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Abstract. An important question in discrete optimization under uncertainty is to understand the persistency
of a decision variable, i.e., the probability that it is part of an optimal solution. For instance, in project man-
agement, when the task activity times are random, the challenge is to determine a set of critical activities that
will potentially lie on the longest path. In the spanning tree and shortest path network problems, when the
arc lengths are random, the challenge is to pre-process the network and determine a smaller set of arcs that
will most probably be a part of the optimal solution under different realizations of the arc lengths. Building
on a characterization of moment cones for single variate problems, and its associated semidefinite constraint
representation, we develop a limited marginal moment model to compute the persistency of a decision variable.
Under this model, we show that finding the persistency is tractable for zero-one optimization problems with a
polynomial sized representation of the convex hull of the feasible region. Through extensive experiments, we
show that the persistency computed under the limited marginal moment model is often close to the simulated
persistency value under various distributions that satisfy the prescribed marginal moments and are generated
independently.
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1. Introduction

In recent years, there has been a flurry of activity devoted to studying discrete optimi-
zation problems under data uncertainty (cf. [11], [6], [1]). Consider the discrete optimi-
zation problem:

Zmax(c̃) = max

{
c̃′x : x ∈ X ⊆ {0, 1}n

}
, (1)

where X denotes the set of feasible solutions. Suppose the objective coefficients c̃ in
Zmax(c̃) are randomly generated. For ease of exposition, we will assume that the set of c̃

such thatZmax(c̃) has multiple optimal solutions has a support with measure zero. Hence
for a given objective, the discrete optimization problem has a unique solution. Towards
the goal of obtaining insight into the structure of optimal solutions, we would like to
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For arc 1:
Mean = 10.2, Variance = 4

For all others arcs:
Mean = 10, Variance = 4

Fig. 1. Deterministic critical path for small sized project from Van Slyke [19]

find the probability that xi = 1 in the optimal solution to Zmax(c̃), which we define as
follows.

Definition 1. The persistency of a variable xi is defined to be the probability that xi = 1
in the optimal solution to Zmax(c̃).

In this paper, we use semi-definite and second-order cone programming to propose
an approach to calculate the persistency1 of decision variables in discrete optimization
problems under probabilistic information on the objective coefficients. Convex pro-
gramming techniques have been well developed in the framework of moment problems
to compute bounds on expected functions of random variables. Problems that have been
tackled under this method include computing bounds on prices of options [3], probabili-
ties that a random vector lies in a semi-algebraic set [2, 12], expected order statistics [5]
and expected optimal objective value of combinatorial optimization problems [4]. While
these approaches focus on computing tight bounds, there has not been much research
on obtaining insights into the structure of the solutions under uncertainty. We concretize
this problem with an application from project management.

To illustrate the importance of persistence, we use a small project from Van Slyke
[19] with eight activities (denoted by arcs) distributed over five paths that need to be com-
pleted. The data for the non-negative activity durations include the mean and variance
information. Consider the project network and the activity data in Figure 1. The longest
path in this graph measures the time to complete the project. The classical CPM/PERT
method [15] uses the expected value of the activity durations to compute the critical
(longest) path. Using this approach would identify activities 1 and 2 as critical with an
expected duration of 20.2 for the longest path.

Unfortunately, the deterministic approach does not identify the right set of critical
activities under data variation. To see why, we simulate the project performance under

1 In an earlier work, Adams, Lassiter and Sherali studied the question, to what extent the solution to an
LP relaxation can be used to fix the value of 0-1 discrete optimization problems. They termed this the persis-
tency problem of 0-1 programming model. The motivation of their work, however is different from ours. See
Adams, W.P., Lassiter, J.B., and Sherali, H.D., Persistency in 0-1 Polynomial Programming, Mathematics of
Operations Research., Vol. 23, No. 2, 359–389, (1998).



Persistence in discrete optimization under data uncertainty 253

Table 1. Project statistics for the project from Van Slyke [19]

CPM Simulation

Expected duration 20.20 22.98
Criticality (1,2) 1.000 0.285
Criticality (3) 0.000 0.715
Criticality (4-8) 0.000 0.143

normally distributed and independent activity durations with the given means and vari-
ances. Table 1 indicates the probability that an activity lies on the longest path (termed
as criticality index in [19]).

Clearly, the classical method under-estimates the expected duration of the longest
path. Furthermore it fails to identify activity 3 as critical. The importance of this activity
under data perturbation is evident from the simulation. It is likely to lie on the longest
path due to the larger number of parallel paths in the upper part of the graph. Using a
deterministic approach would imply that the project manager focuses on the wrong path
71.5 percent of the time!

In the context of project management, persistency as defined in Definition 1 reduces
to the notion of criticality indices. It specifies the probability that an activity (decision
variable) will lie on the longest path (equal to 1). Computing and identifying this per-
sistence information is useful from a practical perspective. It helps the project manager
identify and monitor activities that will have the largest potential to contribute to delays
in the completion of the project. In other problems, say for instance the spanning tree
and route guidance problems, persistency information can be used to pre-process the
network and remove arcs that with high probability are not used in an optimal solution.
This allows for problems to be resolved on much smaller networks.

Given a distribution for c̃, the problem of finding the persistency of the variables is in
general NP-hard. For example, given that each objective coefficient c̃i takes two possible
values and the objective coefficients are independently distributed, we need to solve 2n

discrete optimization problems to find the persistency. Another complicating factor that
arises in applications is often the incomplete knowledge of distributions (cf. [4]).

In this paper, we formulate a parsimonious model to compute the persistency, by
specifying only the range and marginal moments of each c̃i in the objective function.
The complete distributional information on c̃ and the dependence structure of the c̃i are
not known. We solve the following model:

sup
θ∈�

Eθ

(
Zmax(c̃)

)
,

where � represents the class of distributions with the prescribed range and marginal
moments for each c̃i . We show that the above model is tractable for discrete optimiza-
tion problems where a polynomial sized representation of the convex hull of the feasible
region is known. Particularly, by solving a convex program, we show that the primal
solutions can be interpreted as persistence of the variables under the distribution that
realizes the above supremum either exactly or asymptotically.
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Note that a striking feature of our model is the omission of cross moment information
among the different random objective coefficients. We do not incorporate constraints to
capture conditions such as independently distributed objective coefficients or specifi-
cally correlated coefficients. In the latter case, it is conceivable that the estimates pro-
vided by our limited marginal moment model may not be precise enough for practical
use. Fortunately, extensive experiments seem to indicate that the estimates provided
by our model are generally close to the estimates obtained from simulations, provided
the random objective coefficients are generated independently. In fact, when the coeffi-
cients are independently and normally distributed, our limited marginal moment model
using range and the first two moment information already yields good estimates for the
persistency values in most cases.

