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Abstract

Problems involving moments of random variables arise naturally in many areas of
mathematics, economics, and operations research. How do we obtain optimal bounds
on the probability that a random variable belongs in a set, given some of its moments?
How do we price financial derivatives without assuming any model for the underlying
price dynamics, given only moments of the price of the underlying asset?” How do we ob-
tain stronger relaxations for stochastic optimization problems exploiting the knowledge
that the decision variables are moments of random variables? Can we generate near
optimal solutions for a discrete optimization problem from a semidefinite relaxation by
interpreting an optimal solution of the relaxation as a covariance matrix? In this paper,
we demonstrate that convex, and in particular semidefinite, optimization methods lead

to interesting and often unexpected answers to these questions.
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1 Introduction

Problems involving moments of random variables arise naturally in many areas of mathe-
matics, economics, and operations research. Let us give some examples that motivate the

present paper.

Moment problems in probability theory

The problem of deriving bounds on the probability that a certain random variable belongs
in a set, given information on some of the moments of this random variable, has a rich
history, which is very much connected with the development of probability theory in the
twentieth century. The inequalities due to Markov, Chebyshev and Chernoff are some of
the classical and widely used results of modern probability theory. Natural questions arise,

however:

(a) Are such bounds “best possible,” i.e., do there exist distributions that match them? A
concrete and simple question in the univariate case: Is the Chebyshev inequality “best

possible”?
(b) Can such bounds be generalized in multivariate settings?

(¢) Can we develop a general theory based on optimization methods to address moment

problems in probability theory?

Moment problems in finance

A central question in financial economics is to find the price of a derivative security given
information on the underlying asset. This is exactly the area of the 1997 Nobel prize in
economics to Robert Merton and Myron Scholes. Under the assumption that the price
of the underlying asset follows a geometric Brownian motion and using the no-arbitrage
assumption, the Black-Scholes formula provides an explicit and insightful answer to this
question. Natural questions arise, however. Making no assumptions on the underlying

price dynamics, but only using the no-arbitrage assumption:

(a) What are the best possible bounds for the price of a derivative security based on the

first and second moments of the price of the underlying asset?



(b) How can we derive optimal bounds on derivative securities that are based on multiple
underlying assets, given the first two moments of the asset prices and their correla-
tions?

(c¢) Conversely, given observable option prices, what are the best bounds that we can derive

on the moments of the underlying asset?

(d) Finally, given observable option prices, what are the best bounds that we can derive on

prices of other derivatives on the same asset?

Moment problems in stochastic optimization

Scheduling a multiclass queueing network, is a central problem in stochastic optimization.
Queueing networks represent dynamic and stochastic generalizations of job shops, and have
been used in the last thirty years to model communication, computer and manufacturing
systems. The central optimization problem is to find a scheduling policy that optimizes a
performance cost function ¢’x + d’y, where x = (2y,...,2y), z; is the mean number of
jobs of class j, y = (y1,...,yn), and y; is the second moment of the number of jobs of
class j, and ¢, d are N-vectors of nonnegative constants. The design of optimal policies is
EXPTIM FE-hard (Papadimitiou and Tsitsiklis [26]), i.e., it provably requires exponential
time, as P # EXPTIME. A natural question that arises:

Can we find strong lower bounds efficiently, exploiting the fact that the performance vectors

represent moments of random variables?

Moment problems in discrete optimization

The development of semidefinite relaxations in recent years represents an important ad-
vance in discrete optimization. In several problems, semidefinite relaxations are provably
closer to the discrete optimization solution value (Goemans and Williamson [13] for the
maxcut problem for example) than linear ones. The proof of closeness of the semidefinite
relaxation to the discrete optimization solution value involves a randomized argument that
exploits the geometry of the semidefinite relaxation. A key question arises:

Is there a general method of generating near optimal integer solutions starting from an op-

timal solution of the semidefinite relaxation?



We will see that the interpretation of the solution of the semidefinite relaxation as a co-
variance matrix for a collection of random variables leads to such a method and connects

moment problems and discrete optimization.

The central message in this survey paper is to demonstrate that convex and, in partic-
ular, semidefinite, optimization methods give interesting and often unexpected answers to
moment problems arising in probability, economics, and operations research. We also report
new computational results in the area of stochastic optimization that show the effectiveness

of semidefinite relaxations.

The key connection

The key connection between moment problems and semidefinite optimization is centered in
the notion of a feasible moment sequence. Let k = (k1,...,k,) be a vector of nonnegative

integers.

Definition 1 A sequence @ : (0k)g, 4. thno<k 15 a feasible (n, k,Q)-moment vector (or se-
quence), if there is a multivariate random variable X = (X1, ..., X,) with domain Q C R",
whose moments are given by @, that is ox = E[Xf1 v XFn) Yy e ke, < KL We say
that any such multivariate random variable X has a &-feasible distribution and denote this

as X ~@.

We denote by M = M(n, k, Q) the set of feasible (n, k, Q2)-moment vectors.

The univariate case

For the univariate case (n = 1), the problem of deciding if & = (M, Ma,..., M) is a
feasible (1, k, 2)-moment vector is the classical moment problem, which has been completely
characterized by necessary and sufficient conditions (see Karlin and Shapley [19], Akhiezer

[1], Siu, Sengupta and Lind [27] and Kemperman [20]).

Theorem 1 (a) (Nonnegative random variables) The vector (M, ..., Ma,41) is a

feasible (1,2n+ 1, R*)-moment sequence if and only if the following matrices are semidefi-



nite:

1M M,
Ry .Ml % M?Jrl o
My, My My,
My, M Moy
Ry = MQ % Mf“ - 0.
Muyyy Mpya oo Moy

(b) (Arbitrary random variables) The vector (My, My, ..., Ma,) is a feasible (1,2n, R)-

moment sequence if and only if Ry, > 0.

Proof:
We will only show the necessity of part (b). If (My, Ms,..., My,) is a feasible (1,2n, R)-
moment sequence, then there exists a probability measure f(z) such that

/ xkf(x)dac:Mk, k=0,1,...,2n,

where My = 1. Consider the vector x = (1,2,2% ...,2%")", and the semidefinite matrix

xx'. Since f(z) is nonnegative, the matrix

Ry, = /OO xx'f(z)dz

— 00

should be semidefinite. [ |

The multivariate case

We consider the question of whether a sequence o = (M, T') is a feasible (n, 2, R")-moment

vector, i.e., whether there exists a random vector X such that F[X] =M, F[XX'] =T.

Theorem 2 A sequence o = (M,T) is a feasible (n,2, R")-moment vector if and only if

the following matriz is semidefinite:

Y = >~ 0.



Proof:
Suppose (M, T') is a feasible (n, 2, R")-moment vector. Then, there exists a random variable
X such that EF[X] =M, F[XX'] =T. The matrix (X —M)(X — M)’ is semidefinite. Taking

expectations, we obtain that
E[(X-M)(X-M)]=T-MM'> 0,

which expresses the fact that a covariance matrix needs to be semidefinite. It is easy to see
that T' — MM’ > 0 if and only if 3 > 0.

