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Abstract Dynamic Programming

Main Objective
@ Unification of the core theory and algorithms of total cost sequential decision
problems

@ Simultaneous treatment of a variety of problems: MDP, sequential games,
sequential minimax, multiplicative cost, risk-sensitive, etc

Methodology
@ Define a problem by its “mathematical signature": the mapping defining the
optimality equation
@ Structure of this mapping (contraction, monotonicity, etc) determines the analytical
and algorithmic theory of the problem
@ Fixed point theory: An important connection
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Three Main Classes of Total Cost DP Problems

Discounted:
@ Discount factor < 1 and bounded cost per stage
@ Dates to 50s (Bellman, Shapley)
@ Nicest results

Undiscounted (Positive and Negative DP):
@ N-step horizon costs are going | or 1 with N
@ Dates to 60s (Blackwell, Strauch)
@ Not nearly as powerful results compared with the discounted case

Stochastic Shortest Path (SSP):
@ Also known as first passage or transient programming
@ Aim is to reach a termination state at min expected cost
@ Dates to 60s (Eaton-Zadeh, Derman, Pallu de la Barriere)

@ Results are almost as strong as for the discounted case (under appropriate
conditions)
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Corresponding Abstract Models

Contractive:
@ Patterned after discounted
@ The DP mapping is a sup-norm contraction (Denardo 1967)

Monotone Increasing/Decreasing:
@ Patterned after positive and negative DP
@ No reliance on contraction properties, just monotonicity (Bertsekas 1977)

Semicontractive:
@ Patterned after stochastic shortest path

@ Some policies are “regular"/contractive; others are not, but assumptions are
imposed so there exist optimal “regular" policies

@ New research, inspired by SSP, where “regular” policies are the “proper" ones (the
ones that terminate w.p.1)

v
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Abstract DP Mappings

@ State and control spaces: X, U
@ Control constraint: u € U(x)
@ Stationary policies: p : X — U, with p(x) € U(x) for all x

Monotone Mappings
@ Abstract monotone mapping H : X x U x E(X) — R

J<J — H(x, u,J) < H(x,u,J"), v x,u

where E(X) is the set of functions J : X — [—o0, o0]
@ Mappings T, and T

(TLJ)(x) = H(x, u(x),d),  VxeX,JeR(X)
(TN)() =it (Tud)() = inf H(x,uJ), VXX, JeRX)

ueU(x

Stochastic Optimal Control - MDP example:
(TI)(x) = infucuy E{g(x, u, w) + ad(f(x, u,w)) }
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Abstract Problem Formulation

Abstract Optimization Problem

@ Given an initial function J € R(X) and policy y, define

J.(x) =limsup (T)'J)(x), xeX
N— oo

@ Find J*(x) = inf, J.(x) and an optimal x attaining the infimum

Notes
@ Theory revolves around fixed point properties of mappings 7, and T:
Jp = Tudy, J =T

These are generalized forms of Bellman’s equation
@ Algorithms are special cases of fixed point algorithms
@ We restrict attention (initially) to issues involving only stationary policies
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Examples With a Dynamic System xy.1 = f( Xk, t(Xk), Wk)

Stochastic Optimal Control

J)=0,  (Tu)(x) = Ew{g(x, n(x), w) + ad (f(x, u(x), w)) }

N
300)= i Enm. {3 gt )

k=0

Minimax - Sequential Games

Jx)=0, (T.J)(x)= sup {g (%, u, w) + ad (f(x, u,w)) }

weW(x

Ju(x0) = lim  sup Za 9 (X, p1(xc), W)

N—oo wy wy,... k=0

Multiplicative Cost Problems

J) =1, (Tud)(x) = Eu{glx, u(x), w)J(F(x, u(x), w)) }

N
Ju(x0) = Jim B . {H 9 (%%, 1%, wk)}
k=0
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Examples With a Markov Chain: Transition Probs. p;_ ;... (Ux)

Finite-State Markov and Semi-Markov Decision Processes

Jx) =0, (Tud)() Zpu ) (9, (1), ) + i (1)) J())

N

) = imsup £ {Z (00 (1406)) -~ @iy, (101))) 0, i), fm)}

k=0
where «;i(u) are state and control-dependent discount factors

Undiscounted Exponential Cost
J0=1, (T =3 pilu()e 009 s
i=1

00~ tmp £ {os04) . st}

N— oo
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Contractive (C)