Structure and contributions of the paper:

1. In Sect. 2, we review the duality theory of moment cones and non-negative poly-
nomials and their associated convex cone representations. Particularly, we focus on
the characterization of moment cones for single variate problems and their link with
positive semi-definite and second-order cone constraints. This forms the basis of our
solution methodology for solving the persistency problem.

2. In Sect. 3, we propose a model using limited marginal moment information on
the random objective coefficients, to compute the persistency of decision variables.
Under this model, we solve the persistency problem with a convex optimization
approach and show that the formulation is tight in the limit under the prescribed
moments. Furthermore, for a large class of discrete optimization problems, this for-
mulation is shown to be solvable in polynomial time.

3. In Sect. 4, we review generalizations and extensions of the model. In particular, we
consider the situation where the moments of the objective coefficients are not explic-
itly given. Instead, each coefficient is expressed as a (random) solution to another
0-1 stochastic optimization problem with known moment constraints. Interestingly,
the approach outlined in this paper applies to this more general problem.

4. In Sect. 5 and Sect. 6, we study the persistency issue in project management and
spanning tree problems. Experimental results indicate the potential of the marginal
moment model in computing the persistency in discrete optimization problems.

2. Review: Moments, Polynomials and Convex Optimization

Let P2k(�) denote the cone of univariate non-negative polynomials over the support
set �:

P2k(�) : =
{
z ∈ �2k+1 : z0 + z1t + · · · + z2kt

2k ≥ 0 for all t ∈ �
}
.

Let M2k(�) denote the conic hull of all vectors of the form (1, tj , . . . , t2kj ) for
tj ∈ �:

M2k(�) : =
{
y ∈ �2k+1 : y =

∑
j

αj (1, tj , . . . , t
2k
j ) for all tj ∈ � with αj ≥ 0

}
.
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It follows from the definitions above that y ∈ M2k(�) (the moment cone) if and only if:

M2k(�) =
{
y ∈ �2k+1 : y = y0(1, E[c̃], . . . , E[c̃2k])

for some r.v. c̃ with support � and y0 ≥ 0
}
.

The dual of this moment cone is:

M2k(�)
∗ =

{
z ∈ �2k+1 : z′y ≥ 0 for all y ∈ M2k(�)

}
.

It is easy to see that M2k(�)
∗ = P2k(�), and hence it follows that:

M2k(�)= P
∗
2k(�),

i.e. the closure of the moment cone is precisely the dual cone of the set of non-negative
polynomials on �.

For univariate random variables, the cone of moments and non-negative polynomi-
als can be equivalently represented with convex constraints. The moment conditions are
related to positive semidefinite conditions on Hankel matrices. We use the notation from
[10], [21] to define Hankel matrices. Let Mk(t) denote the rank one matrix:

Mk(t) =




1 t . . . tk

t t2 . . . tk+1

...
...

. . .
...

tk+1 tk+2 . . . t2k


 .

Let Mk(t)|y denote the basic Hankel matrix obtained by replacing monomial t i by yi :

Mk(t)|y =




y0 y1 . . . yk
y1 y2 . . . yk+1
...

...
. . .

...

yk+1 yk+2 . . . y2k


 .

Proposition 1. The closure of the moment cone for univariate random variables can be
equivalently represented as positive semidefinite conditions on Hankel matrices of the
form:

M2k(�)=
{
y ∈ �2k+1 : Mk(t)|y � 0

}

M2k(�+)=
{
y ∈ �2k+1 : Mk(t)|y � 0, tMk−1(t)|y � 0

}

M2k+1(�+)=
{
y ∈ �2(k+1) : Mk(t)|y � 0, tMk(t)|y � 0

}

M2k([0, 1])=
{
y ∈ �2k+1 : Mk(t)|y � 0, tMk−1(t)|y − t2Mk−1(t)|y � 0

}

M2k+1([0, 1])=
{
y ∈ �2(k+1) : tMk(t)|y � 0, Mk(t)|y − tMk(t)|y � 0

}
.
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These results follow from well-known representations for the (truncated) Hamburger,
Stieltjes and Hausdorff moments problem [12]. It should be noted, that the notion of the
closure is introduced here since only a sequence of measures might exist that achieves the
moments asymptotically. An example of such a moment vector is y = (1, 0, 0, 0, 1) ∈
M4(�) with M2(t)|y � 0 but M2(t)|y � 0. In this case, only the limit of a sequence of
measures can be found that achieves the moments (cf. Example 2.37 on Pg. 66 in [7]).
Moment representations of other intervals can be obtained from simple transformations
of these Hankel matrices. In fact, under only first and second moment information, the
moment cone can be characterized with second order cone constraints.

Proposition 2. The closure of the moment cone for univariate random variables given
first and second moments can be equivalently represented as second order cone con-
straints of the form:

M2(�) =
{
y ∈ �3 : (y0 + y2) ≥

√
(y0 − y2)

2 + 4y2
1

}

M2(�+) =
{
y ∈ �3 : (y0 + y2) ≥

√
(y0 − y2)

2 + 4y2
1 , y1 ≥ 0

}

M2([0, 1]) =
{
y ∈ �3 : (y0 + y2) ≥

√
(y0 − y2)

2 + 4y2
1 , y1 ≥ y2

}
.

Proof. This result follows from the equivalence of a 2 × 2 positive semidefinite matrix
and a second order cone constraint. Note that:

(
y0 y1
y1 y2

)
� 0 ⇐⇒ y0 ≥ 0, y2 ≥ 0, y0y2 ≥ y2

1

⇐⇒ (y0 + y2) ≥
√
(y0 − y2)

2 + 4y2
1 .

