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Abstract

In this paper, we study the problem of finding tight bounds on the expected value of the

kth order statistic E[xk:n] under moment information on n real-valued random variables. Given

means E[xi] = μi and variances V ar[xi] = σ2
i , we show that the tight upper bound on the

expected value of the highest order statistic E[xn:n] can be computed with a bisection search

algorithm. An extremal discrete distribution is identified that attains the bound and two new

closed form bounds are proposed. Under additional covariance information Cov[xi, xj ] = Qij , we

show that the tight upper bound on the expected value of the highest order statistic can be com-

puted with semidefinite optimization. We generalize these results to find bounds on the expected

value of the kth order statistic under mean and variance information. For k < n, this bound

is shown to be tight under identical means and variances. All our results are distribution-free

with no explicit assumption of independence made. Particularly, using optimization methods,

we develop tractable approaches to compute bounds on the expected value of order statistics.

1 Introduction

Let x = (x1, . . . , xn) denote n ≥ 2 jointly distributed real-valued random variables. The order

statistics of this set is a reordering of the xi in terms of non-decreasing values, expressed as x1:n ≤
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. . . ≤ xk:n ≤ . . . ≤ xn:n. The smallest and highest order statistics are denoted by x1:n and xn:n

respectively. One of the central problems in statistics is to find, bound or approximate the expected

value of order statistics under varying assumptions on the distribution of the random variables. For

detailed reviews on this subject, the reader is referred to [9] and [3].

In this paper, we focus on finding bounds on the expected value of order statistics under

moment information on the random variables. Let x∼θm denote the set of feasible distributions θ

that satisfies the given moments m for the random variables.

Definition 1 Z∗
k:n is a tight upper bound on the expected value of the kth order statistic if:

Z∗
k:n = sup

x∼θm
Eθ[xk:n],

i.e., there exists a feasible distribution or a limit of a sequence of feasible distributions that achieves

the upper bound.

No other assumptions on independence or the type of distribution are made. In this paper, we

develop methods to compute Z∗
k:n under first and second moment information on the random

variables. Next, we review some of the classical bounds for order statistics.

Some Known Bounds

Given identical means and variances (μ, σ2) for the random variables, one of the earliest known

bounds for the expected highest order statistic was derived by Gumbel [10] and Hartley and David

[11]. Under the assumption of independence, they obtained the upper bound μ+σ(n−1)/(2n−1).

Moriguti [17] extended this result to the special case of symmetrically distributed random variables.

For more general distributions (not necessarily independent or identically distributed), Arnold

and Groeneveld [2] obtained an upper bound on the expected value of the kth order statistic:

Eθ[xk:n] ≤
∑n

i=1 μi

n
+

√√√√ k − 1
n(n − k + 1)

n∑
i=1

[
σ2

i +
(

μi −
∑n

i=1 μi

n

)2
]
. (1)

Under identical means and variances, this bound reduces to:

Eθ[xk:n] ≤ μ + σ

√
k − 1

n − k + 1
. (2)

For this particular case, Arnold and Groeneveld show that (2) is tight by explicitly constructing

a distribution that achieves the bound. However, for general mean-variance information, (1) is
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not necessarily tight. Aven [4] proposed an alternative upper bound on the expected value of the

highest order statistic:

Eθ[xn:n] ≤ max
1≤i≤n

μi +

√√√√n − 1
n

n∑
i=1

σ2
i . (3)

This bound is also not tight under general mean-variance information. In this paper, we develop

an algorithmic approach to find (possibly) tight bounds on the expected value of the order statistic

Z∗
k:n. We characterize cases for which the bound can be computed tractably, else we propose simple

closed form bounds that seem promising.

Contributions

Our main contributions in this paper are as follows:

(a) In Section 2, we find the tight upper bound on expected value of the highest order statistic Z∗
n:n

under mean-variance information on the random variables. An efficiently solvable bisection

search approach is developed to compute Z∗
n:n. A discrete extremal distribution is identified

that attains the tight bound. Two simple closed form bounds for the expected highest order

statistic are proposed. Under additional covariance information, we propose a semidefinite

programming approach to find the tight bound on the expected highest order statistic.

