach of this paper is its suitability for
distributed implementation. We envision here the possibility of a
separate processor assigned to each node, and changing the node's
price on the basis of price and flow information received from
adjacent nodes. Similarly as in the case of a strictly convex cost [7],
we can show convergence in a distributed asynchronous setting. This
is straightforward based on a general framework for showing
convergence of distributed asynchronous algorithms [8], [9], but the
analysis is not given in the present paper. We do not claim that our
algorithm is faster than other methods for the general minimum cost
flow problem.The sequential version of the algorithm is, however,
competitive with the best sequential methods for some classes of
problems as discussed in Section 4. When applied to the max-flow
problem the algorithm closely resembles the one developed by
Goldberg [ll], and refined by Goldberg and Tarjan [12]. The latter
algorithm is somewhat more complicated than ours in that it uses two
separate phases to obtain an optimal primal solution. Like Goldberg,
we show an OW3) worst case complexity bound.

The algorithm of this paper was described for the special case of
assignment problems in a 1979 unpublished report by the author. For
such problems the algorithm has an interesting interpretation as an
auction whereby economic agents compete for resources by making
successively higher bids (see [2], [4]). The optimal solution is
obtained when the prices of the resources are such that each agent
acquires a resource offering maximum profit margin. The algorithm
of the present paper can be interpreted similarly as a process of price
adjustment that terminates when the supply and demand of flow at
each node become equal.

2. m v C o n p . .

optimal primal and dual solution pair are primal feasibility and
complementary slackness. To state these conditions we first
introduce some terminology.

The necessary and sufficient conditions for a pair (f,p) to be an

For any price vector p we say that an arc (ij) is
Inactive if pi < ai, + p j Balanced if p i= aij + p j (6a)
Active if pi > aij + pj (6b)

di = si + x(i,j)E A fij - zc,i)e A fji
is called the &&,it of node i. It represents the difference of total flow
exported and total flow imported by the node.

The primal feasibility and complementary slackness conditions
for a vector pair (f,p) are:

For any flow vector f and node i the scalar

(7)

2102

Authorized licensed use limited to: ASU Library. Downloaded on August 07,2022 at 21:58:02 UTC from IEEE Xplore. Restrictions apply.

di = 0, for all i E N (8a)
fij = bij, for all inactive arcs (ij) (8b)

(8d)
bij s fij Cij, for all balanced arcs (iJ) (8c)
f.. lJ - -. C" for all active arcs (ij).
We introduce a notion of "approximate" complementary

slackness used also in other network relaxation algorithms [5] , [6].
For any price vector p we say that an arc (i j) is

€-Inactive if pi < aij + pj - E (9 4

~--Balan~ed if pi = ai, + pj - E (9b)
 balanced if aij + pj - E 2 pi 2 ai, + pj + E (9 ~)

~+-~alanced if pi = aij + pj + E (9 4
€-Active if pi > ai, + pj t E (9e)

Given E > 0 we say that a vector pair (f,p) satisfies kc.cmplementq
slacknes (E-CS for short) if for each arc (ij)

f.. - b.
IJ - lj if (ij) is €-inactive (loa)

bij 2 fij 2 Cij if (ij) is €-balanced (lob)
f.. - C'
IJ - Ij if (ij) is E-active (10c)

The algorithm to be described in the next section maintains at all
times a price vector p and an integer flow vector f satisfying E-CS. It
terminates when the flow vector f satisfies the primal feasibility
condition di = 0 for all i E N. A key fact is that if E is sufficiently
small then the final flow vector f is optimal. This is shown in the next
proposition.
m i t i o n 1; There exists €1 > 0 such that if E < €1, and the integer
flow vector f together with the price vector p satisfy E-CS and primal
feasibility (di = 0 for all i E N), then f is optimal for (MCF).

the definition (5) of the dual functional we have
Using the primal feasibility and E-CS conditions together with

