
Abstract Dynamic Programming

Dimitri P. Bertsekas

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Overview of the Research Monograph
“Abstract Dynamic Programming"

Athena Scientific, 2013

Bertsekas (M.I.T.) Abstract Dynamic Programming 1 / 28

Abstract Dynamic Programming

Main Objective
Unification of the core theory and algorithms of total cost sequential decision
problems

Simultaneous treatment of a variety of problems: MDP, sequential games,
sequential minimax, multiplicative cost, risk-sensitive, etc

Methodology
Define a problem by its “mathematical signature": the mapping defining the
optimality equation

Structure of this mapping (contraction, monotonicity, etc) determines the analytical
and algorithmic theory of the problem

Fixed point theory: An important connection

Bertsekas (M.I.T.) Abstract Dynamic Programming 2 / 28

Three Main Classes of Total Cost DP Problems

Discounted:
Discount factor < 1 and bounded cost per stage

Dates to 50s (Bellman, Shapley)

Nicest results

Undiscounted (Positive and Negative DP):
N-step horizon costs are going ↓ or ↑ with N

Dates to 60s (Blackwell, Strauch)

Not nearly as powerful results compared with the discounted case

Stochastic Shortest Path (SSP):
Also known as first passage or transient programming

Aim is to reach a termination state at min expected cost

Dates to 60s (Eaton-Zadeh, Derman, Pallu de la Barriere)

Results are almost as strong as for the discounted case (under appropriate
conditions)

Bertsekas (M.I.T.) Abstract Dynamic Programming 3 / 28

Corresponding Abstract Models

Contractive:
Patterned after discounted

The DP mapping is a sup-norm contraction (Denardo 1967)

Monotone Increasing/Decreasing:
Patterned after positive and negative DP

No reliance on contraction properties, just monotonicity (Bertsekas 1977)

Semicontractive:
Patterned after stochastic shortest path

Some policies are “regular"/contractive; others are not, but assumptions are
imposed so there exist optimal “regular" policies

New research, inspired by SSP, where “regular" policies are the “proper" ones (the
ones that terminate w.p.1)

Bertsekas (M.I.T.) Abstract Dynamic Programming 4 / 28

Outline

1 Problem Formulation

2 Results Overview

3 Semicontractive Models

4 Affine Monotonic/Risk-Sensitive Models

Bertsekas (M.I.T.) Abstract Dynamic Programming 5 / 28

Abstract DP Mappings

State and control spaces: X ,U

Control constraint: u ∈ U(x)

Stationary policies: µ : X 7→ U, with µ(x) ∈ U(x) for all x

Monotone Mappings

Abstract monotone mapping H : X × U × E(X) 7→ <

J ≤ J ′ =⇒ H(x , u, J) ≤ H(x , u, J ′), ∀ x , u

where E(X) is the set of functions J : X 7→ [−∞,∞]

Mappings Tµ and T

(TµJ)(x) = H
(
x , µ(x), J

)
, ∀ x ∈ X , J ∈ R(X)

(TJ)(x) = inf
µ

(TµJ)(x) = inf
u∈U(x)

H(x , u, J), ∀ x ∈ X , J ∈ R(X)

Stochastic Optimal Control - MDP example:

(TJ)(x) = infu∈U(x) E
{

g(x , u,w) + αJ
(
f (x , u,w)

)}
Bertsekas (M.I.T.) Abstract Dynamic Programming 7 / 28

Abstract Problem Formulation

Abstract Optimization Problem

Given an initial function J̄ ∈ R(X) and policy µ, define

Jµ(x) = lim sup
N→∞

(T N
µ J̄)(x), x ∈ X

Find J∗(x) = infµ Jµ(x) and an optimal µ attaining the infimum

Notes
Theory revolves around fixed point properties of mappings Tµ and T :

Jµ = TµJµ, J∗ = TJ∗

These are generalized forms of Bellman’s equation

Algorithms are special cases of fixed point algorithms

We restrict attention (initially) to issues involving only stationary policies

Bertsekas (M.I.T.) Abstract Dynamic Programming 8 / 28

Examples With a Dynamic System xk+1 = f
(
xk , µ(xk),wk

)

Stochastic Optimal Control

J̄(x) ≡ 0, (TµJ)(x) = Ew
{

g(x , µ(x),w) + αJ
(
f (x , µ(x),w)

)}
Jµ(x0) = lim

N→∞
Ew0,w1,...

