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Abstract

This paper describes a new algorithm for solving the classical assign-
ment problem. The algorithm is of a primal-dual nature and in some ways
resembles the Hungarian and subgradient methods, but is substantially
different in other respects. Its main feature is that it is well suited for dis-
tributed operation whereby each node participates in the computation on
the basis of limited local information about the topology of the network
and the data of the problem. The algorithmic process resembles an auc-
tion where economic agents compete for resources by making successively
higher bids. The algorithm terminates in a finite number of iterations
after resource prices reach levels where no further bidding is profitable.
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1 Introduction

The assignment (or weighted matching) problem was among the first linear pro-
gramming problems to be studied extensively. It arises often in practice and
it is usually solved by either the simplex method or Kuhn’s Hungarian method
(see e.g. [?], [?], [?]). Recently there has been considerable interest in develop-
ing distributed algorithms for optimization and other problems. There seems
to be no precise definition of what is meant by a distributed algorithm, but the
term usually refers to a situation where there are several computation centers
(which could be, for example, microprocessors units) connected via communi-
cation links, and each center is responsible for executing part of the algorithm
while coordination between centers is maintained by information exchanges via
the communication links. One possible advantage of distributed operation is
that it results in reduction of time needed to solve the problem when a signifi-
cant amount of computation can be carried out in parallel by several processors.
Another advantage of some distributed algorithms for network problems is that
they may be more suitable for real-time operation under conditions where the
network topology may be subject to change such as when existing nodes fail or
new nodes become operational. Furthermore, when problem data is itself dis-
tributed among network nodes, the need for a central data collection mechanism
may be eliminated.

Several distributed algorithms have been proposed for particular types of
linear programming problems - for example the shortest path problem. The
standard methods for the assignment problem, however, apparently cannot be
easily modified so that they can be operated in a distributed manner. It is
possible to use a subgradient method (see e.g. [?], [?]) for solving the dual of
the assignment problem, and such an algorithm can be operated in a distributed
manner. However, finite termination at an optimal dual solution cannot be
guaranteed for a subgradient method and even if an optimal dual solution were
made available one is still faced with the problem of finding an optimal primal
solution in a distributed way.

The algorithm proposed in this paper is the first, to our knowledge, for
the assignment problem that can be meaningfully viewed as being distributed
and is guaranteed to terminate finitely at an optimal assignment. Since linear
transportation problems with integer supplies and demands can be reduced to
the assignment problem, the algorithm can be adapted to handle such problems
as well. The algorithm may also be of interest as a.model of price formation in an
auction, but this economic interpretation has not been pursued to any significant
extent in this paper. The ideas underlying the algorithm bear some similarity
with those of ε-subgradient methods of the type discussed in [?] but the feature
of finite termination is generically absent in the latter methods. Similarities
with Kuhn’s Hungarian method [?] will also be noticed by the reader, but from
a mathematical programming point of view there is one significant difference.
In the Hungarian method the dual objective function value is decreased at each
iteration, but in the method of this paper this value may be increased in some
iterations - a feature found in subgradient methods.
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2 A Distributed Algorithm for the Assignment
Problem

Consider a bipartite graph consisting of two finite sets of nodes U and V, and a
nonempty set of directed links L with elements denoted (i, j) where i ∈ U and
j ∈ V. We refer to elements of U and V as sources and sinks respectively. Each
link (i, j) has a scalar weight aij associated with it. By an assignment we mean
a subset A of links such that for each source i (sink j) there is at most one link
in A with initial node i (terminal node j). We wish to find an assignment that
maximize

∑
(i,j)∈A aij over all assignments A.

The problem can be embedded into the linear program [?]

maximize
∑

(i,j)∈L

aijxij

subject to
∑

{j | (i,j)∈L}

xij ≤ 1, ∀i ∈ U ,

∑
{i | (i,j)∈L}

xij ≤ 1, ∀j ∈ V,

xij ≥ 0, ∀(i, j) ∈ L.

(1)

in the sense that an optimal solution of problem (1) which is an extreme point
of its feasible set corresponds to an optimal assignment. The problem dual to
(1) is the linear program in the vectors m and p given by

minimize
∑
i∈U

mi +
∑
j∈V

pj

subject to mi + pj ≥ aij , ∀(i, j) ∈ L,
mi ≥ 0, pj ≥ 0, ∀i ∈ U , j ∈ V.