(b) In Section 3, we extend the bisection search method to obtain bounds on the expected value of

the general kth order statistic under mean-variance information. For k < n, we show that the

bound is tight under identical means and variances. For general mean-variance information,

the bound found with the bisection search method, while not necessarily tight, is at least as

strong as (1).

(c) In Section 4, we provide computational experiments to test the performance of the different

bounds. Application of the results to an option-pricing problem is considered.

2 Bounds On Expected Highest Order Statistic

We first compute the tight upper bound on the expected highest order statistic Z∗
n:n under mean-

variance information on the random variables. The mean and variance information on the random

variables are denoted as μ = (μ1, . . . , μn) and σ2 = (σ2
1 , . . . , σ

2
n). The set of feasible distributions
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satisfying these moment restrictions is represented by x∼θ(μ,σ2). For simplicity of presentation,

we will assume that all the σi are strictly positive. As discussed later, this condition can in fact be

relaxed.

The approach to compute the tight upper bound on the expected value of the highest order

statistic is based on a convex reformulation technique, initially proposed by Meilijson and Nadas

[18] and developed later in Bertsimas, Natarajan and Teo [6]. The reformulation is based on the

observation that the highest order statistic xn:n is a convex function in the xi variables. We review

the key ideas of this reformulation next.

Theorem 1 (Bertsimas, Natarajan and Teo [6]) The tight upper bound on the expected value of

the highest order statistic Z∗
n:n given x∼θ(μ,σ2) is obtained by solving:

Z∗
n:n = min

z

(
zn:n +

n∑
i=1

sup
xi∼θi

(μi,σ2
i )

Eθi
[xi − zi]+

)
, (4)

where x+ = max(0, x).

Sketch of Proof. We first show that Eq. (4) provides an upper bound on Z∗
n:n. To see this, note

that we have the following inequality for each variable xi:

xi = zi + (xi − zi),

≤ zn:n +
n∑

i=1

[xi − zi]+.

Since the right hand side of this inequality is independent of the particular i, we have:

xn:n ≤ zn:n +
n∑

i=1

[xi − zi]+.

Taking expectations and minimizing over the zi variables, we obtain the best upper bound:

Eθ[xn:n] ≤ min
z

(
zn:n +

n∑
i=1

Eθ[xi − zi]+
)

.

Optimizing over distributions with given mean-variance information, we obtain an upper bound:

Z∗
n:n ≤ min

z

(
zn:n +

n∑
i=1

sup
xi∼θi

(μi,σ2
i )

Eθi
[xi − zi]+

)
.

Note that the inner problem is optimization over probability distributions of single random vari-

ables θi, since no cross moment information is specified. For a proof that the bound is tight, the
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reader is referred to [6]. Alternatively, we construct an extremal distribution in Theorem 3 that

attains the bound.

The solution for the inner problem in Formulation (4) is in fact known in closed form from [13]

and [22]. We outline a simple proof for this bound next.

Proposition 1 The tight upper bound on the expected value Eθi
[xi − zi]+ given xi ∼θi

(μi, σ
2
i ) is:

sup
xi∼θi

(μi,σ2
i )

Eθi
[xi − zi]+ =

1
2

[
μi − zi +

√
(μi − zi)2 + σ2

i

]
. (5)

Proof. We have the basic equality:

[xi − zi]+ =
1
2

(
xi − zi + |xi − zi|

)
.

Taking expectations, we obtain:

Eθi
[xi − zi]+ =

1
2

(
Eθi

[xi − zi] + Eθi
|xi − zi|

)
, ∀xi ∼θi

(μi, σ
2
i ),

≤ 1
2

(
μi − zi +

√
(μi − zi)2 + σ2

i

)
, (From Cauchy-Schwarz inequality).