{
N∑

k=0

αk g
(
xk , µ(xk),wk

)}

Minimax - Sequential Games

J̄(x) ≡ 0, (TµJ)(x) = sup
w∈W (x)

{
g(x , u,w) + αJ

(
f (x , u,w)

)}
Jµ(x0) = lim

N→∞
sup

w0,w1,...

N∑
k=0

αk g
(
xk , µ(xk),wk

)

Multiplicative Cost Problems

J̄(x) ≡ 1, (TµJ)(x) = Ew
{

g(x , µ(x),w)J
(
f (x , µ(x),w)

)}
Jµ(x0) = lim

N→∞
Ew0,w1,...

{
N∏

k=0

g
(
xk , µ(xk),wk

)}
Bertsekas (M.I.T.) Abstract Dynamic Programming 9 / 28

Examples With a Markov Chain: Transition Probs. pik ,ik+1(uk)

Finite-State Markov and Semi-Markov Decision Processes

J̄(x) ≡ 0, (TµJ)(i) =
n∑

i=1

pij
(
µ(i)

)(
g(i, µ(i), j) + αij

(
µ(i)

)
J(j)

)
Jµ(i0) = lim sup

N→∞
E

{
N∑

k=0

(
αi0

(
µ(i0)

)
· · · aik ik+1

(
µ(ik)

))
g
(
ik , µ(ik), ik+1

)}
where αij (u) are state and control-dependent discount factors

Undiscounted Exponential Cost

J̄(x) ≡ 1, (TµJ)(i) =
n∑

i=1

pij
(
µ(i)

)
eh
(

i,µ(i),j
)
J(j)

Jµ(x0) = lim sup
N→∞

E
{

eh
(

i0,µ(i0),i1
)
· · · eh

(
iN ,µ(iN),iN+1

)}

Bertsekas (M.I.T.) Abstract Dynamic Programming 10 / 28

Models

Contractive (C)
All Tµ are contractions within set of bounded functions B(X), w.r.t. a common
(weighted) sup-norm and contraction modulus (e.g., discounted problems)

Monotone Increasing (I) and Monotone Decreasing (D)

J̄ ≤ TµJ̄ (e.g., negative DP problems)

J̄ ≥ TµJ̄ (e.g., positive DP problems)

Semicontractive (SC)
Tµ has “contraction-like" properties for some µ - to be discussed (e.g., SSP problems)

Semicontractive Nonnegative (SC+)

Semicontractive, and in addition J̄ ≥ 0 and

J ≥ 0 =⇒ H(x , u, J) ≥ 0, ∀ x , u

(e.g., affine monotonic, exponential/risk-sensitive problems)

Bertsekas (M.I.T.) Abstract Dynamic Programming 11 / 28

1 Problem Formulation

2 Results Overview

3 Semicontractive Models

4 Affine Monotonic/Risk-Sensitive Models

Bertsekas (M.I.T.) Abstract Dynamic Programming 13 / 28

Bellman’s Equation

Optimality/Bellman’s Equation
J∗ = TJ∗ always holds under our assumptions

Bellman’s Equation for Policies: Cases (C), (I), and (D)
Jµ = TµJµ always holds

Bellman’s Equation for Policies: Case (SC)
Jµ = TµJµ holds only for µ: “regular"