(2)

As an aid in understanding the following algorithm it is worth noting that
if we view aij and pj as the value and price respectively of including link (i, j)
in an assignment, then (aij − pj) may be view as the profit margin of source
i for getting assigned to sink j. From the complementary slackness conditions
we have that if link (i, j) is part of an optimal assignment then for any optimal
solution m∗, p∗ of the dual problem we have

m∗i = aij − p∗j = max{aik − p∗k | all k with (i, k) ∈ L}, (3)

i.e., at an optimum source i is assigned to the sink j offering maximum profit
margin relative to the price vector p∗.

Given a vector p of nonnegative prices we say that source i is operational if

max{aij − pj | all j with (i, j) ∈ L} > 0,

i.e., source i is operational if it has a positive maximum profit margin. For an
operational source i we say that k is a preferred sink for i if it offers maximum
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profit margin for i, i.e., if

aik − pk = max{aij − pj | all j with (i, j) ∈ L}. (4)

If k is a preferred sink for an operational source i we define the price adjustment
margin of i by

πk =

{
aik − pk, if there is no sink j 6= k with aij − pj > 0,

aik − pk −max{aij − pj | all j 6= k with (i, j) ∈ L}, otherwise.
(5)

The scalar πk represents the amount that one can add to the price pk and still
have k be a preferred sink for source i. Finally, given an assignment A we say
that source i is assigned to sink j if (i, j) ∈ A, and we say that source i or sink
j is unassigned if (i, j) 6∈ A for all (i, j) ∈ L.

We now describe our algorithm. At the typical step a vector p of nonnegative
sink prices pj , j ∈ V is available, together with an assignment A. A scalar ε > 0,
fixed throughout the algorithm, is also given. If all sources are either assigned
or not operational the algorithm terminates. Otherwise an arbitrary unassigned
operational source i is selected together with a preferred sink k for i. To perform
the step of the algorithm we do the following:

(a) Increase pk to a level pk satisfying

pk + ε ≤ pk ≤ pk + πk + ε (6)

where πk is given by (5), and leave all other prices unchanged.

(b) Add link (i, k) to the assignment A, and, if k was assigned to some `,
remove link (`, k) from A.

The step of the algorithm is repeated with the new price vector and assignment
until termination. The initial prices are taken to be all zero, and the initial
assignment is taken to be the empty assignment.

A possible interpretation of a step of the algorithm is that an unassigned
operational source i bids for its preferred sink k by adding an amount between
ε and πk + ε to the price of k, and gets assigned to k. Notice that when pk is
changed to pk the profit margin of (i, k) is reduced by (pk − pk) and by using
(5) and (6) we have

aik − pk ≥ aik − pk − πk − ε ≥ aij − pj − ε, ∀j 6= k with (i, j) ∈ L. (7)

Thus the profit margin aik − pk is within ε of the maximum profit margin after
pk is increased to pk. The scalar ε can be viewed as the minimum bidding in-
crement. Its role will become apparent in the convergence analysis that follows.

Note that steps of the algorithm involving different unassigned operational
sources can actually be carried out independently and simultaneously. In dis-
tributed algorithmic operation a source need only know whether it is assigned
or not together with the current prices of the neighboring sinks. If it is unas-
signed and operational it bids for a preferred sink and communicates the new
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price. The sink in turn broadcasts the new price and assignment information
to its neighboring sources. If two sources bid for the same sink simultaneously,
the sink arbitrarily decides which one to accept and accordingly informs the
neighboring sources.

We now turn to convergence analysis of the algorithm. We first observe that
the algorithm will terminate in a finite number of steps. This follows from the
fact that at each step one price is increased by at least ε > 0 and if all prices
increase to sufficiently high levels then there will be no operational sources left.
Clearly the algorithm will terminate faster if pk is set at the maximum possible
value pk + πk + ε [cf. (6)] and this seems to be the best way to operate the
algorithm. The number of steps needed for termination may also depend on the
value ε. Depending on the problem at hand the number of steps needed can
remain constant or increase significantly as ε is reduced. On the other hand
a value of ε below a certain threshold value is necessary in order to obtain an
optimal assignment at termination as the following proposition shows.

Proposition 1. Let v1, v2, . . . , vm be all the possible distinct values of
assignments and assume v1 > v2 > · · · > vm. Let also

N = min{number of sources, number of sinks}.

The value v∗ obtained upon termination of the algorithm satisfies

v1 −Nε ≤ v∗ ≤ v1

and hence, if ε satisfies

0 < ε <
v1 − v2

N
, (8)

the algorithm terminates at an optimal assignment.

