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APPROXIMATE DYNAMIC PROGRAMMING

BRIEF OUTLINE I

• Our subject:

− Large-scale DP based on approximations and
in part on simulation.

− This has been a research area of great inter-
est for the last 20 years known under various
names (e.g., reinforcement learning, neuro-
dynamic programming)

− Emerged through an enormously fruitful cross-
fertilization of ideas from artificial intelligence
and optimization/control theory

− Deals with control of dynamic systems under
uncertainty, but applies more broadly (e.g.,
discrete deterministic optimization)

− A vast range of applications in control the-
ory, operations research, artificial intelligence,
and beyond ...

− The subject is broad with rich variety of
theory/math, algorithms, and applications.
Our focus will be mostly on algorithms ...
less on theory and modeling



APPROXIMATE DYNAMIC PROGRAMMING

BRIEF OUTLINE II

• Our aim:

− A state-of-the-art account of some of the ma-
jor topics at a graduate level

− Show how the use of approximation and sim-
ulation can address the dual curses of DP:
dimensionality and modeling

• Our 7-lecture plan:

− Two lectures on exact DP with emphasis on
infinite horizon problems and issues of large-
scale computational methods

− One lecture on general issues of approxima-
tion and simulation for large-scale problems

− One lecture on approximate policy iteration
based on temporal differences (TD)/projected
equations/Galerkin approximation

− One lecture on aggregation methods

− One lecture on stochastic approximation, Q-
learning, and other methods

− One lecture on Monte Carlo methods for
solving general problems involving linear equa-
tions and inequalities



APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 1

LECTURE OUTLINE

• Introduction to DP and approximate DP

• Finite horizon problems

• The DP algorithm for finite horizon problems

• Infinite horizon problems

• Basic theory of discounted infinite horizon prob-
lems



BASIC STRUCTURE OF STOCHASTIC DP

• Discrete-time system

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1

− k: Discrete time

− xk: State; summarizes past information that
is relevant for future optimization

− uk: Control; decision to be selected at time
k from a given set

− wk: Random parameter (also called “distur-
bance” or “noise” depending on the context)

− N : Horizon or number of times control is
applied

• Cost function that is additive over time

E

{

gN (xN ) +
N−1
∑

k=0

gk(xk, uk, wk)

}

• Alternative system description: P (xk+1 | xk, uk)

xk+1 = wk with P (wk | xk, uk) = P (xk+1 | xk, uk)



INVENTORY CONTROL EXAMPLE

Inventory
System

Stock Ordered at
Period k

Stock at Period k Stock at Period k + 1

Demand at Period k

xk

wk

xk  + 1 = xk  + uk -  wk

uk
Cos t of P e riod k

c uk + r (xk  + uk - wk)

• Discrete-time system

xk+1 = fk(xk, uk, wk) = xk + uk − wk

• Cost function that is additive over time

E

{

gN (xN ) +
N−1
∑

k=0

gk(xk, uk, wk)

}

= E

{

N−1
∑

k=0

(

cuk + r(xk + uk − wk)
)

}



ADDITIONAL ASSUMPTIONS

• Optimization over policies: These are rules/functions

uk = µk(xk), k = 0, . . . , N − 1

that map states to controls (closed-loop optimiza-
tion, use of feedback)

• The set of values that the control uk can take
depend at most on xk and not on prior x or u

• Probability distribution of wk does not depend
on past values wk−1, . . . , w0, but may depend on
xk and uk

− Otherwise past values of w or x would be
useful for future optimization



GENERIC FINITE-HORIZON PROBLEM

• System xk+1 = fk(xk, uk, wk), k = 0, . . . , N−1

• Control contraints uk ∈ Uk(xk)

• Probability distribution Pk(· | xk, uk) of wk

• Policies π = {µ0, . . . , µN−1}, where µk maps
states xk into controls uk = µk(xk) and is such
that µk(xk) ∈ Uk(xk) for all xk

• Expected cost of π starting at x0 is

Jπ(x0) = E

{

gN (xN ) +
N−1
∑

k=0

gk(xk, µk(xk), wk)

}

• Optimal cost function

J∗(x0) = min
π

Jπ(x0)

• Optimal policy π∗ satisfies

Jπ∗(x0) = J∗(x0)

When produced by DP, π∗ is independent of x0.



PRINCIPLE OF OPTIMALITY

• Let π∗ = {µ∗
0, µ

∗
1, . . . , µ

∗
N−1} be optimal policy

• Consider the “tail subproblem” whereby we are
at xk at time k and wish to minimize the “cost-
to-go” from time k to time N

E

{

gN (xN ) +
N−1
∑

"=k

g"
(

x", µ"(x"), w"

)

}

and the “tail policy” {µ∗
k, µ

∗
k+1, . . . , µ

∗
N−1}

!"#$%&'()*+($,-

!#-,!!

"!

#

• Principle of optimality: The tail policy is opti-
mal for the tail subproblem (optimization of the
future does not depend on what we did in the past)

• DP solves ALL the tail subroblems

• At the generic step, it solves ALL tail subprob-
lems of a given time length, using the solution of
the tail subproblems of shorter time length



DP ALGORITHM

• Jk(xk): opt. cost of tail problem starting at xk

• Start with

JN (xN ) = gN (xN ),

and go backwards using

Jk(xk) = min
uk∈Uk(xk)

E
wk

{

gk(xk, uk, wk)

+ Jk+1

(

fk(xk, uk, wk)
)}

, k = 0, 1, . . . , N − 1

i.e., to solve tail subproblem at time k minimize

Sum of kth-stage cost + Opt. cost of next tail problem

starting from next state at time k + 1

• Then J0(x0), generated at the last step, is equal
to the optimal cost J∗(x0). Also, the policy

π∗ = {µ∗
0, . . . , µ

∗
N−1}

where µ∗
k(xk) minimizes in the right side above for

each xk and k, is optimal

• Proof by induction



PRACTICAL DIFFICULTIES OF DP

• The curse of dimensionality

− Exponential growth of the computational and
storage requirements as the number of state
variables and control variables increases

− Quick explosion of the number of states in
combinatorial problems

− Intractability of imperfect state information
problems

• The curse of modeling

− Sometimes a simulator of the system is easier
to construct than a model

• There may be real-time solution constraints

− A family of problems may be addressed. The
data of the problem to be solved is given with
little advance notice

− The problem data may change as the system
is controlled – need for on-line replanning

• All of the above are motivations for approxi-
mation and simulation



COST-TO-GO FUNCTION APPROXIMATION

• Use a policy computed from the DP equation
where the optimal cost-to-go function Jk+1 is re-
placed by an approximation J̃k+1.

• Apply µk(xk), which attains the minimum in

min
uk∈Uk(xk)

E
{

gk(xk, uk, wk)+J̃k+1

(

fk(xk, uk, wk)
)

}

• Some approaches:

(a) Problem Approximation: Use J̃k derived from
a related but simpler problem

(b) Parametric Cost-to-Go Approximation: Use
as J̃k a function of a suitable parametric
form, whose parameters are tuned by some
heuristic or systematic scheme (we will mostly
focus on this)

− This is a major portion of Reinforcement
Learning/Neuro-Dynamic Programming

(c) Rollout Approach: Use as J̃k the cost of
some suboptimal policy, which is calculated
either analytically or by simulation



ROLLOUT ALGORITHMS

• At each k and state xk, use the control µk(xk)
that minimizes in

min
uk∈Uk(xk)

E
{

gk(xk, uk, wk)+J̃k+1

(

fk(xk, uk, wk)
)}

,

where J̃k+1 is the cost-to-go of some heuristic pol-
icy (called the base policy).

• Cost improvement property: The rollout algo-
rithm achieves no worse (and usually much better)
cost than the base policy starting from the same
state.

• Main difficulty: Calculating J̃k+1(x) may be
computationally intensive if the cost-to-go of the
base policy cannot be analytically calculated.

− May involve Monte Carlo simulation if the
problem is stochastic.

− Things improve in the deterministic case.

− Connection w/ Model Predictive Control (MPC)



INFINITE HORIZON PROBLEMS

• Same as the basic problem, but:

− The number of stages is infinite.

− The system is stationary.

• Total cost problems: Minimize

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

− Discounted problems (α < 1, bounded g)

− Stochastic shortest path problems (α = 1,
finite-state system with a termination state)
- we will discuss sparringly

− Discounted and undiscounted problems with
unbounded cost per stage - we will not cover

• Average cost problems - we will not cover

• Infinite horizon characteristics:

− Challenging analysis, elegance of solutions
and algorithms

− Stationary policies π = {µ, µ, . . .} and sta-
tionary forms of DP play a special role



DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

with α < 1, and g is bounded [for some M , we
have |g(x, u, w)| ≤ M for all (x, u, w)]

• Boundedness of g guarantees that all costs are
well-defined and bounded:

∣

∣Jπ(x)
∣

∣ ≤ M
1−α

• All spaces are arbitrary - only boundedness of
g is important (there are math fine points, e.g.
measurability, but they don’t matter in practice)

• Important special case: All underlying spaces
finite; a (finite spaces) Markovian Decision Prob-
lem or MDP

• All algorithms essentially work with an MDP
that approximates the original problem



SHORTHAND NOTATION FOR DP MAPPINGS

• For any function J of x

(TJ)(x) = min
u∈U(x)

E
w

{

g(x, u, w) + αJ
(

f(x, u, w)
)}

, ∀ x

• TJ is the optimal cost function for the one-
stage problem with stage cost g and terminal cost
function αJ .

• T operates on bounded functions of x to pro-
duce other bounded functions of x

• For any stationary policy µ

(TµJ)(x) = E
w

{

g
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)}

, ∀ x

• The critical structure of the problem is cap-
tured in T and Tµ

• The entire theory of discounted problems can
be developed in shorthand using T and Tµ

• This is true for many other DP problems



FINITE-HORIZON COST EXPRESSIONS

• Consider anN -stage policy πN
0 = {µ0, µ1, . . . , µN−1}

with a terminal cost J :

JπN
0
(x0) = E

{

αNJ(xk) +
N−1
∑

"=0

α"g
(

x", µ"(x"), w"

)

}

= E
{

g
(

x0, µ0(x0), w0

)

+ αJπN
1
(x1)

}

= (Tµ0JπN
1
)(x0)

where πN
1 = {µ1, µ2, . . . , µN−1}

• By induction we have

JπN
0
(x) = (Tµ0Tµ1 · · ·TµN−1J)(x), ∀ x

• For a stationary policy µ the N -stage cost func-
tion (with terminal cost J) is

JπN
0

= TN
µ J

where TN
µ is the N -fold composition of Tµ

• Similarly the optimal N -stage cost function
(with terminal cost J) is TNJ

• TNJ = T (TN−1J) is just the DP algorithm



“SHORTHAND” THEORY – A SUMMARY

• Infinite horizon cost function expressions [with
J0(x) ≡ 0]

Jπ(x) = lim
N→∞

(Tµ0Tµ1 · · ·TµN J0)(x), Jµ(x) = lim
N→∞

(TN
µ J0)(x)

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

• Value iteration: For any (bounded) J

J∗(x) = lim
k→∞

(T kJ)(x), ∀ x

• Policy iteration: Given µk,

− Policy evaluation: Find Jµk by solving

Jµk = TµkJµk

− Policy improvement : Find µk+1 such that

Tµk+1Jµk = TJµk



TWO KEY PROPERTIES

• Monotonicity property: For any J and J ′ such
that J(x) ≤ J ′(x) for all x, and any µ

(TJ)(x) ≤ (TJ ′)(x), ∀ x,

(TµJ)(x) ≤ (TµJ ′)(x), ∀ x.

• Constant Shift property: For any J , any scalar
r, and any µ

(

T (J + re)
)

(x) = (TJ)(x) + αr, ∀ x,

(

Tµ(J + re)
)

(x) = (TµJ)(x) + αr, ∀ x,

where e is the unit function [e(x) ≡ 1].

• Monotonicity is present in all DP models (undis-
counted, etc)

• Constant shift is special to discounted models

• Discounted problems have another property
of major importance: T and Tµ are contraction
mappings (we will show this later)



CONVERGENCE OF VALUE ITERATION

• If J0 ≡ 0,

J∗(x) = lim
k→∞

(T kJ0)(x), for all x

Proof: For any initial state x0, and policy π =
{µ0, µ1, . . .},

Jπ(x0) = E

{

∞
∑

"=0

α"g
(

x", µ"(x"), w"

)

}

= E

{

k−1
∑

"=0

α"g
(

x", µ"(x"), w"

)

}

+E

{

∞
∑

"=k

α"g
(

x", µ"(x"), w"

)

}

The tail portion satisfies

∣

∣

∣

∣

∣

E

{

∞
∑

"=k

α"g
(

x", µ"(x"), w"

)

}∣

∣

∣

∣

∣

≤
αkM

1− α
,

where M ≥ |g(x, u, w)|. Take the min over π of
both sides. Q.E.D.



BELLMAN’S EQUATION

• The optimal cost function J∗ satisfies Bellman’s
Eq., i.e. J∗ = TJ∗.

Proof: For all x and k,

J∗(x)−
αkM

1− α
≤ (T kJ0)(x) ≤ J∗(x) +

αkM

1− α
,

where J0(x) ≡ 0 and M ≥ |g(x, u, w)|. Applying
T to this relation, and using Monotonicity and
Constant Shift,

(TJ∗)(x)−
αk+1M

1− α
≤ (T k+1J0)(x)

≤ (TJ∗)(x) +
αk+1M

1− α

Taking the limit as k → ∞ and using the fact

lim
k→∞

(T k+1J0)(x) = J∗(x)

we obtain J∗ = TJ∗. Q.E.D.



THE CONTRACTION PROPERTY

• Contraction property: For any bounded func-
tions J and J ′, and any µ,

max
x

∣

∣(TJ)(x)− (TJ ′)(x)
∣

∣ ≤ αmax
x

∣

∣J(x)− J ′(x)
∣

∣,

max
x

∣

∣(TµJ)(x)−(TµJ ′)(x)
∣

∣ ≤ αmax
x

∣

∣J(x)−J ′(x)
∣

∣.

Proof: Denote c = maxx∈S

∣

∣J(x)− J ′(x)
∣

∣. Then

J(x)− c ≤ J ′(x) ≤ J(x) + c, ∀ x

Apply T to both sides, and use the Monotonicity
and Constant Shift properties:

(TJ)(x)−αc ≤ (TJ ′)(x) ≤ (TJ)(x)+αc, ∀ x

Hence

∣

∣(TJ)(x)− (TJ ′)(x)
∣

∣ ≤ αc, ∀ x.

