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Abstract

Problems involving moments of random variables arise naturally in many areas of

mathematics� economics� and operations research� How do we obtain optimal bounds

on the probability that a random variable belongs in a set� given some of its moments�

How do we price �nancial derivatives without assuming any model for the underlying

price dynamics� given only moments of the price of the underlying asset� How do we ob�

tain stronger relaxations for stochastic optimization problems exploiting the knowledge

that the decision variables are moments of random variables� Can we generate near

optimal solutions for a discrete optimization problem from a semide�nite relaxation by

interpreting an optimal solution of the relaxation as a covariance matrix� In this paper�

we demonstrate that convex� and in particular semide�nite� optimization methods lead

to interesting and often unexpected answers to these questions�
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� Introduction

Problems involving moments of random variables arise naturally in many areas of mathe�

matics� economics� and operations research� Let us give some examples that motivate the

present paper�

Moment problems in probability theory

The problem of deriving bounds on the probability that a certain random variable belongs

in a set� given information on some of the moments of this random variable� has a rich

history� which is very much connected with the development of probability theory in the

twentieth century� The inequalities due to Markov� Chebyshev and Cherno� are some of

the classical and widely used results of modern probability theory� Natural questions arise�

however�

�a� Are such bounds �best possible�� i�e�� do there exist distributions that match them� A

concrete and simple question in the univariate case� Is the Chebyshev inequality �best

possible��

�b� Can such bounds be generalized in multivariate settings�

�c� Can we develop a general theory based on optimization methods to address moment

problems in probability theory�

Moment problems in �nance

A central question in �nancial economics is to �nd the price of a derivative security given

information on the underlying asset� This is exactly the area of the ���	 Nobel prize in

economics to Robert Merton and Myron Scholes� Under the assumption that the price

of the underlying asset follows a geometric Brownian motion and using the no�arbitrage

assumption� the Black�Scholes formula provides an explicit and insightful answer to this

question� Natural questions arise� however� Making no assumptions on the underlying

price dynamics� but only using the no�arbitrage assumption�

�a� What are the best possible bounds for the price of a derivative security based on the

�rst and second moments of the price of the underlying asset�






�b� How can we derive optimal bounds on derivative securities that are based on multiple

underlying assets� given the �rst two moments of the asset prices and their correla	

tions�

�c� Conversely� given observable option prices� what are the best bounds that we can derive

on the moments of the underlying asset�

�d� Finally� given observable option prices� what are the best bounds that we can derive on

prices of other derivatives on the same asset�

Moment problems in stochastic optimization

Scheduling a multiclass queueing network� is a central problem in stochastic optimization�

Queueing networks represent dynamic and stochastic generalizations of job shops� and have

been used in the last thirty years to model communication� computer and manufacturing

systems� The central optimization problem is to �nd a scheduling policy that optimizes a

performance cost function c�x � d�y� where x � x�� � � � � xN�� xj is the mean number of

jobs of class j� y � y�� � � � � yN �� and yj is the second moment of the number of jobs of

class j� and c� d are N �vectors of nonnegative constants� The design of optimal policies is

EXPTIME�hard Papadimitiou and Tsitsiklis �
���� i�e�� it provably requires exponential

time� as P �� EXPTIME� A natural question that arises�

Can we �nd strong lower bounds e
ciently� exploiting the fact that the performance vectors

represent moments of random variables�

Moment problems in discrete optimization

The development of semide�nite relaxations in recent years represents an important ad�

vance in discrete optimization� In several problems� semide�nite relaxations are provably

closer to the discrete optimization solution value Goemans and Williamson ���� for the

maxcut problem for example� than linear ones� The proof of closeness of the semide�nite

relaxation to the discrete optimization solution value involves a randomized argument that

exploits the geometry of the semide�nite relaxation� A key question arises�

Is there a general method of generating near optimal integer solutions starting from an op	

timal solution of the semide�nite relaxation�
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We will see that the interpretation of the solution of the semide�nite relaxation as a co�

variance matrix for a collection of random variables leads to such a method and connects

moment problems and discrete optimization�

The central message in this survey paper is to demonstrate that convex and� in partic�

ular� semide�nite� optimization methods give interesting and often unexpected answers to

moment problems arising in probability� economics� and operations research� We also report

new computational results in the area of stochastic optimization that show the e�ectiveness

of semide�nite relaxations�

The key connection

The key connection between moment problems and semide�nite optimization is centered in