Conversely, if 3 > 0, then I' — MM’ > 0. Let X be a multivariate normal distribution
with mean M and covariance matrix I' — MM’. This shows that the vector o = (M, T') is

a feasible (n,2, R™)-moment vector. |

There are known necessary conditions for a sequence o to be a feasible (n, k, R")-moment
vector for k > 3, that also involve the semidefiniteness of a matrix derived from the vector o,
but these conditions are not known to be sufficient. In general, the complexity of deciding

whether a sequence o is a feasible (n, k, R")-moment vector has not been resolved.

Structure of the paper

The structure of the paper is as follows. In Section 2, we outline the application of semidefi-
nite programming to stochastic optimization problems. In Section 3, we derive explicit and
often surprising optimal bounds in probability theory using convex and semidefinite pro-
gramming methods. In Section 4, we apply convex and semidefinite programming methods
to problems in finance. In Section 5, we illustrate a connection between moment problems
and semidefinite relaxations in discrete optimization. Section 6 contains some concluding

remarks.

2 Semidefinite Relaxations for Stochastic Optimization Prob-
lems
The development of semidefinite relaxations represents an important advance in discrete

optimization. In this section, we review a theory for deriving semidefinite relaxations for

classical stochastic optimization problems. The idea of deriving semidefinite relaxations



for this class of problems is due to Bertsimas [3]. Our development in this paper follows
Bertsimas and Nino-Mora [5], [6]; the interested reader is referred to these papers for fur-
ther details. We demonstrate the central ideas for the problem of optimizing a multiclass

queueing network that represents a stochastic and dynamic generalization of a job shop.

2.1 Model description

We consider a network of queues composed of K single-server stations and populated by N
job classes. The set of job classes N = {1,..., N} is partitioned into subsets Cy, ...,Cg, so
that station m € K = {1, ..., K} only serves classes in its constituency C,,. We refer to jobs
of class ¢ as i-jobs, and we let s(7) be the station that serves i-jobs. The network is open,
so that jobs arrive from outside, follow a Markovian route through the network (i-jobs wait
for service at the i-queue) and eventually exit. External arrivals of i-jobs follow a Poisson
process with rate a; (if class ¢ does not have external arrivals a; = 0). The service times of
1-jobs are independent and identically distributed, having an exponential distribution with
mean 3; = 1/u;. Upon completion of service at station s(¢), an i-job becomes a j-job (and
hence is routed to the j-queue), with probability p;;, or leaves the system, with probability
pio=1-— Zje/\/ pi;. We assume that the routing matrix P = (p;;); jen is such that a single
job moving through the network eventually exits, i.e., the matrix I — P is invertible. We
further assume that all service times and arrival processes are mutually independent.

The network is controlled by a scheduling policy, which specifies dynamically how each
server is allocated to waiting jobs. Scheduling policies can be either dynamic or static. In a
dynamic policy, scheduling decisions may depend on the current or past states of all queues;
in a static policy, the scheduling decisions of each server are independent of the queue
lengths of the job classes. A scheduling policy is stable if the queue-length vector process
has an equilibrium distribution with finite mean. We allow policies to be preemptive, i.e., a
job’s service may be interrupted and resumed later. Finally, a scheduling policy is nonidling
if a server cannot idle whenever there is a job waiting for service at that station.

Next, we define other model parameters of interest. The effective arrival rate of j-jobs,

denoted by A;, is the total rate at which both external and internal jobs arrive to the



j-queue. The A;’s are computed by solving the system
/\j:04j+zpij/\i7 for j € V.
eN
The traffic intensity of j-jobs, denoted by p; = A;(3;, is the time-stationary probability that
a j-job is in service. The total traffic intensity at station m is p(Cp) = 3 ec,, 5, and is the

time-stationary probability that server m is busy. We note that the condition
p(Cr) < 1, for m e K

is necessary but not sufficient for guaranteeing the stability of any nonidling policy.
We assume that the system operates in a steady-state regime (under a stable policy),

and introduce the following variables:

e [;(t) = number of i-jobs in system at time ¢.

e B;(t) =1if an i-job is in service at time ¢; 0 otherwise.

e B (t) = lif server m is busy at time ¢; 0 otherwise; notice that B™ (t) = 3 ";cc  Bi(t).
In what follows we write, for convenience of notation, L; = L;(0), B; = B;(0) and B™ =
B™(0).
2.2 The performance optimization problem

The performance measures we are interested in are x = (xj)jeN, and y = (yf)jej\/7 where
vy =FE[L], :E[Lﬂ . forjEN,

i.e., the vectors whose components are the time-stationary mean and second moment of the
number of jobs from each class in the system.

Given a performance cost function ¢’x + d'y, we investigate the following performance
optimization problem: compute a lower bound Z < ¢’x + d’y that is valid under a given
class of admissible policies, and design a policy which nearly minimizes the cost ¢’x +d'y.
For our purposes, any preemptive, nonidling policy is admissible. In this paper, we restrict
our attention to the question of computing strong lower bounds. As we mentioned in

the Introduction, the design of optimal policies is KX PTIM E-hard (Papadimitiou and



Tsitsiklis [26]), i.e., it is provably requires exponential time, as P # EXPTIME. In recent
years, progress has been made in designing near-optimal scheduling policies based on the
idea of fluid control, in which discrete jobs are replaced by the flow of a fluid; we refer the
interested reader to the papers by Avram, Bertsimas and Ricard [2], Weiss [30], Luo and
Bertsimas [24], and the references cited therein for details.

We study the problem of computing good lower bounds via the achievable region ap-
proach. The achievable region (equivalently, performance region) X’ is defined as the set of
all performance vectors (x,y) that can be achieved under admissible policies. Our goal is to
derive constraints on the performance vector (x,y) that define a relaxation of performance
region A’. Since it is not obvious how to derive such constraints directly, we pursue the
following plan: (a) identify system equilibrium relations and formulate them as constraints
involving auziliary performance variables; (b) formulate additional constraints (both linear
and positive semidefinite) on the auxiliary performance variables; (c¢) formulate constraints
that express the original performance vector, (x,y), in terms of the auxiliary variables.

Notice that this approach is fairly standard in the mathematical programming literature
and has a clear geometric interpretation: It corresponds to constructing a relaxation of the
performance region of the natural variables, (x,y), by (a) lifting this region into a higher
dimensional space, by means of auxiliary variables, (b) bounding the lifted region through
constraints on the auxiliary variables, and (c) projecting back into the original space. Lift
and project techniques have proven powerful tools for constructing tight relaxations for hard
discrete optimization problems (see, e.g., Lovasz and Schrijver [23]). We have summarized
the performance measures considered in this paper (including auxiliary ones) in Table 1.

The rest of this section is organized as follows. In Section 2.3, we include linear con-
straints that relate the natural performance measures in terms of auxiliary performance
variables. Using the fact that our performance measures are expectations of random vari-
ables, we describe a set of positive semidefinite constraints in Section 2.4. In Section 2.5,
we introduce a linear and a semidefinite relaxation using the constraints of the previous
sections. We further present computational results that illustrate that the semidefinite

relaxation is substantially stronger than the linear programming relaxation.