Q.E.D.



NEC. AND SUFFICIENT OPT. CONDITION

• A stationary policy µ is optimal if and only if
µ(x) attains the minimum in Bellman’s equation
for each x; i.e.,

TJ∗ = TµJ∗.

Proof: If TJ∗ = TµJ∗, then using Bellman’s equa-
tion (J∗ = TJ∗), we have

J∗ = TµJ∗,

so by uniqueness of the fixed point of Tµ, we obtain
J∗ = Jµ; i.e., µ is optimal.

• Conversely, if the stationary policy µ is optimal,
we have J∗ = Jµ, so

J∗ = TµJ∗.

Combining this with Bellman’s Eq. (J∗ = TJ∗),
we obtain TJ∗ = TµJ∗. Q.E.D.



APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 2

LECTURE OUTLINE

• Review of discounted problem theory

• Review of shorthand notation

• Algorithms for discounted DP

• Value iteration

• Policy iteration

• Optimistic policy iteration

• Q-factors and Q-learning

• A more abstract view of DP

• Extensions of discounted DP

• Value and policy iteration

• Asynchronous algorithms



DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

with α < 1, and for someM , we have |g(x, u, w)| ≤
M for all (x, u, w)

• Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = min
u∈U(x)

E
w

{

g(x, u, w) + αJ
(

f(x, u, w)
)}

, ∀ x

TJ is the optimal cost function for the one-stage
problem with stage cost g and terminal cost αJ .

• For any stationary policy µ

(TµJ)(x) = E
w

{

g
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)}

, ∀ x



“SHORTHAND” THEORY – A SUMMARY

• Cost function expressions [with J0(x) ≡ 0]

Jπ(x) = lim
k→∞

(Tµ0Tµ1 · · ·Tµk
J0)(x), Jµ(x) = lim

k→∞
(Tk

µJ0)(x)

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ or

J∗(x) = min
u∈U(x)

E
w

{

g(x, u, w) + αJ∗
(

f(x, u, w)
)}

, ∀ x

Jµ(x) = E
w

{

g
(

x, µ(x), w
)

+ αJµ
(

f(x, µ(x), w)
)}

, ∀ x

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

i.e.,

µ(x) ∈ arg min
u∈U(x)

E
w

{

g(x, u, w) + αJ∗
(

f(x, u, w)
)}

, ∀ x

• Value iteration: For any (bounded) J

J∗(x) = lim
k→∞

(T kJ)(x), ∀ x



MAJOR PROPERTIES

• Monotonicity property: For any functions J and
J ′ on the state space X such that J(x) ≤ J ′(x)
for all x ∈ X, and any µ

(TJ)(x) ≤ (TJ ′)(x), (TµJ)(x) ≤ (TµJ ′)(x), ∀ x ∈ X.

• Contraction property: For any bounded func-
tions J and J ′, and any µ,

max
x

∣

∣(TJ)(x)− (TJ ′)(x)
∣

∣ ≤ αmax
x

∣

∣J(x)− J ′(x)
∣

∣,

max
x

∣

∣(TµJ)(x)−(TµJ ′)(x)
∣

∣ ≤ αmax
x

∣

∣J(x)−J ′(x)
∣

∣.

• Compact Contraction Notation:

‖TJ−TJ ′‖ ≤ α‖J−J ′‖, ‖TµJ−TµJ ′‖ ≤ α‖J−J ′‖,

where for any bounded function J , we denote by
‖J‖ the sup-norm

‖J‖ = max
x∈X

∣

∣J(x)
∣

∣.



THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any (bounded) J

J∗(x) = lim
k→∞

(T kJ)(x), ∀ x

• Policy iteration: Given µk

− Policy evaluation: Find Jµk by solving

Jµk (x) = E
w

{

g
(

x, µ(x), w
)

+ αJµk

(

f(x, µk(x), w)
)}

, ∀ x

or Jµk = TµkJµk

− Policy improvement: Let µk+1 be such that

µk+1(x) ∈ arg min
u∈U(x)

E
w

{

g(x, u, w) + αJµk

(

f(x, u, w)
)}

, ∀ x

or Tµk+1Jµk = TJµk

• For finite state space policy evaluation is equiv-
alent to solving a linear system of equations

• Dimension of the system is equal to the number
of states.

• For large problems, exact PI is out of the ques-
tion (even though it terminates finitely)



INTERPRETATION OF VI AND PI

J J∗ = TJ∗

0 Prob. = 1

J J∗ = TJ∗

0 Prob. = 1

∗ TJ

Prob. = 1 Prob. =

∗ TJ

Prob. = 1 Prob. =

1 J J

TJ 45 Degree Line
Prob. = 1 Prob. =

J J∗ = TJ∗

0 Prob. = 1

1 J J

J Jµ1 = Tµ1Jµ1

Policy Improvement Exact Policy Evaluation Approximate Policy
Evaluation

Policy Improvement Exact Policy Evaluation Approximate Policy
Evaluation

TJ Tµ1J J

Policy Improvement Exact Policy Evaluation (Exact if

J0

J0

J0

J0

= TJ0

= TJ0

= TJ0

Do not Replace Set S

= T 2J0

Do not Replace Set S

= T 2J0

n Value Iterations



JUSTIFICATION OF POLICY ITERATION

• We can show that Jµk+1 ≤ Jµk for all k

• Proof: For given k, we have

Tµk+1Jµk = TJµk ≤ TµkJµk = Jµk

Using the monotonicity property of DP,

Jµk ≥ Tµk+1Jµk ≥ T 2
µk+1Jµk ≥ · · · ≥ lim

N→∞
TN
µk+1Jµk

• Since
lim

N→∞
TN
µk+1Jµk = Jµk+1

we have Jµk ≥ Jµk+1 .

• If Jµk = Jµk+1 , then Jµk solves Bellman’s equa-
tion and is therefore equal to J∗

• So at iteration k either the algorithm generates
a strictly improved policy or it finds an optimal
policy

• For a finite spaces MDP, there are finitely many
stationary policies, so the algorithm terminates
with an optimal policy



APPROXIMATE PI

• Suppose that the policy evaluation is approxi-
mate,

‖Jk − Jµk‖ ≤ δ, k = 0, 1, . . .

and policy improvement is approximate,

‖Tµk+1Jk − TJk‖ ≤ ε, k = 0, 1, . . .

where δ and ε are some positive scalars.

• Error Bound I: The sequence {µk} generated
by approximate policy iteration satisfies

lim sup
k→∞

‖Jµk − J∗‖ ≤
ε+ 2αδ

(1− α)2

• Typical practical behavior: The method makes
steady progress up to a point and then the iterates
Jµk oscillate within a neighborhood of J∗.

• Error Bound II: If in addition the sequence {µk}
terminates at µ,

‖Jµ − J∗‖ ≤
ε+ 2αδ

1− α



OPTIMISTIC POLICY ITERATION

• Optimistic PI (more efficient): This is PI, where
policy evaluation is done approximately, with a
finite number of VI

• So we approximate the policy evaluation

Jµ ≈ Tm
µ J

for some number m ∈ [1,∞)

• Shorthand definition: For some integers mk

TµkJk = TJk, Jk+1 = Tmk

µk Jk, k = 0, 1, . . .

• If mk ≡ 1 it becomes VI

• If mk = ∞ it becomes PI

• Can be shown to converge (in an infinite number
of iterations)



Q-LEARNING I

• We can write Bellman’s equation as

J∗(x) = min
u∈U(x)

Q∗(x, u), ∀ x,

where Q∗ is the unique solution of

Q∗(x, u) = E

{

g(x, u, w) + α min
v∈U(x)

Q∗(x, v)

}

with x = f(x, u, w)

• Q∗(x, u) is called the optimal Q-factor of (x, u)

• We can equivalently write the VI method as

Jk+1(x) = min
u∈U(x)

Qk+1(x, u), ∀ x,

where Qk+1 is generated by

Qk+1(x, u) = E

{

g(x, u, w) + α min
v∈U(x)

Qk(x, v)

}

with x = f(x, u, w)



Q-LEARNING II

• Q-factors are no different than costs

• They satisfy a Bellman equation Q = FQ where

(FQ)(x, u) = E

{

g(x, u, w) + α min
v∈U(x)

Q(x, v)

}

where x = f(x, u, w)

• VI and PI for Q-factors are mathematically
equivalent to VI and PI for costs

• They require equal amount of computation ...
they just need more storage

• Having optimal Q-factors is convenient when
implementing an optimal policy on-line by

µ∗(x) = min
u∈U(x)

Q∗(x, u)

• Once Q∗(x, u) are known, the model [g and
E{·}] is not needed. Model-free operation.

• Later we will see how stochastic/sampling meth-
ods can be used to calculate (approximations of)
Q∗(x, u) using a simulator of the system (no model
needed)



A MORE GENERAL/ABSTRACT VIEW

• Let Y be a real vector space with a norm ‖ · ‖

• A function F : Y +→ Y is said to be a contrac-
tion mapping if for some ρ ∈ (0, 1), we have

‖Fy − Fz‖ ≤ ρ‖y − z‖, for all y, z ∈ Y.

ρ is called the modulus of contraction of F .

• Important example: Let X be a set (e.g., state
space in DP), v : X +→ , be a positive-valued
function. Let B(X) be the set of all functions
J : X +→ , such that J(x)/v(x) is bounded over
x.

• We define a norm on B(X), called the weighted
sup-norm, by

‖J‖ = max
x∈X

|J(x)|
v(x)

.

• Important special case: The discounted prob-
lem mappings T and Tµ [for v(x) ≡ 1, ρ = α].



A DP-LIKE CONTRACTION MAPPING

• Let X = {1, 2, . . .}, and let F : B(X) +→ B(X)
be a linear mapping of the form

(FJ)(i) = bi +
∑

j∈X

aij J(j), ∀ i = 1, 2, . . .

where bi and aij are some scalars. Then F is a
contraction with modulus ρ if and only if

∑

j∈X |aij | v(j)
v(i)

≤ ρ, ∀ i = 1, 2, . . .

• Let F : B(X) +→ B(X) be a mapping of the
form

(FJ)(i) = min
µ∈M

(FµJ)(i), ∀ i = 1, 2, . . .

where M is parameter set, and for each µ ∈ M ,
Fµ is a contraction mapping from B(X) to B(X)
with modulus ρ. Then F is a contraction mapping
with modulus ρ.

• Allows the extension of main DP results from
bounded cost to unbounded cost.



CONTRACTION MAPPING FIXED-POINT TH.

• Contraction Mapping Fixed-Point Theorem: If
F : B(X) +→ B(X) is a contraction with modulus
ρ ∈ (0, 1), then there exists a unique J∗ ∈ B(X)
such that

J∗ = FJ∗.

Furthermore, if J is any function in B(X), then
{F kJ} converges to J∗ and we have

‖F kJ − J∗‖ ≤ ρk‖J − J∗‖, k = 1, 2, . . . .

• This is a special case of a general result for
contraction mappings F : Y +→ Y over normed
vector spaces Y that are complete: every sequence
{yk} that is Cauchy (satisfies ‖ym − yn‖ → 0 as
m,n → ∞) converges.

• The space B(X) is complete (see the text for a
proof).



GENERAL FORMS OF DISCOUNTED DP

• We consider an abstract form of DP based on
monotonicity and contraction

• Abstract Mapping: Denote R(X): set of real-
valued functions J : X +→ ,, and let H : X ×U ×
R(X) +→ , be a given mapping. We consider the
mapping

(TJ)(x) = min
u∈U(x)

H(x, u, J), ∀ x ∈ X.

• We assume that (TJ)(x) > −∞ for all x ∈ X,
so T maps R(X) into R(X).

• Abstract Policies: Let M be the set of “poli-
cies”, i.e., functions µ such that µ(x) ∈ U(x) for
all x ∈ X.

• For each µ ∈ M, we consider the mapping
Tµ : R(X) +→ R(X) defined by

(TµJ)(x) = H
(

x, µ(x), J
)

, ∀ x ∈ X.

• Find a function J∗ ∈ R(X) such that

J∗(x) = min
u∈U(x)

H(x, u, J∗), ∀ x ∈ X



EXAMPLES

• Discounted problems (and stochastic shortest
paths-SSP for α = 1)

H(x, u, J) = E
{

g(x, u, w) + αJ
(

f(x, u, w)
)}

• Discounted Semi-Markov Problems

H(x, u, J) = G(x, u) +
n
∑

y=1

mxy(u)J(y)

where mxy are “discounted” transition probabili-
ties, defined by the transition distributions

• Shortest Path Problems

H(x, u, J) =

{

axu + J(u) if u .= d,
axd if u = d

where d is the destination. There is also a stochas-
tic version of this problem.

• Minimax Problems

H(x, u, J) = max
w∈W (x,u)

[

g(x, u, w)+αJ
(

f(x, u, w)
)]



ASSUMPTIONS

• Monotonicity assumption: If J, J ′ ∈ R(X) and
J ≤ J ′, then

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x)

• Contraction assumption:

− For every J ∈ B(X), the functions TµJ and
TJ belong to B(X).

− For some α ∈ (0, 1), and all µ and J, J ′ ∈
B(X), we have

‖TµJ − TµJ ′‖ ≤ α‖J − J ′‖

• We can show all the standard analytical and
computational results of discounted DP based on
these two assumptions

• With just the monotonicity assumption (as in
the SSP or other undiscounted problems) we can
still show various forms of the basic results under
appropriate assumptions



RESULTS USING CONTRACTION

• Proposition 1: The mappings Tµ and T are
weighted sup-norm contraction mappings with mod-
ulus α over B(X), and have unique fixed points
in B(X), denoted Jµ and J∗, respectively (cf.
Bellman’s equation).

Proof: From the contraction property of H .

• Proposition 2: For any J ∈ B(X) and µ ∈ M,

lim
k→∞

T k
µJ = Jµ, lim

k→∞
T kJ = J∗

(cf. convergence of value iteration).

Proof: From the contraction property of Tµ and
T .

• Proposition 3: We have TµJ∗ = TJ∗ if and
only if Jµ = J∗ (cf. optimality condition).

Proof: TµJ∗ = TJ∗, then TµJ∗ = J∗, implying
J∗ = Jµ. Conversely, if Jµ = J∗, then TµJ∗ =
TµJµ = Jµ = J∗ = TJ∗.