Combining with Proposition 1, we obtain the desired second order cone representa-
tion. 
�

3. Marginal Moment Model: Formulation and Analysis

In Problem (1), we assume that we are given the first ji moments for each objective
coefficient c̃i .Any feasible marginal distribution θi satisfiesEθi (c̃

j
i )=mij , j = 0, . . . , ji

with the support of the distribution in�i . We denote the vector of marginal moments as
mi = (mi0,mi1, . . . , miji ) wheremi0 : = 1. Let� denote the set of multivariate distri-
butions θ on c̃ such that the marginal distributions satisfy the moment requirements for
each c̃i . We refer to this model as the Marginal Moments Model (MMM) [4]. We define:

Z∗
max = sup

θ∈�
Eθ

(
Zmax(c̃)

)
, (2)

and assume that the convex hull CH(X ) is characterized by the set of constraints
Ax ≤ b.
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Let xi(c̃) denote the value of the variable xi in the optimal solution to Problem (1)
obtained under c̃. When c̃ is random, xi(c̃) is a random variable. In our problem, xi(c̃) ∈
{0, 1}. The objective function can then be expressed as:

Eθ

(
Zmax(c̃)

)
= Eθ

( n∑
i= 1

c̃ixi(c̃)

)

=
n∑

i= 1

(
Eθ

(
c̃ixi(c̃)

∣∣∣xi(c̃)= 1
)
Pθ(xi(c̃)= 1

)

+Eθ
(
c̃ixi(c̃)

∣∣∣xi(c̃)= 0
)
Pθ(xi(c̃)= 0)

)

=
n∑

i= 1

(
Eθ

(
c̃i

∣∣∣xi(c̃)= 1
)
Pθ(xi(c̃)= 1)

)
.

We define

wij (k)=Eθ
(
c̃
j
i

∣∣∣xi(c̃)= k
)
Pθ(xi(c̃)= k).

and obtain

Eθ

(
Zmax(c̃)

)
=

n∑
i= 1

wi1(1). (3)

Since Problem (1) is a 0-1 optimization problem, we have

mij = Eθ

(
c̃
j
i

)
=

1∑
k= 0

Eθ

(
c̃
j
i

∣∣∣xi(c̃)= k
)
Pθ(xi(c̃)= k)=

1∑
k= 0

wij (k). (4)

Furthermore,Eθ(xi(c̃))=Pθ(xi(c̃)= 1)=wi0(1). Since the vector (x1(c̃), . . . , xn(c̃))∈
CH(X ) for all realizations of c̃, taking expectations, we have:

(
w10(1), w20(1), . . . , wn0(1)

)
∈ CH(X ). (5)

This brings us to the following result.

Theorem 1. Z∗
max is computed by solving:

Z∗
max = sup

n∑
i= 1

wi1(1) (6a)

s.t. wi(1)+ wi(0)= mi, i= 1, . . . , n (6b)

A(w10(1), w20(1), . . . , wn0(1)) ≤ b, (6c)

wi(k) ∈ Mji (�i), i= 1, . . . , n, k= 0, 1. (6d)
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Note that to compute Z∗
max, we have introduced the decision vector:

wi(k) : = (wi0(k), wi1(k), . . . , wiji (k))

in place of variable xi in Problem (2). Then (6a), (6b) and (6c) follow from (3), (4) and
(5) respectively. (6d) follows from the requirement that the (conditional) moments wi(k)

must lie in the closure of the moment cone Mji (�i) implying that they are valid moments
or limit of a sequence of valid moments. It is thus clear that the above formulation con-
stitutes a valid relaxation forZ∗

max. To see that the bound obtained is tight, we provide an
approach to construct extremal distributions that achieves the bound in Formulation (6).
Particularly under the marginal moment model, we identify the persistence of variables
in the extremal distributions that exactly or asymptotically achieve Z∗

max. This yields a
proof to Theorem 1.

Lemma 1. Let an optimal solution to Formulation (6) be denoted by w∗
i (1),w

∗
i (0)

for all i. Then, there exists an extremal distribution θ∗ that exactly or asymptotically
achieves the bound Z∗

max and satisfies the marginal moment requirements. Under θ∗,
w∗

i (1) and w∗
i (0) are proportional to the moments of the distribution of c̃i conditional

on whether xi = 1 or 0 in the optimal solution. Furthermore,w∗
i0(1)=Pθ∗(xi(c̃)= 1) is

the persistence of variable xi in the optimal solution.

Proof. We construct a (limiting sequence of) distribution(s) that attains the tight upper
boundZ∗

max in the following manner. Letp ∈ {1, . . . , P } denote the set of extreme point
solutions to Problem (1).We letxi[p] denote the value of thexi variable at thepth extreme
point. In our problem, xi[p] ∈ {0, 1}. Eq. (6c) implies that (w∗

10(1), . . . , w
∗
n0(1)) lies in

the convex hull of the set of 0-1 feasible solutions. Expressing it as a convex combination
of the extreme points implies that there exist a set of numbers λ∗

p such that:

(i) λ∗
p ≥ 0 for all p= 1, . . . , P

(ii)
P∑

p= 1

λ∗
p = 1

(iii) w∗
i0(1)=

∑
p:xi [p] = 1

λ∗
p for all i= 1, . . . , n.

Clearly, the numbers λ∗
p are not necessarily unique. The moment condition (6d) implies

that there exists a (limiting) sequence of measures with moments w∗
i (1) and w∗

i (0)with
support contained in �i . We now generate the multivariate distribution θ∗ as follows:

(a) Choose a feasible solution p ∈ {1, . . . , P } to the nominal problem with probability
λ∗
p

(b) Generate c̃i ∼ w∗
i (1)/w

∗
i0(1) for i s.t. xi[p] = 1 and c̃i ∼ w∗

i (0)/w
∗
i0(0) for i s.t.

xi[p] = 0.