Jµ may take∞ values for “irregular" µ

Bertsekas (M.I.T.) Abstract Dynamic Programming 14 / 28

Uniqueness of Solution of Bellman’s Equations

Case (C)
T is a contraction within B(X) and J∗ is its unique fixed point

Cases (I), (D)
T has multiple fixed points (some partial results hold)

Case (SC)
J∗ is the unique fixed point of T within a subset of J ∈ R(X) with “regular" behavior

Bertsekas (M.I.T.) Abstract Dynamic Programming 15 / 28

Optimality Conditions (A Complicated Story)

Cases (C), (I), and (SC - under one set of assumptions)
µ∗ is optimal if and only if Tµ∗J∗ = TJ∗

Case (SC - under another set of assumptions)
A “regular" µ∗ is optimal if and only if Tµ∗J∗ = TJ∗

Case (D)
µ∗ is optimal if and only if Tµ∗Jµ∗ = TJµ∗

Bertsekas (M.I.T.) Abstract Dynamic Programming 16 / 28

Asynchronous Convergence of Value Iteration: Jk+1 = TJk

Case (C)

T k J → J∗ for all J ∈ B(X)

Case (D)

T k J̄ → J∗

Case (I)

T k J̄ → J∗ under additional “compactness" conditions

Case (SC)

T k J → J∗ for all J ∈ R(X) within a set of “regular" behavior

Bertsekas (M.I.T.) Abstract Dynamic Programming 17 / 28

Policy Iteration: Tµk+1Jµk = TJµk (A Complicated Story)

Classical Form of Exact PI
(C): Convergence starting with any µ

(SC): Convergence starting with a “regular" µ (not if “irregular" µ arise)

(I), (D): Convergence fails

Optimistic/Modified PI (Combination of VI and PI)
(C): Convergence starting with any µ

(SC): Convergence starting with any µ after a major modification in the policy
evaluation step: Solving an “optimal stopping" problem instead of a linear equation

(D): Convergence starting with initial condition J̄

(I): Convergence may fail (special conditions required)

Asynchronous Optimistic/Modified PI (Combination of VI and PI)
(C): Fails in the standard form. Works after a major modification

(SC): Works after a major modification

(D), (I): Convergence may fail (special conditions required)

Bertsekas (M.I.T.) Abstract Dynamic Programming 18 / 28

Results Overview: Approximate DP

Approximate Jµ and J∗ within a subspace spanned by basis functions

Aim for approximate versions of value iteration, policy iteration, and linear
programming

Simulation-based algorithms are common

No mathematical model is necessary (a computer simulator of the controller
system is sufficient)

Very large and complex problems has been addressed

Case (C)
A wide variety of results thanks to the underlying contraction property

Approximate value iteration and Q-learning

Approximate policy iteration, pure and optimistic/modified

Cases (C), (I), (D), (SC)
Hardly any results available

Bertsekas (M.I.T.) Abstract Dynamic Programming 19 / 28

1 Problem Formulation

2 Results Overview

3 Semicontractive Models

4 Affine Monotonic/Risk-Sensitive Models

Bertsekas (M.I.T.) Abstract Dynamic Programming 21 / 28

Semicontractive Models: Formulation

Key idea: Introduce a “domain of regularity," S ⊂ E(X)Problem Formulation and Results Results Overview Semicontractive Nonnegative Models

S-Regular policy µ
S-Regular policy µ

Problem Formulation and Results Results Overview Semicontractive Nonnegative Models

S-Regular policy µ
S-Irregular policy µ̄

S T k
µ J J T k

µ J Jµ Jµ

γk − Dk(x, xk) γk+1 − Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = −(ĉlφ)(x, z)

rx(µ) − � µ Z (u, 1)

