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DP Context

@ Markovian Decision Problems (MDP)
@ n states, transition probabilities depending on control
@ Policy iteration method; we focus on single policy evaluation

@ Bellman’s equation:
xX=Ax+b

where
@ b: cost vector
@ A has transition structure, e.g.

A = «P for discounted problems; «: discount factor
A = P for average cost problems



Approximate Policy Evaluation

@ Approximation within subspace S = {¢r | r € R°}

X~ or, ® is a matrix with basis functions/features as columns

@ Projected Bellman equation: x = NT(x) or

®r = N(Adr + b)

@ Long algorithmic history, starting with TD(\) (Sutton, 1988)
@ Least squares methods (LSTD, LSPE) are currently more popular



@ Question: How do we select the matrix ¢?

@ Subject of great importance, yet largely problem-specific, little
understood at present.

@ We will sample a few issues of interest, and describe some recent work.
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Overview of Questions Addressed

@ Basis function tuning by gradient descent
o Parametrize approximation subspace/basis functions by vector 6

Sp = {®O)r|rer’}

e Compute the corresponding solution x(0) of the projected equation
x = My T(x), where My is projection on Sy.

o Optimize some cost function F(x(6)) over 6 (e.g., F is the Bellman equation
error).

@ Automatic basis function generation
@ Use a Krylov subspace basis for the equation x = Ax + b

b =[bAbA%hH .- AS'h]
@ Problem is that for high-dimensional problems A¥b cannot be computed
e We use instead simulation-based samples of A¥b (noisy features)
@ Feature scaling
o For a fixed subspace S, we consider alternative representations
S={or|re®}={wv|veRs}

where ¢ = WB.
@ Question: How are the popular algorithms for solving projected equations
affected by such feature scaling?



Outline
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e Feature scaling



Basis function tuning by gradient descent

Basis Function Tuning

@ Parametrize approximation subspace/basis functions by vector 0

Sy = {®(0)r | r € R}

Compute the corresponding solution x(8) of the projected equation
x = My T(x), where My is projection on Sy, with respect to a weighted
Euclidean norm (independent of 6).

Optimize over 6 the Bellman equation error:

F(x(6)) = |Ix(6) — Ax(6) — b||®

Key idea: Compute approximately gradient VF (x(6)) by simulation and
low-order computation, and use a gradient-based method.

ax(0)
a0;

@ For this we need an expression for the partial derivatives



Basis function tuning by gradient descent

Computation of %55

@ We differentiate the projected equation separately with respect to each
component 6; of 8

g-(0) = 5 (O T(x(9) + N(O)AZ(9)
@ This can be simplified to
&,(0) = 85 (0)r(0) + ©(0) 57.(0)

with ®(8)r(0) = x(6).
@ The second component ¢(0)%(0) of the derivative is the solution of the
“projected" equation
y =N(0)(Ay + gi(x))
where the vector g;(x) € Sy is given by

qi(x) = 5, (0)(Ax(0) + b) + (N(O)A — 1) 53 (0)r(9)



Basis function tuning by gradient descent

Comments

@ Each partial derivative 2X(%) reqwres the solution of a separate projected
equation.

@ Each projected equation can be solved by simulation and
low-dimensional calculations.

@ We could replace T with a multistep Bellman operator T, X € (0, 1).
@ We may use a cost function different than the Bellman error criterion,

e.g.,
x@)=3> (- x(6))?

ieT

where 7 is a certain small subset of states, and J;, i € Z, are the costs of
the policy at these states calculated directly by simulation.

@ Potential difficulties: Slow convergence, nonconvex cost/local minima.



Automatic basis function generation

Automatic Generation of Powers of A as Basis Functions

@ Use ¢ whose jth row is
o(i) = (b(i) (Ab)(i) -+ (A" 'b)(i))

(the Krylov subspace basis).

@ Thus, we use as features finite horizon expected costs, i.e., (A¥~'b)(i) is
the k-stage vector starting at state .

@ Motivation: If A is a contraction, the fixed point of T has an expansion of
the form -
x*=>"Ab
k=0
@ While (A“b)(i) is hard to generate, it can be approximated by sampling

(in effect we use noisy features).
@ Features Ab may be supplemented with other “noiseless" features.



Automatic basis function generation

Implementation Within TD methods

Simulate the Markov chain to obtain a sequence of states {i, it, ...}, as
is usual in TD.

At each generated state ik, we also generate two additional mutually
“‘independent" sequences

{Ci, k1), (it Te2), s (kis—1dks) b { G Tkt)s Gty k,2)s - - - ks Tes1) }

of lengths s and s + 1, respectively, according to the transition
probabilities p;, which are also “independent” of the sequence

{io, iy ...}

The two extra sequences give single sample approximations of the basis
function components b(ik), (Ab)(ik), - - ., (A*b)(ik)-

The single samples are used in the TD/LSTD/LSPE formulas as if they
were exact averages.

Convergence properties are maintained, but noise in the algorithms is
increased.



Feature scaling

Alternative Representations of Approximation Subspace

@ For a fixed subspace S, we consider alternative representations
S={or|re®}={vv|ver)

where ¢ = WB (B is a matrix whose range contains the range of V’).

@ Consider the high-dimensional sequences ®r, and Vv, generated by TD
methods.

@ The high-dimensional sequences generated by LSTD and LSPE are
scale-free (do not depend on the representation of S).

@ The high-dimensional sequences generated by LSPE with direction
scaling are asymptotically scale-free.

@ The convergence of TD methods does not depend on ¢ having full rank!



Feature scaling

Conclusions

@ Feature selection is an important and multi-faceted problem.

@ Many researchers have contributed to it, but many challenges remain.
@ We discussed a few selected approaches and issues.

@ Much remains to be done ...



	Basis function tuning by gradient descent
	Automatic basis function generation
	Feature scaling