Performance variables

Interpretation

2j; X = () jen

J]

X

L X = (2h)ijen X' = (28)jen

L;|Bi=1]

Om. 0 _ 0 . .
x]‘mv X" = ($]‘m)m€/C,]€./\/7

X0 = (29)jen

L;| B™ =0]

riji R = (rij)ijen

Bj]

ri RY = (rf)ijen

?]m7 RO = (r?]m)i7]€N

BiB; | B™ = 0]

Yiis Y = (Yij)ijenN

L]

yu? Yk (yu) LJEN

LiL; | By = 1]

yors YO = (Y jen

E
E
E
E
E
E
E
E

E(L
[
[
[Bi
[B:B; | By = 1]
[
[Li
[
[

LiL; | B"™ = 0]

Table 1: Network performance measures.

2.3 Linear constraints

In this section, we present several sets of linear constraints that express natural performance

measures in terms of auxiliary ones. The first set of constraints describes constraints that

follow from elementary arguments.

Theorem 3 (Elementary constraints) Under any stable policy, the following equations

hold:

(a) Projection Constraints:

vi= Y piri 4 (1= p(Cp)) 22, JeEN, meKk,
1€Cm
rig =y prrty+ (L= p(C)) rir, i,jeN, meKk,
keCm
keCm
(b) Definitional Constraints:
rm:p]rfﬂ i7j€N7
i = ps, T‘Z:Z'Zl, ieN,
ri; =0, r‘Zk]_O7 1,7 € Cp,

k
i =0,

ik €Cp, or g,k € Cr,

10



rit =0, iorj€C,, (8)

(¢) Lower bound constraints:

Tiy > max(07pi +p; - 1)7 1,] € N7 (10)
e LjeEN,  (11)

pi

— p(Ch)
o> (07’0] p(m) K,jeN, (12
x;" > max 71—,0(Cm) , mekK, jeN, ( )
rfj«zmax <O,M—1)7 i,j, ke N, (13)

Pk
0 T Cm 07 ] Cm ..
T‘?]mZmaX<0,maX(7p p(Cr)) + max( Py p( ))_1)7 i,jeN, mek, (14)
1= p(Cm))

Yij = Tij i,jEeN, (15)
i >l LG keN,  (16)
Yo >edm i je N, me K. (17)

Proof
The constraints in (a) follow by a simple conditioning argument, by noticing that at each
time instant, a server is either serving some job class in its constituency or idling. The

constraints in (b), (c) follow from elementary arguments. |

Flow conservation constraints

We next present a set of linear constraints on performance measures using the classical flow
conservation law of queueing theory, L~ = LT. We first provide a brief discussion of flow
conservation in stochastic systems, and then show how to use these ideas to derive linear
relations between time-stationary moments of queue lengths.

The classical flow conservation law of queueing systems states that, under mild restric-
tions, the stationary state probabilities of the number in system at arrival epochs and that
at departure epochs are equal. The key assumption is that jobs arrive to the system and
depart from the system one at a time, so that the queue size can change only by unit steps.

Consider a multiclass queueing network operating in a steady state regime, with the

number in system process {L(t)}. We assume that the process {L(¢)} has right-continuous

11



sample paths, and we use L(t7) to denote the left limit of the process at time ¢. The
corresponding right limit L(¢T) = L(¢) because of right-continuity of sample paths. Let A =
{r#} and D = {r{} be the sequences of arrival and departure epochs of jobs respectively.
Let L(7;7) be the number of jobs in the system seen by the k™™ arriving job just before its
arrival; similarly, let L(T,f) be the number of jobs in the system seen by the k" departing

job just after its departure. We define
L™ =L(7§7),

and

LY = L(r).

Since we assumed the system to be in steady-state, L™ may be interpreted as the
number of jobs in the system seen by a typical arrival, while LT may be interpreted as the
number of jobs in the system seen by a typical departure. By considering any realization,
we see that for every upward transition for the number in system from 7 to (¢ 4+ 1), there
is a corresponding downward transition from (¢ + 1) to ¢; thus every L(7.7) is equal to
a distinct L(T,f) in a sample-path sense. In particular, we have L= = LT, yielding the

following theorem.

Theorem 4 (Flow Conservation Law) If jobs enter and leave the system one at a time,
then
L~ =1L%

holds in distribution.

In what follows, we apply the law L= = LT to a family of queues obtained by aggregating

job classes, as explained next. Let S C .

Definition 2 (S-queue) The S-queue is the queueing system obtained by aggregating job

classes in S. The number in system at time t in the S-queue is denoted by Lg(t) =

Zjes LJ‘ (t)

As usual we write Ls = Ls(0), Ls = Ls(0—), Lt = Ls(0+) = Ls(0). For convenience of

notation we also write

p(i, ) = Zpij

JjE€S

12



and

alS) = Zoej.

JjE€S

The next theorem formulates the law L= = LT as it applies to the S-queue.

Theorem 5 (The law I~ = LT in MQNETSs) Under any dynamic stable policy, and

for any subset of job classes S C N and nonnegative integer [:

a(S)P(Ls =0+>_ Aip(i,S)P(Ls =1 Bi=1)=> N (1-p(i,S))P(Ls=1+1]|B;=1).
1€S5°¢ 1€ES
(18)

Proof

By applying Theorem 4 to the S-queue, we have that

An arrival epoch to the S-queue is either an arrival from the outside world (external arrival)
that happens with rate a(5), or an internal movement from a class ¢ in S¢ to a class in 9

(internal arrival) that happens only if B; = 1, for ¢ € S¢ with rate
wip(i, S)P(B; = 1) = pip(i, S)p; = Aip(1, S).

The total arrival rate to S-queue is

As = a(S)+ > Ap(i, S).

1ES°C
Therefore,
- a(S) Aip(i, S)
P(L5=1) =S Ps=D+ EZS:CTP(LS:HBizl).

A departure epoch from S-queue happens with rate
pi(1 = p(i,8))P(B: = 1) = Xi(1 = p(i, S),

for all 7 € §. The total departure rate is:

ps =y Ai(1—p(i,9).

1€S

13



It can be easily checked that the total arrival rate to the S-queue and the total departure
rate from the S-queue are equal, i.e., Ag = pug. Therefore,
Ai (1= p(i, 5))
P(LE=1)=) — "2 P(Ls=1+1|B,=1).
(Lt =1) > ( | )
By applying P(Ls = 1) = P(LE = 1), Eq. (18) follows. |

Taking expectations in identity (18) we obtain:

Corollary 1 Under any stable policy, and for any subset of job classes S C N and positive
integer K for which I {(Ll 4ot LN)K} < 00,
a($)E LK+ 3 Xp(i, S)E [ LK | Bi=1] =3 M (1= p(i, $)) E [(Ls = ) | By =1].
1€S5°¢ 1€ES
(19)
Note that Corollary 1 formulates a linear relation between time-stationary moments of
queue lengths. The equilibrium equations in Corollary 1 corresponding to K = 1,2 and
S = {i},{i,j}, for i,j € N, yield directly the system of linear constraints on performance
variables shown next. Let A = Diag(A).