= Min Common Value w∗

= Max Crossing Value q∗

Positive Halfspace {x | a�x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a�x = b} = {x | a�x = a�x}

x∗ x f
�
αx∗ + (1 − α)x

�

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, β) (u, w)
µ

β

�
u + w

x M M = epi(p) Wk y C2 C C2
k+1 yk AC

1

S T k
µ J J T k

µ J Jµ Jµ

γk − Dk(x, xk) γk+1 − Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = −(ĉlφ)(x, z)

rx(µ) − � µ Z (u, 1)

= Min Common Value w∗

= Max Crossing Value q∗

Positive Halfspace {x | a�x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a�x = b} = {x | a�x = a�x}

x∗ x f
�
αx∗ + (1 − α)x

�

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, β) (u, w)
µ

β

�
u + w

x M M = epi(p) Wk y C2 C C2
k+1 yk AC

1

S T k
µ J J T k

µ J Jµ Jµ

γk − Dk(x, xk) γk+1 − Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = −(ĉlφ)(x, z)

rx(µ) − � µ Z (u, 1)

= Min Common Value w∗

= Max Crossing Value q∗

Positive Halfspace {x | a�x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a�x = b} = {x | a�x = a�x}

x∗ x f
�
αx∗ + (1 − α)x

�

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, β) (u, w)
µ

β

�
u + w

x M M = epi(p) Wk y C2 C C2
k+1 yk AC

1

S T k
µ J J T k

µ J Jµ Jµ

γk − Dk(x, xk) γk+1 − Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = −(ĉlφ)(x, z)

rx(µ) − � µ Z (u, 1)

= Min Common Value w∗

= Max Crossing Value q∗

Positive Halfspace {x | a�x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a�x = b} = {x | a�x = a�x}

x∗ x f
�
αx∗ + (1 − α)x

�

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, β) (u, w)
µ

β

�
u + w

x M M = epi(p) Wk y C2 C C2
k+1 yk AC

1

S T k
µ J J T k

µ J Jµ Jµ

γk − Dk(x, xk) γk+1 − Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = −(ĉlφ)(x, z)

rx(µ) − � µ Z (u, 1)

= Min Common Value w∗

= Max Crossing Value q∗

Positive Halfspace {x | a�x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a�x = b} = {x | a�x = a�x}

x∗ x f
�
αx∗ + (1 − α)x

�

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, β) (u, w)
µ

β

�
u + w

x M M = epi(p) Wk y C2 C C2
k+1 yk AC

1

S T k
µ J J T k

µ J Jµ Jµ

Set S

γk − Dk(x, xk) γk+1 − Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = −(ĉlφ)(x, z)

rx(µ) − � µ Z (u, 1)

= Min Common Value w∗

= Max Crossing Value q∗

Positive Halfspace {x | a�x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a�x = b} = {x | a�x = a�x}

x∗ x f
�
αx∗ + (1 − α)x

�

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, β) (u, w)
µ

β

�
u + w

1

S T k
µ J J T k

µ J Jµ Jµ

Set S

γk − Dk(x, xk) γk+1 − Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = −(ĉlφ)(x, z)

rx(µ) − � µ Z (u, 1)

= Min Common Value w∗

= Max Crossing Value q∗

Positive Halfspace {x | a�x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a�x = b} = {x | a�x = a�x}

x∗ x f
�
αx∗ + (1 − α)x

�

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, β) (u, w)
µ

β

�
u + w

1

S T k
µ J J T k

µ J Jµ Jµ

Set S

γk − Dk(x, xk) γk+1 − Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = −(ĉlφ)(x, z)

rx(µ) − � µ Z (u, 1)

= Min Common Value w∗

= Max Crossing Value q∗

Positive Halfspace {x | a�x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a�x = b} = {x | a�x = a�x}

x∗ x f
�
αx∗ + (1 − α)x

�

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, β) (u, w)
µ

β

�
u + w

1

S T k
µ J J T k

µ J Jµ Jµ

Set S

γk − Dk(x, xk) γk+1 − Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = −(ĉlφ)(x, z)

rx(µ) − � µ Z (u, 1)

= Min Common Value w∗

= Max Crossing Value q∗

Positive Halfspace {x | a�x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a�x = b} = {x | a�x = a�x}

x∗ x f
�
αx∗ + (1 − α)x

�

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, β) (u, w)
µ

β

�
u + w

1

Definition: A policy µ is S-regular if
Jµ ∈ S and is the only fixed point of Tµ within S

Starting function J̄ does not affect Jµ, i.e.