RESULTS USING MON. AND CONTRACTION

• Optimality of fixed point:

J∗(x) = min
µ∈M

Jµ(x), ∀ x ∈ X

• Furthermore, for every ε > 0, there exists µε ∈
M such that

J∗(x) ≤ Jµε(x) ≤ J∗(x) + ε, ∀ x ∈ X

• Nonstationary policies: Consider the set Π of
all sequences π = {µ0, µ1, . . .} with µk ∈ M for
all k, and define

Jπ(x) = lim inf
k→∞

(Tµ0Tµ1 · · ·TµkJ)(x), ∀ x ∈ X,

with J being any function (the choice of J does
not matter)

• We have

J∗(x) = min
π∈Π

Jπ(x), ∀ x ∈ X



THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any (bounded) J

J∗(x) = lim
k→∞

(T kJ)(x), ∀ x

• Policy iteration: Given µk

− Policy evaluation: Find Jµk by solving

Jµk = TµkJµk

− Policy improvement: Find µk+1 such that

Tµk+1Jµk = TJµk

• Optimistic PI: This is PI, where policy evalu-
ation is carried out by a finite number of VI

− Shorthand definition: For some integers mk

TµkJk = TJk, Jk+1 = Tmk

µk Jk, k = 0, 1, . . .

− If mk ≡ 1 it becomes VI

− If mk = ∞ it becomes PI

− For intermediate values of mk, it is generally
more efficient than either VI or PI



ASYNCHRONOUS ALGORITHMS

• Motivation for asynchronous algorithms

− Faster convergence

− Parallel and distributed computation

− Simulation-based implementations

• General framework: Partition X into disjoint
nonempty subsets X1, . . . , Xm, and use separate
processor & updating J(x) for x ∈ X"

• Let J be partitioned as

J = (J1, . . . , Jm),

where J" is the restriction of J on the set X".

• Synchronous algorithm:

J t+1
" (x) = T (J t

1, . . . , J
t
m)(x), x ∈ X", & = 1, . . . ,m

• Asynchronous algorithm: For some subsets of
times R",

J t+1
" (x) =

{

T (Jτ"1(t)
1 , . . . , Jτ"m(t)

m )(x) if t ∈ R",
J t
"(x) if t /∈ R"

where t− τ"j(t) are communication “delays”



ONE-STATE-AT-A-TIME ITERATIONS

• Important special case: Assume n “states”, a
separate processor for each state, and no delays

• Generate a sequence of states {x0, x1, . . .}, gen-
erated in some way, possibly by simulation (each
state is generated infinitely often)

• Asynchronous VI:

J t+1
" =

{

T (J t
1, . . . , J

t
n)(&) if & = xt,

J t
" if & .= xt,

where T (J t
1, . . . , J

t
n)(&) denotes the &-th compo-

nent of the vector

T (J t
1, . . . , J

t
n) = TJ t,

and for simplicity we write J t
" instead of J t

"(&)

• The special case where

{x0, x1, . . .} = {1, . . . , n, 1, . . . , n, 1, . . .}

is the Gauss-Seidel method

• We can show that J t → J∗ under the contrac-
tion assumption



ASYNCHRONOUS CONV. THEOREM I

• Assume that for all &, j = 1, . . . ,m, R" is infinite
and limt→∞ τ"j(t) = ∞

• Proposition: Let T have a unique fixed point J∗,
and assume that there is a sequence of nonempty
subsets

{

S(k)
}

⊂ R(X) with S(k + 1) ⊂ S(k) for
all k, and with the following properties:

(1) Synchronous Convergence Condition: Ev-
ery sequence {Jk} with Jk ∈ S(k) for each
k, converges pointwise to J∗. Moreover, we
have

TJ ∈ S(k+1), ∀ J ∈ S(k), k = 0, 1, . . . .

(2) Box Condition: For all k, S(k) is a Cartesian
product of the form

S(k) = S1(k)× · · ·× Sm(k),

where S"(k) is a set of real-valued functions
on X", & = 1, . . . ,m.

Then for every J ∈ S(0), the sequence {J t} gen-
erated by the asynchronous algorithm converges
pointwise to J∗.



ASYNCHRONOUS CONV. THEOREM II

• Interpretation of assumptions:

S(0)
(0) S(k)

) S(k + 1) + 1) J∗

∗ J = (J1, J2)

S1(0)

(0) S2(0)
TJ

A synchronous iteration from any J in S(k) moves
into S(k + 1) (component-by-component)

• Convergence mechanism:

S(0)
(0) S(k)

) S(k + 1) + 1) J∗

∗ J = (J1, J2)

J1 Iterations

Iterations J2 Iteration

Key: “Independent” component-wise improve-
ment. An asynchronous component iteration from
any J in S(k) moves into the corresponding com-
ponent portion of S(k + 1)



APPROXIMATE DYNAMIC PROGRAMMING

LECTURE 3

LECTURE OUTLINE

• Review of theory and algorithms for discounted
DP

• MDP and stochastic shortest path problems
(briefly)

• Introduction to approximation in policy and
value space

• Approximation architectures

• Simulation-based approximate policy iteration

• Approximate policy iteration and Q-factors

• Direct and indirect approximation

• Simulation issues



DISCOUNTED PROBLEMS/BOUNDED COST

• Stationary system with arbitrary state space

xk+1 = f(xk, uk, wk), k = 0, 1, . . .

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

with α < 1, and for someM , we have |g(x, u, w)| ≤
M for all (x, u, w)

• Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = min
u∈U(x)

E
w

{

g(x, u, w) + αJ
(

f(x, u, w)
)}

, ∀ x

TJ is the optimal cost function for the one-stage
problem with stage cost g and terminal cost αJ

• For any stationary policy µ

(TµJ)(x) = E
w

{

g
(

x, µ(x), w
)

+ αJ
(

f(x, µ(x), w)
)}

, ∀ x



MDP - TRANSITION PROBABILITY NOTATION

• Assume the system is an n-state (controlled)
Markov chain

• Change to Markov chain notation

− States i = 1, . . . , n (instead of x)

− Transition probabilities pikik+1(uk) [instead
of xk+1 = f(xk, uk, wk)]

− Stage cost g(ik, uk, ik+1) [instead of g(xk, uk, wk)]

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(i) = lim
N→∞

E
ik

k=1,2,...

{

N−1
∑

k=0

αkg
(

ik, µk(ik), ik+1

)

| i0 = i

}

• Shorthand notation for DP mappings

(TJ)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ(j)
)

, i = 1, . . . , n,

(TµJ)(i) =

n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+αJ(j)
)

, i = 1, . . . , n



“SHORTHAND” THEORY – A SUMMARY

• Cost function expressions [with J0(i) ≡ 0]

Jπ(i) = lim
k→∞

(Tµ0Tµ1 · · ·Tµk
J0)(i), Jµ(i) = lim

k→∞
(T k

µJ0)(i)

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ or

J∗(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ∗(j)
)

, ∀ i

Jµ(i) =
n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+ αJµ(j)
)

, ∀ i

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

i.e.,

µ(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ∗(j)
)

, ∀ i



THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any J ∈ ,n

J∗(i) = lim
k→∞

(T kJ)(i), ∀ i = 1, . . . , n

• Policy iteration: Given µk

− Policy evaluation: Find Jµk by solving

Jµk (i) =

n
∑

j=1

pij
(

µk(i)
)(

g
(

i, µk(i), j
)

+αJµk (j)
)

, i = 1, . . . , n

or Jµk = TµkJµk

− Policy improvement: Let µk+1 be such that

µk+1(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJµk (j)
)

, ∀ i

or Tµk+1Jµk = TJµk

• Policy evaluation is equivalent to solving an
n× n linear system of equations

• For large n, exact PI is out of the question
(even though it terminates finitely)



STOCHASTIC SHORTEST PATH (SSP) PROBLEMS

• Involves states i = 1, . . . , n plus a special cost-
free and absorbing termination state t

• Objective: Minimize the total (undiscounted)
cost. Aim: Reach t at minimum expected cost

• An example: Tetris

!"#$%&'!%(&

))))))



SSP THEORY

• SSP problems provide a “soft boundary” be-
tween the easy finite-state discounted problems
and the hard undiscounted problems.

− They share features of both.

− Some of the nice theory is recovered because
of the termination state.

• Definition: A proper policy is a stationary
policy that leads to t with probability 1

• If all stationary policies are proper, T and
Tµ are contractions with respect to a common
weighted sup-norm

• The entire analytical and algorithmic theory for
discounted problems goes through if all stationary
policies are proper (we will assume this)

• There is a strong theory even if there are im-
proper policies (but they should be assumed to be
nonoptimal - see the textbook)



GENERAL ORIENTATION TO ADP

• We will mainly adopt an n-state discounted
model (the easiest case - but think of HUGE n).

• Extensions to SSP and average cost are possible
(but more quirky). We will set aside for later.

• There are many approaches:

− Manual/trial-and-error approach

− Problem approximation

− Simulation-based approaches (we will focus
on these): “neuro-dynamic programming”
or “reinforcement learning”.

• Simulation is essential for large state spaces
because of its (potential) computational complex-
ity advantage in computing sums/expectations in-
volving a very large number of terms.

• Simulation also comes in handy when an ana-
lytical model of the system is unavailable, but a
simulation/computer model is possible.

• Simulation-based methods are of three types:

− Rollout (we will not discuss further)

− Approximation in value space

− Approximation in policy space



APPROXIMATION IN VALUE SPACE

• Approximate J∗ or Jµ from a parametric class
J̃(i, r) where i is the current state and r = (r1, . . . , rm)
is a vector of “tunable” scalars weights.

• By adjusting r we can change the “shape” of J̃
so that it is reasonably close to the true optimal
J∗.

• Two key issues:

− The choice of parametric class J̃(i, r) (the
approximation architecture).

− Method for tuning the weights (“training”
the architecture).

• Successful application strongly depends on how
these issues are handled, and on insight about the
problem.

• A simulator may be used, particularly when
there is no mathematical model of the system (but
there is a computer model).

• We will focus on simulation, but this is not the
only possibility [e.g., J̃(i, r) may be a lower bound
approximation based on relaxation, or other prob-
lem approximation]



APPROXIMATION ARCHITECTURES

• Divided in linear and nonlinear [i.e., linear or
nonlinear dependence of J̃(i, r) on r].

• Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer.

• Computer chess example: Uses a feature-based
position evaluator that assigns a score to each
move/position.

Feature
Extraction

Weighting
of Features

Score

Features:
Material balance,
Mobility,
Safety, etc

Position Evaluator

• Many context-dependent special features.

• Most often the weighting of features is linear
but multistep lookahead is involved.

• In chess, most often the training is done by trial
and error.



LINEAR APPROXIMATION ARCHITECTURES

• Ideally, the features encode much of the nonlin-
earity inherent in the cost-to-go approximated

• Then the approximation may be quite accurate
without a complicated architecture.

• With well-chosen features, we can use a linear
architecture: J̃(i, r) = φ(i)′r, i = 1, . . . , n, or more
compactly

J̃(r) = Φr
Φ: the matrix whose rows are φ(i)′, i = 1, . . . , n

State i Feature Extraction Mapping Feature Vector
Approximator

i Feature Extraction Mapping Feature Vector
Approximator ( )Feature Extraction Mapping Feature VectorFeature Extraction Mapping Feature Vector

Feature Extraction Mapping Feature Vector φ(i) Linear Cost
i) Linear Cost

i) Linear Cost
Approximator φ(i)′r

• This is approximation on the subspace

S = {Φr | r ∈ ,s}
spanned by the columns of Φ (basis functions)

• Many examples of feature types: Polynomial
approximation, radial basis functions, kernels of
all sorts, interpolation, and special problem-specific
(as in chess and tetris)



APPROXIMATION IN POLICY SPACE

• A brief discussion; we will return to it at the
end.

• We parameterize the set of policies by a vector
r = (r1, . . . , rs) and we optimize the cost over r

• Discounted problem example:

− Each value of r defines a stationary policy,
with cost starting at state i denoted by J̃(i; r).

− Use a random search, gradient, or other method
to minimize over r

J̄(r) =
n
∑

i=1

piJ̃(i; r),

where (p1, . . . , pn) is some probability distri-
bution over the states.

• In a special case of this approach, the param-
eterization of the policies is indirect, through an
approximate cost function.

− A cost approximation architecture parame-
terized by r, defines a policy dependent on r
via the minimization in Bellman’s equation.



APPROX. IN VALUE SPACE - APPROACHES

• Approximate PI (Policy evaluation/Policy im-
provement)

− Uses simulation algorithms to approximate
the cost Jµ of the current policy µ

− Projected equation and aggregation approaches

• Approximation of the optimal cost function J∗

− Q-Learning: Use a simulation algorithm to
approximate the optimal costs J∗(i) or the
Q-factors

Q∗(i, u) = g(i, u) + α
n
∑

j=1

pij(u)J∗(j)

− Bellman error approach: Find r to

min
r

Ei

{

(

J̃(i, r)− (T J̃)(i, r)
)2
}

where Ei{·} is taken with respect to some
distribution

− Approximate LP (we will not discuss here)



APPROXIMATE POLICY ITERATION

• General structure

System Simulator D
Cost-to-Go Approx

r Decision Generator
roximator Supplies Valur) Decision µ(i) S

Cost-to-Go Approximator S
State Cost Approximation

ecision Generator
r Supplies Values J̃(j, r) D

i Cost Approximation A
n Algorithm

J̃(j, r)

State i C

r) Samples

• J̃(j, r) is the cost approximation for the pre-
ceding policy, used by the decision generator to
compute the current policy µ [whose cost is ap-
proximated by J̃(j, r) using simulation]

• There are several cost approximation/policy
evaluation algorithms

• There are several important issues relating to
the design of each block (to be discussed in the
future).



POLICY EVALUATION APPROACHES I

• Direct policy evaluation

• Approximate the cost of the current policy by
using least squares and simulation-generated cost
samples

• Amounts to projection of Jµ onto the approxi-
mation subspace

Subspace S = {Φr | r ∈ "s} Set

= 0

Direct Method: Projection of cost vector Jµ Π

µ ΠJµ

Direct Method: Projection of cost vector
( ) ( ) ( )Direct Method: Projection of cost vector Jµ

• Solution of the least squares problem by batch
and incremental methods

• Regular and optimistic policy iteration

• Nonlinear approximation architectures may also
be used



POLICY EVALUATION APPROACHES II

• Indirect policy evaluation

S: Subspace spanned by basis functions

T(!rk) = g + "P!rk

0

Value Iterate

Projection
on S

!rk+1

Simulation error

S: Subspace spanned by basis functions

!rk

T(!rk) = g + "P!rk

0

!rk+1

Value Iterate

Projection
on S

Projected Value Iteration (PVI) Least Squares Policy Evaluation (LSPE)

!rk

• An example of indirect approach: Galerkin ap-
proximation

− Solve the projected equation Φr = ΠTµ(Φr)
where Π is projection w/ respect to a suit-
able weighted Euclidean norm

− TD(λ): Stochastic iterative algorithm for solv-
ing Φr = ΠTµ(Φr)

− LSPE(λ): A simulation-based form of pro-
jected value iteration

Φrk+1 = ΠTµ(Φrk) + simulation noise

− LSTD(λ): Solves a simulation-based approx-
imation w/ a standard solver (Matlab)



POLICY EVALUATION APPROACHES III

• Aggregation approximation: Solve

Φr = ΦDTµ(Φr)

where the rows of D and Φ are prob. distributions
(e.g., D and Φ “aggregate” rows and columns of
the linear system J = TµJ).