Here, c̃i ∼ w∗
i (1)/w

∗
i0(1) means that we choose a distribution with moments wi

∗(1)/
w∗
i0(1). Note that if w∗

i0(1)= 0, then λ∗
p = 0 for all p s.t. xi[p] = 1, i.e. the feasible



Persistence in discrete optimization under data uncertainty 259

solutions with xi = 1 are not chosen in the extremal distribution. Under this distribution,
the marginal moments for c̃i are computed as follows.

Moment vector for c̃i

=
∑

p:xi [p] = 1

λ∗
p

(
w∗

i (1)

w∗
i0(1)

)
+

∑
p:xi [p] = 0

λ∗
p

(
w∗

i (0)

w∗
i0(0)

)

=w∗
i0(1)

(
w∗

i (1)
w∗
i0(1)

)
+ (1 − w∗

i0(1))

(
w∗

i (0)
w∗
i0(0)

)
[From (ii) & (iii)]

= w∗
i (1)+ w∗

i (0)= mi .

Furthermore, under c̃, if we simply pick the pth solution with probability λ∗
p, instead of

solving for Z∗
max(c̃), we have

Eθ∗ [Zmax(c̃)] ≥
P∑

p= 1

λ∗
p


 ∑
i:xi [p] = 1

w∗
i1(1)

w∗
i0(1)




=
n∑

i= 1

w∗
i1(1)

w∗
i0(1)


 ∑
p:xi [p] = 1

λ∗
p




=
n∑

i= 1

w∗
i1(1) [From (iii)].

Since θ∗ generates either exactly or asymptotically an expected optimal objective value
that is greater than or equal to the optimal solution from Formulation (6) and satisfies
the marginal moment requirements, it attains Z∗

max. Clearly under θ∗, w∗
i (1) and w∗

i (0)
are proportional to the moments of c̃i conditional on whether xi = 1 or 0 in the optimal
solution to Zmax(c̃). Furthermore, w∗

i0(1) is the persistence of variable xi in the optimal
solution. 
�

Remarks.

(a) For zero-one optimization problems with a known polynomial sized representation
of the convex hull of the feasible region, Formulation (6) is solvable in polynomial
time. This implies that for the longest path problem on a directed acylic graph, lin-
ear assignment problem, network flow problems like shortest path and spanning tree
problems, the persistency problem as defined is solvable in polynomial time.

(b) Formulation (6) can be viewed as the primal moment’s version to the polynomial
optimization formulation to compute Z∗

max developed in Bertsimas, Natarajan and
Teo [4]:
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Z∗
max = min

(
p′b +

n∑
i= 1

yi
′mi

)

s.t. yi + (0,−1, di) ∈ Pji (�i), i= 1, . . . , n

yi ∈ Pji (�i), i= 1, . . . , n

p′A = d ′

p ≥ 0.

(7)

The advantage in the primal formulation is that we obtain important insights into the
persistence of decision variables of discrete optimization problems.

4. Extensions

We now show that the conditional moments approach can be extended to computing per-
sistency for more general two-step discrete optimization problems. The class of two-step
discrete optimization problems that we study is described next.

Inner Step: In the inner step, we considerR different discrete optimization problems:

Zmax(c̃
r)= max

{
c̃r ′xr : xr ∈ X r ⊆ {0, 1}nr

}
for r = 1, . . . , R, (8)

where X r is the set of feasible solutions for the rth problem and c̃r : = (c̃r1, . . . , c̃rnr ) are
the random objective coefficients for the rth problem, with given moment constraints.

Outer Step: In the outer step, we consider a single discrete optimization problem that
links the R inner discrete optimization problems as follows:

Zmax(c̃
1, . . . , c̃R)= max

{ R∑
r = 1

Zmax(c̃
r)yr : (y1, . . . , yR) ∈ Y ⊆ {0, 1}R

}
, (9)

where the decision vector y : = (y1, . . . , yR) lies in the 0-1 feasible region Y . We would
like to estimate the persistency of the variable yr (i.e., the probability that the coefficient
Zmax(c̃

r) will be a part of the optimal solution) and the persistency of the variable xri
(i.e., the probability that xri will take a value of 1 in the optimal solution), given that
yr = 1 in the optimal solution.

Such two-step optimization problems can be used to study:

(a) Multiobjective optimization problems: Consider the case where the feasible region
for the R inner optimization problems are the same, i.e., X 1 = · · · = XR = X and
n1 = · · · = nR = n. Let c̃1, . . . , c̃R denote R different objective vectors for the
discrete optimization problem. Then, Zmax(c̃

1, . . . , c̃R) represents a possible for-
mulation to find a good solution to this multiobjective problem. For example, when
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Y =
{
y ∈ {0, 1}R :

∑R
i= 1 yi = 1

}
, Zmax(c̃

1, . . . , c̃R) reduces to max

{
Zmax(c̃

r) :

r = 1, . . . , R

}
, which is equivalent to

max

{
max

(
c̃r ′xr : xr ∈ X

)
: r = 1, . . . , R

}

= max

{
max

(
c̃1

′
x, . . . , c̃R ′

x

)
: x ∈ X

}
.

Under randomly generated coefficients c̃r , we focus on computing the persistency in
this multiobjective optimization problem. In the outer step, persistency identifies the
importance of the rth objective among the R different objectives. In the inner step,
persistency identifies the probability that the variable xri takes a value of 1 given
that the rth objective is persistent among the R different objectives. The variable∑R
r = 1 x

r
i yr can be used to identify the persistency that the variable xi takes a value

of 1 in the optimization problem under data uncertainty:

max

{
max

(
c̃1

′
x, . . . , c̃R ′

x

)
: x ∈ X

}
.

(b) Portfolio of optimization problems: Consider the case where one solves R differ-
ent discrete optimization problems with the rth problem denoted as Zmax(c̃

r). If
the solution of each problem requires the utilization of certain capacitated pool of
resources, then not all the discrete optimization problems can be solved at the same
time. In this case, Zmax(c̃

1, . . . , c̃R) represents a possible formulation to identify
the important problems in this portfolio of optimization problems with respect to the
feasible region Y . Under uncertainty in the objective coefficients, persistency in the
outer step identifies the importance of the rth optimization problem and persistency
in the inner step identifies the probability that the variable xri takes a value of 1 given
that the rth problem is included among the optimization problems to be solved.