C(ij) aijfij = C(i,j) (aij +pj - pi)fij - Ci Sipi

= Z(i,j)(aij +Pj Pi)Cij
E-active

+ C(ij) (ai, +Pj - Pi)bij + Z(ij)(aij +Pj - Pi)fij - ci SiPi
E-inactive €-balanced

= z(i,j) (ai, +Pj - Pi)cij + x(ij) (ai, +Pj - Pi)bij
actwe inactive

+ z(i,j)(aij +pj - Pi Xfij - cij)+x(ij)(aij +Pj - Pi)Cfij -bij) - ci sgi
€-balanced €-balanced
& active & inactive

2 x(i,j) (aij +Pj - Pi)cij + x(i,j) (ai, +Pj - Pi)bij +
active inactive

+ E C(i,j) (cij - bij) - Ci sipi
e-balanced

= q(P) + E x(i,j) (cij - bij)
&-balanced

s q* + E C(i,j) (cij - bij) (1 1)
where q* is the optimal dual cost, which is in equal to the
optimal primal cost. Take

€1 = I / C(i,j) (Cij - bij)
Then, for E < €1, C(i,j) aijfij is strictly within unity of tKe dual and

coefficients are integer, so is Z(i,,) aijfij. It follows that f is optimal.
Q.E.D.

primal optimal cosi. Because f is integer and the cost

The proof of the proposition establishes the bound x(i,j) (Cij -
bij) for E. For specific classes of problems this bound can be
improved as will be seen in Section 4. Note that the price Vector P
satisfying the assumptions of Proposition 1 is not optimal. However
the proof establishes that p is within O(E) of being optimal, and
within.close to unity of being optimal when E is chosen close to the
bound 1/ E(ij) (Cij - bij).

3. These-

The algorithm s t a r t s with a fixed value for E >O and with a pair
(f,p) satisfying E-CS. The flow vector f is taken integer initially, and
the algorithm preserves this property throughout. At the start of each
iteration a node i with nonzero deficit di is chosen. (Tf all nodes have
zero deficit the algorithm terminates; then f is primal feasible and
together with p satisfies E-CS, so Proposition 1 applies.) At the end
of the iteration the deficit di is driven to zero, while another pair (f,p)
satisfying E-CS is obtained. During an iteration all node prices stay
unchanged except possibly for the price of the chosen node i.
Similarly all arc flows stay unchanged except for the flows of some
of the arcs incident to node i. As a result of these flow changes, the
deficit of some of the nodes adjacent to i is increased or decreased
depending on whether the deficit di was positive or negative
respectively at the start of the iteration. We describe below the
iteration for the two cases where node i has positive and negative
deficit

ve Deficit Node m n (or UD
k t (f,p) satisfy E-CS, and let i be a node with di < 0.

(scan adjacent arc) Select a node j such that (ij) is an E+-
balanced arc with fij < Cij and go to step 2, or select a node j such that
O'i) is an &--balanced arc with fji > bji and go to step 3. If no such
node can be found go to step 4. w: (Increase deficit by increasing fi,) If di = 0 terminate the
iteration; else set

f . . :=f . .+6 4 1J
di := di + 6, d j : = d j - 6

where 6 = min{ -di, Cij - fij}, and go to step 1. w: (Increase deficit by reducing fji) If di = 0 terminate the
iteration; else set

fji : = f . 6 11
di := di + 6, djzZdj-6

where 6 = min{-di, fij - bij}, and go to step 1.
SteD 4; (Increase price of node i) Set

Pi := min {{Pj + aij + E 1 (ij) E A and fij c cij},
{pj - aji + E I G,i) E A and bji < fji}} (12)

Go to step 1.