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x ), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

p̂xy(u) =
n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation Probabilities

{

Aggregation Probabilities
Disaggregation Probabilities

Aggregation Probabilities
Disaggregation Probabilities

{

Aggregation Probabilities
Disaggregation Probabilities

ĝ(x, u) =
n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j)

, g(i, u, j)
Matrix Matrix

• Several different choices of D and Φ.



POLICY EVALUATION APPROACHES IV

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x ), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

p̂xy(u) =
n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation Probabilities

{

Aggregation Probabilities
Disaggregation Probabilities

Aggregation Probabilities
Disaggregation Probabilities

{

Aggregation Probabilities
Disaggregation Probabilities

ĝ(x, u) =
n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j)

, g(i, u, j)
Matrix Matrix

• Aggregation is a systematic approach for prob-
lem approximation. Main elements:

− Solve (exactly or approximately) the “ag-
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

− Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

• Because an exact PI algorithm is used to solve
the approximate/aggregate problem the method
behaves more regularly than the projected equa-
tion approach



THEORETICAL BASIS OF APPROXIMATE PI

• If policies are approximately evaluated using an
approximation architecture such that

max
i

|J̃(i, rk)− Jµk(i)| ≤ δ, k = 0, 1, . . .

• If policy improvement is also approximate,

max
i

|(Tµk+1 J̃)(i, rk)−(T J̃)(i, rk)| ≤ ε, k = 0, 1, . . .

• Error bound: The sequence {µk} generated by
approximate policy iteration satisfies

lim sup
k→∞

max
i

(

Jµk(i)− J∗(i)
)

≤
ε+ 2αδ

(1− α)2

• Typical practical behavior: The method makes
steady progress up to a point and then the iterates
Jµk oscillate within a neighborhood of J∗.



THE USE OF SIMULATION - AN EXAMPLE

• Projection by Monte Carlo Simulation: Com-
pute the projection ΠJ of a vector J ∈ ,n on
subspace S = {Φr | r ∈ ,s}, with respect to a
weighted Euclidean norm ‖ · ‖ξ.

• Equivalently, find Φr∗, where

r∗ = arg min
r∈'s

‖Φr−J‖2ξ = arg min
r∈'s

n
∑

i=1

ξi
(

φ(i)′r−J(i)
)2

• Setting to 0 the gradient at r∗,

r∗ =

(

n
∑

i=1

ξiφ(i)φ(i)′

)−1 n
∑

i=1

ξiφ(i)J(i)

• Approximate by simulation the two “expected
values”

r̂k =

(

k
∑

t=1

φ(it)φ(it)′

)−1 k
∑

t=1

φ(it)J(it)

• Equivalent least squares alternative:

r̂k = arg min
r∈'s

k
∑

t=1

(

φ(it)′r − J(it)
)2



THE ISSUE OF EXPLORATION

• To evaluate a policy µ, we need to generate cost
samples using that policy - this biases the simula-
tion by underrepresenting states that are unlikely
to occur under µ.

• As a result, the cost-to-go estimates of these
underrepresented states may be highly inaccurate.

• This seriously impacts the improved policy µ.

• This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela-
tively small” (e.g., a deterministic system).

• One possibility for adequate exploration: Fre-
quently restart the simulation and ensure that the
initial states employed form a rich and represen-
tative subset.

• Another possibility: Occasionally generate tran-
sitions that use a randomly selected control rather
than the one dictated by the policy µ.

• Other methods, to be discussed later, use two
Markov chains (one is the chain of the policy and
is used to generate the transition sequence, the
other is used to generate the state sequence).



APPROXIMATING Q-FACTORS

• The approach described so far for policy eval-
uation requires calculating expected values [and
knowledge of pij(u)] for all controls u ∈ U(i).

• Model-free alternative: Approximate Q-factors

Q̃(i, u, r) ≈
n
∑

j=1

pij(u)
(

g(i, u, j) + αJµ(j)
)

and use for policy improvement the minimization

µ(i) = arg min
u∈U(i)

Q̃(i, u, r)

• r is an adjustable parameter vector and Q̃(i, u, r)
is a parametric architecture, such as

Q̃(i, u, r) =
s
∑

m=1

rmφm(i, u)

• We can use any approach for cost approxima-
tion, e.g., projected equations, aggregation.

• Use the Markov chain with states (i, u) - pij(µ(i))
is the transition prob. to (j, µ(i)), 0 to other (j, u′).

• Major concern: Acutely diminished exploration.



6.231 DYNAMIC PROGRAMMING

LECTURE 4

LECTURE OUTLINE

• Review of approximation in value space

• Approximate VI and PI

• Projected Bellman equations

• Matrix form of the projected equation

• Simulation-based implementation

• LSTD and LSPE methods

• Optimistic versions

• Multistep projected Bellman equations

• Bias-variance tradeoff



DISCOUNTED MDP

• System: Controlled Markov chain with states
i = 1, . . . , n and finite set of controls u ∈ U(i)

• Transition probabilities: pij(u)

! "

#!"!$"

#!!!$" # ""!$ "

#"!!$"

• Cost of a policy π = {µ0, µ1, . . .} starting at
state i:

Jπ(i) = lim
N→∞

E

{

N
∑

k=0

αkg
(

ik, µk(ik), ik+1

)

| i = i0

}

with α ∈ [0, 1)

• Shorthand notation for DP mappings

(TJ)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ(j)
)

, i = 1, . . . , n,

(TµJ)(i) =

n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+αJ(j)
)

, i = 1, . . . , n



“SHORTHAND” THEORY – A SUMMARY

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ or

J∗(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ∗(j)
)

, ∀ i

Jµ(i) =
n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+ αJµ(j)
)

, ∀ i

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

i.e.,

µ(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ∗(j)
)

, ∀ i



THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any J ∈ ,n

J∗(i) = lim
k→∞

(T kJ)(i), ∀ i = 1, . . . , n

• Policy iteration: Given µk

− Policy evaluation: Find Jµk by solving

Jµk (i) =

n
∑

j=1

pij
(

µk(i)
)(

g
(

i, µk(i), j
)

+αJµk (j)
)

, i = 1, . . . , n

or Jµk = TµkJµk

− Policy improvement: Let µk+1 be such that

µk+1(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJµk (j)
)

, ∀ i

or Tµk+1Jµk = TJµk

• Policy evaluation is equivalent to solving an
n× n linear system of equations

• For large n, exact PI is out of the question
(even though it terminates finitely)



APPROXIMATION IN VALUE SPACE

• Approximate J∗ or Jµ from a parametric class
J̃(i, r), where i is the current state and r = (r1, . . . , rm)
is a vector of “tunable” scalars weights.

• By adjusting r we can change the “shape” of J̃
so that it is close to the true optimal J∗.

• Any r ∈ ,s defines a (suboptimal) one-step
lookahead policy

µ̃(i) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ̃(j, r)
)

, ∀ i

• We will focus mostly on linear architectures

J̃(r) = Φr

where Φ is an n × s matrix whose columns are
viewed as basis functions

• Think n: HUGE, s: (Relatively) SMALL

• For J̃(r) = Φr, approximation in value space
means approximation of J∗ or Jµ within the sub-
space

S = {Φr | r ∈ ,s}



APPROXIMATE VI

• Approximates sequentially Jk(i) = (T kJ0)(i),
k = 1, 2, . . ., with J̃k(i, rk)

• The starting function J0 is given (e.g., J0 ≡ 0)

• After a large enough numberN of steps, J̃N (i, rN )
is used as approximation J̃(i, r) to J∗(i)

• Fitted Value Iteration: A sequential “fit” to
produce J̃k+1 from J̃k, i.e., J̃k+1 ≈ T J̃k or (for a
single policy µ) J̃k+1 ≈ TµJ̃k

− For a “small” subset Sk of states i, compute

(T J̃k)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃k(j, r)
)

− “Fit” the function J̃k+1(i, rk+1) to the “small”
set of values (T J̃k)(i), i ∈ Sk

− Simulation can be used for “model-free” im-
plementation

• Error Bound: If the fit is uniformly accurate
within δ > 0 (i.e., maxi |J̃k+1(i)− T J̃k(i)| ≤ δ),

lim sup
k→∞

max
i=1,...,n

(

J̃k(i, rk)− J∗(i)
)

≤
2αδ

(1− α)2



AN EXAMPLE OF FAILURE

• Consider two-state discounted MDP with states
1 and 2, and a single policy.

− Deterministic transitions: 1 → 2 and 2 → 2

− Transition costs ≡ 0, so J∗(1) = J∗(2) = 0.

• Consider approximate VI scheme that approxi-
mates cost functions in S =

{

(r, 2r) | r ∈ ,
}

with

a weighted least squares fit; here Φ =

(

1
2

)

• Given Jk = (rk, 2rk), we find Jk+1 = (rk+1, 2rk+1),
where for weights ξ1, ξ2 > 0, rk+1 is obtained as

rk+1 = argmin
r

[

ξ1
(

r−(TJk)(1)
)2
+ξ2

(

2r−(TJk)(2)
)2
]

• With straightforward calculation

rk+1 = αβrk, where β = 2(ξ1+2ξ2)/(ξ1+4ξ2) > 1

• So if α > 1/β, the sequence {rk} diverges and
so does {Jk}.

• Difficulty is that T is a contraction, but ΠT
(= least squares fit composed with T ) is not

• Norm mismatch problem



APPROXIMATE PI

Approximate Policy

Evaluation

Policy Improvement

Guess Initial Policy

Evaluate Approximate Cost

J̃µ(r) = Φr Using Simulation

Generate “Improved” Policy µ

• Evaluation of typical policy µ: Linear cost func-
tion approximation J̃µ(r) = Φr, where Φ is full
rank n × s matrix with columns the basis func-
tions, and ith row denoted φ(i)′.

• Policy “improvement” to generate µ:

µ(i) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αφ(j)′r
)

• Error Bound: If

max
i

|J̃µk(i, rk)− Jµk(i)| ≤ δ, k = 0, 1, . . .

The sequence {µk} satisfies

lim sup
k→∞

max
i

(

Jµk(i)− J∗(i)
)

≤
2αδ

(1− α)2



POLICY EVALUATION

• Let’s consider approximate evaluation of the
cost of the current policy by using simulation.

− Direct policy evaluation - Cost samples gen-
erated by simulation, and optimization by
least squares

− Indirect policy evaluation - solving the pro-
jected equation Φr = ΠTµ(Φr) where Π is
projection w/ respect to a suitable weighted
Euclidean norm

S: Subspace spanned by basis functions
0

#Jµ

Projection
on S

S: Subspace spanned by basis functions

Tµ(!r)

0

!r = #Tµ(!r)

Projection
on S

Jµ

Direct Mehod: Projection of cost vector Jµ Indirect method: Solving a projected 
form of Bellman’s equation

• Recall that projection can be implemented by
simulation and least squares



WEIGHTED EUCLIDEAN PROJECTIONS

• Consider a weighted Euclidean norm

‖J‖ξ =

√

√

√

√

n
∑

i=1

ξi
(

J(i)
)2
,

where ξ is a vector of positive weights ξ1, . . . , ξn.

• Let Π denote the projection operation onto

S = {Φr | r ∈ ,s}

with respect to this norm, i.e., for any J ∈ ,n,

ΠJ = Φr∗

where
r∗ = arg min

r∈'s
‖J − Φr‖2ξ



PI WITH INDIRECT POLICY EVALUATION

Approximate Policy

Evaluation

Policy Improvement

Guess Initial Policy

Evaluate Approximate Cost

J̃µ(r) = Φr Using Simulation

Generate “Improved” Policy µ

• Given the current policy µ:

− We solve the projected Bellman’s equation

Φr = ΠTµ(Φr)

− We approximate the solution Jµ of Bellman’s
equation

J = TµJ

with the projected equation solution J̃µ(r)



KEY QUESTIONS AND RESULTS

• Does the projected equation have a solution?

• Under what conditions is the mapping ΠTµ a
contraction, so ΠTµ has unique fixed point?

• Assuming ΠTµ has unique fixed point Φr∗, how
close is Φr∗ to Jµ?

• Assumption: The Markov chain corresponding
to µ has a single recurrent class and no transient
states, i.e., it has steady-state probabilities that
are positive

ξj = lim
N→∞

1

N

N
∑

k=1

P (ik = j | i0 = i) > 0

• Proposition: (Norm Matching Property)

(a) ΠTµ is contraction of modulus α with re-
spect to the weighted Euclidean norm ‖ · ‖ξ,
where ξ = (ξ1, . . . , ξn) is the steady-state
probability vector.

(b) The unique fixed point Φr∗ of ΠTµ satisfies

‖Jµ − Φr∗‖ξ ≤
1√

1− α2
‖Jµ −ΠJµ‖ξ



PRELIMINARIES: PROJECTION PROPERTIES

• Important property of the projection Π on S
with weighted Euclidean norm ‖ · ‖ξ. For all J ∈
,n, J ∈ S, the Pythagorean Theorem holds:

‖J − J‖2ξ = ‖J −ΠJ‖2ξ + ‖ΠJ − J‖2ξ

Proof: Geometrically, (J −ΠJ) and (ΠJ − J) are
orthogonal in the scaled geometry of the norm ‖ ·
‖ξ, where two vectors x, y ∈ ,n are orthogonal
if
∑n

i=1 ξixiyi = 0. Expand the quadratic in the
RHS below:

‖J − J‖2ξ = ‖(J −ΠJ) + (ΠJ − J)‖2ξ

• The Pythagorean Theorem implies that the pro-
jection is nonexpansive, i.e.,

‖ΠJ −ΠJ̄‖ξ ≤ ‖J − J̄‖ξ, for all J, J̄ ∈ ,n.