We now show how marginal moment information can be used to study two-step
discrete optimization problems of the type defined under data uncertainty. As before, we
assume that for each objective coefficient c̃ri , we know a limited set of marginal moments
mr

i . We let � denote the feasible set of multivariate distributions θ for the combined
objective vector (c̃1, . . . , c̃R) that satisfy the marginal moment requirements. We are
interested in solving the following model:

Z∗
max = sup

θ∈�
Eθ

(
Zmax(c̃

1, . . . , c̃R)

)
. (10)

We assume that the convex hull of the feasible region for the rth problem CH(X r ), is
characterized by the set of constraints Arxr ≤ br . Similarly, we assume that the convex
hull of the feasible region of the variables in the outer step problem CH(Y) are char-
acterized by the set of constraints Gy ≤ g. We can then express Formulation (9) as an
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equivalent non-linear integer optimization problem:

Zmax(c̃
1, . . . , c̃R) = max

( R∑
r = 1

yr c̃
r ′xr

)

s.t Arxryr ≤ bryr , r = 1, . . . , R
Gy ≤ g.

We let xri (c̃) denote the value of the variable xri in the optimal solution obtained under
c̃. In addition, we let yr(c̃) denote the corresponding optimal 0-1 solution for yr . The
variables yr are used to model the outer stage problem and incorporating it in the convex
marginal moments model is the key contribution in this Section. We next state the main
result for two-step discrete optimization problems of the type defined under marginal
moment constraints and then sketch the proof.

Theorem 2. Z∗
max is computed by solving:

Z∗
max = sup

R∑
r = 1

nr∑
i= 1

wri1(1) (11a)

s.t. wr
i (1)+ wr

i (0)= mr
i , i= 1, . . . , nr , r = 1, . . . , R (11b)

Ar(wr10(1), . . . , w
r
nr0(1)) ≤ bryr , r = 1, . . . , R (11c)

G(y1, . . . , yR) ≤ g, (11d)

wr
i (k) ∈ Mjri

(�ri ), i= 1, . . . , nr , r = 1, . . . , R, k= 0, 1.

(11e)

For the extremal distribution θ∗ that exactly or asymptotically achievesZ∗
max, wr∗

i (1)and
wr∗

i (0) are proportional to the moments of the distribution of c̃ri conditional on whether
xri yr = 1 or 0 in the optimal solution. Furthermore, wr∗i0 (1)=Pθ∗(xri (c̃)yr(c̃)= 1) is
the persistence of variable xri yr in the optimal solution and y∗

r =Pθ∗(yr(c̃)= 1) is the
persistence of variable yr in the optimal solution.

Proof. To prove the result, we introduce two sets of decision variables:

wrij (k)=Eθ
(
(c̃ri )

j
∣∣∣xri (c̃)yr(c̃)= k

)
Pθ(x

r
i (c̃)yr(c̃)= k),

and with a slight abuse of notation:

yr =Pθ(yr(c̃)= 1).
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Clearly for the two-step discrete optimization problem, xri (c̃)yr(c̃) ∈ {0, 1}. Condition-
ing based on this, we express the objective function in Zmax(c̃

1, . . . , c̃R) as:

Eθ

(
Zmax(c̃

1, . . . , c̃R)

)
= Eθ

( R∑
r = 1

nr∑
i= 1

c̃ri x
r
i (c̃)yr(c̃)

)

=
R∑
r = 1

nr∑
i= 1

(
Eθ

(
c̃ri x

r
i (c̃)yr(c̃)

∣∣∣xri (c̃)yr(c̃)= 1
)

×Pθ(xri (c̃)yr(c̃)= 1)

+Eθ
(
c̃ri x

r
i (c̃)yr(c̃)

∣∣∣xri (c̃)yr(c̃)= 0
)

×Pθ(xri (c̃)yr(c̃)= 0)

)

=
R∑
r = 1

nr∑
i= 1

wri1(1).

FurthermoreEθ(xri (c̃)yr(c̃))=Pθ(xri (c̃)yr(c̃)= 1)=wri0(1) andEθ(yr(c̃))=Pθ(yr(c̃)
= 1)= yr . Since:

Arxr(c̃)yr(c̃) ≤ bryr(c̃),

we can take expectations on both sides to obtain (11c):

Ar(wr10(1), . . . , w
r
nr0(1)) ≤ bryr .

Similarly, constraints (11b) and (11d)–(11e) follow from the variable definitions and the
moment restrictions. Hence, Formulation (11) provides a valid relaxation to compute an
upper bound on Z∗

max.
We next construct a distribution θ∗ that attains the bound Z∗

max either exactly or
asymptotically. The construction is based on a two step convex decomposition, first in
the variables yr and then in the variables xr :

(a) Express the optimal (y∗
1 , . . . , y

∗
R) as a convex combination of the extreme points of

the 0-1 feasible region Y defined by constraints (11d). Particularly, we choose the
extreme point (y1[q], . . . , yR[q]) with probability ψ∗

q for the set of extreme points
q ∈ {1, . . . ,Q}.

(b) Based on the decomposition in (a), for a particular r ∈ {1, . . . , R}, we need to
consider two possible cases:

Case 1. Suppose yr [q] = 1. Since (wr∗10(1)/y
∗
r , . . . , w

r∗
nr0
(1)/y∗

r ) lies in the convex hull
of the set of 0-1 feasible solutions, we can express it as a convex combination of the
extreme points of X r . Particularly, for the set of extreme points p ∈ {1, . . . , Pr}, we
choose the pth feasible solution with probability λrp

∗. We generate c̃ri as follows:

(a) Choose a feasible solution p ∈ {1, . . . , Pr} to the nominal problem with probability
λrp

∗
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(b) Generate c̃ri ∼ wr∗
i (1)/wr∗i0 (1) for i : xi[p] = 1 and c̃i ∼ wr∗

i (0)/wr∗i0 (0) for
i : xi[p] = 0.

Case 2. Suppose yr [q] = 0. We generate c̃ri as follows:

(a) Generate c̃ri ∼ wr
i (0)/w

r
i0(0) for all i.