Furthermore, this bound can be shown to be tight since it is attained by the distribution:

xi =

⎧⎪⎪⎨
⎪⎪⎩

zi +
√

(μi − zi)2 + σ2
i , w.p. p = 1

2

(
1 + μi−zi√

(μi−zi)2+σ2
i

)
,

zi −
√

(μi − zi)2 + σ2
i , w.p. 1 − p = 1

2

(
1 − μi−zi√

(μi−zi)2+σ2
i

)
.

Using this closed form bound, we now show that the tight upper bound on the expected highest

order statistic can be found by solving a univariate convex minimization problem.

Theorem 2 The tight upper bound on the expected value of the highest order statistic Z∗
n:n given

x∼θ(μ,σ2) is obtained by solving the strictly convex univariate minimization problem:

Z∗
n:n = min

z∈�
fn:n(z) = min

z∈�

(
z +

n∑
i=1

1
2

[
μi − z +

√
(μi − z)2 + σ2

i

])
(6)
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Proof. Combining Theorem 1 and Proposition 1, the tight upper bound on the expected highest

order statistic is:

Z∗
n:n = min

z

(
zn:n +

n∑
i=1

1
2

[
μi − zi +

√
(μi − zi)2 + σ2

i

])
. (7)

We next show that Formulation (7) can be simplified to a single variable optimization problem.

Let z∗ be an optimal solution to Problem (7) and z∗n:n denote the highest order statistic. Note that

the second term
∑n

i=1
1
2

[
μi − zi +

√
(μi − zi)2 + σ2

i

]
is decreasing in zi. Hence for any i < n with

z∗i:n < z∗n:n, by increasing z∗i:n upto z∗n:n the first term remains unaffected while the second term

decreases, thus reducing the objective. Since we are minimizing the objective, the optimal solution

will set all the z∗i values equal to z∗n:n.

It can be easily checked that fn:n is a strictly convex function implying that the function has

a unique global minimum. The optimal decision variable z∗ in Formulation (6) hence satisfies the

first order condition obtained by setting the derivative ∂fn:n(z∗) to zero:

∂fn:n(z∗) =
n∑

i=1

⎛
⎝ z∗ − μi√

(μi − z∗)2 + σ2
i

⎞
⎠− (n − 2) = 0. (8)

Remark:

(a) Our result can be viewed as an extension of the bound from Lai and Robbins [15] and Ross

[21]. In their case, under completely known marginal distributions xi∼θθi, they obtain the

following tight bound on the highest order statistic:

sup
xi∼θθi∀i

Eθ[xn:n] = min
d∈�

(
d +

n∑
i=1

Eθi
[ci − d]+

)
(9)

Note that this result follows also from Meilijson and Nadas [18].

2.1 An Extremal Probability Distribution

We now construct a discrete distribution that satisfies that mean-variance requirements and attains

the bound in Problem (6).

Theorem 3 Given x∼θ(μ,σ2), there is an extremal distribution for the random variables that

achieves the upper bound in Problem (6).
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Proof. Let z∗ denote the optimal minimizer to Problem (6). Define:

pj =
1
2

⎛
⎝1 +

μj − z∗√
(μj − z∗)2 + σ2

i

⎞
⎠ , j = 1, . . . , n. (10)

Clearly pj ≥ 0 for all j and:

n∑
j=1

pj =
n∑

j=1

1
2

⎛
⎝1 +

μj − z∗√
(μj − z∗)2 + σ2

i

⎞
⎠ ,

=
n

2
+

2 − n

2
(From optimality condition in Eq. (8))

= 1.

For j = 1, . . . , n, we let:

x
(j)
i =

⎧⎨
⎩ z∗ +

√
(μi − z∗)2 + σ2

i , if i = j,

z∗ −
√

(μi − z∗)2 + σ2
i , if i �= j.

(11)

Let x take value x(j) with probability pj for j = 1, . . . , n. It can be verified for this n atom

distribution that:

Eθ[xi] =
n∑

j=1

pjx
(j)
i = μi, i = 1, . . . , n,

V arθ[xi] =
n∑

j=1

pj(x
(j)
i − μi)2 = σ2

i , i = 1, . . . , n.