To see this, note that

∥

∥Π(J − J)
∥

∥

2

ξ
≤
∥

∥Π(J − J)
∥

∥

2

ξ
+
∥

∥(I −Π)(J − J)
∥

∥

2

ξ

= ‖J − J‖2ξ



PROOF OF CONTRACTION PROPERTY

• Lemma: If P is the transition matrix of µ,

‖Pz‖ξ ≤ ‖z‖ξ, z ∈ ,n

Proof: Let pij be the components of P . For all
z ∈ ,n, we have

‖Pz‖2ξ =
n
∑

i=1

ξi





n
∑

j=1

pijzj





2

≤
n
∑

i=1

ξi

n
∑

j=1

pijz2j

=
n
∑

j=1

n
∑

i=1

ξipijz2j =
n
∑

j=1

ξjz2j = ‖z‖2ξ ,

where the inequality follows from the convexity of
the quadratic function, and the next to last equal-
ity follows from the defining property

∑n
i=1 ξipij =

ξj of the steady-state probabilities.

• Using the lemma, the nonexpansiveness of Π,
and the definition TµJ = g + αPJ , we have

‖ΠTµJ−ΠTµJ̄‖ξ ≤ ‖TµJ−TµJ̄‖ξ = α‖P (J−J̄)‖ξ ≤ α‖J−J̄‖ξ

for all J, J̄ ∈ ,n. Hence ΠTµ is a contraction of
modulus α.



PROOF OF ERROR BOUND

• Let Φr∗ be the fixed point of ΠT . We have

‖Jµ − Φr∗‖ξ ≤
1√

1− α2
‖Jµ −ΠJµ‖ξ.

Proof: We have

‖Jµ − Φr∗‖2ξ = ‖Jµ −ΠJµ‖2ξ +
∥

∥ΠJµ − Φr∗
∥

∥

2

ξ

= ‖Jµ −ΠJµ‖2ξ +
∥

∥ΠTJµ −ΠT (Φr∗)
∥

∥

2

ξ

≤ ‖Jµ −ΠJµ‖2ξ + α2‖Jµ − Φr∗‖2ξ ,

where

− The first equality uses the Pythagorean The-
orem

− The second equality holds because Jµ is the
fixed point of T and Φr∗ is the fixed point
of ΠT

− The inequality uses the contraction property
of ΠT .

Q.E.D.



MATRIX FORM OF PROJECTED EQUATION

• Its solution is the vector J = Φr∗, where r∗

solves the problem

min
r∈'s

∥

∥Φr − (g + αPΦr∗)
∥

∥

2

ξ
.

• Setting to 0 the gradient with respect to r of
this quadratic, we obtain

Φ′Ξ
(

Φr∗ − (g + αPΦr∗)
)

= 0,

where Ξ is the diagonal matrix with the steady-
state probabilities ξ1, . . . , ξn along the diagonal.

• This is just the orthogonality condition: The
error Φr∗ − (g + αPΦr∗) is “orthogonal” to the
subspace spanned by the columns of Φ.

• Equivalently,
Cr∗ = d,

where

C = Φ′Ξ(I − αP )Φ, d = Φ′Ξg.



PROJECTED EQUATION: SOLUTION METHODS

• Matrix inversion: r∗ = C−1d

• Projected Value Iteration (PVI) method:

Φrk+1 = ΠT (Φrk) = Π(g + αPΦrk)

Converges to r∗ because ΠT is a contraction.

S: Subspace spanned by basis functions

!rk

T(!rk) = g + "P!rk

0

!rk+1

Value Iterate

Projection
on S

• PVI can be written as:

rk+1 = arg min
r∈'s

∥

∥Φr − (g + αPΦrk)
∥

∥

2

ξ

By setting to 0 the gradient with respect to r,

Φ′Ξ
(

Φrk+1 − (g + αPΦrk)
)

= 0,

which yields

rk+1 = rk − (Φ′ΞΦ)−1(Crk − d)



SIMULATION-BASED IMPLEMENTATIONS

• Key idea: Calculate simulation-based approxi-
mations based on k samples

Ck ≈ C, dk ≈ d

• Matrix inversion r∗ = C−1d is approximated
by

r̂k = C−1
k dk

This is the LSTD (Least Squares Temporal Dif-
ferences) Method.

• PVI method rk+1 = rk − (Φ′ΞΦ)−1(Crk − d) is
approximated by

rk+1 = rk −Gk(Ckrk − dk)

where
Gk ≈ (Φ′ΞΦ)−1

This is the LSPE (Least Squares Policy Evalua-
tion) Method.

• Key fact: Ck, dk, and Gk can be computed
with low-dimensional linear algebra (of order s;
the number of basis functions).



SIMULATION MECHANICS

• We generate an infinitely long trajectory (i0, i1, . . .)
of the Markov chain, so states i and transitions
(i, j) appear with long-term frequencies ξi and pij .

• After generating the transition (it, it+1), we
compute the row φ(it)′ of Φ and the cost com-
ponent g(it, it+1).

• We form

Ck =
1

k + 1

k
∑

t=0

φ(it)
(

φ(it)−αφ(it+1)
)′

≈ Φ′Ξ(I−αP )Φ

dk =
1

k + 1

k
∑

t=0

φ(it)g(it, it+1) ≈ Φ′Ξg

Also in the case of LSPE

Gk =
1

k + 1

k
∑

t=0

φ(it)φ(it)′ ≈ Φ′ΞΦ

• Convergence based on law of large numbers.

• Ck, dk, and Gk can be formed incrementally.
Also can be written using the formalism of tem-
poral differences (this is just a matter of style)



OPTIMISTIC VERSIONS

• Instead of calculating nearly exact approxima-
tions Ck ≈ C and dk ≈ d, we do a less accurate
approximation, based on few simulation samples

• Evaluate (coarsely) current policy µ, then do a
policy improvement

• This often leads to faster computation (as op-
timistic methods often do)

• Very complex behavior (see the subsequent dis-
cussion on oscillations)

• The matrix inversion/LSTD method has serious
problems due to large simulation noise (because of
limited sampling)

• LSPE tends to cope better because of its itera-
tive nature

• A stepsize γ ∈ (0, 1] in LSPE may be useful to
damp the effect of simulation noise

rk+1 = rk − γGk(Ckrk − dk)



MULTISTEP METHODS

• Introduce a multistep version of Bellman’s equa-
tion J = T (λ)J , where for λ ∈ [0, 1),

T (λ) = (1− λ)
∞
∑

"=0

λ"T "+1

Geometrically weighted sum of powers of T .

• Note that T " is a contraction with modulus
α", with respect to the weighted Euclidean norm
‖·‖ξ, where ξ is the steady-state probability vector
of the Markov chain.

• Hence T (λ) is a contraction with modulus

αλ = (1− λ)
∞
∑

"=0

α"+1λ" =
α(1− λ)

1− αλ

Note that αλ → 0 as λ → 1

• T t and T (λ) have the same fixed point Jµ and

‖Jµ − Φr∗λ‖ξ ≤
1

√

1− α2
λ

‖Jµ −ΠJµ‖ξ

where Φr∗λ is the fixed point of ΠT (λ).

• The fixed point Φr∗λ depends on λ.



BIAS-VARIANCE TRADEOFF

Subspace S = {Φr | r ∈ "s} Set

Slope Jµ

Simulation error
Simulation error ΠJµ

Simulation error Bias

) λ = 0

= 0 λ = 1 0

. Solution of projected equation Φ

Simulation error Solution of

∗ Φr = ΠT (λ)(Φr)

• Error bound ‖Jµ−Φr∗λ‖ξ ≤ 1√
1−α2

λ

‖Jµ−ΠJµ‖ξ

• As λ ↑ 1, we have αλ ↓ 0, so error bound (and
the quality of approximation) improves as λ ↑ 1.
In fact

lim
λ↑1

Φr∗λ = ΠJµ

• But the simulation noise in approximating

T (λ) = (1− λ)
∞
∑

"=0

λ"T "+1

increases

• Choice of λ is usually based on trial and error



MULTISTEP PROJECTED EQ. METHODS

• The projected Bellman equation is

Φr = ΠT (λ)(Φr)

• In matrix form: C(λ)r = d(λ), where

C(λ) = Φ′Ξ
(

I − αP (λ)
)

Φ, d(λ) = Φ′Ξg(λ),

with

P (λ) = (1− λ)
∞
∑

"=0

α"λ"P "+1, g(λ) =
∞
∑

"=0

α"λ"P "g

• The LSTD(λ) method is
(

C(λ)
k

)−1
d(λ)k ,

where C(λ)
k and d(λ)k are simulation-based approx-

imations of C(λ) and d(λ).

• The LSPE(λ) method is

rk+1 = rk − γGk

(

C(λ)
k rk − d(λ)k

)

whereGk is a simulation-based approx. to (Φ′ΞΦ)−1

• TD(λ): An important simpler/slower iteration
[similar to LSPE(λ) with Gk = I - see the text].



MORE ON MULTISTEP METHODS

• The simulation process to obtain C(λ)
k and d(λ)k

is similar to the case λ = 0 (single simulation tra-
jectory i0, i1, . . . more complex formulas)

C(λ)
k =

1

k + 1

k
∑

t=0

φ(it)
k
∑

m=t

αm−tλm−t
(

φ(im)−αφ(im+1)
)′
,

d(λ)k =
1

k + 1

k
∑

t=0

φ(it)
k
∑

m=t

αm−tλm−tgim

• In the context of approximate policy iteration,
we can use optimistic versions (few samples be-
tween policy updates).

• Many different versions (see the text).

• Note the λ-tradeoffs:

− As λ ↑ 1, C(λ)
k and d(λ)k contain more “sim-

ulation noise”, so more samples are needed
for a close approximation of rλ (the solution
of the projected equation)

− The error bound ‖Jµ−Φrλ‖ξ becomes smaller

− As λ ↑ 1, ΠT (λ) becomes a contraction for
arbitrary projection norm



6.231 DYNAMIC PROGRAMMING

LECTURE 5

LECTURE OUTLINE

• Review of approximate PI

• Review of approximate policy evaluation based
on projected Bellman equations

• Exploration enhancement in policy evaluation

• Oscillations in approximate PI

• Aggregation – An alternative to the projected
equation/Galerkin approach

• Examples of aggregation

• Simulation-based aggregation



DISCOUNTED MDP

• System: Controlled Markov chain with states
i = 1, . . . , n and finite set of controls u ∈ U(i)

• Transition probabilities: pij(u)
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• Cost of a policy π = {µ0, µ1, . . .} starting at
state i:

Jπ(i) = lim
N→∞

E

{

N
∑

k=0

αkg
(

ik, µk(ik), ik+1

)

| i = i0

}

with α ∈ [0, 1)

• Shorthand notation for DP mappings

(TJ)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ(j)
)

, i = 1, . . . , n,

(TµJ)(i) =

n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+αJ(j)
)

, i = 1, . . . , n



APPROXIMATE PI

Approximate Policy

Evaluation

Policy Improvement

Guess Initial Policy

Evaluate Approximate Cost

J̃µ(r) = Φr Using Simulation

Generate “Improved” Policy µ

• Evaluation of typical policy µ: Linear cost func-
tion approximation

J̃µ(r) = Φr

where Φ is full rank n × s matrix with columns
the basis functions, and ith row denoted φ(i)′.

• Policy “improvement” to generate µ:

µ(i) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αφ(j)′r
)



EVALUATION BY PROJECTED EQUATIONS

• We discussed approximate policy evaluation by
solving the projected equation

Φr = ΠTµ(Φr)
Π: projection with a weighted Euclidean norm

• Implementation by simulation ( single long tra-
jectory using current policy - important to make
ΠTµ a contraction). LSTD, LSPE methods.

• Multistep option: Solve Φr = ΠT (λ)
µ (Φr) with

T (λ)
µ = (1− λ)

∞
∑

"=0

λ"T "+1
µ

− As λ ↑ 1, ΠT (λ) becomes a contraction for
any projection norm

− Bias-variance tradeoff

Subspace S = {Φr | r ∈ "s} Set

Slope Jµ

Simulation error
Simulation error ΠJµ

Simulation error Bias

) λ = 0

= 0 λ = 1 0

. Solution of projected equation Φ

Simulation error Solution of

∗ Φr = ΠT (λ)(Φr)



POLICY ITERATION ISSUES: EXPLORATION

• 1st major issue: exploration. To evaluate µ,
we need to generate cost samples using µ

• This biases the simulation by underrepresenting
states that are unlikely to occur under µ.

• As a result, the cost-to-go estimates of these
underrepresented states may be highly inaccurate.

• This seriously impacts the improved policy µ.

• This is known as inadequate exploration - a
particularly acute difficulty when the randomness
embodied in the transition probabilities is “rela-
tively small” (e.g., a deterministic system).

• Common remedy is the off-policy approach: Re-
place P of current policy with a “mixture”

P = (I −B)P +BQ

where B is diagonal with diagonal components in
[0, 1] and Q is another transition matrix.

• LSTD and LSPE formulas must be modified ...
otherwise the policy P (not P ) is evaluated. Re-
lated methods and ideas: importance sampling,
geometric and free-form sampling (see the text).



POLICY ITERATION ISSUES: OSCILLATIONS

• 2nd major issue: oscillation of policies

• Analysis using the greedy partition: Rµ is the
set of parameter vectors r for which µ is greedy
with respect to J̃(·, r) = Φr

Rµ =
{

r | Tµ(Φr) = T (Φr)
}

• There is a finite number of possible vectors rµ,
one generated from another in a deterministic way

rµk

k rµk+1

+1 rµk+2

+2 rµk+3

Rµk

Rµk+1

Rµk+2

+2 Rµk+3

• The algorithm ends up repeating some cycle of
policies µk, µk+1, . . . , µk+m with

rµk ∈ Rµk+1 , rµk+1 ∈ Rµk+2 , . . . , rµk+m ∈ Rµk ;

• Many different cycles are possible



MORE ON OSCILLATIONS/CHATTERING

• In the case of optimistic policy iteration a dif-
ferent picture holds

rµ1

1 rµ2

2 rµ3

Rµ1

Rµ2

2 Rµ3

• Oscillations are less violent, but the “limit”
point is meaningless!

• Fundamentally, oscillations are due to the lack
of monotonicity of the projection operator, i.e.,
J ≤ J ′ does not imply ΠJ ≤ ΠJ ′.

• If approximate PI uses policy evaluation

Φr = (WTµ)(Φr)

with W a monotone operator, the generated poli-
cies converge (to a possibly nonoptimal limit).

• The operator W used in the aggregation ap-
proach has this monotonicity property.



PROBLEM APPROXIMATION - AGGREGATION

• Another major idea in ADP is to approximate
the cost-to-go function of the problem with the
cost-to-go function of a simpler problem.

• The simplification is often ad-hoc/problem-dependent.