With this two-step construction, the moment vector for c̃ri for each i, r is:

∑
q:yr [q] = 1

ψ∗
q

{ ∑
p:xi [p] = 1

λr∗p

(
wr∗

i (1)

wr∗i0 (1)

)
+

∑
p:xi [p] = 0

λr∗p

(
wr∗

i (0)

wr∗i0 (0)

)}

+
∑

q:yr [q] = 0

ψ∗
q

{
wr∗

i (0)

wr∗i0 (0)

}

=
∑

q:yr [q] = 1

ψ∗
q

{
wr∗i0 (1)
y∗
r

(
wr∗

i (1)

wr∗i0 (1)

)
+
(

1 − wr∗i0 (1)
y∗
r

)(
wr∗

i (0)

wr∗i0 (0)

)}

+
∑

q:yr [q] = 0

ψ∗
q

{
wr∗

i (0)

wr∗i0 (0)

}

= wr∗
i (1)+ (y∗

r − wr∗i0 (1))
(

wr∗
i (0)

wr∗i0 (0)

)
+ (

1 − y∗
r

) (wr∗
i (0)

wr∗i0 (0)

)

= wr∗
i (1)+ wr∗

i (0)= mr
i .

The extremal distribution θ∗ hence satisfies the marginal moment requirements for each
c̃ri . Furthermore, we have:

Eθ∗ [Zmax(c̃
1, . . . , c̃R)] ≥

Q∑
q = 1

ψ∗
q




∑
r:yr [q] = 1




Pr∑
p= 1

λr∗p


 ∑
i:xi [p] = 1

wr∗i1 (1)
wr∗i0 (1)








=
Q∑
q = 1

ψ∗
q




∑
r:yr [q] = 1




nr∑
i= 1

wr∗i1 (1)
wr∗i0 (1)


 ∑
p:xi [p] = 1

λr∗p








=
Q∑
q = 1

ψ∗
q




∑
r:yr [q] = 1

{
nr∑
i= 1

(
wr∗i1 (1)
y∗
r

)}


=
R∑
r = 1




∑
q:yr [q] = 1

ψ∗
q

(
nr∑
i= 1

wr∗i1 (1)
y∗
r

)


=
R∑
r = 1

nr∑
i= 1

wr∗i1 (1),

which proves the desired result. 
�
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5. Application in Project Management

We now study an application of solving the persistency problem in project management.
The deterministic problem specifies a directed acyclic graph representation of a project
where arcs denote activities. The arc lengths denote time to complete individual activities
and the longest path from the start node s to end node t measures the time to complete
the project. Formally, the problem is defined as:

Given a directed acyclic graphG(V ∪ {s, t}, E) with (non-negative) arc lengths c̃ij
for arcs (i, j), find the longest path from s to t.

This problem can be formulated as a linear optimization problem:

Zmax(c̃)= max
∑

(i,j)∈E
c̃ij xij

s.t.
∑

j :(i,j)∈E
xij −

∑
j :(j,i)∈E

xji =



1, if i= s,
−1, if i= t,
0, if i ∈ V ,

xij ≥ 0, ∀(i, j) ∈ E,

(12)

and is well known to be solvable in polynomial time. Furthermore, there exist even more
efficient algorithms to solve this problem [13]. In the stochastic project management
problem, the arc lengths c̃ij are random. Under uncertainty, we need to identify the
persistent (critical) activities for the project manager to focus on.

5.1. Computational Tests

The computations to compare our marginal approach with more traditional project man-
agement techniques were carried out on a Windows XP platform on a Pentium IV
2.4 GHz machine. The solver for semidefinite, second order cone and linear optimiza-
tion in SeDuMi version 1.05 [18] was integrated with MATLAB 6.5 to test the method.
The network flow formulation (12) was incorporated into Formulation (6) to solve the
marginal moment model.

Example 1. Importance of incorporating variability
We first study the project from Van Slyke [19] under our marginal moments model.

As observed earlier, the behavior of this small and seemingly simple project is altered
drastically under uncertainty.

We use Monte Carlo Simulations (MCS) to analyze the project. Four different distri-
butions with 20000 samples for each were used to simulate the project performance. The
first three distributions were multivariate normal N(µ,Q) with mean µ and covariance
matrix Q. The correlation between all activities were set to zero except for activities
1 and 3 which was varied in {−1, 0, 1}, to capture some possible dependencies. The
fourth distribution simulated was a triangular distribution T ri(c,m, c) specified by three
parameters – the minimum (c), mode (m) and maximum value (c). Under independence,
we set these three estimates to (7.2, 7.55, 15.85) for activity 1 and (7.14, 7.2, 15.66) for
the remaining activities. All the distributions were chosen to match the known means
and variances for the activity durations. Lastly, we use our proposed marginal moments
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Table 2. Project statistics for small sized project from Van Slyke [19]

Method PERT MCS MMM
Data µ Normal (µ,Q) T ri(c,m, c) (µi ,Qii )

Dependence - σ13 = − 1 σ13 = 0 σ13 = 1 Independence Arbitrary

Expected duration 20.2 23.33 22.98 22.56 23.16 26.30
Persistency (1,2) 1.0 0.325 0.285 0.190 0.260 0.345
Persistency (3) 0.0 0.675 0.715 0.810 0.740 0.655
Persistency (4-8) 0.0 0.135 0.143 0.162 0.148 0.131

model (MMM) with range [0,∞) and known mean and variance information for the
activities. Without assuming the exact distribution, the worst case expected comple-
tion time is computed by solving Formulation (6). The complete project statistics with
the persistency (criticality indices) of the activities are provided in Table 2. The total
computational times were under 5 CPU sec for this problem.

From Table 2, it is clear that persistency is sensitive to the correlation structure
as should be expected. In fact, as the degree of dependence among activity durations
increases, these variations in persistency could potentially become significant. Nonethe-
less, our marginal moment model identifies arc 3 as the most critical arc, in agreement
with the simulation results obtained for different distributions.

Example 2. Comparison with other worst case approaches
The second example is a larger project taken from Kleindorfer [8]. The project con-
sists of forty activities distributed over fifty one paths. The data for activity durations is
provided in Table 3.