To s e e that (12) leads to a price increase note that when Step 4 is
entered we have fij = Cij for all (ij) such that pi 2 p, + aij + E, and we
have bji = fji for all 6,i) such that pi L. p, - aji + E. Therefore when
Step 4 is entered

Pi < min{pj + aij + E I (i j) E A and fij < cij}
Pi < min {Pj - aji + E I U,i) E A and bji < f,i}

It follows that pi must be increased via (12). Another issue is that,
for step 4 to be well defined, we must exclude the case where fi, =
Cij for all (ij) outgoing from i, and bji = fji for all (i,i) incoming to i,
i.e., maximal flow is going out of i and minimal flow is coming into
i. Since we must have di 5 0 when Step 4 is entered, and by
assumption, a feasible solution exists,this case can only happen
when di=O, and furthermore the current flows of arcs incident to i are

2103

Authorized licensed use limited to: ASU Library. Downloaded on August 07,2022 at 21:58:02 UTC from IEEE Xplore. Restrictions apply.

the only feasible. For convenience we assume that this exceptional
case does not occur; otherwise we can simply modify step 4 to leave
pi unchanged and terminate the iteration when this case arises.

.. osltwe De- lor Down Tteratlonl;
Let (f,p) satisfy E-CS, and let i be a node with di > 0.

(Scan adjacent arc) Select a node j such that (ij) is an E--
balanced arc with fij > bi, and go to step 2, or select a node j such
that (j,i)is an &+-balanced arc with fji < cji and go to step 3. If no
such node can be found go to step 4.

iteration; else set
(Reduce deficit by reducing fij) If di = 0 terminate the

fij := fij - 6
di := di - 6, dj := dj + 6

where 6 = min{di, fij - bij}, and go to step 1. w: (Reduce deficit by increasing fji) If di = 0 terminate the
iteration; else set

fji := fji + 6
di := di - 6, dj := dj + 6

where 6 = min{di, ci, - fij}, and go to step 1.
Step 4: (Reduce price of node i) Set

pi := max {{pj + ai, - E I (ij) E A and bij < fij,
{pj - aji + E I Q,i) E A and fji < Cji>>

Go to step 1.
For step 4 to be well defied we must exclude the case where fji

= cji for all u,i) incoming to i, and bi, = fi, for all (ij) outgoing from
i. Similar comments apply as for the earher case of the up iteration.

The algorithm consists of successively executing up and down
iterations until termination. Unfortunately, however, one can
construct an example (essentially the same example as the one given
in [17], Appendix C) showing that the algorithm may not terminate if
up and down iterations are mixed in arbitrary fashion, It is therefore
necessary to impose some further assumptions, either on the problem
structure or on the method by which up and down iterations are
interleaved, The simplest possibility is assumed in the following
proposition.

-2: Assume that in the algorithm either only up iterations,
or only down iterations are executed. Then the algorithm terminates
with (f,p) satisfying E-CS, and with f being integer and primal
feasible.
gcQnfi Assume for concreteness that only up iterations are executed.
A similar proof is possible when only down iterations are executed.
It should be mentioned here that by (7) we have &di = 0, so if there
is a node with positive deficit, there must also be a node with
negative deficit and reversely. It is therefore possible to operate the
algorithm using up iterations exclusively.

The following facts can be verified based on the construction of
the up iteration:

1) The integrality off and the E-CS property of (f,p) are
preserved throughout the algorithm.

2) The prices of all nodes are monotonically nondecreasing

..

du&g the ilgorithm.

nonpositive thereafter. (This follows from the fact that an up iteration
drives the deficit of the node iterated to zero, and cannot decrease the

3) Once a node gets nonpositive deficit its deficit stays

deficit of its adjacent nodes.)

been iterated upon up to that time, and therefore its price must be
equal to its initial price. (T h i s a consequence of 3) above and the fact
that only nodes with negative deficit are iterated upon by up

~~ ~~

4) If at some time a node has positive deficit it must have never

iterations.)
Based on 2) above there are two possibilities; either a) the prices

of a nonempty subset N" of N diverge to +-, or else b) the prices
of all nodes in N stay bounded from above.