Furthermore, it is easily seen from Eq. (11), that the maximum among the n random variables for

the jth atom is attained by x
(j)
j . Thus:

Eθ[xn:n] =
n∑

j=1

pjx
(j)
j =

⎛
⎝z∗ +

n∑
j=1

1
2

[
μj − z∗ +

√
(μj − z∗)2 + σ2

j

]⎞⎠ = fn:n(z∗).

This n atom distribution attains the upper bound on the expected value of the highest order statis-

tic and satisfies the mean and variance requirements. This provides an alternative proof to show

that the bound in Theorem 1 is tight.

2.2 Solution Techniques

In general, it does not seem possible to find Z∗
n:n in closed form. A special case under which this is

possible is discussed next.
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Identical mean and variance

For identical mean-variance pairs (μ, σ2), solving Eq. (8) yields the optimal value for z∗:

z∗ = μ + σ
n − 2

2
√

n − 1
.

Substituting this into Eq. (6) yields the tight bound:

sup
xi∼θ(μ,σ2)∀i

Eθ[xn:n] = μ + σ
√

n − 1. (12)

Note that is exactly (2) obtained by Arnold and Groeneveld for k = n. A distribution that attains

this bound is randomly selecting n elements without replacement from the set where one element

has value μ + σ
√

n − 1 and the remaining n − 1 elements have value μ − σ/
√

n − 1.

General mean-variance pairs

For the general case, we outline a simple bisection search algorithm to find Z∗
n:n.

Description of the algorithm:

1. Initialize zl, zu such that ∂fn:n(zl) ≤ 0 and ∂fn:n(zu) ≥ 0 and ε > 0 to given tolerance level.

2. Let z = zl+zu

2 .

3. While |∂fn:n(z)| ≥ ε, do

(a) If ∂fn:n(z) >= 0, set zu = z; else set zl = z.

(b) Go back to 2.

4. Output Z∗
n:n = fn:n(z).

We propose two simple upper and lower bounds zu and zl on the range of the optimal z∗ to

initialize the algorithm. Consider the problem of finding a zu such that f ′(zu) ≥ 0. One such zu

is constructed such that each term on the left hand side of Eq. (8) contributes at least a fraction

(n − 2)/n:

zu − μi√
(μi − zu)2 + σ2

i

≥ n − 2
n

, i = 1, . . . , n,
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which reduces to:

zu ≥ μi + σi
n − 2

2
√

n − 1
, i = 1, . . . , n.

We choose zu as:

zu = max
1≤i≤n

(
μi + σi

n − 2
2
√

n − 1

)
. (13)

Similarly, a lower bound zl can be found such that:

zl − μi√
(μi − zl)2 + σ2

i

≤ n − 2
n

, i = 1, . . . , n.

A zl that satisfies this condition is:

zl = min
1≤i≤n

(
μi + σi

n − 2
2
√

n − 1

)
. (14)

Our computational tests indicate that these values of zu and zl lead to the tight bound quickly.

New Closed Form Bounds

Based on the two endpoints, we now propose simple closed form bounds on the expected value of

the highest order statistic.

Theorem 4 Two closed form upper bounds on the expected value of the highest order statistic given

x∼θ(μ,σ2) are:

1
2

⎛
⎝ n∑

i=1

⎡
⎣μi +

√(
μi − max

1≤i≤n

{
μi +

n − 2
2
√

n − 1
σi

})2

+ σ2
i

⎤
⎦+ (2 − n)

[
max

1≤i≤n

{
μi +

n − 2
2
√

n − 1
σi

}]⎞⎠ , (15)

1
2

⎛
⎝ n∑

i=1

⎡
⎣μi +

√(
μi − min

1≤i≤n

{
μi +

n − 2
2
√

n − 1
σi

})2

+ σ2
i

⎤
⎦+ (2 − n)

[
min

1≤i≤n

{
μi +

n − 2
2
√

n − 1
σi

}]⎞⎠ . (16)

Proof. Substitute z = zl and z = zu in Eq. (6) respectively.