Proof. Let A∗ and p∗ be the final assignment and price vector obtained by the
algorithm. Define the vectors x∗ and m∗ by

x∗ij =

{
1, if (i, j) ∈ A∗

0, if (i, j) 6∈ A∗
(9)

m∗i = max
{

max{0, aij − p∗j} | all j with (i, j) ∈ L
}
, ∀i ∈ U . (10)

Clearly we have

m∗i ≥ 0, m∗i + p∗j ≥ aij , ∀i ∈ U , (i, j) ∈ L, (11)

p∗j = 0, if 0 =
∑

{i | (i,j)∈L}

x∗ij < 1, p∗j ≥ 0, ∀j ∈ V. (12)

If x∗ij = 0 for all j, then i is not operational relative to p∗ for otherwise the
algorithm would not terminate at A∗. This implies aij − p∗j ≤ 0, for all j with
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(i, j) ∈ L. Hence from (10)

m∗i = 0, if 0 =
∑

{j | (i,j)∈L}

x∗ij < 1. (13)

Also from (7), (8) and (10) we have

m∗i + p∗j ≤ aij + ε if (i, j) ∈ A∗. (14)

Define

a∗ij =

{
m∗i + p∗j , if (i, j) ∈ A∗,
aij , if (i, j) 6∈ A∗.

(15)

From complementary slackness we have that (9), (11), (12), (13), (15) imply
that x∗ solves the linear program

maximize
∑

(i,j)∈L

a∗ijxij

subject to
∑

{j | (i,j)∈L}

xij ≤ 1,
∑

{i | (i,j)∈L}

xij ≤ 1, xij ≥ 0

and (m∗, p∗) solve its dual. Let x̃ be an optimal solution of problem (1). We
have ∑

(i,j)∈L

a∗ij x̃ij ≤
∑

(i,j)∈L

a∗ijx
∗
ij∑

(i,j)∈L

aijx
∗
ij ≤

∑
(i,j)∈L

aij x̃ij

and by using (11), (14), (15) we obtain

v1 =
∑

(i,j)∈L

aij x̃ij ≤
∑

(i,j)∈L

a∗ij x̃ij ≤
∑

(i,j)∈L

a∗ijx
∗
ij

≤
∑

(i,j)∈L

aijx
∗
ij + ε

∑
(i,j)∈L

x∗ij ≤
∑

(i,j)∈L

aijx
∗
ij +Nε

=v∗ +Nε

(16)

which proves the proposition. QED

Notice that if the weighting scalars aij are all integers, then v1 − v2 > 1 so
by choosing ε < 1

N we are guaranteed termination at an optimal assignment.
We have specified that the initial price vector is p = 0 and the initial as-

signment is empty. However, any price assignment pair (p,A) that satisfies the
following two rules:

a) Every unassigned sink j has pj = 0.
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Figure 1

b) If (i, j) ∈ A then j is a preferred sink for i relative to p,

can serve as initial choice. The proof of Proposition 1 carries through for any
initial choice of (p,A) satisfying condition a) and b) above.

We note that given any integer N > 0 it is possible to construct an assign-
ment problem where the weights aij are integers and the algorithm with ε = 1

N
fails to find an optimal assignment. This shows that the bound ε < 1

N pro-
vided by Proposition 1 is sharp. We give an example for N = 2 which is easily
generalized for any N > 2. A similar example can be constructed for N = 1.

Example 1. Consider the assignment problem represented by the network of
Figure 1 with the weights aij shown along the corresponding links.

The optimal assignment is (1, 1), (2, 2) with value 5. The second best as-
signment is (2, 1), (3, 2) with value 4. Thus v1 − v2 = 1 in Proposition 1. Take
ε = 1

N = 1
2 . A possible sequence of prices and assignments generated by the

algorithm is

Step Link Entering the Assignment New Price
1 (3, 2) p2 = 1 + ε
2 (2, 1) p1 = 1 + 2ε

and the algorithm terminates at the second best assignment since when p1 =
1 + 2ε and ε = 1

2 the unassigned source 1 is not operational. By contrast if we
had ε < 1

2 the sequence generated would be

Step Link Entering the Assignment New Price
1 (3, 2) p2 = 1 + ε
2 (2, 1) p1 = 1 + 2ε
3 (1, 1) p1 = 1 + 2ε
4 (2, 2) p2 = 2 + 2ε