All T, are contractions within set of bounded functions B(X), w.r.t. a common
(weighted) sup-norm and contraction modulus (e.g., discounted problems)

Monotone Increasing (l) and Monotone Decreasing (D)
J<T,J (eg., negative DP problems)
J>T,J (eg. positive DP problems)

Semicontractive (SC)
T, has “contraction-like" properties for some p - to be discussed (e.g., SSP problems)

v

Semicontractive Nonnegative (SC™)

Semicontractive, and in addition J > 0 and

J>0 = H(x,u,J) >0, Vx,u

(e.g., affine monotonic, exponential/risk-sensitive problems)

Bertsekas (M.LT.) Abstract Dynamic Programming 11/28



e Results Overview
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Bellman’s Equation

Optimality/Bellman’s Equation
J* = TJ* always holds under our assumptions

Bellman’s Equation for Policies: Cases (C), (I), and (D)
Ju = T,J, always holds

Bellman’s Equation for Policies: Case (SC)
Ju = T,J, holds only for u: “regular”

Ju. may take oo values for “irregular”
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Uniqueness of Solution of Bellman’s Equations

Case (C)
T is a contraction within B(X) and J* is its unique fixed point

Cases (I), (D)
T has multiple fixed points (some partial results hold)

Case (SC)
J* is the unique fixed point of T within a subset of J € R(X) with “regular" behavior
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Optimality Conditions (

Cases (C), (), and (SC - under one set of assumptions)
w* is optimal if and only if T,«J* = TJ*

Case (SC - under another set of assumptions)
A “regular" i~ is optimal if and only if T,«J* = TJ*

Case (D)
p* is optimal if and only if T« Jux = T,
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Asynchronous Convergence of Value lteration: Jx1 = Tk

Case (C)
TKJ — J* for all J € B(X)

Case (D)
T — J*

Case (1)

T*J — J* under additional “compactness" conditions

Case (SC)

T*J — J* for all J € R(X) within a set of “regular" behavior
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Policy lteration: T kxw1d,x = Td k (

Classical Form of Exact PI
@ (C): Convergence starting with any
@ (SC): Convergence starting with a “regular” . (not if “irregular" p arise)
@ (I), (D): Convergence fails

Optimistic/Modified Pl (Combination of VI and PI)
@ (C): Convergence starting with any

@ (SC): Convergence starting with any p after a major modification in the policy
evaluation step: Solving an “optimal stopping" problem instead of a linear equation

@ (D): Convergence starting with initial condition J
@ (I): Convergence may fail (special conditions required)

Asynchronous Optimistic/Modified Pl (Combination of VI and Pl)

@ (C): Fails in the standard form. Works after a major modification
@ (SC): Works after a major modification

@ (D), (I): Convergence may fail (special conditions required)
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Results Overview: Approximate DP

Approximate J,, and J* within a subspace spanned by basis functions
@ Aim for approximate versions of value iteration, policy iteration, and linear
programming
@ Simulation-based algorithms are common

@ No mathematical model is necessary (a computer simulator of the controller
system is sufficient)

@ Very large and complex problems has been addressed

Case (C)
@ A wide variety of results thanks to the underlying contraction property
@ Approximate value iteration and Q-learning
@ Approximate policy iteration, pure and optimistic/modified

Cases (C), (1), (D), (SC)
Hardly any results available
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e Semicontractive Models
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Semicontractive Models: Formulation

Key idea: Introduce a “domain of regularity,” S C E(X) J

S-Regular policy u S-Irregular policy
TgJ

Definition: A policy p is S-regular if
@ J, € Sand is the only fixed point of T, within S
@ Starting function J does not affect Ju, i.€.