Note that (15) and (16) reduces to the tight upper bound (12) on the expected highest order

statistic for random variables with identical mean-variance pairs.
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2.3 Extensions

We now extend the results to the case where some of the σ2
i = 0, i.e., xi is deterministic. Without

loss of generality, we assume that exactly one variable is deterministic since the case with multiple

constants can be reduced to this case by choosing the maximum of the constants. Given n ≥ 1

random variables with strictly positive variances and a constant K, we want to find the tight upper

bound on Eθ[max(xn:n,K)]. By introducing an extra decision variable zn+1 variable for the term

K, Eq. (4) reduces to:

sup
x∼θ(μ,σ2)

Eθ[max(xn:n,K)] = min
z

(
zn+1:n+1 +

n∑
i=1

1
2

[
μi − zi +

√
(μi − zi)2 + σ2

i

]
+ (K − zn+1)+

)
.

Using an argument similar to Theorem 2, it can be checked that the optimal solution will set all

the zi values the same at a value greater than or equal to K. Hence, the tight upper bound on the

expected highest order statistic is:

sup
x∼θ(μ,σ2)

Eθ[max(xn:n,K)] = min
z≥K

(
z +

n∑
i=1

1
2

[
μi − z +

√
(μi − z)2 + σ2

i

])
, (17)

which reduces to the constrained version of Formulation (6):

sup
x∼θ(μ,σ2)

Eθ[max(xn:n,K)] = min
z≥K

fn:n(z). (18)

The tight upper bound can be found by a modified bisection search method:

1. Solve the unconstrained version of Formulation (18) with bisection search to find z∗.

2. Output fn:n(max(z∗,K)).

We propose using the following two closed form bounds in this case:

fn:n

[
max

(
max
1≤i≤n

{
μi +

n − 2
2
√

n − 1
σi

}
,K

)]
, (19)

and:

fn:n

[
max

(
min

1≤i≤n

{
μi +

n − 2
2
√

n − 1
σi

}
,K

)]
. (20)
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2.4 Extensions To Additional Covariance Information

In this section, we propose an algorithmic approach to find the tight upper bound on the expected

value of the highest order statistic under covariance information. Given the mean and covariance

matrix for the random variables x∼θ(μ,Q), the tight upper bound is computed by finding a

distribution θ that solves:

Z∗
n:n = supθ Eθ[xn:n]

s.t. Eθ[x] = μ,

Eθ[xx′] = Q + μμ′,

Eθ[I�n ] = 1.

(21)

Here I�n(x) = 1 if x ∈ 	n and 0 otherwise represents the indicator function. This problem has

been well studied under the class of moment problems in Isii [12] and Karlin and Studden [14]. To

solve Formulation (21), we construct the dual problem by introducing variables y, Y and y0 for

each of the moment constraints. The dual problem [12] is formulated as:

Z∗ = min
(
y′μ + Y .(Q + μμ′) + y0

)
s.t. y′x + x′Y x + y0 ≥ xn:n, ∀x ∈ 	n.

(22)

The constraints in Formulation (22) imply the non-negativity of a quadratic function over 	n. By

taking the expectation of the dual constraints, it is easy to see that Z∗ ≥ Z∗
n:n. Furthermore, Isii

[12] shows that if the covariance matrix Q 
 0 is strictly positive definite, then Z∗ = Z∗
n:n. Under

this assumption, the convexity of xn:n implies that the tight upper bound on the expected highest

order statistic is:

Z∗
n:n = min

(
y′μ + Y .(Q + μμ′) + y0

)
s.t. y′x + x′Y x + y0 ≥ xi, i = 1, . . . , n, ∀x ∈ 	n.

(23)

Let e(i) denotes a unit vector with the ith component e
(i)
i = 1 and 0 otherwise. The equivalence

between the global non-negativity of a quadratic polynomial and the semidefinite representation

[20] implies that Formulation (23) can be rewritten as:

Z∗
n:n = min

(
y′μ + Y .(Q + μμ′) + y0

)
s.t.

⎛
⎝ Y (y − ei)/2

(y − ei)′/2 y0

⎞
⎠ � 0, i = 1, . . . , n.