Suppose that case a) holds. Then , since N" is nonempty, it
follows that the algorithm never terminates implying that at all times
there must exist a node with positive deficit which, by 4) above,
must have a constant price. It follows that N" is a strict subset of N.
To preserve E-CS, we must have after a sufficient number of
iterations

f.. -C"
11 - 'I for all (ij) E A with i E N", j e N"

f.. - b..
11- 1' for all (j,i) E A with i E N", j e Nm

while the sum of deficits of the nodes in N" must be negative. This
means that even with as much flow as arc capacities allow coming
out of N" to nodes j o N" , and as liitle flow as arc capacities
allow coming into N" from nodes j o N-, the total deficit C{di I i
E N"} of nodes in N" is negative. It follows that there is no
feasible flow vector contradicting a standing assumption of this
paper. Therefore case b) holds (all prices of nodes in N stay
bounded).

that were not so, then there must exist a node i E N at which an
infinite number of iterations are executed. There must also exist an
adjacent &--balanced arc (j,i), or &+-balanced arc (ij) the flow of
which is decreased or increased respectively by an integer amount
during an infinite number of iterations. For this to happen, the flow
of (j,i) or (ij) must be increased or decreased respectively an infinite
number of times due to iterations at the adjacent node j. This implies
that the arc (j,i) or (ij) must become &+-balanced or &--balanced from
&--balanced or &+-balanced respectively an infiite number of times.
For this to happen, the price of the adjacent node j must be increased
by at least 2~ an infinite number of times. It follows that pj+
which contradicts the boundedness of all node prices shown earlier.
Therefore the algorithm must terminate. Q.E.D.

In other types of relaxation methods for network flow problems
[2], [3], [5] - [7], there is an improvement in the dual cost each time
there is a price change. This is not true for the price changes effected
in Step 4 of the up and the down iterations. However, there is still an
interesting interpretation of Step 4 as a dual cost improvement, It can
be shown, using the main results of [3], that price changes in Step 4
yield a duil cost improvement of a problem obtained after
the cost coefficients of some of the incident &-balanced arcs of the
node iterated upon are changed by E. In effect, the algorithm
improves, with each price change, a slightly perturbed dual cost and
ends up with a slightly suboptimal dual solution. The corresponding
primal solution, however, is optimal thanks to the rounding
introduced by the integer nature of the problem data.

We now show by contradiction that the algorithm terminates. If

We mentioned earlier that for specific classes of problems one
may be able to improve on the estimate for E obtained in the proof of
Proposition 1. Two such problems are the assignment and max-flow
problems.

Consider first the assignment problem. Here the graph is bipartite
with 2N nodes, half of which are sources generically denoted by the
letter i (si = - l), and half of which are sinks generically denoted by
the letter j (Sj = 1). The problem is

minimize & 3 aijfij
subject to
Zjfij = 1, i = 1,2, . . .,N
q f i j = 1, j = 1,2, . . .,N
0 2 fij s 1, i, j = 1,2, . . .,N

For simplicity we consider the case of a fully dense graph where
every source is connected to every sink with an arc. The more
general situation can be reduced to the fully dense case by choosing
the cost coefficients of the nonexistent arcs sufficiently large. We

2104
Authorized licensed use limited to: ASU Library. Downloaded on August 07,2022 at 21:58:02 UTC from IEEE Xplore. Restrictions apply.

assume without loss of generality that aij 2 0, bij ='O, cij = 1, for all i
and j, and apply the algorithm of the previous section with initial
prices and flows equal to zero for all nodes and arcs respectively.

algorithm will terminate in a finite number of iterations with an
integer flow vector. All arc flows will be 0 or 1 with only one arc
with unity flow incident to any one node. Bearing this in mind we
can strenghthen the calculations of the proof of Proposition 1. Since
only N of the flows fij are nonzero, the sumations over all (ij) in
(1 1) can be reduced to summations over i yielding the bound

Suppose we use only up iterations. Then, by Proposition 2, the

& 4 aijfij 5 q* + EN
It is therefore sufficient to take E < I N to guarantee optimality of the
finally obtained assignment.