Corollary 2 (Flow conservation constraints) Under any dynamic stable policy, the
following linear constraints hold:
(a)

—ax' —xa'+ (I-PYAX +X'A(I-P)=(I-P)A+ A(I-P). (20)

(b) fE[(Li+ -+ Ln)?* < oo, then

ajyii+ Y Myl — Ayl 22 (10— pij)at = Aj(1—py;), e N(21)
reN

aiys; + ogyii + 2(0n + ag)yii + > Aeprili + > byl
reN reN

Y27 (P + pej)ul — Ny — Al — 20yl — 2X )
reN

F20(1 = pii — pig)al + 20 (1 = pji — pij)al = —Xipij — Ajpjis (22)
i,jeN.
The flow conservation constraints were first derived for multi-station MQNETs by Bert-

simas, Paschalidis and Tsitsiklis [7], and by Kumar and Kumar [21], using a potential

function approach. The derivation we presented is from Bertsimas and Nifo-Mora [6].

14



2.4 Positive semidefinite constraints

We present in this section, a set of positive semidefinite constraints that strengthen the

formulations obtained through equilibrium relations. Recall that the performance measures

x,y are moments of random variables. Applying Theorem 2 to the performance variables

introduced in Table 1 yields directly the following result.

Theorem 6 Under any dynamic stable policy, the following semidefinite constraints hold:

(a) Let v* = (rE)ica and v9 = (r9) e

1 o

p R

1 ¥
r* RF

1 o

I.Om ROm
(b) If E [(Z]‘e_/\/ Lj)Q] < 00, then

1 x

1 om/’

XOm YOm

keWN,

keWN,

m € K.

2.5 On the power of the semidefinite relaxation

Our objective in this section is to compare computationally the linear and semidefinite

relaxations of the multiclass queueing network performance optimization problem. The

15



linear programming relaxation is defined as follows:

Zrp = minimize c'x+d'y
subject to Projection constraints : (1), (2), (3),
Definitional constraints : (4), (5), (6), (7), (8),
Lower bound constraints : (10), (11), (13), (13), (14), (15), (16), (17),
Flow — conservation constraints : (20), (21),
x>0,y >0.

The semidefinite relaxation Zgp is obtained by adding the constraints (23), (24), (25) (26),
(27), (28).

A multiclass network

H1 =6 M2:15
—_— » —r
M, Mo,
/~L4:15 /“63:6
R < +—

Figure 1: A Multiclass Network.

We consider the network of Figure 1. In this network external arrivals come into either class
1 or class 3, and so ay = a4y = 0. In our computations we fix the service times as shown in
the figure, and vary only the arrival rates. We maintain the symmetry between classes, and
so we set oy = a3 = «, where « varies from 0.1 to 1.18. We select ¢; = 1 and d; = 0, i.e.,
we are interested in minimizing the expected number of jobs in the system in steady-state.
We present below the optimal values Z;p and Zsp. The SDP relaxation has 283 variables
(including slack variables) and 259 constraints. We solve the semidefinite relaxation using
the package SDPA developed by Fujisawa, Kojima and Nakata [12]. In certain cases SDPA
was unable to solve the relaxation to the desired accuracy, but returned primal and dual
feasible solutions; in such cases we report the cost of the best primal and dual feasible
solutions obtained by SDPA. This has nothing to do with the size of the SDP relaxation,

but perhaps something to do with the particular values of the constraint matrices. All of

16



p Zrp ZsD Zsp | E[ZrBrs—B] | Best B
(primal) | (dual)
0.083 | 0.170 0.174 0.163 0.180 0
0.167 | 0.347 0.351 0.336 0.391 0
0.250 | 0.532 0.538 0.538 0.645 0
0.333 | 0.724 0.796 0.786 0.955 1
0.417 | 0.926 1.138 1.028 1.342 1
0.500 | 1.136 1.540 1.495 1.844 1
0.583 | 1.393 2.117 2.061 2.527 1
0.667 | 1.928 2.959 2.923 3.516 1
0.750 | 2.799 4.406 4.325 5.120 1
0.833 | 4.566 7.206 7.096 8.220 2
0.875 | 6.325 9.968 9.894 11.242 2
0.917 | 9.835 15.461 | 15.341 17.087 2
0.958 | 20.346 | 31.818 | 31.765 34.421 2
0.983 | 51.854 | 80.854 | 80.570 85.643 3

Table 2: Comparison of LP and SDP relaxations for the network of Figure 1.

these instances were solved in less than one minute by SDPA on a Pentium Il workstation
as the SDP relaxation has a simple block structure.

For comparison purposes, we also report simulation results for a particular policy that
was derived from fluid optimal control (see Avram et. al. [2]): When both L4(t), Lo(t) > B,
the first station gives preemptive priority to class 4 and the second station gives preemptive
priority to class 2. When L4(t) < B, class 3 has preemptive priority over class 2. Similarly,
when Ly(t) < B, class 1 has preemptive priority over class 4. We call this policy last-
buffer-first-served with a threshold B, denoted by LBFS — B. We let E[Z;prs—p] denote
the expected number of jobs under this policy. We select the value of B optimally using
simulation.

In Table 2, we report the values Z;p, a primal feasible value for Zsp, a dual feasible

value for Zsp, the simulation value F[Z;prs—_p], and the value of the threshold B that

17



gives the optimal performance. The computational results suggest the following;:

(a) The semidefinite relaxation substantially improves the linear programming relaxation.
In our experiments the improvement is in the range of 55%—-60%. The improvement

is more substantial as the traffic intensity p increases.

(b) The value of the semidefinite relaxation is close to the expected value of the policy
LBFS—B. This shows that not only the semidefinite relaxation produces near optimal

bounds, but the particular policy we constructed is a near optimal.

A multiclass single queue

We consider a single station network with four classes. Our objective here is to minimize
2?21 x; + y;. For the case that we do not include terms involving y;; in the objective
function, the LP relaxation is exact (see Bertsimas and Nino-Mora [4]).

We assume that the arrival rate for each class is the same, and that the mean service
times for the job classes are 0.05, 0.1, 0.2, and 0.4 respectively. The results of the LP and
SDP relaxations are tabulated in Table 3. In this experiment the SDP relaxation has 234
variables and 220 constraints. All of these instances were solved in less than two minutes
by SDPA on a Pentium II workstation.

For comparison purposes we have simulated the following dynamic priority policy P:
At every service completion time ¢, we give priority to the class that has the highest index
wiL;(t). The policy was derived from fluid optimal control (see Avram et. al. [2]).

We observe again that the semidefinite relaxation provides a sustantial improvement
over the value of the LP relaxation often by an order of magnitude.