(24)
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Here A � 0 denotes the constraint that the matrix A is positive semidefinite. Formulation (24)

is a semidefinite optimization problem that can be solved within ε > 0 of the optimal solution in

polynomial time in the problem data and log(1
ε ) [19]. In practice, standard semidefinite optimization

codes such as SeDuMi [23] can be used to find the tight upper bound on the expected highest order

statistic under covariance information.

3 Bounds On Expected kth Order Statistic

In this section, we generalize our results to find bounds on the expected value of the kth order

statistic for k < n under mean-variance information on the random variables i.e.,

Z∗
k:n = sup

x∼θ(μ,σ2)

Eθ[xk:n].

Our results are based on the simple observation that:

xk:n ≤
∑n

i=k xi:n

n − k + 1
. (25)

We find tight bounds on the expected value of the right hand side of Eq. (25), to obtain bounds

on the expected value of the kth order statistic.

Theorem 5 The tight upper bound on the expected value of the sum of the kth to nth order statistic

given x∼θ(μ,σ2) is obtained by solving:

sup
x∼θ(μ,σ2)

Eθ[
n∑

i=k

xi:n] = min
z

(
(n − k + 1)z +

n∑
i=1

1
2

[
μi − z +

√
(μi − z)2 + σ2

i

])
. (26)

Proof. Using the result from Bertsimas, Natarajan and Teo [6], the upper bound on the sum of

the expected value of the kth to nth order statistic is:

sup
x∼θ(μ,σ2)

Eθ[
n∑

i=k

xi:n] = min
z

(
n∑

i=k

zi:n +
n∑

i=1

1
2

[
μi − zi +

√
(μi − zi)2 + σ2

i

])
. (27)

As before, Formulation (27) can be reduced to a single variable optimization problem. To see this,

let z∗ be an optimal solution to Problem (27). For any l < k with z∗l:n < z∗k:n, we can increase

z∗l:n to z∗k:n since the first term is unaffected (
∑n

i=k z∗i:n is unaffected by change in z∗l:n, for l < k,

provided z∗l:n < z∗k:n) while the second term decreases in z∗i:n. Hence, we have z∗l:n = z∗k:n for l < k.
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Furthermore for l > k with z∗l:n > z∗k:n, by decreasing z∗l:n to z∗k:n, the first term decreases at a

rate of 1 while the second term increases at a rate of at most 1. Since we want to minimize our

objective, we have z∗l:n = z∗k:n for l = 1, . . . , n.

Using Eq. (25) and Theorem 5, we now obtain a bound on the expected kth order statistic.

Theorem 6 An upper bound on the expected value of the kth order statistic Z∗
k:n given x∼θ(μ,σ2)

is obtained by solving:

Z∗
k:n ≤ min

z∈�
fk:n(z) = min

z

(
z +

n∑
i=1

1
2(n − k + 1)

[
μi − z +

√
(μi − z)2 + σ2

i

])
. (28)

Note that the non-convex structure of the kth order statistic for k < n implies that (28) is not

necessarily tight for general mean-variance pairs. However, (28) is at least as tight as (1) proposed

by Arnold and Groeneveld. This follows from observing that they obtain their bound also obtained

by bounding Eq. (25), though not in the tightest manner. A special case under which (28) is tight

is described next.

Identical mean and variance

For identical mean-variance pairs (μ, σ2), Eq. (28) yields the optimal value for z∗:

z∗ = μ + σ
2k − n − 2

2
√

(k − 1)(n − k + 1)
.

Substituting this into (28) yields:

sup
xi∼θ(μ,σ2)∀i

Eθ[xk:n] ≤ μ + σ

√
k − 1

n − k + 1
. (29)

This is exactly (2) obtained by Arnold and Groeneveld. To see that (29) is tight, consider a

distribution obtained by randomly selecting n elements without replacement from the set where

n − k + 1 elements has value μ + σ
√

(k − 1)/(n − k + 1) and the remaining k − 1 elements have

value μ − σ
√

(n − k + 1)/(k − 1). It is easy to verify that this distribution attains the bound as

described above.