The moment based approach for this project is compared with other worst case
approaches developed by Meilijson and Nadas [16] and Klein Haneveld [9]. Under com-
plete marginal distribution information (MDM), namely c̃i ∼ θi , but with no assumption
on the dependence the problem that they solve is:

sup
c̃i∼θi∀i

E
(
Zmax(c̃)

)
= min

d

(
Z∗

max(d)+
n∑

i= 1

Eθi [c̃i − di]
+
)
.

This problem is the dual to a limiting version of our MMM approach [4], provided
the (infinite) moment sequences uniquely characterize the probability distribution under
study. To solve this model, successive piecewise linearization has been proposed in [17].
Such an approach is cumbersome due to lack of precision demonstrating an additional
advantage of our convex optimization approach.

The MDM approach for this project was solved under a triangular and a two atom
discrete distribution for the activity durations. Under the triangular distribution, the term
Eθi [c̃i − di]+ is nonlinear and of third degree in variable di . After testing, we found
twenty linear pieces to be sufficient for each activity for obtaining accurate estimates.
The two atom distribution was chosen with the probability of each atom set to 0.5. For the
MMM approach, the lower and upper bound on the range of the triangular distribution
was used in conjunction with the mean and variance. The project statistics are tabulated
in Table 4. Activities that are not mentioned in the table have a persistency of 0. For this
project, the CPU times was under 0.5 seconds.
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Table 3. Activity duration estimates for Kleindorfer project [8]

Data Triangular Discrete Marginal
Activity Min Mode Max Atom 1 Atom 2 Mean Var

1,40 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 9.00 10.00 11.00 9.591 10.409 10.00 0.167
3,18,27 1.00 2.00 4.00 1.709 2.957 2.333 0.389
4 2.00 5.00 6.00 3.483 5.183 4.333 0.722
5 12.00 12.50 13.00 12.295 12.705 12.50 0.042
6,32,35 1.00 1.50 2.00 1.295 1.705 1.50 0.042
7,9,25 1.00 3.00 4.00 2.043 3.291 2.667 0.389
8,22,34 3.00 4.00 5.00 3.591 4.409 4.00 0.167
10 15.00 17.00 18.00 16.043 17.291 16.667 0.389
11 2.00 18.00 24.00 10.024 19.310 14.667 21.556
12,13,20,31 1.00 2.00 3.00 1.591 2.409 2.00 0.167
14,15,21 4.00 5.00 7.00 4.709 5.957 5.333 0.389
16 5.00 11.00 17.00 8.551 13.449 11.00 6.00
17 1.00 5.00 6.00 2.92 5.080 4.00 1.167
19,23 2.00 3.00 4.00 2.591 3.409 3.00 0.167
24 14.00 14.50 15.00 14.295 14.705 14.50 0.042
26 7.00 19.00 31.00 14.101 23.899 19.00 24.00
27 1.00 2.00 4.00 1.709 2.957 2.333 0.389
28 3.00 4.50 5.00 3.742 4.592 4.167 0.181
29 1.00 8.00 15.00 5.142 10.858 8.00 8.167
30 2.00 4.00 5.00 3.043 4.291 3.667 0.389
33 8.00 10.00 12.00 9.183 10.817 10.00 0.667
36 3.00 7.00 11.00 5.367 8.633 7.00 2.667
37 5.00 10.00 21.00 8.658 15.342 12.00 11.167
38 13.00 13.50 14.00 13.295 13.705 13.50 0.042
39 1.00 12.00 19.00 6.963 14.371 10.667 13.722

Table 4. Project statistics for project from Kleindorfer [8]

Method PERT MDM MMM
Distribution - Triangular Discrete -

Expected duration 53.667 62.047 63.910 64.344
Persistency (1,40) 1.000 1.000 1.000 1.000
Persistency (3) 1.000 0.910 1.000 0.856
Persistency (2,5,24,38) 0.000 0.090 0.000 0.144
Persistency (10,16,29,37) 0.000 0.362 0.500 0.339
Persistency (11,26,36,39) 1.000 0.548 0.500 0.517

Table 4 indicates that the activities (2, 5, 24, 38) are not identified under the discrete
distribution. The specification of θi will potentially affect the values of the persistency.
However, a complete specification of θi is itself normally not available in practice.
Furthermore, having to determine the breakpoints for the MDM approach is itself a non-
trivial task. In contrast, MMM solves a single tractable convex formulation to compute
the persistency values displayed in Figure 2.

We also simulated the project performance under independent triangular distribu-
tions. The persistency for the activities is displayed in Figure 3. The computational
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Fig. 2. Persistent activities under MMM for Kleindorfer project

time was 942 CPU sec for solving the linear optimization problem (12) with 20000
samples and the expected completion time was computed to be 56.77. While we obtain
more persistent activities under the simulation (20 activities) as compared to the marginal
moments approach (15 activities), the probabilities of these extra activities are small (less
than 0.08). In this case, under triangular and independently distributed activity durations,
the persistency values under simulation is observed to be fairly close in agreement with
that of the MMM approach.

6. Application in the Minimum Spanning Tree Problem

In this section, we study the minimum spanning tree (MST) problem under edge length
(cost) uncertainty. Formally, the MST problem is defined as:

Given an undirected graph G(V,E) with |V | =N nodes and (non-negative) arc
lengths c̃e for arcs e ∈ E, find a tree that spans the N nodes with minimum total sum of
the cost of edges.

This problem is known to be solvable in polynomial time with the greedy algorithm.
In fact, the compact linear representation of the convex hull of spanning trees is explicitly
known [14]:
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Fig. 3. Persistent activities under triangular distribution and independence

Zmin(c̃)= min
∑
e∈E

c̃e(yij + yji)

s.t.
∑

j :(j,r)∈E′
f kjr −

∑
j :(r,j)∈E′

f krj = − 1, ∀k �= r

∑
j :(j,v)∈E′

f kjv −
∑

j :(v,j)∈E′
f kvj = 0, ∀v �= r, v �= k,∀k

∑
j :(j,k)∈E′

f kjk −
∑

j :(k,j)∈E′
f kkj = 1, ∀k �= r

f kij ≤ yij , ∀(i, j), ∀k �= r

∑
(i,j)∈E′

yij =N − 1

yij , f
k
ij ≥ 0, ∀(i, j), ∀k.