• Aggregation is a systematic approach for prob-
lem approximation. Main elements:

− Introduce a few “aggregate” states, viewed
as the states of an “aggregate” system

− Define transition probabilities and costs of
the aggregate system, by relating original
system states with aggregate states

− Solve (exactly or approximately) the “ag-
gregate” problem by any kind of VI or PI
method (including simulation-based methods)

− Use the optimal cost of the aggregate prob-
lem to approximate the optimal cost of the
original problem

• Hard aggregation example: Aggregate states
are subsets of original system states, treated as if
they all have the same cost.



AGGREGATION/DISAGGREGATION PROBS

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x ), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

Disaggregation Probabilities

{

Aggregation Probabilities
Disaggregation Probabilities

Aggregation Probabilities
Disaggregation Probabilities

{

Aggregation Probabilities
Disaggregation Probabilities

Matrix D Matrix D Matrix Φ

• The aggregate system transition probabilities
are defined via two (somewhat arbitrary) choices

• For each original system state j and aggregate
state y, the aggregation probability φjy

− Roughly, the “degree of membership of j in
the aggregate state y.”

− In hard aggregation, φjy = 1 if state j be-
longs to aggregate state/subset y.

• For each aggregate state x and original system
state i, the disaggregation probability dxi

− Roughly, the “degree to which i is represen-
tative of x.”

− In hard aggregation, equal dxi



AGGREGATE SYSTEM DESCRIPTION

• The transition probability from aggregate state
x to aggregate state y under control u

p̂xy(u) =
n
∑

i=1

dxi

n
∑

j=1

pij(u)φjy, or P̂ (u) = DP (u)Φ

where the rows of D and Φ are the disaggregation
and aggregation probs.

• The expected transition cost is

ĝ(x, u) =
n
∑

i=1

dxi

n
∑

j=1

pij(u)g(i, u, j), or ĝ = DPg

• The optimal cost function of the aggregate prob-
lem, denoted R̂, is

R̂(x) = min
u∈U

[

ĝ(x, u) + α
∑

y

p̂xy(u)R̂(y)

]

, ∀ x

Bellman’s equation for the aggregate problem.

• The optimal cost function J∗ of the original
problem is approximated by J̃ given by

J̃(j) =
∑

y

φjyR̂(y), ∀ j



EXAMPLE I: HARD AGGREGATION

• Group the original system states into subsets,
and view each subset as an aggregate state

• Aggregation probs.: φjy = 1 if j belongs to
aggregate state y.

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9
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1 2 3 4 5 6 7 8 9 x1 x2

x3 x4

Φ =



























1 0 0 0

1 0 0 0

0 1 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1



























• Disaggregation probs.: There are many possi-
bilities, e.g., all states i within aggregate state x
have equal prob. dxi.

• If optimal cost vector J∗ is piecewise constant
over the aggregate states/subsets, hard aggrega-
tion is exact. Suggests grouping states with “roughly
equal” cost into aggregates.

• A variant: Soft aggregation (provides “soft
boundaries” between aggregate states).



EXAMPLE II: FEATURE-BASED AGGREGATION

• Important question: How do we group states
together?

• If we know good features, it makes sense to
group together states that have “similar features”

Special States Aggregate States Features
)

Special States Aggregate States FeaturesSpecial States Aggregate States Features

Feature Extraction Mapping Feature Vector
Feature Extraction Mapping Feature Vector

• A general approach for passing from a feature-
based state representation to an aggregation-based
architecture

• Essentially discretize the features and generate
a corresponding piecewise constant approximation
to the optimal cost function

• Aggregation-based architecture is more power-
ful (nonlinear in the features)

• ... but may require many more aggregate states
to reach the same level of performance as the cor-
responding linear feature-based architecture



EXAMPLE III: REP. STATES/COARSE GRID

• Choose a collection of “representative” original
system states, and associate each one of them with
an aggregate state

x j

x j1 j2

j2 j3

x j1

j3 y1 1 y2

2 y3

y3 Original State Space

Representative/Aggregate States

• Disaggregation probabilities are dxi = 1 if i is
equal to representative state x.

• Aggregation probabilities associate original sys-
tem states with convex combinations of represen-
tative states

j ∼
∑

y∈A

φjyy

• Well-suited for Euclidean space discretization

• Extends nicely to continuous state space, in-
cluding belief space of POMDP



EXAMPLE IV: REPRESENTATIVE FEATURES

• Here the aggregate states are nonempty sub-
sets of original system states (but need not form
a partition of the state space)

• Example: Choose a collection of distinct “rep-
resentative” feature vectors, and associate each of
them with an aggregate state consisting of original
system states with similar features

• Restrictions:

− The aggregate states/subsets are disjoint.

− The disaggregation probabilities satisfy dxi >
0 if and only if i ∈ x.

− The aggregation probabilities satisfy φjy = 1
for all j ∈ y.

• If every original system state i belongs to some
aggregate state we obtain hard aggregation

• If every aggregate state consists of a single orig-
inal system state, we obtain aggregation with rep-
resentative states

• With the above restrictionsDΦ = I, so (ΦD)(ΦD) =
ΦD, and ΦD is an oblique projection (orthogonal
projection in case of hard aggregation)



APPROXIMATE PI BY AGGREGATION

according to pij(u), with cost

dxi

S

φjyQ

, j = 1i

), x ), y

Original System States Aggregate States

{

Original System States Aggregate States

{

|

Original System States Aggregate States

p̂xy(u) =
n∑

i=1

dxi

n∑

j=1

pij(u)φjy ,

Disaggregation Probabilities

{

Aggregation Probabilities
Disaggregation Probabilities

Aggregation Probabilities
Disaggregation Probabilities

{

Aggregation Probabilities
Disaggregation Probabilities

ĝ(x, u) =
n∑

i=1

dxi

n∑

j=1

pij(u)g(i, u, j)

, g(i, u, j)
Matrix Matrix

• Consider approximate policy iteration for the
original problem, with policy evaluation done by
aggregation.

• Evaluation of policy µ: J̃ = ΦR, where R =
DTµ(ΦR) (R is the vector of costs of aggregate
states for µ). Can be done by simulation.

• Looks like projected equation ΦR = ΠTµ(ΦR)
(but with ΦD in place of Π).

• Advantages: It has no problem with exploration
or with oscillations.

• Disadvantage: The rows of D and Φ must be
probability distributions.



DISTRIBUTED AGGREGATION I

• We consider decomposition/distributed solu-
tion of large-scale discounted DP problems by ag-
gregation.

• Partition the original system states into subsets
S1, . . . , Sm

• Each subset S", & = 1, . . . ,m:

− Maintains detailed/exact local costs

J(i) for every original system state i ∈ S"

using aggregate costs of other subsets

− Maintains an aggregate costR(&) =
∑

i∈S"
d"iJ(i)

− Sends R(&) to other aggregate states

• J(i) and R(&) are updated by VI according to

Jk+1(i) = min
u∈U(i)

H"(i, u, Jk, Rk), ∀ i ∈ S"

with Rk being the vector of R(&) at time k, and

H#(i, u, J,R) =

n
∑

j=1

pij(u)g(i, u, j) + α
∑

j∈S"

pij(u)J(j)

+ α
∑

j∈S"′ , #
′ %=#

pij(u)R("′)



DISTRIBUTED AGGREGATION II

• Can show that this iteration involves a sup-
norm contraction mapping of modulus α, so it
converges to the unique solution of the system of
equations in (J,R)

J(i) = min
u∈U(i)

H"(i, u, J,R), R(&) =
∑

i∈S"

d"iJ(i),

∀ i ∈ S", & = 1, . . . ,m.

• This follows from the fact that {d"i | i =
1, . . . , n} is a probability distribution.

• View these equations as a set of Bellman equa-
tions for an “aggregate” DP problem. The differ-
ence is that the mapping H involves J(j) rather
than R

(

x(j)
)

for j ∈ S".

• In an asynchronous version of the method, the
aggregate costs R(&) may be outdated to account
for communication “delays” between aggregate states.

• Convergence can be shown using the general
theory of asynchronous distributed computation
(see the text).



6.231 DYNAMIC PROGRAMMING

LECTURE 6

LECTURE OUTLINE

• Review of Q-factors and Bellman equations for
Q-factors

• VI and PI for Q-factors

• Q-learning - Combination of VI and sampling

• Q-learning and cost function approximation

• Approximation in policy space



DISCOUNTED MDP

• System: Controlled Markov chain with states
i = 1, . . . , n and finite set of controls u ∈ U(i)

• Transition probabilities: pij(u)
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• Cost of a policy π = {µ0, µ1, . . .} starting at
state i:

Jπ(i) = lim
N→∞

E

{

N
∑

k=0

αkg
(

ik, µk(ik), ik+1

)

| i = i0

}

with α ∈ [0, 1)

• Shorthand notation for DP mappings

(TJ)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJ(j)
)

, i = 1, . . . , n,

(TµJ)(i) =

n
∑

j=1

pij
(

µ(i)
)(

g
(

i, µ(i), j
)

+αJ(j)
)

, i = 1, . . . , n



THE TWO MAIN ALGORITHMS: VI AND PI

• Value iteration: For any J ∈ ,n

J∗(i) = lim
k→∞

(T kJ)(i), ∀ i = 1, . . . , n

• Policy iteration: Given µk

− Policy evaluation: Find Jµk by solving

Jµk (i) =

n
∑

j=1

pij
(

µk(i)
)(

g
(

i, µk(i), j
)

+αJµk (j)
)

, i = 1, . . . , n

or Jµk = TµkJµk

− Policy improvement: Let µk+1 be such that

µk+1(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJµk (j)
)

, ∀ i

or Tµk+1Jµk = TJµk

• We discussed approximate versions of VI and
PI using projection and aggregation

• We focused so far on cost functions and approx-
imation. We now consider Q-factors.



BELLMAN EQUATIONS FOR Q-FACTORS

• The optimal Q-factors are defined by

Q∗(i, u) =
n
∑

j=1

pij(u)
(

g(i, u, j) +αJ∗(j)
)

, ∀ (i, u)

• Since J∗ = TJ∗, we have J∗(i) = minu∈U(i) Q∗(i, u)
so the optimal Q-factors solve the equation

Q∗(i, u) =
n
∑

j=1

pij(u)

(

g(i, u, j) + α min
u′∈U(j)

Q∗(j, u′)

)

• Equivalently Q∗ = FQ∗, where

(FQ)(i, u) =
n
∑

j=1

pij(u)

(

g(i, u, j) + α min
u′∈U(j)

Q(j, u′)

)

• This is Bellman’s Eq. for a system whose states
are the pairs (i, u)

• Similar mapping Fµ and Bellman equation for
a policy µ: Qµ = FµQµ

) States

State-Control Pairs (i, u) States

) States j p

j pij(u)

) g(i, u, j)

v µ(j)

j)
(

j, µ(j)
)

State-Control Pairs: Fixed Policy µ



SUMMARY OF BELLMAN EQS FOR Q-FACTORS

) States

State-Control Pairs (i, u) States

) States j p

j pij(u)

) g(i, u, j)

v µ(j)

j)
(

j, µ(j)
)

State-Control Pairs: Fixed Policy µ Case (

• Optimal Q-factors: For all (i, u)

Q∗(i, u) =
n
∑

j=1

pij(u)

(

g(i, u, j) + α min
u′∈U(j)

Q∗(j, u′)

)

Equivalently Q∗ = FQ∗, where

(FQ)(i, u) =
n
∑

j=1

pij(u)

(

g(i, u, j) + α min
u′∈U(j)

Q(j, u′)

)

• Q-factors of a policy µ: For all (i, u)

Qµ(i, u) =
n
∑

j=1

pij(u)
(

g(i, u, j) + αQµ

(

j, µ(j)
))

Equivalently Qµ = FµQµ, where

(FµQ)(i, u) =
n
∑

j=1

pij(u)
(

g(i, u, j) + αQ
(

j, µ(j)
))



WHAT IS GOOD AND BAD ABOUT Q-FACTORS

• All the exact theory and algorithms for costs
applies to Q-factors

− Bellman’s equations, contractions, optimal-
ity conditions, convergence of VI and PI

• All the approximate theory and algorithms for
costs applies to Q-factors

− Projected equations, sampling and exploration
issues, oscillations, aggregation

• A MODEL-FREE (on-line) controller imple-
mentation

− Once we calculate Q∗(i, u) for all (i, u),

µ∗(i) = arg min
u∈U(i)

Q∗(i, u), ∀ i

− Similarly, once we calculate a parametric ap-
proximation Q̃(i, u, r) for all (i, u),

µ̃(i) = arg min
u∈U(i)

Q̃(i, u, r), ∀ i

• The main bad thing: Greater dimension and
more storage! [Can be used for large-scale prob-
lems only through aggregation, or other cost func-
tion approximation.]



Q-LEARNING

• In addition to the approximate PI methods
adapted for Q-factors, there is an important addi-
tional algorithm:

− Q-learning, which can be viewed as a sam-
pled form of VI

• Q-learning algorithm (in its classical form):

− Sampling: Select sequence of pairs (ik, uk)
(use any probabilistic mechanism for this,
but all pairs (i, u) are chosen infinitely of-
ten.)

− Iteration: For each k, select jk according to
pikj(uk). Update just Q(ik, uk):

Qk+1(ik,uk) = (1− γk)Qk(ik, uk)

+ γk

(

g(ik, uk, jk) + α min
u′∈U(jk)

Qk(jk, u′)

)

Leave unchanged all other Q-factors: Qk+1(i, u) =
Qk(i, u) for all (i, u) .= (ik, uk).

− Stepsize conditions: γk must converge to 0
at proper rate (e.g., like 1/k).



NOTES AND QUESTIONS ABOUT Q-LEARNING

Qk+1(ik,uk) = (1− γk)Qk(ik, uk)

+ γk

(

g(ik, uk, jk) + α min
u′∈U(jk)

Qk(jk, u′)

)

• Model free implementation. We just need a
simulator that given (i, u) produces next state j
and cost g(i, u, j)

• Operates on only one state-control pair at a
time. Convenient for simulation, no restrictions on
sampling method.

• Aims to find the (exactly) optimal Q-factors.

• Why does it converge to Q∗?

• Why can’t I use a similar algorithm for optimal
costs?

• Important mathematical (fine) point: In the Q-
factor version of Bellman’s equation the order of
expectation and minimization is reversed relative
to the cost version of Bellman’s equation:

J∗(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ∗(j)
)



CONVERGENCE ASPECTS OF Q-LEARNING

• Q-learning can be shown to converge to true/exact
Q-factors (under mild assumptions).

• Proof is sophisticated, based on theories of
stochastic approximation and asynchronous algo-
rithms.

