Feature Selection and Basis Function Adaptation in Approximate Dynamic Programming

Dimitri P. Bertsekas

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

SSCI Workshop, Nashville 2009

DP Context

- Markovian Decision Problems (MDP)
- n states, transition probabilities depending on control
- Policy iteration method; we focus on single policy evaluation
- Bellman's equation:

$$x = Ax + b$$

where

- b: cost vector
- A has transition structure, e.g.

 $A = \alpha P$ for discounted problems; α : discount factor

A = P for average cost problems

Approximate Policy Evaluation

- Approximation within subspace $S = \{ \Phi r \mid r \in \Re^s \}$
 - $x \approx \Phi r$, Φ is a matrix with basis functions/features as columns
- Projected Bellman equation: $x = \Pi T(x)$ or

$$\Phi r = \Pi(A\Phi r + b)$$

- Long algorithmic history, starting with $TD(\lambda)$ (Sutton, 1988)
- Least squares methods (LSTD, LSPE) are currently more popular

Focus

- Question: How do we select the matrix Φ?
- Subject of great importance, yet largely problem-specific, little understood at present.
- We will sample a few issues of interest, and describe some recent work.

References

- H. Yu and D. P. Bertsekas, "Basis Function Adaptation Methods for Cost Approximation in MDP," IEEE SSCI Conference Proceedings, 2009; following the paper by I. Menache, S. Manor, and N. Shimkin, Annals of OR, 2005.
- D. P. Bertsekas and H. Yu, "Projected Equation Methods for Approximate Solution of Large Linear Systems," Journal of Computational and Applied Mathematics, 2008.
- D. P. Bertsekas, "Projected Equations, Variational Inequalities, and Temporal Difference Methods," LIDS Report, MIT, 2009.

Overview of Questions Addressed

- Basis function tuning by gradient descent
 - Parametrize approximation subspace/basis functions by vector θ

$$S_{\theta} = \left\{ \Phi(\theta) r \mid r \in \Re^{s} \right\}$$

- Compute the corresponding solution $x(\theta)$ of the projected equation $x = \Pi_{\theta} T(x)$, where Π_{θ} is projection on S_{θ} .
- Optimize some cost function $F(x(\theta))$ over θ (e.g., F is the Bellman equation error).
- Automatic basis function generation
 - Use a Krylov subspace basis for the equation x = Ax + b

$$\Phi = [b Ab A^2 b \cdots A^{s-1} b]$$

- Problem is that for high-dimensional problems $A^k b$ cannot be computed
- We use instead simulation-based samples of $A^k b$ (noisy features)
- Feature scaling
 - For a fixed subspace S, we consider alternative representations

$$S = \left\{ \Phi r \mid r \in \Re^{s} \right\} = \left\{ \Psi v \mid v \in \Re^{\bar{s}} \right\}$$

where $\Phi = \Psi B$.

 Question: How are the popular algorithms for solving projected equations affected by such feature scaling?

Outline

Basis function tuning by gradient descent

2 Automatic basis function generation

Feature scaling

Basis Function Tuning

ullet Parametrize approximation subspace/basis functions by vector heta

$$S_{\theta} = \left\{ \Phi(\theta) r \mid r \in \Re^{s} \right\}$$

- Compute the corresponding solution $x(\theta)$ of the projected equation $x = \Pi_{\theta} T(x)$, where Π_{θ} is projection on S_{θ} , with respect to a weighted Euclidean norm (independent of θ).
- Optimize over θ the Bellman equation error:

$$F(x(\theta)) = \|x(\theta) - Ax(\theta) - b\|^2$$

- Key idea: Compute approximately gradient $\nabla F(x(\theta))$ by simulation and low-order computation, and use a gradient-based method.
- For this we need an expression for the partial derivatives $\frac{\partial x(\theta)}{\partial \theta_i}$.

Computation of $\frac{\partial x(\theta)}{\partial \theta_j}$

• We differentiate the projected equation separately with respect to each component θ_i of θ

$$\frac{\partial x}{\partial \theta_j}(\theta) = \frac{\partial \Pi}{\partial \theta_j}(\theta) T(x(\theta)) + \Pi(\theta) A \frac{\partial x}{\partial \theta_j}(\theta)$$

This can be simplified to

$$\frac{\partial x}{\partial \theta_j}(\theta) = \frac{\partial \Phi}{\partial \theta_j}(\theta) r(\theta) + \Phi(\theta) \frac{\partial r}{\partial \theta_j}(\theta)$$

with $\Phi(\theta)r(\theta) = x(\theta)$.