T k
µJ → Jµ ∀ J ∈ S

Bertsekas (M.I.T.) Abstract Dynamic Programming 22 / 28

Typical Assumptions in Semicontractive Models

1st Set of Assumptions (Plus Additional Technicalities)
There exists an S-regular policy and irregular policies are “bad": For each irregular
µ and J ∈ S, there is at least one x ∈ X such that

lim sup
k→∞

(T k
µJ)(x) =∞

2nd Set of Assumptions (Plus Additional Technicalities)
There exists an *optimal* S-regular policy

Perturbation-Type Assumptions (Plus Additional Technicalities)
There exists an *optimal* S-regular policy µ∗

If H is perturbed by an additive δ > 0, each S-regular policy is also δ-S-regular
(i.e., regular for the δ-perturbed problem), and every δ-S-irregular policy µ is “bad",
i.e., there is at least one x ∈ X such that

lim sup
k→∞

(T k
µ,δJµ∗,δ)(x) =∞

Plus Additional Technical Conditions
Bertsekas (M.I.T.) Abstract Dynamic Programming 23 / 28

Semicontractive Example: Shortest Paths with Exponential Cost

a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

stage, discounted zero-sum game problems, and some types of stochastic shortest path problems, where

all policies are proper in the terminology of REFS.

(b) Noncontractive models where the DP mapping of stationary policies does not have a contraction-like

structure. Important examples are the positive and negative DP models of Blackwell [Bla65] and

Strauch [Str66], respectively.

The purpose of this paper is to investigate models that are intermediate between the preceding two

classes, in that the DP mapping associated with some but not all stationary policies has a contraction-like

property. These models, called semicontractive, are motivated to some extent by the finite-state stochastic

shortest path model (SSP for short; see also the subsequent Example 2.3) where the objective is to reach a

termination state with minimal expected cost from any staring state. In a popular set of assumptions for this

model [BeT91], some policies are proper (are guaranteed to reach termination thanks to a certain contraction

property) and some are not. Our abstract models, however, go beyond SSP in that they need not involve a

finite state space or a termination state. For example our analysis may be applied to linear-quadratic optimal

control problems, where the state and control spaces are Euclidean, and the cost per stage is unbounded.

Central in our models is the notion of a stable policy , a generalization of the notion of a proper policy of

SSP. By definition, a stable policy is one whose cost function can be computed by a globally stable value

iteration. Under a variety of conditions, we prove strong properties for our semicontractive models, in some

cases almost as strong as those of their contractive counterparts.

In particular, we consider three different sets of assumptions, all of which imply that an optimal stable

policy exists, and also imply that the complicating presence of unstable policies may be adequately dealt

with. The character of our assumptions may be understood through a deceptively simple instance of a

classical shortest path problem that involves cycles; see Fig. 1. Here there are two nodes, 1 and 2, and the

destination t, with the cycle 1 → 2 → 1 having cost a in each of its two arcs, and the arc 2 → t having cost

b. For the problem to make sense as a DP problem, the cycle must have nonnegative cost (a ≥ 0), and in

the case a = 0, b nust not be positive, for otherwise the DP optimal policy is to repeatedly move around the

cycle, thereby not resulting in a path from nodes 1 and 2 to t. Under these conditions, the Bellman equation

for the corresponding DP problem is

J(1) = min
�
b, a + J(2)

�
, J(2) = a + J(1), (1.1)

and the corresponding value iteration method is

Jk+1(1) = min
�
b, a + Jk(2)

�
, Jk+1(2) = a + Jk(1), (1.2)