Both computational experiments demonstrate that, unlike the LP relaxation, the semidef-
inite relaxation provides practically useful suboptimality guarantees that can be used to
assess the closeness to optimality of heuristic policies. We believe that the combination
of fluid optimal control methods to generate near optimal policies for large scale problems
(see Luo and Bertsimas [24]), and semidefinite relaxation to provide near optimal bounds
is perhaps the most promising methodology to address the multiclass queueing network

optimization problem.
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p Zrp Zsp Zsp E[Zp]
(primal) | (dual)

0.075 | 0.162 0.163 0.163 0.165

0.150 | 0.352 0.358 0.357 0.365

0.225 | 0.578 0.597 0.596 0.616

0.300 | 0.854 0.900 0.900 0.940

0.375 | 1.198 1.300 1.300 1.374

0.450 | 1.639 1.856 1.856 1.978

0.525 | 2.227 2.675 2.673 2.872

0.600 | 3.047 3.954 3.954 4.294

0.675 | 4.270 6.131 6.131 6.740

0.750 | 6.269 10.330 10.328 11.655

0.825 | 10.072 | 20.200 20.200 24.227

0.900 | 19.814 | 55.603 | 55.602 74.020

0.975 | 89.332 | 696.646 | 696.644 | 1166.362

Table 3: Comparison of LP and SDP relaxations for a multiclass queue.
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3 Optimal Bounds in Probability

In this section, we review the work of Bertsimas and Popescu [9]. Suppose that & is a
feasible moment sequence and X has a o-feasible distribution. We now define the central

problem we address in this section:

The (n,k,Q)-bound problem

Given a sequence @ of up to kth order moments
o =EXP Xk XM k4 E, <,

of a multivariate random variable X = (X1, Xg,..., X,,) on Q C R", find the “best possible”
or “tight” upper and lower bounds on P(X € S), for arbitrary events S C €.
The term “best possible” or “tight” upper (and by analogy lower) bound above is defined

as follows.

Definition 3 We say that « is a tight upper bound on P(X € S), and we will denote it by
sup P(X € 5) if :

X~O

(a) 1t is an upper bound, i.e., P(X € S) < « for all random variables X ~ &;

(b) it cannot be improved, i.e., for any € > 0 there is a random variable X, ~ & for which

P(X.€85)>a—e

The well known inequalities due to Markov, Chebyshev and Chernoff, which are widely
used if we know the first moment, the first two moments, and all moments (i.e., the gener-
ating function) of a random variable, respectively, are feasible but not necessarily optimal
solutions to the (1, k, Q)-bound problem, i.e., they are not necessarily tight bounds.

In the univariate case, the idea that optimization methods and duality theory can be
used to address these type of questions is due to Isii [17]. Thirty years later, Smith [29]
has generalized this work to the multivariate case, and proposed interesting applications
in decision analysis, dynamic programming, statistics and finance. He also introduces a
computational procedure for the (n,k, R™)-bound problem, although he does not refer to
it in this way. Unfortunately, the procedure is far from an actual algorithm, as there is

no proof of convergence, and no investigation (theoretical or experimental) of its efficiency.
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Bertsimas and Popescu [9], whose work we survey in this paper, have proposed convex

optimization algorithms to address the (n, k,Q)-bound problem.

We examine the existence of an algorithm that on input (n, k, &, €) computes a value o €

[0 —€, a*+¢], where a* = sup P(X € 5), and runs in time polynomial in n, k, log 0,4, and
X~O
log %, where 0,4, = max(og). We assume the availability of an oracle to test membership

in S C €2, and we allow our algorithm to make oracle queries of the type “is x in 5 7”.

Primal and dual formulations

The (n, k, Q2)-upper bound problem can be formulated as the following optimization problem
(P):
(P) Zp = maximize / f(z)dz
S

subject to /zfl---zfi"f(z)dz:ak, Viki4+--+k, <k,
Q

fz)=flz1y..0020) 20, Yz=1(21,...,2,) € Q.

Notice that if Problem (P) is feasible, then & is a feasible moment sequence, and any
feasible distribution f(z) is a o-feasible distribution.

In the spirit of linear programming duality theory, we associate a dual variable uy with
each equality constraint of the primal. We can identify the vector of dual variables with a
k-degree, n-variate dual polynomial:

g1, ... x,) = Z ukxlfl---xfz".
oyt o <h

We refer to such a polynomial as a k-degree, n-variate polynomial. The dual objective

translates to finding the smallest value of:
> ugoy = ZUkE[Xfl - X0 = Elg(X)],
k k

where the expected value is taken over any &-feasible distribution. In this framework, the

Dual Problem (D) corresponding to Problem (P) can be written as:

(D) Zp = minimize FE[¢g(X)]
subject to ¢(x) k-degree, n-variate polynomial,

g(x) > xs(x), Vx € Q,
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where xg(x) is the indicator function of the set S, defined by:

1, ifxes,
Xs(x) =
0, otherwise.

Notice that in general the optimum may not be achievable. Whenever the primal opti-
mum is achieved, we call the corresponding distribution an extremal distribution. We

next establish weak duality.
Theorem 7 (Weak duality) Zp < Zp.

Proof
Let f(z) be a primal optimal solution and let g(z) be any dual feasible solution. Then:

Zp= [ fydz= [ \s(@) @iz < [ 9(2)f(2)dz = Elg(X))

Q

and hence Zp < inf Flg(X)]=Zp. |
9()<xs()

Theorem 7 indicates that by solving the Dual Problem (D) we obtain an upper bound
on the primal objective and hence on the probability we are trying to bound. Under some
mild restrictions on the moment vector &, the dual bound turns out to be tight. This strong
duality result follows from a more general theorem first proved in one dimension by Isii [17],
and in arbitrary dimensions by Smith [29]. The following theorem is a consequence of their

work:

Theorem 8 (Strong Duality and Complementary Slackness) If the moment vector
T is an interior point of the set M of feasible moment vectors, then the following results

hold:
(a) Strong Duality: Zp = Zp.
(b) Complementary Slackness: If the dual is bounded, there exists a dual optimal solution

Gopt(+) and a discrete extremal distribution concentrated on points x, where gop(x) =

Xs(x), that achieves the bound.

It can also be shown that if the dual is unbounded, then the primal is infeasible, i.e.,
the multidimensional moment problem is infeasible. Moreover, if & is a boundary point of

M, then it can be shown that the &-feasible distributions are concentrated on a subset €2
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of Q, and strong duality holds provided we relax the dual to Qg (see Smith [29], p. 824). In
the univariate case, Isii [17] proves that if & is a boundary point of M | then exactly one
o-feasible distribution exists.

If strong duality holds, then by optimizing over Problem (D) we obtain a tight bound
on P(X € 5). On the other hand, solving Problem (D) is equivalent to solving the corre-
sponding separation problem, under certain technical conditions (see Grétschel, Lovasz and

Schrijver [15]).

3.1 Explicit bounds for the (n,1,9), (n,2, R")-bound problems

In this section, we present tight bounds as solutions to n convex optimization problems for
the (n, 1, R} )-bound problems, and as a solution to a single convex optimization problem
for the (n,2, R")-bound problem for the case when the event S is a convex set. The proof

of the theorem uses duality for convex optimization problems.

