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DP Context

Markovian Decision Problems (MDP)

n states, transition probabilities depending on control

Policy iteration method; we focus on single policy evaluation

Bellman’s equation:
x = Ax + b

where
b: cost vector
A has transition structure, e.g.

A = αP for discounted problems; α: discount factor
A = P for average cost problems
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Approximate Policy Evaluation

Approximation within subspace S = {Φr | r ∈ <s}

x ≈ Φr , Φ is a matrix with basis functions/features as columns

Projected Bellman equation: x = ΠT (x) or

Φr = Π(AΦr + b)

Long algorithmic history, starting with TD(λ) (Sutton, 1988)

Least squares methods (LSTD, LSPE) are currently more popular
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Focus

Question: How do we select the matrix Φ?

Subject of great importance, yet largely problem-specific, little
understood at present.

We will sample a few issues of interest, and describe some recent work.
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Overview of Questions Addressed

Basis function tuning by gradient descent
Parametrize approximation subspace/basis functions by vector θ

Sθ =
˘
Φ(θ)r | r ∈ <s¯

Compute the corresponding solution x(θ) of the projected equation
x = ΠθT (x), where Πθ is projection on Sθ .
Optimize some cost function F

`
x(θ)

´
over θ (e.g., F is the Bellman equation

error).
Automatic basis function generation

Use a Krylov subspace basis for the equation x = Ax + b

Φ = [b Ab A2b · · · As−1b]

Problem is that for high-dimensional problems Ak b cannot be computed
We use instead simulation-based samples of Ak b (noisy features)

Feature scaling
For a fixed subspace S, we consider alternative representations

S =
˘
Φr | r ∈ <s¯

=
˘
Ψv | v ∈ <s̄¯

where Φ = ΨB.
Question: How are the popular algorithms for solving projected equations
affected by such feature scaling?
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Outline

1 Basis function tuning by gradient descent

2 Automatic basis function generation

3 Feature scaling
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Basis Function Tuning

Parametrize approximation subspace/basis functions by vector θ

Sθ =
˘
Φ(θ)r | r ∈ <s¯

Compute the corresponding solution x(θ) of the projected equation
x = ΠθT (x), where Πθ is projection on Sθ, with respect to a weighted
Euclidean norm (independent of θ).

Optimize over θ the Bellman equation error:

F
`
x(θ)

´
= ‖x(θ)− Ax(θ)− b‖2

Key idea: Compute approximately gradient ∇F
`
x(θ)

´
by simulation and

low-order computation, and use a gradient-based method.

For this we need an expression for the partial derivatives ∂x(θ)
∂θj

.
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Computation of ∂x(θ)
∂θj

We differentiate the projected equation separately with respect to each
component θj of θ

∂x
∂θj

(θ) = ∂Π
∂θj

(θ)T (x(θ)) + Π(θ)A ∂x
∂θj

(θ)

This can be simplified to

∂x
∂θj

(θ) = ∂Φ
∂θj

(θ)r(θ) + Φ(θ) ∂r
∂θj

(θ)

with Φ(θ)r(θ) = x(θ).

The second component Φ(θ) ∂r
∂θj

(θ) of the derivative is the solution of the
“projected" equation

y = Π(θ)
`
Ay + qj(x)

´
where the vector qj(x) ∈ Sθ is given by

qj(x) = ∂Π
∂θj

(θ)
`
Ax(θ) + b

´
+

`
Π(θ)A − I

´
∂Φ
∂θj

(θ)r(θ)
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Comments

Each partial derivative ∂x(θ)
∂θj

requires the solution of a separate projected
equation.

Each projected equation can be solved by simulation and
low-dimensional calculations.

We could replace T with a multistep Bellman operator T (λ), λ ∈ (0, 1).

We may use a cost function different than the Bellman error criterion,
e.g.,

F (x(θ)) = 1
2

X
i∈I

`
Ji − xi(θ)

´2
,

where I is a certain small subset of states, and Ji , i ∈ I, are the costs of
the policy at these states calculated directly by simulation.

Potential difficulties: Slow convergence, nonconvex cost/local minima.
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Automatic Generation of Powers of A as Basis Functions

Use Φ whose i th row is

φ(i)′ =
`
b(i) (Ab)(i) · · · (As−1b)(i)

´
(the Krylov subspace basis).

Thus, we use as features finite horizon expected costs, i.e., (Ak−1b)(i) is
the k -stage vector starting at state i .

Motivation: If A is a contraction, the fixed point of T has an expansion of
the form

x∗ =
∞X

k=0

Ak b

While (Ak b)(i) is hard to generate, it can be approximated by sampling
(in effect we use noisy features).

Features Ak b may be supplemented with other “noiseless" features.
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Implementation Within TD methods

Simulate the Markov chain to obtain a sequence of states {i0, i1, . . .}, as
is usual in TD.

At each generated state ik , we also generate two additional mutually
“independent" sequences˘
(ik , îk,1), (̂ik,1, îk,2), . . . , (̂ik,s−1, îk,s)

¯
,

˘
(ik , ĩk,1), (̃ik,1, ĩk,2), . . . , (̃ik,s, ĩk,s+1)

¯
of lengths s and s + 1, respectively, according to the transition
probabilities pij , which are also “independent" of the sequence
{i0, i1, . . .}.

The two extra sequences give single sample approximations of the basis
function components b(ik ), (Ab)(ik ), . . . , (Asb)(ik ).

The single samples are used in the TD/LSTD/LSPE formulas as if they
were exact averages.

Convergence properties are maintained, but noise in the algorithms is
increased.
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Alternative Representations of Approximation Subspace

For a fixed subspace S, we consider alternative representations

S =
˘
Φr | r ∈ <s¯

=
˘
Ψv | v ∈ <s̄¯

where Φ = ΨB (B is a matrix whose range contains the range of Ψ′).

Consider the high-dimensional sequences Φrk and Ψvk generated by TD
methods.

The high-dimensional sequences generated by LSTD and LSPE are
scale-free (do not depend on the representation of S).

The high-dimensional sequences generated by LSPE with direction
scaling are asymptotically scale-free.

The convergence of TD methods does not depend on Φ having full rank!
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Conclusions

Feature selection is an important and multi-faceted problem.

Many researchers have contributed to it, but many challenges remain.

We discussed a few selected approaches and issues.

Much remains to be done ...
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