There are two policies to consider: the policy 1 → 2 → 1, which is unstable [the corresponding value iteration

for this policy is Jk+1(1) = a + Jk(2), Jk+1(2) = a + Jk(1)], and the policy 1 → 2 → t, which is stable

[the corresponding value iteration for this policy is Jk+1(1) = b, Jk+1(2) = a + Jk(1)]. Our three sets of

assumptions, described in the subsequent sections, correspond to three possibilities. In particular:

(a) Our assumptions of Section 2.1.1 correspond to the case a > 0. Here Bellman’s equation (1.1) has

the unique solution J*(1) = b, J*(2) = a + b, and the value iteration (1.2) converges to J* from any

starting J0. In the context of the SSP model of [BeT91], this corresponds to assuming that there exists

a proper policy and that every improper policy has infinite cost.

(b) Our assumptions of Section 4 correspond to the case a = 0, b = 0. Here Bellman’s equation (1.1) has

the unique solution J*(1) = 0, J*(2) = 0 within the set {J | J ≥ 0}, and the value iteration (1.2)

2

a 1 2 t b Destination

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 0 1 2 t b Destination

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

J(1) = min
{
exp(b), exp(a)J(2)

}

J(2) = exp(a)J(1)

γk − Dk(x, xk) γk+1 − Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = −(ĉlφ)(x, z)

rx(µ) − ε µ Z (u, 1)

= Min Common Value w∗

= Max Crossing Value q∗

Positive Halfspace {x | a′x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a′x = b} = {x | a′x = a′x}

x∗ x f
(
αx∗ + (1 − α)x

)

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, β) (u, w)
µ

β

′
u + w

1

J(1) = min
{
exp(b), exp(a)J(2)

}

J(2) = exp(a)J(1)

γk − Dk(x, xk) γk+1 − Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = −(ĉlφ)(x, z)

rx(µ) − ε µ Z (u, 1)

= Min Common Value w∗

= Max Crossing Value q∗

Positive Halfspace {x | a′x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a′x = b} = {x | a′x = a′x}

x∗ x f
(
αx∗ + (1 − α)x

)

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, β) (u, w)
µ

β

′
u + w

1

Two policies: J̄ ≡ 1; S = {J | J ≥ 0} or S = {J | J > 0} or S = {J | J ≥ J̄}
Noncyclic µ: 2→ 1→ 0 (S-regular except when S = {J | J ≥ J̄} and b < 0)

(TµJ)(1) = exp(b), (TµJ)(2) = exp(a)J(1)

Jµ(1) = exp(b), Jµ(2) = exp(a + b)

Cyclic µ̄: 2→ 1→ 2 (S-irregular except when S = {J | J ≥ 0} and a < 0)

(Tµ̄J)(1) = exp(a)J(2), (Tµ̄J)(2) = exp(a)J(1)

Jµ̄(1) = Jµ̄(2) = lim
k→∞

(
exp(a)

)k

Bertsekas (M.I.T.) Abstract Dynamic Programming 24 / 28

Five Special Cases (Each Covered by a Different Theorem!)
a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 1 2 t b

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

stage, discounted zero-sum game problems, and some types of stochastic shortest path problems, where

all policies are proper in the terminology of REFS.

(b) Noncontractive models where the DP mapping of stationary policies does not have a contraction-like

structure. Important examples are the positive and negative DP models of Blackwell [Bla65] and

Strauch [Str66], respectively.

The purpose of this paper is to investigate models that are intermediate between the preceding two

classes, in that the DP mapping associated with some but not all stationary policies has a contraction-like

property. These models, called semicontractive, are motivated to some extent by the finite-state stochastic

shortest path model (SSP for short; see also the subsequent Example 2.3) where the objective is to reach a

termination state with minimal expected cost from any staring state. In a popular set of assumptions for this

model [BeT91], some policies are proper (are guaranteed to reach termination thanks to a certain contraction

property) and some are not. Our abstract models, however, go beyond SSP in that they need not involve a

finite state space or a termination state. For example our analysis may be applied to linear-quadratic optimal

control problems, where the state and control spaces are Euclidean, and the cost per stage is unbounded.