• Uses the fact that the Q-learning map F :

(FQ)(i, u) = Ej

{

g(i, u, j) + αmin
u′

Q(j, u′)
}

is a sup-norm contraction.

• Generic stochastic approximation algorithm:

− Consider generic fixed point problem involv-
ing an expectation:

x = Ew

{

f(x,w)
}

− Assume Ew

{

f(x,w)
}

is a contraction with
respect to some norm, so the iteration

xk+1 = Ew

{

f(xk, w)
}

converges to the unique fixed point

− Approximate Ew

{

f(x,w)
}

by sampling



STOCH. APPROX. CONVERGENCE IDEAS

• For each k, obtain samples {w1, . . . , wk} and
use the approximation

xk+1 =
1

k

k
∑

t=1

f(xk, wt) ≈ E
{

f(xk, w)
}

• This iteration approximates the convergent fixed
point iteration xk+1 = Ew

{

f(xk, w)
}

• Amajor flaw: it requires, for each k, the compu-
tation of f(xk, wt) for all values wt, t = 1, . . . , k.

• This motivates the more convenient iteration

xk+1 =
1

k

k
∑

t=1

f(xt, wt), k = 1, 2, . . . ,

that is similar, but requires much less computa-
tion; it needs only one value of f per sample wt.

• By denoting γk = 1/k, it can also be written as

xk+1 = (1− γk)xk + γkf(xk, wk), k = 1, 2, . . .

• Compare with Q-learning, where the fixed point
problem is Q = FQ

(FQ)(i, u) = Ej

{

g(i, u, j) + αmin
u′

Q(j, u′)
}



Q-FACTOR APROXIMATIONS

• We introduce basis function approximation:

Q̃(i, u, r) = φ(i, u)′r

• We can use approximate policy iteration and
LSPE/LSTD for policy evaluation

• Optimistic policy iteration methods are fre-
quently used on a heuristic basis

• Example: Generate trajectory {(ik, uk) | k =
0, 1, . . .}.

• At iteration k, given rk and state/control (ik, uk):

(1) Simulate next transition (ik, ik+1) using the
transition probabilities pikj(uk).

(2) Generate control uk+1 from

uk+1 = arg min
u∈U(ik+1)

Q̃(ik+1, u, rk)

(3) Update the parameter vector via

rk+1 = rk − (LSPE or TD-like correction)

• Complex behavior, unclear validity (oscilla-
tions, etc). There is solid basis for an important
special case: optimal stopping (see text)



APPROXIMATION IN POLICY SPACE

• We parameterize policies by a vector r =
(r1, . . . , rs) (an approximation architecture for poli-
cies).

• Each policy µ̃(r) =
{

µ̃(i; r) | i = 1, . . . , n
}

defines a cost vector Jµ̃(r) ( a function of r).

• We optimize some measure of Jµ̃(r) over r.

• For example, use a random search, gradient, or
other method to minimize over r

n
∑

i=1

piJµ̃(r)(i),

where (p1, . . . , pn) is some probability distribution
over the states.

• An important special case: Introduce cost ap-
proximation architecture V (i, r) that defines indi-
rectly the parameterization of the policies

µ̃(i; r) = arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αV (j, r)
)

, ∀ i

• Brings in features to approximation in policy
space



APPROXIMATION IN POLICY SPACE METHODS

• Random search methods are straightforward
and have scored some impressive successes with
challenging problems (e.g., tetris).

• Gradient-type methods (known as policy gra-
dient methods) also have been worked on exten-
sively.

• They move along the gradient with respect to
r of

n
∑

i=1

piJµ̃(r)(i),

• There are explicit gradient formulas which have
been approximated by simulation

• Policy gradient methods generally suffer by slow
convergence, local minima, and excessive simula-
tion noise



FINAL WORDS AND COMPARISONS

• There is no clear winner among ADP methods

• There is interesting theory in all types of meth-
ods (which, however, does not provide ironclad
performance guarantees)

• There are major flaws in all methods:

− Oscillations and exploration issues in approx-
imate PI with projected equations

− Restrictions on the approximation architec-
ture in approximate PI with aggregation

− Flakiness of optimization in policy space ap-
proximation

• Yet these methods have impressive successes
to show with enormously complex problems, for
which there is no alternative methodology

• There are also other competing ADP methods
(rollout is simple, often successful, and generally
reliable; approximate LP is worth considering)

• Theoretical understanding is important and
nontrivial

• Practice is an art and a challenge to our cre-
ativity!
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Monte Carlo Linear Algebra

An emerging field combining Monte Carlo simulation and algorithmic linear
algebra

Plays a central role in approximate DP (policy iteration, projected equation
and aggregation methods)

Advantage of Monte Carlo

Can be used to approximate sums of huge number of terms such as
high-dimensional inner products

A very broad scope of applications

Linear systems of equations
Least squares/regression problems
Eigenvalue problems
Linear and quadratic programming problems
Linear variational inequalities
Other quasi-linear structures
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Monte Carlo Estimation Approach for Linear Systems

We focus on solution of Cx = d
Use simulation to compute Ck → C and dk → d
Estimate the solution by matrix inversion C−1

k dk ≈ C−1d (assuming C is
invertible)
Alternatively, solve Ck x = dk iteratively

Why simulation?

C may be of small dimension, but may be defined in terms of matrix-vector
products of huge dimension

What are the main issues?
Efficient simulation design that matches the structure of C and d
Efficient and reliable algorithm design
What to do when C is singular or nearly singular
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Low-Dimensional Approximation

Start from a high-dimensional equation y = Ay + b
Approximate its solution within a subspace S = {Φx | x ∈ �s}
Columns of Φ are basis functions

Equation approximation approach

Approximate solution y∗ with the solution Φx∗ of an equation defined on S

Important example: Projection/Galerkin approximation

Φx = Π(AΦx + b)

S: Subspace spanned by basis functions

0
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�
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Matrix Form of Projected Equation

Let Π be projection with respect to a weighted Euclidean norm �y�Ξ =
√

y �Ξy

The Galerkin solution is obtained from the orthogonality condition

Φx∗ − (AΦx∗ + b) ⊥ (Columns of Φ)

or
Cx = d

where
C = Φ�Ξ(I − A)Φ, d = Φ�Ξb

Motivation for simulation
If y is high-dimensional, C and d involve high-dimensional matrix-vector
operations
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Another Important Example: Aggregation

Let D and Φ be matrices whose rows are probability distributions.

Aggregation equation

By forming convex combinations of variables (i.e., y ≈ Φx) and equations
(using D), we obtain an aggregate form of the fixed point problem y = Ay + b:

x = D(AΦx + b)

or Cx = d with
C = DAΦ, d = Db

Connection with projection/Galerkin approximation

The aggregation equation yields

Φx = ΦD(AΦx + b)

ΦD is an oblique projection in some of the most interesting types of
aggregation [if DΦ = I so that (ΦD)2 = ΦD].
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Another Example: Large-Scale Regression

Weighted least squares problem

Consider
min
y∈�n

�Wy − h�2
Ξ,

where W and h are given, � · �Ξ is a weighted Euclidean norm, and y is
high-dimensional.

We approximate y within the subspace S = {Φx | x ∈ �s} , to obtain

min
x∈�s

�WΦx − h�2
Ξ.

Equivalent linear system Cx = d

C = Φ�W �ΞWΦ, d = Φ�W �Ξh
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Key Idea for Simulation

Critical Problem

Compute sums
�n

i=1 ai for very large n (or n = ∞)

Convert Sum to an Expected Value

Introduce a sampling distribution ξ and write

n�

i=1

ai =
n�

i=1

ξi

�
ai

ξi

�
= Eξ{â}

where the random variable â has distribution

P
�

â =
ai

ξi

�
= ξi , i = 1, . . . , n

We “invent" ξ to convert a “deterministic" problem to a “stochastic"
problem that can be solved by simulation.
Complexity advantage: Running time is independent of the number n of
terms in the sum, only the distribution of â.
Importance sampling idea: Use a sampling distribution that matches the
problem for efficiency (e.g., make the variance of â small) .
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Row and Column Sampling for System Cx = d

Row Sampling According to ξ (May Use Markov Chain Q)
Column Sampling According to Markov Chain P ∼ |A|
x∗ = T (x∗) Φr∗ Πx∗ T (Φr∗) Subspace S Projection on S

Φrt Φrt+1 = ΠT (Φrt) T (Φrt)
over θ Conditional Mean Squared Estimation Error Normal zero-mean

noise N with variance σ2

fZ(z) z
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...
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fS(s;H0) pX(·; θ) pX(·; θm) pX(x; θ1) pX(x; θm)
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Row sampling: Generate sequence {i0, i1, . . .} according to ξ (the
diagonal of Ξ), i.e., relative frequency of each row i is ξi

Column sampling: Generate sequence
�
(i0, j0), (i1, j1), . . .

�
according to

some transition probability matrix P with

pij > 0 if aij �= 0,

i.e., for each i , the relative frequency of (i, j) is pij

Row sampling may be done using a Markov chain with transition matrix
Q (unrelated to P)
Row sampling may also be done without a Markov chain - just sample
rows according to some known distribution ξ (e.g., a uniform)



Motivating Framework: Low-Dimensional Approximation Sampling Issues Solution Methods and Singularity Issues

Simulation Formulas for Matrix Form of Projected Equation

Approximation of C and d by simulation:

C = Φ�Ξ(I − A)Φ ∼ Ck =
1

k + 1

k�

t=0

φ(it)
�
φ(it)−

ait jt
pit jt

φ(jt)
��

,

d = Φ�Ξb ∼ dk =
1

k + 1

k�

t=0

φ(it)bit

We have by law of large numbers Ck → C, dk → d .
Equation approximation: Solve the equation Ck x = dk in place of
Cx = d .

Algorithms

Matrix inversion approach: x∗ ≈ C−1
k dk (if Ck is invertible for large k )

Iterative approach: xk+1 = xk − γGk (Ck xk − dk )



Motivating Framework: Low-Dimensional Approximation Sampling Issues Solution Methods and Singularity Issues

Multistep Methods - TD(λ)-Type
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λ�T �+1
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Bias-variance tradeoff

u = 1 Cost = 1 Cost = 2 u = 2 Cost = -10 µ∗(i + 1) µ µ p 1 0
νj(u), pjk(u) νk(u), pki(u) J∗(p) µ1 µ2

Simulation error Jµ Slope J̃µ = Φrµ

Transition diagram and costs under policy {µ�, µ�, . . .} M q(µ)

c+ E
z

�
J∗

�
pf0(z)

pf0(z) + (1− p)f1(z)

��

Cost = 0 Cost = −1

νi(u)pij(u)
ν

νj(u)pjk(u)
ν

νk(u)pki(u)
ν

J(2) = g(2, u2) + αp21(u2)J(1) + αp22(u2)J(2)

J(2) = g(2, u1) + αp21(u1)J(1) + αp22(u1)J(2)

J(1) = g(1, u2) + αp11(u2)J(1) + αp12(u2)J(2)

J∗ =
�
J∗(1), J∗(2)

�

1− νj(u)
ν 1− νi(u)

ν 1− νk(u)
ν

1− µi

µ
µi

µ

Cost = 2�α J0

R+ g(1) + α
n�

j=1

p1jJ∗(j)

i∗ i∗ − 1

g(i) + α
n�

j=1

pijJ∗(j)

Do not Replace Set SR i 1 n Value Iterations J1 = TJ0 = Tµ0J0

J1 = T 2
µ0J0

1

u = 1 Cost = 1 Cost = 2 u = 2 Cost = -10 µ∗(i + 1) µ µ p 1 0
νj(u), pjk(u) νk(u), pki(u) J∗(p) µ1 µ2

Simulation error Bias ΠJµ Slope J̃µ = Φrµ

Transition diagram and costs under policy {µ�, µ�, . . .} M q(µ)

c+ E
z

�
J∗

�
pf0(z)

pf0(z) + (1− p)f1(z)

��

Cost = 0 Cost = −1

νi(u)pij(u)
ν

νj(u)pjk(u)
ν

νk(u)pki(u)
ν

J(2) = g(2, u2) + αp21(u2)J(1) + αp22(u2)J(2)

J(2) = g(2, u1) + αp21(u1)J(1) + αp22(u1)J(2)

J(1) = g(1, u2) + αp11(u2)J(1) + αp12(u2)J(2)

J∗ =
�
J∗(1), J∗(2)

�

1− νj(u)
ν 1− νi(u)

ν 1− νk(u)
ν

1− µi

µ
µi

µ

Cost = 2�α J0

R+ g(1) + α
n�

j=1

p1jJ∗(j)

i∗ i∗ − 1

g(i) + α
n�

j=1

pijJ∗(j)

Do not Replace Set SR i 1 n Value Iterations J1 = TJ0 = Tµ0J0

J1 = T 2
µ0J0

1

Special States Aggregate States Features n t pnn(u) pin(u) pni(u)
pjn(u) pnj(u)

State i Feature Extraction Mapping Feature Vector φ(i) Linear Cost
Approximator φ(i)�r

Solution of J̃µ = ΠTµ(J̃µ) λ = 0 λ = 1 0 < λ < 1

Route to Queue 2
hλ(n) λ∗ λµ λ hµ,λ(n) = (λµ − λ)Nµ(n)
n− 1 −(n− 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ∗(i+ 1) µ µ p

1 0 νj(u), pjk(u) νk(u), pki(u) J∗(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias ΠJµ Slope J̃µ =
Φrµ

Transition diagram and costs under policy {µ�, µ�, . . .} M q(µ)

c+ E
z

�
J∗

�
pf0(z)

pf0(z) + (1− p)f1(z)

��

Cost = 0 Cost = −1

νi(u)pij(u)
ν

νj(u)pjk(u)
ν

νk(u)pki(u)
ν

J(2) = g(2, u2) + αp21(u2)J(1) + αp22(u2)J(2)

J(2) = g(2, u1) + αp21(u1)J(1) + αp22(u1)J(2)

J(1) = g(1, u2) + αp11(u2)J(1) + αp12(u2)J(2)

J∗ =
�
J∗(1), J∗(2)

�

1− νj(u)
ν 1− νi(u)

ν 1− νk(u)
ν

1− µi

µ
µi

µ

Cost = 2�α J0

R+ g(1) + α
n�

j=1

p1jJ∗(j)

1

Special States Aggregate States Features n t pnn(u) pin(u) pni(u)
pjn(u) pnj(u)

State i Feature Extraction Mapping Feature Vector φ(i) Linear Cost
Approximator φ(i)�r