TJ—J. VJeSs
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Typical Assumptions in Semicontractive Models

1st Set of Assumptions (Plus Additional Technicalities)
@ There exists an S-regular policy and irregular policies are “bad": For each irregular
pand J € S, there is at least one x € X such that

lim sup(T, J)(x) = oo

k— oo

2nd Set of Assumptions (Plus Additional Technicalities)
@ There exists an *optimal* S-regular policy

Perturbation-Type Assumptions (Plus Additional Technicalities)
@ There exists an *optimal* S-regular policy p*

@ If H is perturbed by an additive 6 > 0, each S-regular policy is also 4-S-regular
(i.e., regular for the d-perturbed problem), and every ¢-S-irregular policy . is “bad",
i.e., there is at least one x € X such that

lim sup (T 5J,u+,5)(X) = 0o
k— o0
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Semicontractive Example: Shortest Paths with Exponential Cost

Destination Bellman equation
J(1) = min {exp (0), exp(a)J(2)}
J(2) J(1)

Two policies: J=1;S={J|J>0}orS={J|J>0}orS={J|J>J}
@ Noncyclic p: 2 — 1 — 0 (S-regular except when S = {J | J > J} and b < 0)
(Tud)(1) =exp(b),  (TuJ)(2) = exp(a)J(1)
Ju(1) =exp(b),  Ju(2) = exp(a+ b)

@ Cyclic ji: 2 — 1 — 2 (S-irregular except when S = {J | J > 0} and a < 0)
(Ted)(1) = exp(a)J(2),  (TaJ)(2) = exp(a)J(1)
Ja(1) = Ja(2) = lim (exp(a))"
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Five Special Cases (Each Covered by a Different Theorem!)

Destination Bellman equation

6 ‘ . J(1) = min {cxp , exp(a)J(2)}
J(2) = exp(a

a> 0: J*(1) = exp(b), J*( ) = exp(a+ b), is the unique fixed point w/ J > 0
(1st set of assumptions applies with S = {J | J > 0})

@ Set of fixed points of Tis {J | J(1) = J(2) < 0}

a=0, b>0:J*(1) = J*(2) = 1 (perturbation assumptions apply)
@ Set of fixed points of Tis {J | J(1) = J(2) < exp(b)}

a=0, b=0:J*(1) = J*(2) = 1 (2nd set of assumptions applies with
S={J|J>J})

@ Set of fixed points of Tis {J | J(1) = J(2) < 1}

a=0, b<0:J*(1) = J*(2) = exp(b) (perturbation assumptions apply)
@ Set of fixed points of Tis {J | J(1) = J(2) < exp(b)}

a < 0: J*(1) = J*(2) = 0 is the unique fixed point of T (contractive case)
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0 Affine Monotonic/Risk-Sensitive Models
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An Example: Affine Monotonic/Risk-Sensitive Models

T, is linear of the form T,J = A.J + b, with b, > 0 and
J>0 = A, >0

S={J|0<J}orS={J]|0< J}orS: Jbounded above and away from 0O

Special case I: Negative DP model, J(x) = 0, A,,: Transition prob. matrix J

Special case II: Multiplicative model w/ termination state 0, J(x) = 1

H(X7 u, 'J) = pXO(u)g(Xv u, 0) + pr}’(u)g(x7 u, y)J(y)

yeXx

Au(X,¥) = Py ((x)) g (X, (), y),  bu(X) = pxo(u)g(x, u,0)

Special case Ill: Exponential cost w/ termination state 0, J(x) = 1

Au(%,y) = Py (1(x))exp (h(X, 1(X), ¥)), bu(x) = pro (1(x)) exp (h(x, u(x),0))
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SC Assumptions Translated to Affine Monotonic

w is S-regular if and only if

Jim (ALJ)(x) =0, ZO(AZ’bH)(x) <oco, VxeX, Je$S
m=

The 1st Set of Assumptions

@ There exists an S-regular policy; also inf,.s_requiar Ju € S
@ If u: S-irregular, there is at least one x € X such that

> (Alb)(x) = oo

@ Compactness and continuity conditions hold

Notes:
@ Value and (modified) policy iteration algorithms are valid
@ State and control spaces need not be finite
@ Related (but different) results are possible under alternative conditions
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Concluding Remarks

@ Abstract DP is based on the connections of DP with fixed point theory

@ Aims at unification and insight through abstraction

@ Semicontractive models fill a conspicuous gap in the theory from the 60s-70s
@ Affine monotonic is a natural and useful model

@ Abstract DP models with approximations require more research

@ Abstract DP models with restrictions, such as measurability of policies, require
more research
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Thank you!
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