13



General mean-variance pairs

For the general case, we propose the use of the bisection search algorithm to find the bound on the

expected kth order statistic by solving minz fk:n(z). The lower and upper bounds on the range of

the optimal z∗ to initialize the bisection search method in this case reduces to:

zu = max
1≤i≤n

(
μi + σi

2k − n − 2
2
√

(k − 1)(n − k + 1)

)
, (30)

and:

zl = min
1≤i≤n

(
μi + σi

2k − n − 2
2
√

(k − 1)(n − k + 1)

)
. (31)

Theorem 7 Two closed form upper bounds on the expected value of the kth order statistic given

x∼θ(μ,σ2) are:

Z∗
k:n ≤ fk:n

(
max

1≤i≤n

(
μi + σi

2k − n − 2
2
√

(k − 1)(n − k + 1)

))
, (32)

Z∗
k:n ≤ fk:n

(
min

1≤i≤n

(
μi + σi

2k − n − 2
2
√

(k − 1)(n − k + 1)

))
. (33)

4 Computational Results

In this section, we evaluate the quality of the various bounds proposed in this paper. The first

example is an application of the highest order statistic bound in a financial context. The second

example is a simulation experiment to compare the performance of the bounds for the general

kth order statistic. The computations were conducted on a Pentium II (550 MHz) Windows 2000

platform with the total computational time under a minute.

4.1 Application in option pricing

One of the central questions in financial economics is to find the price of a derivative security

given information on the underlying assets. Under a geometric Brownian motion assumption on

the prices of the underlying assets and using the no-arbitrage assumption, the Black-Scholes [7]

formula provides an insightful answer to this question. Assuming no-arbitrage, but without making

specific distributional assumptions, Lo [16], Bertsimas and Popescu [5] and Boyle and Lin [8] derive

14



moment bounds on prices of options. Our particular focus is on finding bounds on the price of an

option known as the lookback option under moment information on the asset prices.

Let x1, x2, . . . , xn denote the price of an asset at n different times. A simple lookback European

call option on these assets with strike price K ≥ 0 has a payoff of max (xn:n − K, 0). Let r denote

the risk free interest rate and T denote the maturity date. Under the no-arbitrage assumption, the

price of the lookback option is:

P (K) = e−rT Eθ [max (xn:n − K, 0)] , (34)

where the expectation is taken over the martingale measure. Clearly, the price of this option

depends on the highest order statistic. Under mean and variance information on xi, Boyle and Lin

[8] proposed the following upper bound on the price of the lookback option:

P (K) ≤ e−rT
n∑

i=1

1
2

[
μi − K +

√
(μi − K)2 + σ2

i

]
. (35)

We use the results from Section 2 to find the best bounds on P (K). Note that while the asset

prices are non-negative in practice, we do not model this explicitly here to compute our bounds.

The specific lookback option-pricing example is taken from Andreasen [1]. An upper bound on

price of a European call lookback option over n = 10 time steps is calculated. The risk free interest

rate (r) is 5% and the time to maturity (T) is 1 year. Table 4.1 provides the mean and variance

information of the asset prices over the ten periods.

Asset Mean μi Variance σ2
i Asset Mean μi Variance σ2

i

x1 100.50 40.48 x6 103.05 257.92

x2 101.00 81.94 x7 103.56 304.55

x3 101.51 124.4 x8 104.08 352.26

x4 102.02 167.87 x9 104.60 401.08

x5 102.53 212.37 x10 105.13 451.03

Table 1: Mean-variance data on asset prices from Andreasen [1].

The bounds on the option price are computed for strike prices K from 70 to 140 in steps of

10. Table 2 provides six bounds under mean-variance information and an additional bound under

covariance information. For the last bound, we assumed that the asset prices were uncorrelated

15



and solved Formulation (24) with the semidefinite optimization code SeDuMi. From Table 2, it is

observed that Boyle and Lin’s bound is very loose for small values of K. On average, our proposed

closed form bound (19) outperforms both Arnold and Groeneveld’s and Aven’s bound respectively.