Solution of J̃µ = ΠTµ(J̃µ) λ = 0 λ = 1 0 < λ < 1

Route to Queue 2
hλ(n) λ∗ λµ λ hµ,λ(n) = (λµ − λ)Nµ(n)
n− 1 −(n− 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ∗(i+ 1) µ µ p

1 0 νj(u), pjk(u) νk(u), pki(u) J∗(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias ΠJµ Slope J̃µ =
Φrµ

Transition diagram and costs under policy {µ�, µ�, . . .} M q(µ)

c+ E
z

�
J∗

�
pf0(z)

pf0(z) + (1− p)f1(z)

��

Cost = 0 Cost = −1

νi(u)pij(u)
ν

νj(u)pjk(u)
ν

νk(u)pki(u)
ν

J(2) = g(2, u2) + αp21(u2)J(1) + αp22(u2)J(2)

J(2) = g(2, u1) + αp21(u1)J(1) + αp22(u1)J(2)

J(1) = g(1, u2) + αp11(u2)J(1) + αp12(u2)J(2)

J∗ =
�
J∗(1), J∗(2)

�

1− νj(u)
ν 1− νi(u)

ν 1− νk(u)
ν

1− µi

µ
µi

µ

Cost = 2�α J0

R+ g(1) + α
n�

j=1

p1jJ∗(j)

1

TJ J0

Direct Method: Projection of cost vector Jµ ΠJµ n t pnn(u) pin(u)
pni(u) pjn(u) pnj(u)

Indirect Method: Solving a projected form of Bellman’s equation
Projection on S. Solution of projected equation Φr = ΠTµ(Φr)

Tµ(Φr) Φr = ΠTµ(Φr)

ΠJµ n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

J TJ ΠTJ J̄ T J̄ ΠT J̄

Value Iterate T (Φrk) = g + αPΦrk Projection on S Φrk Φrk+1

Solution of J̃µ = ΠTµ(J̃µ) λ = 0 λ = 1 0 < λ < 1

Route to Queue 2
hλ(n) λ∗ λµ λ hµ,λ(n) = (λµ − λ)Nµ(n)
n− 1 −(n− 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ∗(i+ 1) µ µ p

1 0 νj(u), pjk(u) νk(u), pki(u) J∗(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias ΠJµ Slope J̃µ =
Φrµ

Transition diagram and costs under policy {µ�, µ�, . . .} M q(µ)

c+ E
z

�
J∗

�
pf0(z)

pf0(z) + (1− p)f1(z)

��

Cost = 0 Cost = −1

νi(u)pij(u)
ν

νj(u)pjk(u)
ν

νk(u)pki(u)
ν

J(2) = g(2, u2) + αp21(u2)J(1) + αp22(u2)J(2)

J(2) = g(2, u1) + αp21(u1)J(1) + αp22(u1)J(2)

J(1) = g(1, u2) + αp11(u2)J(1) + αp12(u2)J(2)

J∗ =
�
J∗(1), J∗(2)

�

1

y∗ = Ay∗ + b Φx∗ = Π(AΦx∗ + b) AΦx∗ + b

Φx = ΠT (λ)(Φx)

Subspace spanned by basis functions
LP CONVEX NLP

Simplex

Gradient/Newton

Duality

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f

∗
1 (y) + f∗

2 (−y) f∗
2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx
�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

1

y∗ = Ay∗ + b Φx∗ = Π(AΦx∗ + b) AΦx∗ + b

Φx = ΠT (λ)(Φx)

Subspace spanned by basis functions
LP CONVEX NLP

Simplex

Gradient/Newton

Duality

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f

∗
1 (y) + f∗

2 (−y) f∗
2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx
�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

1

y∗ = Ay∗ + b Φx∗ = Π(AΦx∗ + b) AΦx∗ + b

Φx = ΠT (λ)(Φx) y∗ Πy∗

Subspace spanned by basis functions
Solution of multistep projected equation
LP CONVEX NLP

Simplex

Gradient/Newton

Duality

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f

∗
1 (y) + f∗

2 (−y) f∗
2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

1

y∗ = Ay∗ + b Φx∗ = Π(AΦx∗ + b) AΦx∗ + b

Φx = ΠT (λ)(Φx) y∗ Πy∗

Subspace spanned by basis functions
Solution of multistep projected equation
LP CONVEX NLP

Simplex

Gradient/Newton

Duality

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f

∗
1 (y) + f∗

2 (−y) f∗
2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

1

y∗ = Ay∗ + b Φx∗ = Π(AΦx∗ + b) AΦx∗ + b

Φx = ΠT (λ)(Φx) y∗ Πy∗

Subspace spanned by basis functions
Solution of multistep projected equation
LP CONVEX NLP

Simplex

Gradient/Newton

Duality

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f

∗
1 (y) + f∗

2 (−y) f∗
2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

1



Motivating Framework: Low-Dimensional Approximation Sampling Issues Solution Methods and Singularity Issues

Constrained Projected Equations

Consider
Φx = ΠT (Φx) = Π(AΦx + b)

where Π is the projection operation onto a closed convex subset Ŝ of the
subspace S (w/ respect to weighted norm � · �Ξ; Ξ: positive definite).
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Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f

∗
1 (y) + f∗

2 (−y) f∗
2 (−y)

Slope y∗ Slope y

1

From the properties of projection,
�
Φx∗ − T (Φx∗)

��
Ξ(y − Φx∗) ≥ 0, ∀ y ∈ Ŝ

This is a linear variational inequality: Find x∗ such that

f (Φx∗)�(y − Φx∗) ≥ 0, ∀ y ∈ Ŝ,

where f (y) = Ξ
�
y − T (y)

�
= Ξ

�
y − (Ay + b)

�
.
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Equivalence Conclusion

Two equivalent problems

The projected equation
Φx = ΠT (Φx)

where Π is projection with respect to � · �Ξ on convex set Ŝ ⊂ S
The special-form VI

f (Φx∗)�Φ(x − x∗) ≥ 0, ∀ x ∈ X ,

where
f (y) = Ξ

�
y − T (y)

�
, X = {x | Φx ∈ Ŝ}

Special linear cases: T (y) = Ay + b

Ŝ = �n: VI <==> f (Φx∗) = Ξ
�
Φx∗ − T (Φx∗)

�
= 0 (linear equation)

Ŝ = subspace: VI <==> f (Φx∗) ⊥ Ŝ (e.g., projected linear equation)

f (y) the gradient of a quadratic, Ŝ: polyhedral (e.g., approx. LP and QP)
Linear VI case (e.g., cooperative and zero-sum games with
approximation)
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Deterministic Solution Methods - Invertible Case of Cx = d

Matrix Inversion Method

x∗ = C−1d

Generic Linear Iterative Method

xk+1 = xk − γG(Cxk − d)

where:
G is a scaling matrix, γ > 0 is a stepsize
Eigenvalues of I − γGC within the unit circle (for convergence)

Special cases:

Projection/Richardson’s method: C positive semidefinite, G positive
definite symmetric
Proximal method (quadratic regularization)
Splitting/Gauss-Seidel method
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Simulation-Based Solution Methods - Invertible Case

Given sequences Ck → C and dk → d

Matrix Inversion Method

xk = C−1
k dk

Iterative Method

xk+1 = xk − γGk (Ck xk − dk )

where:
Gk is a scaling matrix with Gk → G
γ > 0 is a stepsize

xk → x∗ if and only if the deterministic version is convergent
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Solution Methods - Singular Case (Assuming a Solution Exists)

Given sequences Ck → C and dk → d . Matrix inversion method does not
apply

Iterative Method

xk+1 = xk − γGk (Ck xk − dk )

Need not converge to a solution, even if the deterministic version does

Questions:
Under what conditions is the stochastic method convergent?
How to modify the method to restore convergence?
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Simulation-Based Solution Methods - Nearly Singular Case

The theoretical view
If C is nearly singular, we are in the nonsingular case

The practical view

If C is nearly singular, we are essentially in the singular case (unless the
simulation is extremely accurate)

The eigenvalues of the iteration

xk+1 = xk − γGk (Ck xk − dk )

get in and out of the unit circle for a long time (until the “size" of the simulation
noise becomes comparable to the “stability margin" of the iteration)

Think of roundoff error affecting the solution of ill-conditioned systems
(simulation noise is far worse)
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Deterministic Iterative Method - Convergence Analysis

Assume that C is invertible or singular (but Cx = d has a solution)

Generic Linear Iterative Method

xk+1 = xk − γG(Cxk − d)

Standard Convergence Result

Let C be singular and denote by N(C) the nullspace of C. Then:
{xk} is convergent (for all x0 and sufficiently small γ) to a solution of Cx = d if
and only if:
(a) Each eigenvalue of GC either has a positive real part or is equal to 0.
(b) The dimension of N(GC) is equal to the algebraic multiplicity of the

eigenvalue 0 of GC.
(c) N(C) = N(GC).
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Proof Based on Nullspace Decomposition for Singular Systems

For any solution x∗, rewrite the iteration as

xk+1 − x∗ = (I − γGC)(xk − x∗)

Linarly transform the iteration

Introduce a similarity transformation involving N(C) and N(C)⊥

Let U and V be orthonormal bases of N(C) and N(C)⊥:

[U V ]�(I − γGC)[U V ] = I − γ

�
U �GCU U �GCV
V �GCU V �GCV

�

= I − γ

�
0 U �GCV
0 V �GCV

�

≡
�

I −γN
0 I − γH

�
,

where H has eigenvalues with positive real parts. Hence for some γ > 0,

ρ(I − γH) < 1,

so I − γH is a contraction ... �
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Nullspace Decomposition of Deterministic Iteration

Ŝ 0

)⊥ x∗
⊥ x∗ + V zk

Sequence {xk}

Solution Set Sequence

k x∗ + Uyk

k x∗ + Uy∗

N(C) N

) N(C)⊥

x∗ +N(C) N

Nullspace Component Sequence Othogonal Component
Nullspace Component Sequence Othogonal Component

Nullspace Component Sequence Othogonal Component
Nullspace Component Sequence Orthogonal Component

Nullspace Component Sequence Orthogonal Component Full Iterate

Figure: Iteration decomposition into components on N(C) and N(C)⊥.

xk = x∗ + Uyk + Vzk

Nullspace component: yk+1 = yk − γNzk

Orthogonal component: zk+1 = zk − γHzk CONTRACTIVE
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Stochastic Iterative Method May Diverge

The stochastic iteration

xk+1 = xk − γGk (Ck xk − dk )

approaches the deterministic iteration

xk+1 = xk − γG(Cxk − d), where ρ(I − γGC) ≤ 1.

However, since
ρ(I − γGk Ck ) → 1

ρ(I − γGk Ck ) may cross above 1 too frequently, and we can have divergence.

Difficulty is that the orthogonal component is now coupled to the nullspace
component with simulation noise
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Divergence of the Stochastic/Singular Iteration

Ŝ 0

)⊥ x∗

⊥ x∗ + V zk

Sequence {xk}

Solution Set Sequence

k x∗ + Uyk

N(C) N

) N(C)⊥

x∗ +N(C) N

Nullspace Component Sequence Othogonal Component
Nullspace Component Sequence Othogonal Component

Nullspace Component Sequence Othogonal Component
Nullspace Component Sequence Orthogonal Component

Nullspace Component Sequence Orthogonal Component Full Iterate

Figure: NOISE LEAKAGE FROM N(C) to N(C)⊥

xk = x∗ + Uyk + Vzk

Nullspace component: yk+1 = yk − γNzk + Noise(yk , zk )

Orthogonal component: zk+1 = zk − γHzk + Noise(yk , zk )
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Divergence Example for a Singular Problem

2 × 2 Example

Let the noise be {ek}: MC averages with mean 0 so ek → 0, and let

xk+1 =

�
1 + ek 0

ek 1/2

�
xk

Nullspace component yk = xk (1) diverges:

k�

t=1

(1 + et) = O(e
√

k ) → ∞

Orthogonal component zk = xk (2) diverges:

xk+1(2) = 1/2xk (2) + ek

k�

t=1

(1 + et),

where

ek

k�

t=1

(1 + et) = O

�
e
√

k
√

k

�
→ ∞.
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What Happens in Nearly Singular Problems?

“Divergence" until Noise << “Stability Margin" of the iteration
Compare with roundoff error problems in inversion of nearly singular
matrices

A Simple Example

Consider the inversion of a scalar c > 0, with simulation error η. The
absolute and relative errors are

E =
1

c + η
− 1

c
, Er =

E
1/c

.

By a Taylor expansion around η = 0:

E ≈
∂
�
1/(c + η)

�

∂η

���
η=0

η = − η
c2 , Er ≈ −η

c
.

For the estimate 1
c+η to be reliable, it is required that

|η| << |c|.
Number of i.i.d. samples needed: k � 1/c2.
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Nullspace Consistent Iterations

Nullspace Consistency and Convergence of Residual

If N(Gk Ck ) ≡ N(C), we say that the iteration is nullspace-consistent.
Nullspace consistent iteration generates convergent residuals
(Cxk − d → 0), iff the deterministic iteration converges.

Proof Outline:

xk = x∗ + Uyk + Vzk

Nullspace component: yk+1 = yk − γNzk + Noise(yk , zk )

Orthogonal component: zk+1 = zk − γHzk + Noise(zk ) DECOUPLED

LEAKAGE FROM N(C) IS ANIHILATED by V so

Cxk − d = CVzk → 0

�
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Interesting Special Cases

Proximal/Quadratic Regularization Method

xk+1 = xk − (C�
k Ck + βI)−1C�

k (Ck xk − dk )

Can diverge even in the nullspace consistent case.

In the nullspace consistent case, under favorable conditions xk → some
solution x∗.
In these cases the nullspace component yk stays constant.

Approximate DP (projected equation and aggregation)

The estimates often take the form

Ck = Φ�MkΦ, dk = Φ�hk ,

where Mk → M for some positive definite M.
If Φ has dependent columns, the matrix C = Φ�MΦ is singular.
The iteration using such Ck and dk is nullspace consistent.
In typical methods (e.g., LSPE) xk → some solution x∗.
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Stabilization of Divergent Iterations

A Stabilization Scheme
Shifting the eigenvalues of I − γGk Ck by −δk :

xk+1 = (1 − δk )xk − γGk (Ck xk − dk ) .

Convergence of Stabilized Iteration

Assume that the eigenvalues are shifted slower than the convergence rate of
the simulation:

(Ck − C, dk − d ,Gk − G)/δk → 0,
∞�

k=0

δk = ∞

Then the stabilized iteration generates xk → some x∗ iff the deterministic
iteration without δk does.

Stabilization is interesting even in the nonsingular case
It provides a form of “regularization"
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Stabilization of the Earlier Divergent Example
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Thank You!