Thus the optimal assignment is obtained if ε < 1
2 .
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In the preceding example the number of sinks is smaller than the number of
sources. If

number of sources ≤ number of sinks (17)

then it is possible to improve the bound on ε by the proposition and show that
if N ≥ 2 it is sufficient to have

0 < ε <
v1 − v2

N − 1
(18)

in order to guarantee that the algorithm terminates at an optimal assignment.
If N = 1 then obviously the same is true for any ε > 0. This can be shown by
a slight modification of the proof of Proposition 1. (If A∗ contains less than N
links we can modify (16) to show the result. Otherwise if (̄i, j̄) is the last link
to enter the terminal assignment A∗ we can modify p∗

j̄
so that aīj̄ = a∗

īj̄
and use

(16) again.)
We can show that when (17) holds and the weights aij are integers the bound

ε < 1
N−1 provided by (18) is sharp by means of the following example.

Example 2. Consider the assignment problem represented by the network of
Figure 2.

The optimal assignment is (1, 1), (2, 2), (3, 3) with value 7. The second best
assignment is (1, 3), (2, 1), (3, 2) with value 6. Thus v1−v2 = 1 in Proposition 1.
Take ε = 1

N−1 = 1
2 . A possible sequence of prices and assignments generated

by the algorithm is

Step Link Entering the Assignment New Price
1 (3, 2) p2 = 1 + ε
2 (2, 1) p1 = 2ε
3 (1, 3) p3 = ε

and the algorithm terminates at the second best assignment. By contrast if we
had ε < 1

2 the sequence generated would be
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Step Link Entering the Assignment New Price
1 (3, 2) p2 = 1 + ε
2 (2, 1) p1 = 2ε
3 (1, 1) p1 = 1 + ε
4 (2, 2) p2 = 2 + 2ε
5 (3, 3) p3 = 1 + ε

Thus the optimal assignment is obtained for ε < 1
2 .

The reader can verify that the assignment problem of Figure 3 gives a related
example for N = 4 and a similar example can be constructed for every N > 4,
as well as for N = 2.

An important question relates to the number of steps n necessary for the
algorithm to terminate. Let us assume that the weights aij are integers and let1

M = max{aij | (i, j) ∈ L}.

Assume further that ε = 1
k for some integer k. Then it is clear that at most

kM steps will be needed before the price of any one sink reaches or exceeds the
level M . Since the number of nonzero prices cannot exceed N , we obtain the
estimates

n ≤ kMN. (19)

If ε = 1
N+1 we are guaranteed termination at an optimal assignment and we

obtain
n ≤M(N2 +N). (20)

If N = number of sources we can take ε = 1
N in which case

n ≤MN2. (21)

1More generally, M is an upper bound on reduced costs.
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These upper bounds can be actually improved at the expense of a more
refined analysis But this does not seem to be worth the effort. In any case these
bounds are usually quite conservative. For instance in Example 2 the number
of steps n was 5 while the upper bound in (21) is 27. However, given any δ > 0
it is possible to construct an example of a network where v1 − v2 = 1 and

1− δ ≤ n

M(N2 +N)
≤ 1 (22)

which implies that (20) is quite reliable as a worst case estimate. The reader
can verify this by considering a network with (N + 1) sources and N sinks.
Every source-sink pair is connected by a link of weight M except for a single
source-link pair that is connected by a link of weight (M −1). Then v1−v2 = 1
and if we take ε = 1

N+1 it is possible to show that for M and N sufficiently
large (22) hold.

Now each step of the algorithm requires a number of additions and compar-
isons which is less or equal to three times the number of sinks. Thus in view of
(20) the total number of arithmetic operations is bounded by

3M(N2 +N)(number of sinks).

This is comparable to the number of arithmetic operations needed by the Hun-
garian method ([?], p. 205), but it should be mentioned that the computational
burden in our method can be quite severe if M is a large integer. For relative
small value of M , however, our method, in addition to being distributed, seems
to combine the advantage of simplicity with reasonably efficient computational
operation.

3 The Algorithm Applied to the Maximal Com-
plete Assignment Problem

If for an assignment A every source and sink is assigned, we say that A is
complete. A variation of the assignment problem is to find an assignment that
maximize

∑
(i,j)∈A aij over all complete assignments A. The corresponding

linear program is

maximize
∑

(i,j)∈L

aijxij

subject to
∑

{j | (i,j)∈L}

xij = 1, ∀i ∈ U ,

∑
{i | (i,j)∈L}

xij = 1, ∀j ∈ V,

xij ≥ 0, ∀(i, j) ∈ L.