While the closed form bound (20) is weaker for smaller K, it is in fact tight for larger K, indicating

its usefulness. In Figure 1, we provide the graphical comparison of the bounds (excluding Boyle

and Lin’s bound which is tight only for large K).

Bound/K 70 80 90 100 110 120 130 140

Tight mean-variance bd. (18) 75.38 65.87 56.35 46.84 37.33 27.81 19.58 14.82

Our closed form bd. (19) 78.00 68.49 58.98 49.46 39.95 30.44 20.93 14.82

Our closed form bd. (20) 85.49 75.97 66.46 56.95 45.71 28.14 19.58 14.82

Boyle & Lin bd. (35) 327.97 238.52 154.36 84.85 45.71 28.14 19.58 14.82

Arnold & Groeneveld bd. (1) 81.20 68.46 57.00 47.06 38.79 32.12 26.88 22.80

Aven bd. (3) 77.79 68.28 58.77 49.25 44.38 44.38 44.38 44.38

Tight mean-var-cov bd. (24) 73.23 63.73 54.25 44.79 35.40 26.41 19.30 14.75

Table 2: Upper bound on lookback call option price from Andreasen [1].
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Figure 1: Upper bound on lookback call option price from Andreasen [1].
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4.2 Simulation Test

The second example is a simulation test to compare the relative performance of the different bounds

under randomly generated moment information. We consider n = 30 random variables. The mean-

variance pairs for each random variable were independently chosen from a uniform distribution with

μi ∼ U [0, 50] and σ2
i ∼ U [100, 400]. Hundred mean-variance pairs were sampled in these ranges

and the bounds on the expected order statistics were computed. For each closed form bound, we

evaluate the relative percentage error:

Percentage error =
(

Closed form bound - Bisection search bound
Bisection search bound

)
× 100%.

For the highest order statistic, the percentage error of the bounds are provided in Figure 2 and

Table 3.
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Figure 2: Deviation of closed form bounds from tight bound on expected highest order statistic.

Bound Mean % error Std. dev % error

Our closed form bd. (15) 7.73 1.96

Our closed form bd. (16) 108.93 35.57

Arnold & Groeneveld bd. (1) 22.86 3.64

Aven bd. (3) 16.91 2.56

Table 3: Statistics of deviation of closed form bounds for expected highest order statistic.
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Note that in this case, the bisection search method finds the tight bound Z∗
n:n. In this case, our

closed form bound (15) performs the best while bound (16) is relatively weaker.

We next consider the results for a smaller order statistic. Since the upper bound for the smallest

order statistic Z∗
1:n from (25) simply reduces to

∑n
i=1 μi/n, we use the second smallest order statistic

Z∗
2:n to compare the bounds. For this case, the bisection search method does not guarantee finding

the tight bound. The results obtained are presented in Figure 3 and Table 4. For this case, our

closed form bound (16) is observed to be tightest among the closed form bounds with an average

percentage error of about 1%.
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Figure 3: Deviation of closed form bounds from bisection bound on second order statistic.

Bound Mean % error Std. dev % error

Our closed form bd. (32) 14.21 6.74

Our closed form bd. (33) 1.04 0.25

Arnold & Groeneveld bd. (1) 3.13 0.63

Table 4: Statistics of deviation of closed form bounds for expected second order statistic.

The simulation results seem to indicate that the two closed form bounds perform well in rea-

sonable settings. Interestingly, in each of the two simulations, the best closed form bounds were

observed to be one of our bounds. While cases can be constructed for which both the bounds

are weaker that either of Arnold and Groeneveld and Aven’s bounds, the results suggest that the

bounds are useful.
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5 Summary

In this paper, we studied the problem of finding tight bounds on the expected value of order

statistics under first and second moment information on the random variables. For the highest

order statistic, we showed the tight upper bound could be found efficiently under mean-variance

information with a bisection search method and under mean-variance-covariance information with

semidefinite programming. For the general kth order statistic, we provided efficiently computable

bounds (not necessarily tight) under mean-variance information. Finding tight bounds for the

general kth order statistic under mean-variance and possibly covariance information is a potential

research area for the future.
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