We now assume that E = l/(N-1) and estimate the worst case
complexity of the algorithm. We first observe that the finally obtained
prices of all nodes cannot exceed max{aij 1 i j =1, ..., N} + 2E. TO see
this note that when the algorithm terminates, the last sink to be
assigned to a source will have positive deficit up to the time of
termination, and therefore at termination will sti l l have price 0 (fact 4
in the the proof of Proposition 2). This, together with the E-CS
requirement imply the upper bound max{aij 1 i j = 1, ..., N}+ &for the
source prices. Adding E to this we obtain an upper bound on the sink
prices in view of E-CS. Since E = l/(N-l), prices increase in
increments which are multiples of E. We therefore obtain an upper
bound of O(N2 max{ai, I i j = 1, ..., N}) for the total number of node
price changes. This bound can be shown by example to be tight [l],
and is somewhat disappointing in that it implies that the algorithm is
not polynomial. However when max{aij ! i j = 1, ...,N} is relatively
small the algorithm may be competitive w1th other algorithms,
particularly when its potential for distributed implementation is
considered. For the case of the bipartite matching problem where aij
is either 0 or 1, it can be seen using the preceding arguments that the
computational complexity of the sequential version of the algorithm is
0 ~ ~ 3 1 .

Consider next the max-flow problem. We adopt here a
formulation shown in Fig. 4. In particular all arcs have 0 cost
coefficient, except for the artificial arc (t,s) connecting the sink t with
the source s which has cost coefficient -1. We assume that si = 0 for
all i, and bij = 0 < cij for all arcs (ij) other than (t,s). The flow
bounds bt, and cts are taken so that bts< 0 and Zicsi < cts. We apply
the algorithm using up iterations only. The initial prices and arc flows
are 0 except for the following: The price of the source s is taken to be
1 + ~ , the flows of all outgoing arcs (s,i) from s equal the
coresponding upper bound csi, and the flow of the artificial arc (t,s)
equals &Csi.

Sink

-
Artificial Arc.
Cost Coeficlent = - 1

Figure 4: Formulation of the max-flow problem. All arcs have cost
coefficient 0 except for the artificial arc that has cost coefficient -1.
We assume that bj = 0 < co, for all arcs (i j) other than (t,s), and we
take&<Oand%s qcSi

This choice of initial conditions implies that all nodes have
initially zero or negative deficit, except for the sink node t which has
deficit equal to qcsi. Since at least one node must have positive

deficit prior to termination, and all nodes with nonpositive initial
deficit will have nonpositive deficit throughout the algorithm, it
follows that the sink node twill have positive deficit at all times prior
to termination, and that the algorithm will terminate when the deficit
of t will become 0. As a result the price of t will stay constant at 0.
Because the arc (t,s) is initidy &--balanced, and bts< 0, any price
increase of ps will make ds positive which is not allowed by the
algorithm. It follows that throughout the algorithm the price of the
source node s will stay constant at 1 + E.

We claim that if E < l/(N-2), where N is the number of nodes,
then the algorithm terminates with an optimal flow vector. To see this
consider the flow vector obtained at termination. If it were not
optimal, there would exist an augmenting path (s, i, j, ..., k, t) from s
to t where each arc on the path would have flow less than the upper
bound, or more than the lower bound depending on whether it is
forward or backward oriented. In view of the E-CS requirement we
must have at termination

I + & = p s

Ps - 5 Pi
Pi - E I Pj
.
Pt-E -5 Pk

Since pt = 0, and the number of arcs on the augmenting path can be
at most N - 1, we obtain by adding the inequalities above

Therefore, if E is chosen to be less than l/(N-2), there can be no
augmenting path at termination, and the flow vector obtained must be
optimal.