Theorem 9 (a) The tight (n, 1, R)-upper bound for an arbitrary convex event S is given

by:

. MZ
2o, PO e 9= min (1 e e ) !

where S; = SN (ﬂ]‘;ﬁi{X| Mixj — Mjaci < 0})
(b) If the Bound (29) is achievable, then there is an extremal distribution that exactly
achieves it; otherwise, there is a sequence of distributions with mean M, that asymptotically

achieve it.
Theorem 9 constitutes a multivariate generalization of Markov’s inequality. We denote by
P(X > Me+5) :P(XZ' > (1‘|‘5i)Mi7 Vi = 1,...,71),

where § = (41,...,6,), e = (1,1,...,1) and Mg = (6 My, ...,8,M,)". Then, applying

Theorem 9 leads to:

1
P(X>M_, )= mi ‘
sup (X >M,,5) imten 1+ 6
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The (n,2,R")-bound problem for convex sets

We first rewrite the (n,2, R")-bound problem in a more convenient form. Rather than
assuming that E[X] and F[XX’] are known, we assume equivalently that the vector M =
F[X] and the covariance matrix I' = F[(X — M)(X — M)/ are known. Given a set S C R",

we find tight upper bounds, denoted by sup P(X € 5), on the probability P(X € 9)
X~ (M, I
for all multivariate random variables X defined on R™ with mean M = F[X] and covariance

matrix I' = E[(X — M)(X — M)'].
First, notice that a necessary and sufficient condition for the existence of such a random
variable X, is that the covariance matrix I' is symmetric and positive semidefinite. Indeed,

given X, for an arbitrary vector a we have:
0< El(a(X-M))*]=a'E[(X - M)(X - M)]a=aTa,

so I' must be positive semidefinite. Conversely, given a symmetric semidefinite matrix I’
and a mean vector M, we can define a multivariate normal distribution with mean M and
covariance I'. Moreover, notice that I' is positive definite if and only if the components of
X — M are linearly independent. Indeed, the only way that 0 = a'Ta = F[(a(X — M))?]
for a nonzero vector a is that a’(X — M) = 0.

We assume that I'" has full rank and is positive definite. This does not reduce the
generality of the problem, it just eliminates redundant constraints, and thereby insures
that Theorem 8 holds. Indeed, the tightness of the bound is guaranteed by Theorem 8
whenever the moment vector is interior to M. If the moment vector is on the boundary, it
means that the covariance matrix of X is not of full rank, implying that the components of
X are linearly dependent. By eliminating the dependent components, we reduce without
loss of generality the problem to one of smaller dimension for which strong duality holds.

Hence, the primal and the dual problems (P) and (D) satisfy Zp = Zp.

Theorem 10 (a) The tight (n,2, R"™)-upper bound for an arbitrary convex event S is given

by:
sup P(XeS)=——, (30)
X~ (M, I 1+ d?
where d* = inf (x — M)'T™(x — M), is the squared distance from M to the set S, under

X€ES
the norm induced by the matriz T71.
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(b) f M ¢ S and if d* = iIelg(X — M) T~ (x — M) is achievable, then there is an extremal
distribution that exvactly achieves the Bound (30); otherwise, if M € S or if d* is not achiev-
able, then there is a sequence of (M, T')-feasible distributions that asymptotically approach
the Bound (30).

Theorem 10 constitutes a multivariate generalization of Chebyshev’s inequality. The tight

multivariate one-sided Chebyshev bound is

1

P(X>M =— 31
x(M.T) X Merd) = oy

where d? is given by:
d* = minimize x'T7'x (32)

subject to x> My,

or alternatively d? is given by the Gauge dual problem of (32):

1
— = minimize x'T'x (33)

2
subject to x'Mg =1

x > 0.

If I‘_IM(S > 0, then the tight bound is expressible in closed form:

1
sup  P(X>M_ . 5) =

— . (34)

Surprisingly, the bound (34) improves upon the Chebyshev’s inequality for scalar random

variables. In order to express Chebyshev’s inequality we define the squared coefficient of

. . My — M} - S
variation: C'yy = iz Chebyshev’s inequality is given by:
i
Cir
P(X > (1446)M;) < 52
where as bound (34) is stronger:
Chr
P(X > (14+0)M) < 54—
(X > (40 € it

In Section 4.1, we review a polynomial time algorithm for the (n,2, R™)-upper bound

problem, when the set S is a disjoint union of convex sets.
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3.2 The complexity of the (n,2,R%), (n,k,R*)-bound problems

In this section, we show that the separation problem associated with Problem (D) for the
cases (n,2, R}), (n,k, R")-bound problems are NP-hard for k£ > 3. By the equivalence of
optimization and separation (see Grétschel, Lovasz and Schrijver [15]), solving Problem (D)
is NP-hard as well. Finally, because of Theorem 2, solving the (n,2, R}), (n, k, R")-bound
problems with k& > 3 is NP-hard.

The complexity of the (n,2, R} )-bound problem

The separation problem can be formulated as follows in this case:
Problem 2SEP: Given a multivariate polynomial g(x) = x'Hx+c¢'x+d, and aset S C RY,
does there exist x € S such that g(x) < 07

If we consider the special case ¢ = 0,d = 0, and S = R/, Problem 2SEP reduces to the

question whether a given matrix H is co-positive, which is NP-hard (see Murty and Kabadi

[23]).

The complexity of the (n,k, R")-bound problem for £ > 3

For k& > 3, the separation problem can be formulated as follows:
Problem 3SEP: Given a multivariate polynomial g(x) of degree k > 3, and a set S C R,
does there exist x € S such that g(x) < 07

Bertsimas and Popescu [9] show that problem 3SFEP is NP-hard by performing a re-
duction from 35AT.

4 Moment Problems in Finance

The idea of investigating the relation of option and stock prices just based on the no-
arbitrage assumption, but without assuming any model for the underlying price dynamics
has a long history in the financial economics literature. Cox and Ross [11] and Harrison
and Kreps [16] show that the no-arbitrage assumption is equivalent with the existence of a
probability distribution = (the so-called martingale measure) such that that option prices
become martingales under 7. In this section, we survey some recent work of Bertsimas and

Popescu [8] that sheds new light to the relation of option and stock prices, and shows that
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the natural way to address this relation, without making distributional assumptions for the
underlying price dynamics, but only using the no-arbitrage assumption, is the use of convex
optimization methods.

In order to motivate the overall approach we formulate the problem of deriving optimal
bounds on the price of a European call option given the mean and variance of the underlying
stock price solved by Lo [22]. A call option on a certain stock with maturity 7" and strike k
gives the owner of the option the right to buy the underlying stock at time T at price k. If
X is the price of the stock at time T', then the payoff of such an option is zero if X < k (the
owner will not exercise the option), and X — k if X > £, i.e., it is max(0, X — k). Following
Cox and Ross [11] and Harrison and Kreps [16], the no-arbitrage assumption is equivalent
with the existence of a probability distribution 7 of the stock price X, such that the price

of any FEuropean call option with strike price & is given by
a(k) = Elmax(0, X — k)],

where the expectation is taken over the unknown distribution 7. Note that we have assumed,
without loss of generality, that the risk free interest rate is zero. Moreover, given that the
mean and variance of the underlying asset are observable:
E[X] = pu, and Var[X] = o?,
the problem of finding the best possible upper bound on the call price, written as
Z*= sup E[max(0,X — k)],

X~o(pao2)t

can be formulated as follows:

Z* =sup FE[max(0,X — k)]
subject to E[X]=pu
Var[X] = o2

Conversely, the problem of finding sharp upper and lower bounds on the moments of

the stock price using known option prices, can be formulated as follows:

sup/inf  E[X],or E[X?],or E[max(0,X — k)]

subject to  E[max(0,X — k)] =¢;, 1=1,...,n.