(13)

This compact representation is obtained from a directed multicommodity flow prob-
lem. Here G(V,E′) represent the directed version of the original graph obtained by
introducing two directed arcs (i, j) and (j, i) for each e ∈ E that connects nodes i and
j . Let k, k �= r represents a commodity that must be delivered to each node k starting
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from any predetermined node r . The variables f kij denote the directed flow of commodity
k on arc (i, j) and yij denotes the capacity of the flow on arc (i, j) for each commodity
k. The sum of the optimal variables (yij + yji) provide the 0-1 solutions to indicate if
an arc connecting i and j lies in the optimal spanning tree. For a complete graph on N
nodes, this linear formulation has O(N3) variables and constraints.

Under interval uncertainty on the edge lengths, Yaman, Karasan and Pinar [20] use
this compact representation to solve a mixed integer program to find a robust spanning
tree. To reduce the dimension of the problem, they implement a pre-processing routine
that identifies edges that will not be a part of the robust spanning tree solution. By solving
the mixed integer program on this reduced set of variables, they obtain significant com-
putational savings in solving the robust problem. We now extend this idea to the notion
of re-optimization algorithms with a focus on the minimum spanning tree problem.

Consider the setting, where one needs to repeatedly solve instances of the spanning
tree problem under perturbations in the objective coefficients. Assume that we obtainK
different samples of the objective coefficients denoted as c1, . . . , cK from a multivar-
iate distribution θ that satisfies some known marginal moment conditions. The generic
re-optimization algorithm is specified as:

Algorithm A(V ,E,c1, . . . , cK ):

1. For k= 1, . . . , K:
(a) Solve the MST problem on G(V,E) with objective ck .

We now propose a modified re-optimization algorithm that uses the marginal moments
model in a preprocessing step. Particularly, consider using the MMM approach to com-
pute the persistence of variables by solving the convex model under limited marginal
moment information. We use the compact convex hull representation to solve our mar-
ginal moments model. Note that since we are interested in the minimum spanning tree,
we compute the persistence of the variables simply by replacing the sup by inf in
Formulation (6). We then pick variables with say the L highest persistency values and
solve the re-optimization algorithm over this smaller subset of variables. The proposed
algorithm is:

Algorithm B (V ,E,c1, . . . , cK ,L):

1. Preprocessing:
(a) Solve the marginal moments model for G(V,E) under given moment information.
(b) Identify the subset of variables EL ⊆ E with L highest persistency values.

2. Call Algorithm A(V ,EL,c1, . . . , cK ).

The key advantage in using Algorithm B to re-optimize is that the dimension of the
optimization problem can often significantly reduced. However this approach is inter-
esting, only if there is a small loss in accuracy in going from the original distribution θ
to the marginal moment model.

We now consider a computational experiment where under independently and nor-
mally generated cost coefficients, the results from the re-optimization algorithm B are
promising with a small loss in accuracy but significant savings in computational times.
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6.1. Computational Tests

For testing, we consider the minimum spanning tree problem on two complete graphs
with N = 15 and 30 vertices respectively. The graphs were generated by choosing N
points randomly on the square [0, 10] × [0, 10]. For each arc connecting nodes i and j ,
the data for the arc lengths are:

– Mean µij set to the Euclidean distances between points i and j
– Standard deviation σij chosen randomly from [0, µij /3]
– Range [µij − 3σij , µij + 3σij ].

The parameters were chosen such that the probability of a cost coefficient lying outside
the range for a normal distribution are negligible (less than 0.003). Under this informa-
tion, the preprocessing step in Algorithm B identifies 66 arcs with non-zero persistence
values (plotted in Figure 4) for the 15 node, 105 arc graph and 191 arcs for the 30 node,
435 arc graphs respectively.
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Fig. 4. Persistent arcs under MMM for 15 node graph

To test the re-optimization techniques, K = 20000 samples of the cost coefficients
were generated independently from normal distributions with the given means and
variances. The deterministic MST problems were solved with Prim’s greedy algorithm
with a binary heap implementation with running time complexity of O(|E| logV ). For
the 15 node graph, the results are plotted in Figures 5 and 6. The results for the two
graphs are summarized in Table 5. For this example, under normal and independently
distributed arc lengths, as the number of arcs L chosen in the preprocessing step de-
creases, the reduction in computational time is observed to be more significant that the
increase in expected objective value. These empirical results suggest the potential of
using the marginal moments model in re-optimization algorithms.
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Fig. 5. CPU time for re-optimization algorithms for 15 node graph (L = 105 is Algorithm A)
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Fig. 6. Objective for re-optimization algorithms for 15 node graph (L = 105 is Algorithm A)

7. Conclusions

In this paper, we have formalized the notion of persistency in discrete optimization
problems. While evaluating persistency in general is a difficult problem, we have char-
acterized a marginal moments model under which the persistency of decision variables
can be computed using convex optimization techniques. For easily solvable discrete
optimization problems, computing this persistence is easy with semi-definite and sec-
ond order cone optimization techniques. Experimental results and simulation justify the
potential of the approach in identifying persistency values.
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Table 5. Sample performance of re-optimization algorithms for spanning tree problem

15 Node Graph
Algorithm EL CPU sec Exp. Obj % Decrease (CPU sec) % Increase (Exp. Obj)

A 105 595.864 17.788 0.000 0.000
B 66 477.980 17.795 19.784 0.042
B 55 444.582 17.825 25.389 0.208
B 42 403.515 17.959 32.281 0.963
B 21 330.159 19.002 44.592 6.829

30 Node Graph
Algorithm EL CPU sec Exp. Obj % Decrease (CPU sec) % Increase (Exp. Obj)

A 435 2142.8 28.652 0.000 0.000
B 191 1522.7 28.823 28.938 0.596
B 146 1376.9 29.258 35.744 2.113
B 86 1174.3 29.888 45.200 4.314
B 37 995.97 32.930 53.521 14.929
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