We now assume that E = 1/(N - l), and estimate the worst case
Complexity of the algorithm. We first note that at termination we have
0 I pi s 2 for all nodes i. This follows from the fact that initially
every node is connected to either s or t with a path of &-balanced arcs,
and it is seen that this property is preserved at each iteration of the
algorithm. Since all price changes will be in increments of multiples
of E (in view of E = 1/(N - l)), it follows that the price of each node
will be increased at most 0 0 times during the algorithm.

divided in three parts:

up iterations.

of the corresponding arc is set to its upper or its lower bound.

of the corresponding arc is set to a value strictly between its upper
and its lower bound.

Since there are 0 0 price inneases for each node, the
requirements in 1) above are O(NA) operations, where A is the
number of arcs.

Whenever an arc flow is set to either the upper or the lower
bound due to an iteration at one of the end nodes, it takes a price
increase of at least 2& by the opposite end node before the arc flow
can change again. Therefore there are O(N) Steps 2 or 3 per an: for
which the flow of the arc is set to its upper or lower bound, and the
total requirements for 2) above are O(NA) operations.

There remains to estimate the computational requirements for 3)
above. For this we introduce an order for choosing nodes in
iterations. A W is a set of iterations whereby all nodes are chosen
once in a given order, and an up iteration is executed at each node
having negative deficit at the time its turn comes. We henceforth
assume that the algorithm is operated in cycles, and proceed to show
that the number of cycles up to termination is O(N2). Let M =
W { p i I di < 0}, and consider the effect on M of a single cycle of
iterations. There are three possibilities:

a) M increws duringthe cvcle, Then the price of some node
must increase during the cycle. To see this note that if all node prices
were to stay constant during the cycle and M were to increase, the
deficit of some node i with pi > M and di = 0 at the s t a r t of the cycle
must become negative during the cycle - this cannot happen because

1 2 (N-2)E

The dominant computational requirements of the algorithm can be

1) The cofiputation required for price increases in Step 4of the

2) The computation required for Steps 2 or 3 for which Eheflow

3) The computation required for Steps 2 or 3 for which the flow

2105

Authorized licensed use limited to: ASU Library. Downloaded on August 07,2022 at 21:58:02 UTC from IEEE Xplore. Restrictions apply.

all nodes with negative deficit at the s t a r t of the cycle have price
lower than pi, and a node can change its deficit from zero to negative
only through an iteration at an adjacent node with higher price.
Therefore there is at least one node price that will increase in each
cycle for which M increases. Since the number of price increases per
node is OW), it follows that the number of cycles during which M
increases is O(N2). Furthermore the sum of increases in M is
bounded above by the sum of price increases of all nodes which is
less than 2(N - l), since 0 5 pi s 2 for all i and ps = 1 + E , pt = 0.

b) M decreases durinc the c v c k Since M 2 0 the sum of
decreases in M can exceed the sum of increases in M by no more than
the maximum price value which was shown to be no more than 2.
Therefore the s u m of decreases in M is less than 2N. Since M can
decrease only in multiples of E = 1/(N - l), we obtain that the
number of cycles during which M decreases is O(N2).

c) stavs the same durinv the cycle Again we claim that the
price of some node must increase during the cycle because the deficit
of each node i with di s 0 and pi = M at the beginning of the cycle
will be zero at the end of the cycle. To see this note that the deficit of
such a node is either zero or is set to zero when its iteration is
performed, and can only decrease through an iteration at some
adjacent node with negative deficit and higher price. If all prices stay
constant during the cycle such an adjacent node does not exist.
Therefore some node price must increase during the cycle, and, by
the argument given in a) above, the number of cycles during which
M stays the same is also O(N2).