27



These formualtions naturally lead us to the following general optimization problem:

sup /inf  E[$(X)]

(35)

subject to E[fi(X)]=¢;, i=0,1,...,n,
where X = (X1,...,X,,) is a multivariate random variable, and ¢ : R™ — R is a real-
valued objective function, f; : R™ — R, 1 = 1,...,n are also real-valued, so-called moment

Sfunctions whose expectations ¢; € R, referred to as moments, are known and finite. We
assume that fo(x) = 1 and g9 = E[fo(X)] = 1, corresponding to the implied probability-
mass constraint.

Note that the problem of finding optimal bounds on P(X € S) of the previous section

given moments of X can be formulated as a special case of Problem (35) with ¢(x) = xs(x).

4.1 Efficient algorithms

In this section, we propose a polynomial time algorithm for Problem (35). We analyze the
upper bound problem, since we can solve the lower bound problem by changing the sign of

the objective function ¢:

(P) Zp=sup E[o(X)]

(36)

subject to E[fi(X)]=¢, 1=0,1,...,n.
We define the vector of moment functions f = (fo, fi1,..., f.) and the corresponding vector
of moments q = (o, q1,--.,¢,). Without loss of generality, we assume that the moment

functions are linearly independent on R™, meaning that there is no nonzero vector y so
that y'f(x) = 0 for all x € R™.

The dual problem can be written as
(D) Zp=inf E[y'f(X)] = inf y'q

subject to  y'f(x) > ¢(x), Vx € R™.
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Smith [29] shows that if the vector of moments q is interior to the feasible moment
set M = {F[f(X)] | X arbitrary multivariate distribution}, then strong duality holds:
Zp=7p.

Thus by solving Problem (D) we obtain the desired sharp bounds. On the other hand,
under certain technical conditions (see Grétschel, Lovasz and Schrijver [14]), solving Prob-
lem (D) is equivalent to solving the corresponding separation problem (S):
The Separation Problem (S):
Given an arbitrary y = (yo,¥1,--.,Yn), check whether g(x) = y'(x) — ¢(x) > 0, for all
x € R™, and if not find a violated inequality.

The following theorem shows that for important special cases Problem (36) is solvable

in polynomial time.

Theorem 11 If ¢ and f;, ¢ = 1,...,n are quadratic or piecewise linear functions (or
piecewise constant) over d convex sets, and d is a polynomial in n, m, then Problem (36)

can be solved in polynomial time.

Proof:
We consider first the case when all functions are quadratic or linear: ¢(x) = x'Ax+b'x+e¢
and f;(x) =x'A;x +bix+e¢;,i=1,...,n. Then,

9(x) =y f(x) — ¢(x) = yo + Zn:yifi(x) — 6(x) = x'Ax+b'x + ¢,

=1

where A = Zn:yiAi—A7 b =
-

K3

e e
y;b; — b, ¢ = > yi¢; + yo — ¢. We show that solving

K3

[13

the separation problem ir}%f g(x) > 07" reduces to checking whether the matrix A =
xXeR™

n
> y; A; — A is positive semidefinite, and in that case, solving the corresponding convex
=1
quadratic optimization problem.
The following algorithm solves the separation problem in polynomial time:

Algorithm A:

(a) If A is not positive semidefinite, then we find a vector x¢ so that g(xg) < 0. We
decompose A= Q'AQ, where A = diag(Ay,...,A,) is the diagonal matrix of eigen-

values of A. Let \; < 0 be a negative eigenvalue of A. Let u be a vector with u; =0,
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for all j # i, and u; large enough so that A;u?+ (Qb);u; +¢ < 0. Let xo = Q'u. Then,
g(x0) = xhAxo+b'xg+é
= WQQ'AQQu+bQu+é
= uAu+ B’Q’u +é

]:
= /\ZUZ2 + (Qf))ﬂtz +¢<0.
This produces a violated inequality.
(b) Otherwise, if A is positive semidefinite, then we test if g(x) >0, Vx € R™ by solving

the convex quadratic optimization problem:

. 900

If the optimal value is zy < 0, we find x¢ such that g(xg) < 0, which represents a
violated inequality.

We next examine the case that some of the functions ¢ or f;,¢ = 1,...,n are piecewise
linear over d convex sets, with d being a polynomial in n,m. In this case, the function
g(x) = y'(x) — #(x) can be written as g(x) = xX’Ax + bx + é, for all x € Dy, k =
1,...,d, where the sets Dy form a convex partition of R”™ and d = poly(n,m). We show
that in this case, again, solving the separation problem reduces to checking whether the
matrix A is positive semidefinite, and in that case solving the convex quadratic problems

inf ¢g(x),k=1,...,d. This can be done in polynomial time using ellipsoid algorithm (see

XEDk
[14]). The following algorithm solves the separation problem in polynomial time:

Algorithm B:

(a) If A is not positive semidefinite, we find a violated inequality in exactly the same way
as part (a) of Algorithm A.
(b) Otherwise, if A is positive semidefinite, then we test if g(x) >0, Vx € R™ by solving

a polynomial number d of convex quadratic optimization problems:

inf x’Ax—l—B%x—l—ék, for k=1,...,d.
XEDk

If the optimal value in any of these problems is z§ < 0, we find x} such that g(x}) < 0,

which represents a violated inequality. |

30



Remarks:

(2)

(b)

(c)

Theorem 11 covers the case, in which we would like to find optimal bounds for an
option, given prices for other options and the first two moments of the underlying
stock price. In these cases the functions f(x) and ¢(x) are quadratic or piecewise
linear. We will see in the next section that we can derive an explicit answer in the

univariate case.

If (x) = xs(x) where S is a disjoint union of d convex sets, (and thus ¢(x) is piecewise
constant), f(x) = (x, (x — M)(x— M)’), q = (M, T') and n = m then Problem (36) is
the (n,2, R")-upper bound problem sup P(x € S), where S is a disjoint union of d
convex sets. We have seen in the prgf?(i\:[ls section that when S is a convex set, then
we can find an explicit answer for the problem (Theorem 10). Theorem 11 provides an
algorithmic solution if the set .S is a disjoint union of a polynomial number of convex

sets.

The semidefinite property plays an important role in the proof of Theorem 11. Not only
we check whether the matrix A is semidefinite as a first step of both Algorithms A and
B, but we also solve convex quadratic optimization problems over polyhedral spaces
(assuming that the sets Dy are polyhedral, which is typically the case in applications),

which can be formulated as semidefinite programming problems.

4.2 Bounds on option prices given moment information

In this section, we derive an explicit upper bound for the case of a single stock, and a

European call option with strike &k, ¢(z) = max(0,z — k). The solution is due to Lo [22].