• The second component $\Phi(\theta) \frac{\partial r}{\partial \theta_j}(\theta)$ of the derivative is the solution of the "projected" equation

$$y = \Pi(\theta) \big(Ay + q_j(x) \big)$$

where the vector $q_i(x) \in S_\theta$ is given by

$$q_{j}(x) = \frac{\partial \Pi}{\partial \theta_{j}}(\theta) (Ax(\theta) + b) + (\Pi(\theta)A - I) \frac{\partial \Phi}{\partial \theta_{j}}(\theta) r(\theta)$$

Comments

- Each partial derivative $\frac{\partial x(\theta)}{\partial \theta_j}$ requires the solution of a separate projected equation.
- Each projected equation can be solved by simulation and low-dimensional calculations.
- We could replace T with a multistep Bellman operator $T^{(\lambda)}$, $\lambda \in (0,1)$.
- We may use a cost function different than the Bellman error criterion, e.g.,

$$F(x(\theta)) = \frac{1}{2} \sum_{i \in \mathcal{I}} (J_i - X_i(\theta))^2,$$

where \mathcal{I} is a certain small subset of states, and J_i , $i \in \mathcal{I}$, are the costs of the policy at these states calculated directly by simulation.

Potential difficulties: Slow convergence, nonconvex cost/local minima.

Automatic Generation of Powers of A as Basis Functions

Use Φ whose ith row is

$$\phi(i)' = (b(i) (Ab)(i) \cdots (A^{s-1}b)(i))$$

(the Krylov subspace basis).

- Thus, we use as features finite horizon expected costs, i.e., $(A^{k-1}b)(i)$ is the k-stage vector starting at state i.
- Motivation: If A is a contraction, the fixed point of T has an expansion of the form

$$x^* = \sum_{k=0}^{\infty} A^k b$$

- While (A^kb)(i) is hard to generate, it can be approximated by sampling (in effect we use noisy features).
- Features A^kb may be supplemented with other "noiseless" features.

Implementation Within TD methods

- Simulate the Markov chain to obtain a sequence of states $\{i_0, i_1, \ldots\}$, as is usual in TD.
- At each generated state i_k , we also generate two additional mutually "independent" sequences

$$\{(i_{k},\hat{i}_{k,1}),(\hat{i}_{k,1},\hat{i}_{k,2}),\ldots,(\hat{i}_{k,s-1},\hat{i}_{k,s})\},\qquad \{(i_{k},\tilde{i}_{k,1}),(\tilde{i}_{k,1},\tilde{i}_{k,2}),\ldots,(\tilde{i}_{k,s},\tilde{i}_{k,s+1})\}$$

of lengths s and s+1, respectively, according to the transition probabilities p_{ij} , which are also "independent" of the sequence $\{i_0, i_1, \ldots\}$.

- The two extra sequences give single sample approximations of the basis function components $b(i_k), (Ab)(i_k), \dots, (A^sb)(i_k)$.
- The single samples are used in the TD/LSTD/LSPE formulas as if they were exact averages.
- Convergence properties are maintained, but noise in the algorithms is increased.

Alternative Representations of Approximation Subspace

For a fixed subspace S, we consider alternative representations

$$S = \left\{ \Phi r \mid r \in \Re^{s} \right\} = \left\{ \Psi v \mid v \in \Re^{\bar{s}} \right\}$$

where $\Phi = \Psi B$ (B is a matrix whose range contains the range of Ψ').

- Consider the high-dimensional sequences Φr_k and Ψv_k generated by TD methods.
- The high-dimensional sequences generated by LSTD and LSPE are scale-free (do not depend on the representation of S).
- The high-dimensional sequences generated by LSPE with direction scaling are asymptotically scale-free.
- The convergence of TD methods does not depend on Φ having full rank!

Conclusions

- Feature selection is an important and multi-faceted problem.
- Many researchers have contributed to it, but many challenges remain.
- We discussed a few selected approaches and issues.
- Much remains to be done ...