Thus we have shown that the total number of cycles performed
by the algorithm is O(N2). For each cycle there can be only one arc
flow per node set to a value strictly between the upper and lower arc
flow bound in Step 2 or 3. Therefore the total number of operations
required for these steps [cf. 3) above] is O(N3). Adding the
computational requirements for 1) and 2) calculated earlier we obtain
an O(N3) + O(NA) or O(N3) worst case complexity bound for the
version of the algorithm that is operated in cycles.

Referrnces
[11 Bertsekas, D. P., "A Distributed Algorithm for the Assignment
Problem", Unpublished LIDS Report, M. I. T., March 1979
[2] Bertsekas, D. P., "A New Algorithm for the Assignment
Problem", Vol. 21, 1981, pp. 152-171
[3] Bertsekas, D. P., A Unified Framework for W - D u a l
Methods in Minimum Cost Network Flow Problems", Math. Prper.,

[4] Bertsekas, D. P., "A Distributed Asynchronous Relaxation
Algorithm for the Assignment Problem", Roc. 24th IEEE
Conference on Declslon , Ft Lauderdale, Fla., Dec.
1985.
[SI Bertsekas, D. P., and Tseng, P., "Relaxation Methods for
Minimum Cost Ordinary and Generalized Network Flow Problems",
LIDS Report P-1462, M. I. T., May 1985, to appear in

Vol. 32, 1985, pp. 125-145

. .

Research Journal
[6] Bertsekas, D. P., Hossein, P., and Tseng, P., "Relaxation
Methods for Network Flow Problems with Convex Arc Costs"LIDS
Report P-1523,Dec. 1985, to appear in D M J. on Control arlh

[7] Bertsekas, D. P., and El Baz, D., "Distributed Asynchronous
Relaxation Methods for Convex Network Flow Problems", LIDS
Report P-1417, M. I. T., Oct. 1984, to appear in W M J. on
-, 1986
[8] Bertsekas, D. P., "Distributed Asynchronous Computation of
Fixed Points", Math. P r o w Vol. 27, 1983, pp. 107-120
[9] Bertsekas, D. P., Tsitsiklis, J. N., and Athans, M.,
"Convergence Theories of Distributed Asynchronous Computation:
A Survey", LIDS Report P-1412, M. I. T., Oct. 1984, also in

IC Proerammirg, by F. Archetti, G. Di Pillo, and M.
Lucertini (eds.), Springer-Verlag, N. Y., 1986, pp. 107-139
[lo] Dantzig, G. B., m e a r Proerammine and Extensioa
Princeton Univ. Press, Princeton, N.J., 1963
[111 Goldberg, A. V., " A New Max-Flow Algorithm", Tech. Mem.
MITLCSfr'M-291, Laboratory for Computer Science, M. I. T.,
1985

. .

[121 Goldberg, A. V., and Tarjan, R. E., "A New Approach to the
Maximum Flow Problem", SToC 8 6 1986
[131 Luenberger, D. G., J inear and Nonlinear P r o e r e ,
Addison-Wesley, Reading, MA, 1984.
[14] . . Papadimitriou, C. H., and Steiglitz, K., Combinat
--Iexi&, Prentice Hall,

ion4

Englewood Cliffs, N.J. 1982.
[15] Rockafellar, R. T., Convex A- Princeton Univ. Press,
Princton, N. J., 1970.
[161 Roikafellk, R. T., Network Flows and Monotropic
Proeramminv, J. Wiley, N. Y., 1984
1171 Tseng, P.. "Relaxation Methods for MonotroDic Proerammine
kwb1ems"YPhf) Thesis, Dept of Electrical Engineking G d
Computer Science, M. I. T., May 1986
[181 Zangwill, W., ponlinear P r o g r a m m i n e : A U n i f i e d ,
Prentice-Hall, Englewood Cliffs, N. J., 1969

Y

* Supported by Grant NSF - ECS - 8217668

2106

Authorized licensed use limited to: ASU Library. Downloaded on August 07,2022 at 21:58:02 UTC from IEEE Xplore. Restrictions apply.