Central in our models is the notion of a stable policy , a generalization of the notion of a proper policy of

SSP. By definition, a stable policy is one whose cost function can be computed by a globally stable value

iteration. Under a variety of conditions, we prove strong properties for our semicontractive models, in some

cases almost as strong as those of their contractive counterparts.

In particular, we consider three different sets of assumptions, all of which imply that an optimal stable

policy exists, and also imply that the complicating presence of unstable policies may be adequately dealt

with. The character of our assumptions may be understood through a deceptively simple instance of a

classical shortest path problem that involves cycles; see Fig. 1. Here there are two nodes, 1 and 2, and the

destination t, with the cycle 1 → 2 → 1 having cost a in each of its two arcs, and the arc 2 → t having cost

b. For the problem to make sense as a DP problem, the cycle must have nonnegative cost (a ≥ 0), and in

the case a = 0, b nust not be positive, for otherwise the DP optimal policy is to repeatedly move around the

cycle, thereby not resulting in a path from nodes 1 and 2 to t. Under these conditions, the Bellman equation

for the corresponding DP problem is

J(1) = min
�
b, a + J(2)

�
, J(2) = a + J(1), (1.1)

and the corresponding value iteration method is

Jk+1(1) = min
�
b, a + Jk(2)

�
, Jk+1(2) = a + Jk(1), (1.2)

There are two policies to consider: the policy 1 → 2 → 1, which is unstable [the corresponding value iteration

for this policy is Jk+1(1) = a + Jk(2), Jk+1(2) = a + Jk(1)], and the policy 1 → 2 → t, which is stable

[the corresponding value iteration for this policy is Jk+1(1) = b, Jk+1(2) = a + Jk(1)]. Our three sets of

assumptions, described in the subsequent sections, correspond to three possibilities. In particular:

(a) Our assumptions of Section 2.1.1 correspond to the case a > 0. Here Bellman’s equation (1.1) has

the unique solution J*(1) = b, J*(2) = a + b, and the value iteration (1.2) converges to J* from any

starting J0. In the context of the SSP model of [BeT91], this corresponds to assuming that there exists

a proper policy and that every improper policy has infinite cost.

(b) Our assumptions of Section 4 correspond to the case a = 0, b = 0. Here Bellman’s equation (1.1) has

the unique solution J*(1) = 0, J*(2) = 0 within the set {J | J ≥ 0}, and the value iteration (1.2)

2

a 1 2 t b Destination

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

a 0 1 2 t b Destination

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; θk) f(x; θk+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x∗ = F (x∗) Fµk
(x) Fµk+1

(x)

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

1

J(1) = min
{
exp(b), exp(a)J(2)

}

J(2) = exp(a)J(1)

γk − Dk(x, xk) γk+1 − Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = −(ĉlφ)(x, z)

rx(µ) − ε µ Z (u, 1)

= Min Common Value w∗

= Max Crossing Value q∗

Positive Halfspace {x | a′x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a′x = b} = {x | a′x = a′x}

x∗ x f
(
αx∗ + (1 − α)x

)

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, β) (u, w)
µ

β

′
u + w

1

J(1) = min
{
exp(b), exp(a)J(2)

}

J(2) = exp(a)J(1)

γk − Dk(x, xk) γk+1 − Dk+1(x, xk+1)

T
y3 x3 Slope = y3

rx(z) = −(ĉlφ)(x, z)

rx(µ) − ε µ Z (u, 1)

= Min Common Value w∗

= Max Crossing Value q∗

Positive Halfspace {x | a′x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a′x = b} = {x | a′x = a′x}

x∗ x f
(
αx∗ + (1 − α)x

)