(23)

10



Its dual is given by

minimize
∑
i∈U

mi +
∑
j∈V

pj

subject to mi + pj ≥ aij , ∀(i, j) ∈ L.
(24)

We assume in what follows that there exists at least one complete assignment
and, among other things, this implies that

Number of Sources = Number of Sinks = N.

We also assume that for each source i there are at least two sinks j such that
(i, j) ∈ L. This is no real loss of generality but simplifies somewhat the following
algorithm.

Held, Wolfe and Crowder [?] have considered solution of the dual problem
(24) by means of subgradient method. They report favorable results and observe
that if there exists a unique optimal assignment then a subgradient method
will typically yield an optimal dual solution in a finite number of steps. Our
algorithm bears some similarity with their method with the main differences
lying in the stepsize procedure, and in the fact that we change only one price
at each step rather than the entire price vector.

We now show how to modify the algorithm of the preceding section to make
it applicable to problems (23) and (24).

Given a price vector p with elements pj , j ∈ V, we define for any source i
the preferred sink for i to be the sink k for which

aik − pk = max{aij − pj | all j with (i, j) ∈ L}.

We define the price adjustment margin of i by

πk = aik − pk −max{aij − pj | all j 6= k with (i, j) ∈ L}.

The typical step of the algorithm is as follows. Given a vector p of sink prices
pj , j ∈ V, we select an arbitrary unassigned source i together with a preferred
sink k for i. We increase pk to a level pk satisfying

pk + ε ≤ pk ≤ pk + πk + ε,

we add link (i, k) toA and, if k was assigned to some `, we remove link (`, k) from
A. The step of the algorithm is repeated with the new price and assignment.
If every source is assigned the algorithm terminates. The initial price vector p
is arbitrary. The initial assignment is either empty, or any assignment A such
that if (i, j) ∈ A then j is a preferred sink for i with respect to the initial price
vector p.

We have the following result.
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Proposition 2. a) The algorithm terminates in a finite number of steps.

b) Let v1, v2, . . . , vm be all the possible distinct values of complete as-
signments and assume v1 > v2 > · · · > vm. The value v∗ of the
assignment obtained upon termination satisfies

v1 − (N − 1)ε ≤ v∗ ≤ v1

and hence, if ε satisfies

0 < ε <
v1 − v2

N − 1
,

the algorithm terminates at an optimal complete assignment.

Proof. a) Partition the set V into three disjoint sets Vo, Vs, V∞ defined as
follows:

Vo = {j | j is unassigned in all steps of the algorithm},
Vs = {j | j is assigned to the same source after a finite number of steps},
V∞ = {j | j 6∈ Vo, j 6∈ Vs}.

If the algorithm does not terminate in a finite number of steps the sets Vo
and Vs are nonempty. The sequence of prices of any sink in V∞ tends to
∞, while the prices of any sink in Vo or Vs are constant after some step.
Let Us be the subset of sources that remain assigned to sinks in Vs after
some step, and let U∞ be the set of sources not in Us. The set U∞ has a
larger cardinality than V∞ since Us and Vs have the same cardinality and
Vo is nonempty. Furthermore, there can be no link (i, j) ∈ L such that
i ∈ V∞ and j ∈ Vs ∪ Vo, for if such a link existed then, after some step, j
would offer higher profit margin for i than any of the sinks in V∞. This
would compel i to be assigned infinitely often to some sink in Vo ∪Vs and
would violate the assumption that the price pj , j ∈ Vo ∪ Vs stabilize after
a finite number of steps. Thus we have that

{j | (i, j) ∈ L, i ∈ U∞} = V∞.

Since U∞ has larger cardinality than V∞ we arrive at the conclusion that
there cannot exist a complete assignment - a contradiction.

b) The proof of this part is very similar to the proof of Proposition 1. Com-
pare also with the discussion following (18).

QED

Example 2 shows that the bound ε < 1
N−1 provided by Proposition 2 for

aij : integer cannot be improved. The fact that an arbitrary initial price vector
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may be used in the algorithm of this section suggests the possibility of obtaining
a good initial choice of p by first running the algorithm with a large value of
ε. Regarding computational complexity, it is easy to show similarly as in the
previous section that, if aij : integer and ε = 1

N , the total number of arithmetic
operations required for termination is bounded by bN3 where b is a constant
depending on the data of the problem. An easily computable upper bound for
b is 3(max(i,j)∈L aij −min(i,j)∈L aij).
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