Our proof follows Bertsimas and Popescu [8]. The proof illustrates the use of duality.

Theorem 12 (Tight upper bound on option prices) The tight upper bound on the

price of an option with strike k, on a stock whose price al maturity has a known mean p

and variance o

2 s computed by:

1 2 2
§hu—m+ U”+w—kﬁy Ukzﬁébl7
Xlr%maLXz))+ FElmax(0,X — k)] = ) ) s )
~(w,o o . u+o
w—k+k P if k < o
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Proof:
The dual in this case can be formulated by associating dual variables yg, 31, y2 with the
probability-mass, mean and respectively, variance constraints. We obtain the following

dual formulation:

Zp = minimize, (p* +0?) y2 + py1 + Yo

subject to  g(2) =y 2? +y1 @+ yo > max(0,z — k), Va > 0.

A dual feasible function ¢(-) is any quadratic function that, on the positive orthant, is
nonnegative and lies above the line (z — k). In an optimal solution, such a quadratic should
be tangent to the line (v — k), so we can write g(z) — (z — k) = a(z — b)*, for some a > 0.
The nonnegativity constraint on g(-) can be expressed as a(z —b)? +x —k > 0, Vo > 0.
Let zg =10 — QL be the point of minimum of this quadratic. Depending whether zq is
nonnegative or not, either the inequality at @ = zp or at 2 = 0 is binding in an optimal

solution. We have two cases:
1 1

(a) Ifb> %0 then e +b— k=0 (binding constraint at xg);
a a

Substituting a = 1 in the objective, we obtain:

(b—Fk)
. ((p=F)+ (b= k) + 0 1[ / ]
Zp = == —k 2 _ k)2
,u2 + o2 1
achieved at by = . This bound is valid whenever by > Sy 2(bg — k), that is
ag
2 2
Xy
2u  —

1
(b) Ifb< %0 then ab? — k = 0 (binding constraint at z = 0).
a
k
Substituting a = [ in the objective, we obtain:

2

kg 2 k H
Zp = min 5 (" + 07 —23u+u=u—kuz+gzv
2 2
achieved at by = poto .
1 b2 2 2
This bound is valid whenever by < — = -2, that is pro > k. |
209 2k 24
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5 Moment Problems in Discrete Optimization

In this section, we explore the connection of moment problems and discrete optimization.
We consider the maximum s — ¢ cut problem. Goemans and Williamson [13] showed that
a natural semidefinite relaxation is within 0.878 of the value of the maximum s — ¢ cut.
Bertsimas and Ye [10] provide an alternative interpretation of their method that makes
the connection of moment problems and discrete optimization explicit. We review this
development in this section.

Given an undirected graph on n nodes, and weights ¢;; on the edges we would like to

find an s — ¢ cut of maximum weight. We formulate the problem as follows:

. 1
Z;p = maximize 3 sz:cij(l — x;2;)

subject to x5+ 2y =0, (37)
x?:l, 7=1,...,n,
and consider the semidefinite relaxation
.. 1
Zgp = maximize 3 ZZ]: cii(1—yij)
subject to  yg = 0, (38)

y; =1, 7=1,...,n,

Y > 0.
We solve the semidefinite relaxation (38) and obtain the semidefinite matrix Y. In order to
understand the closeness of Zgp and Z;p, we create a feasible solution to the s—t maximum
cut problem by interpreting the matrix Y as a covariance matrix.

Randomized heuristic H:

1. We generate a vector X from a multivariate normal distribution with 0 mean and

covariance matrix Y, that is,

X~ N(0,Y).
2. We create a vector X with components equal to 1 or -1:
x = sign(X), (39)
ie,2;=1if7; >0,and 2; =-1if 7; <0.
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Notice that instead of using a multivariate normal distribution for X we can use any
distribution that has covariance C'ov(X) = Y. What is interesting is that we show the
degree of closeness of Zgp and Zyp by considering results regarding the normal distributed

that were known in 1900.

Proposition 1

2 ) .
.j]:;arcsm(%’j)v ij=1,2,... n.

=
2>
=2

Proof:
The marginal distribution of Z; is N (0, 1), and thus P(2; = 1) = P(¢; = —1) = 1/2. Thus,
E[#;] = 0 and E[2?] = 1. Furthermore,

= P(ii:1,i]‘:1)—|—P(ii:—1,ij:—1)—P(ii:1,ij:— )—P(ii:—l,ijzm
= P(wiZo,wj20)—|—P($Z’<0,$]‘<0)—P($Z’20,$j<0)—P($2'<0,$]‘20).

The tail probabilities of a multivariate normal distribution is a problem that has been

studied in the last 100 years. Sheppard [28] shows (see Johnson and Kotz [18], p. 95) that

1 1

P(z; >0,2; >0)=P(z;<0,2; <0) = i Q—arcsin(yij)
T
1 1

P(z; >0,2; <0)=P(z;<0,2; >0) = 1 Q—arcsin(yij).
T

This leads to
2
E[2;2;] = — arcsin(y;;). (40)
T

Theorem 13 Heuristic H provides a feasible solution for the s —t maximum cut problem
with objective value Zg:

E[Zy] > 0.878Zsp.

Proof

First, we notice that E[#s + ;] = 0, and

4
E[(¢s + #)%] = 2+ 2E[¢,#,] = 2 + —arcsin(—1) =2 - 2 =0,
o
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i.e., &+ &; = 0 with probability 1, i.e., the solution is feasible.
Moreover, the value of the heuristic solution is
EZg] = ) ¢ (P(@Z» =1,&;=-1)+ P&, =1,3;= —1))
]

1 1 .
= Yo 5 — —arcsin(y;)

y

1
0.878 Z]: cii(l—ij)

v

= 0.878Zsp,

(1 — y;;) from Goemans and

N | —

where we used the inequality % - %arcsin(yij) > (0.878)
Williamson [13]. |

Bertsimas and Ye [10] show that the interpretation of the matrix Y as a covariance ma-
trix leads to interesting bounds for several problems, such as the graph bisection problem,
the s,t,u maximum cut problem, and constrained quadratic maximization. If the distribu-
tion used is the multivariate normal distribution the method is equivalent to the Goemans
and Williamson [13] method. However, it would be interesting to explore the generation
of random variables X using a distribution other than the multivariate normal distribution.
For the max cut problem, the bound 0.878 is not known to be tight. Generating a random

vector using a distribution other than the normal, might lead to a sharper bound.

6 Concluding Remarks

We would like to leave the reader with the following closing thoughts:

(a) Convex optimization has a central role to play in moment problems arising in proba-
bility and finance. Optimization not only offers a natural way to formulate and study

such problems, it leads to unexpected improvements of classical results.

(b) Semidefinite optimization represents a promising direction for further research in the
area of stochastic optimization. The two major areas in which semidefinite program-
ming has had a very positive impact are discrete optimization and control theory.
Paralleling the development in discrete optimization, we believe that semidefinite pro-
gramming can play an important role in stochastic optimization by increasing our

ability to find better lower bounds.
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