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, β) (u, w)
µ

β

′
u + w

1

a > 0: J∗(1) = exp(b), J∗(2) = exp(a + b), is the unique fixed point w/ J > 0
(1st set of assumptions applies with S = {J | J > 0})

Set of fixed points of T is
{

J | J(1) = J(2) ≤ 0
}

a = 0, b > 0: J∗(1) = J∗(2) = 1 (perturbation assumptions apply)

Set of fixed points of T is
{

J | J(1) = J(2) ≤ exp(b)
}

a = 0, b = 0: J∗(1) = J∗(2) = 1 (2nd set of assumptions applies with
S = {J | J ≥ J̄})

Set of fixed points of T is
{

J | J(1) = J(2) ≤ 1
}

a = 0, b < 0: J∗(1) = J∗(2) = exp(b) (perturbation assumptions apply)

Set of fixed points of T is
{

J | J(1) = J(2) ≤ exp(b)
}

a < 0: J∗(1) = J∗(2) = 0 is the unique fixed point of T (contractive case)
Bertsekas (M.I.T.) Abstract Dynamic Programming 25 / 28

1 Problem Formulation

2 Results Overview

3 Semicontractive Models

4 Affine Monotonic/Risk-Sensitive Models

Bertsekas (M.I.T.) Abstract Dynamic Programming 27 / 28

An Example: Affine Monotonic/Risk-Sensitive Models

Tµ is linear of the form TµJ = AµJ + bµ with bµ ≥ 0 and

J ≥ 0 =⇒ AµJ ≥ 0

S = {J | 0 ≤ J} or S = {J | 0 < J} or S: J bounded above and away from 0

Special case I: Negative DP model, J̄(x) ≡ 0, Aµ: Transition prob. matrix

Special case II: Multiplicative model w/ termination state 0, J̄(x) ≡ 1

H(x , u, J) = px0(u)g(x , u, 0) +
∑
y∈X

pxy (u)g(x , u, y)J(y)

Aµ(x , y) = pxy
(
µ(x)

)
g
(
x , µ(x), y

)
, bµ(x) = px0(u)g(x , u, 0)

Special case III: Exponential cost w/ termination state 0, J̄(x) ≡ 1

Aµ(x , y) = pxy
(
µ(x)

)
exp
(
h(x , µ(x), y)

)
, bµ(x) = px0

(
µ(x)

)
exp
(
h(x , µ(x), 0)

)
Bertsekas (M.I.T.) Abstract Dynamic Programming 28 / 28

SC Assumptions Translated to Affine Monotonic

µ is S-regular if and only if

lim
k→∞

(Ak
µJ)(x) = 0,

∞∑
m=0

(Am
µbµ)(x) <∞, ∀ x ∈ X , J ∈ S

The 1st Set of Assumptions
There exists an S-regular policy; also infµ:S−regular Jµ ∈ S

If µ: S-irregular, there is at least one x ∈ X such that
∞∑

m=0

(Am
µbµ)(x) =∞

Compactness and continuity conditions hold

Notes:
Value and (modified) policy iteration algorithms are valid

State and control spaces need not be finite

Related (but different) results are possible under alternative conditions

Bertsekas (M.I.T.) Abstract Dynamic Programming 29 / 28

Concluding Remarks

Abstract DP is based on the connections of DP with fixed point theory

Aims at unification and insight through abstraction

Semicontractive models fill a conspicuous gap in the theory from the 60s-70s

Affine monotonic is a natural and useful model

Abstract DP models with approximations require more research

Abstract DP models with restrictions, such as measurability of policies, require
more research

Bertsekas (M.I.T.) Abstract Dynamic Programming 30 / 28

Thank you!

Bertsekas (M.I.T.) Abstract Dynamic Programming 31 / 28

	Problem Formulation
	Results Overview
	Semicontractive Models
	Affine Monotonic/Risk-Sensitive Models