the notion of a feasible moment sequence� Let k � k�� � � � � kn� be a vector of nonnegative

integers�

De�nition � A sequence � � �k�k������kn�k is a feasible n� k���	moment vector �or se	

quence�� if there is a multivariate random variable X � X�� � � � � Xn� with domain � � Rn�

whose moments are given by �� that is �k � E�Xk�
� � � �Xkn

n �� � k� � � � �� kn � k � We say

that any such multivariate random variable X has a �	feasible distribution and denote this

as X � ��

We denote by M �Mn� k��� the set of feasible n� k����moment vectors�

The univariate case

For the univariate case n � ��� the problem of deciding if � � M��M�� � � � �Mk� is a

feasible �� k����moment vector is the classical moment problem� which has been completely

characterized by necessary and su�cient conditions see Karlin and Shapley ����� Akhiezer

���� Siu� Sengupta and Lind �
	� and Kemperman �
����

Theorem � �a� �Nonnegative random variables� The vector M�� � � � �M�n��� is a

feasible �� 
n� �� R��	moment sequence if and only if the following matrices are semide�	
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nite�

R�n �

�
BBBBBBB�

� M� � � � Mn

M� M� � � � Mn��

���
���

� � �
���

Mn Mn�� � � � M�n

�
CCCCCCCA
� ��

R�n�� �

�
BBBBBBB�

M� M� � � � Mn��

M� M� � � � Mn��

���
���

� � �
���

Mn�� Mn�� � � � M�n��

�
CCCCCCCA
� ��

�b� �Arbitrary random variables� The vector M��M�� � � � �M�n� is a feasible �� 
n�R�	

moment sequence if and only if R�n � ��

Proof�

We will only show the necessity of part b�� If M��M�� � � � �M�n� is a feasible �� 
n�R��

moment sequence� then there exists a probability measure fx� such that

Z �

��
xkfx�dx � Mk� k � �� �� � � � � 
n�

where M� � �� Consider the vector x � �� x� x�� � � � � x�n��� and the semide�nite matrix

xx�� Since fx� is nonnegative� the matrix

R�n �
Z �

��
xx�fx�dx

should be semide�nite�

The multivariate case

We consider the question of whether a sequence � � M��� is a feasible n� 
� Rn��moment

vector� i�e�� whether there exists a random vector X such that E�X� �M� E�XX�� � ��

Theorem � A sequence � � M��� is a feasible n� 
� Rn�	moment vector if and only if

the following matrix is semide�nite�

	 �

�
�� � M�

M �

�
�	 � ��
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Proof�

Suppose M��� is a feasible n� 
� Rn��moment vector� Then� there exists a random variable

X such that E�X� �M� E�XX�� � �� The matrix X�M�X�M�� is semide�nite� Taking

expectations� we obtain that

E�X�M�X�M��� � � �MM� � ��

which expresses the fact that a covariance matrix needs to be semide�nite� It is easy to see

that � �MM� � � if and only if 	 � ��

Conversely� if 	 � �� then � �MM� � �� Let X be a multivariate normal distribution

with mean M and covariance matrix ��MM�� This shows that the vector � � M��� is

a feasible n� 
� Rn��moment vector�

There are known necessary conditions for a sequence � to be a feasible n� k� Rn��moment

vector for k 	 �� that also involve the semide�niteness of a matrix derived from the vector ��

but these conditions are not known to be su�cient� In general� the complexity of deciding

whether a sequence � is a feasible n� k� Rn��moment vector has not been resolved�

Structure of the paper

The structure of the paper is as follows� In Section 
� we outline the application of semide��

nite programming to stochastic optimization problems� In Section �� we derive explicit and

often surprising optimal bounds in probability theory using convex and semide�nite pro�

gramming methods� In Section �� we apply convex and semide�nite programming methods

to problems in �nance� In Section �� we illustrate a connection between moment problems

and semide�nite relaxations in discrete optimization� Section � contains some concluding

remarks�

� Semide�nite Relaxations for Stochastic Optimization Prob�

lems

The development of semide�nite relaxations represents an important advance in discrete

optimization� In this section� we review a theory for deriving semide�nite relaxations for

classical stochastic optimization problems� The idea of deriving semide�nite relaxations
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for this class of problems is due to Bertsimas ���� Our development in this paper follows

Bertsimas and Ni�no�Mora ���� ���� the interested reader is referred to these papers for fur�

ther details� We demonstrate the central ideas for the problem of optimizing a multiclass

queueing network that represents a stochastic and dynamic generalization of a job shop�

��� Model description

We consider a network of queues composed of K single�server stations and populated by N

job classes� The set of job classes N � f�� � � � � Ng is partitioned into subsets C�� � � � � CK� so

that station m 
 K � f�� � � � � Kg only serves classes in its constituency Cm� We refer to jobs

of class i as i�jobs� and we let si� be the station that serves i�jobs� The network is open�

so that jobs arrive from outside� follow a Markovian route through the network i�jobs wait

for service at the i	queue� and eventually exit� External arrivals of i�jobs follow a Poisson

process with rate �i if class i does not have external arrivals �i � ��� The service times of

i�jobs are independent and identically distributed� having an exponential distribution with

mean �i � ���i� Upon completion of service at station si�� an i�job becomes a j�job and

hence is routed to the j�queue�� with probability pij � or leaves the system� with probability

pi� � ��
P

j�N pij � We assume that the routing matrix P � pij�i�j�N is such that a single

job moving through the network eventually exits� i�e�� the matrix I � P is invertible� We

further assume that all service times and arrival processes are mutually independent�

The network is controlled by a scheduling policy� which speci�es dynamically how each

server is allocated to waiting jobs� Scheduling policies can be either dynamic or static� In a

dynamic policy� scheduling decisions may depend on the current or past states of all queues�

in a static policy� the scheduling decisions of each server are independent of the queue

lengths of the job classes� A scheduling policy is stable if the queue�length vector process

has an equilibrium distribution with �nite mean� We allow policies to be preemptive� i�e�� a

job�s service may be interrupted and resumed later� Finally� a scheduling policy is nonidling

if a server cannot idle whenever there is a job waiting for service at that station�

Next� we de�ne other model parameters of interest� The eective arrival rate of j�jobs�

denoted by 	j � is the total rate at which both external and internal jobs arrive to the

	



j�queue� The 	j�s are computed by solving the system

	j � �j �
X
i�N

pij	i� for j 
 N �

The tra
c intensity of j�jobs� denoted by 
j � 	j�j � is the time�stationary probability that

a j�job is in service� The total tra
c intensity at station m is 
Cm� �
P

j�Cm 
j � and is the

time�stationary probability that server m is busy� We note that the condition


Cm� � �� for m 
 K

is necessary but not su�cient for guaranteeing the stability of any nonidling policy�

We assume that the system operates in a steady�state regime under a stable policy��

and introduce the following variables�

� Lit� � number of i�jobs in system at time t�

� Bit� � � if an i�job is in service at time t� � otherwise�

� Bmt� � � if serverm is busy at time t� � otherwise� notice that Bmt� �
P

i�Cm Bit��

In what follows we write� for convenience of notation� Li � Li��� Bi � Bi�� and Bm �

Bm���

��� The performance optimization problem

The performance measures we are interested in are x � xj�j�N � and y � yj�j�N � where

xj � E �Lj � � yj � E
h
L�
j

i
� for j 
 N �

i�e�� the vectors whose components are the time�stationary mean and second moment of the

number of jobs from each class in the system�

Given a performance cost function c�x� d�y� we investigate the following performance

optimization problem� compute a lower bound Z � c�x � d�y that is valid under a given

class of admissible policies� and design a policy which nearly minimizes the cost c�x� d�y�

For our purposes� any preemptive� nonidling policy is admissible� In this paper� we restrict

our attention to the question of computing strong lower bounds� As we mentioned in

the Introduction� the design of optimal policies is EXPTIME�hard Papadimitiou and
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Tsitsiklis �
���� i�e�� it is provably requires exponential time� as P �� EXPTIME� In recent

years� progress has been made in designing near�optimal scheduling policies based on the

idea of �uid control� in which discrete jobs are replaced by the �ow of a �uid� we refer the

interested reader to the papers by Avram� Bertsimas and Ricard �
�� Weiss ����� Luo and

Bertsimas �
��� and the references cited therein for details�

We study the problem of computing good lower bounds via the achievable region ap�

proach� The achievable region equivalently� performance region� X is de�ned as the set of

all performance vectors x�y� that can be achieved under admissible policies� Our goal is to

derive constraints on the performance vector x�y� that de�ne a relaxation of performance

region X � Since it is not obvious how to derive such constraints directly� we pursue the

following plan� a� identify system equilibrium relations and formulate them as constraints

involving auxiliary performance variables� b� formulate additional constraints both linear

and positive semide�nite� on the auxiliary performance variables� c� formulate constraints

that express the original performance vector� x�y�� in terms of the auxiliary variables�

Notice that this approach is fairly standard in the mathematical programming literature

and has a clear geometric interpretation� It corresponds to constructing a relaxation of the

performance region of the natural variables� x�y�� by a� lifting this region into a higher

dimensional space� by means of auxiliary variables� b� bounding the lifted region through

constraints on the auxiliary variables� and c� projecting back into the original space� Lift

and project techniques have proven powerful tools for constructing tight relaxations for hard

discrete optimization problems see� e�g�� Lov�asz and Schrijver �
���� We have summarized

the performance measures considered in this paper including auxiliary ones� in Table ��

The rest of this section is organized as follows� In Section 
��� we include linear con�

straints that relate the natural performance measures in terms of auxiliary performance

variables� Using the fact that our performance measures are expectations of random vari�

ables� we describe a set of positive semide�nite constraints in Section 
��� In Section 
���

we introduce a linear and a semide�nite relaxation using the constraints of the previous

sections� We further present computational results that illustrate that the semide�nite

relaxation is substantially stronger than the linear programming relaxation�
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Performance variables Interpretation

xj � x � xj�j�N E �Lj �

xij � X � xij�i�j�N � xi � xij�j�N E �Lj j Bi � ��

x�mj � X� � x�mj �m�K�j�N � x�m � x�mj �j�N E �Lj j Bm � ��

rij � R � rij�i�j�N E �BiBj �

rkij � R
k � rkij�i�j�N E �BiBj j Bk � ��

r�mij � R�m � r�mij �i�j�N E �BiBj j Bm � ��

yij � Y � yij�i�j�N E �LiLj �

ykij � Y
k � ykij�i�j�N E �LiLj j Bk � ��

y�mij � Y�m � y�mij �i�j�N E �LiLj j Bm � ��

Table �� Network performance measures�

��� Linear constraints

In this section� we present several sets of linear constraints that express natural performance

measures in terms of auxiliary ones� The �rst set of constraints describes constraints that

follow from elementary arguments�

Theorem 
 �Elementary constraints� Under any stable policy� the following equations

hold�

�a� Projection Constraints�

xj �
X
i�Cm


ix
i
j � �� 
Cm��x

�m
j � j 
 N � m 
 K� ��

rij �
X
k�Cm


kr
k
ij � �� 
Cm�� r

�m
ij � i� j 
 N � m 
 K� 
�

yij �
X
k�Cm


ky
k
ij � �� 
Cm�� y

�m
ij � i� j 
 N � m 
 K� ��

�b� De�nitional Constraints�

rij � 
jr
j
ii� i� j 
 N � ��

rii � 
i� r
i
ii � �� i 
 N � ��

rij � �� rkij � �� i� j 
 Cm� ��

rkij � �� i� k 
 Cm� or j� k 
 Cm� 	�

��



r�mij � �� i or j 
 Cm� ��

��

�c� Lower bound constraints�

rij 	 max�� 
i � 
j � ��� i� j 
 N � ���

xij 	
rij

i
� i� j 
 N � ���

x�mj 	 max



��

j � 
Cm�

�� 
Cm�

�
� m 
 K� j 
 N � �
�

rkij 	 max



��
rki � rkj


k
� �

�
� i� j� k 
 N � ���

r�mij 	 max



��

max�� 
i� 
Cm�� � max�� 
j � 
Cm��

�� 
Cm��
� �

�
� i� j 
 N � m 
 K� ���

yij 	 rij � i� j 
 N � ���

ykij 	 rkij � i� j� k 
 N � ���

y�mij 	 r�mij � i� j 
 N � m 
 K� �	�

Proof

The constraints in a� follow by a simple conditioning argument� by noticing that at each

time instant� a server is either serving some job class in its constituency or idling� The

constraints in b�� c� follow from elementary arguments�

Flow conservation constraints

We next present a set of linear constraints on performance measures using the classical �ow

conservation law of queueing theory� L� � L�� We �rst provide a brief discussion of �ow

conservation in stochastic systems� and then show how to use these ideas to derive linear

relations between time�stationary moments of queue lengths�

The classical �ow conservation law of queueing systems states that� under mild restric�

tions� the stationary state probabilities of the number in system at arrival epochs and that

at departure epochs are equal� The key assumption is that jobs arrive to the system and

depart from the system one at a time� so that the queue size can change only by unit steps�

Consider a multiclass queueing network operating in a steady state regime� with the

number in system process fLt�g� We assume that the process fLt�g has right�continuous

��



sample paths� and we use Lt�� to denote the left limit of the process at time t� The

corresponding right limit Lt�� � Lt� because of right�continuity of sample paths� Let A �

f�ak g and D � f�dk g be the sequences of arrival and departure epochs of jobs respectively�

Let L�a�k � be the number of jobs in the system seen by the kth arriving job just before its

arrival� similarly� let L�dk � be the number of jobs in the system seen by the kth departing

job just after its departure� We de�ne

L� � L�a�� ��

and

L� � L�d� ��

Since we assumed the system to be in steady�state� L� may be interpreted as the

number of jobs in the system seen by a typical arrival� while L� may be interpreted as the

number of jobs in the system seen by a typical departure� By considering any realization�

we see that for every upward transition for the number in system from i to i � ��� there

is a corresponding downward transition from i � �� to i� thus every L�a�k � is equal to

a distinct L�dk � in a sample�path sense� In particular� we have L� � L�� yielding the

following theorem�

Theorem � �Flow Conservation Law� If jobs enter and leave the system one at a time�

then

L� � L�

holds in distribution�

In what follows� we apply the law L� � L� to a family of queues obtained by aggregating

job classes� as explained next� Let S � N �

De�nition � �S�queue� The S	queue is the queueing system obtained by aggregating job

classes in S� The number in system at time t in the S	queue is denoted by LSt� �
P

j�S Ljt��

As usual we write LS � LS��� L
�
S � LS���� L

�
S � LS��� � LS��� For convenience of

notation we also write

pi� S� �
X
j�S

pij

�




and

�S� �
X
j�S

�j �

The next theorem formulates the law L� � L� as it applies to the S�queue�

Theorem  �The law L� � L� in MQNETs� Under any dynamic stable policy� and

for any subset of job classes S � N and nonnegative integer l�

�S�P LS � l��
X
i�Sc

	ipi� S�P LS � l j Bi � �� �
X
i�S

	i �� pi� S��P LS � l � � j Bi � �� �

���

Proof

By applying Theorem � to the S�queue� we have that

P L�S � l� � P L�
S � l��

An arrival epoch to the S�queue is either an arrival from the outside world external arrival�

that happens with rate �S�� or an internal movement from a class i in Sc to a class in S

internal arrival� that happens only if Bi � �� for i 
 Sc with rate

�ipi� S�P Bi � �� � �ipi� S�
i � 	ipi� S��

The total arrival rate to S�queue is

	S � �S� �
X
i�Sc

	ipi� S��

Therefore�

P
�
L�S � l


�
�S�

	S
P LS � l� �

X
i�Sc

	ipi� S�

	S
P LS � l j Bi � �� �

A departure epoch from S�queue happens with rate

�i�� pi� S��P Bi � �� � 	i�� pi� S��

for all i 
 S� The total departure rate is�

�S �
X
i�S

	i�� pi� S��

��



It can be easily checked that the total arrival rate to the S�queue and the total departure

rate from the S�queue are equal� i�e�� 	S � �S � Therefore�

P
�
L�
S � l


�
X
i�S

	i �� pi� S��

�S
P LS � l � � j Bi � �� �

By applying P L�S � l� � P L�
S � l�� Eq� ��� follows�

Taking expectations in identity ��� we obtain�

Corollary � Under any stable policy� and for any subset of job classes S � N and positive

integer K for which E
h
L� � � � �� LN�

K
i
���

�S�E
h
LKS

i
�
X
i�Sc

	ipi� S�E
h
LKS j Bi � �

i
�
X
i�S

	i �� pi� S��E
h
LS � ��K j Bi � �

i
�

���

Note that Corollary � formulates a linear relation between time�stationary moments of

queue lengths� The equilibrium equations in Corollary � corresponding to K � �� 
 and

S � fig� fi� jg� for i� j 
 N � yield directly the system of linear constraints on performance

variables shown next� Let � � Diag���

Corollary � �Flow conservation constraints� Under any dynamic stable policy� the

following linear constraints hold�

�a�

��x� � x�� � I� P���X�X��I�P� � I�P�����I�P�� 
��

�b� If E
�
L� � � � �� LN ��

�
��� then

�jyjj �
X
r�N

	rprjy
r
jj � 	jy

j
jj � 
	j�� pjj�x

j
j � 	j�� pjj�� j 
 N �
��

�iyjj � �jyii � 
�i � �j�yij �
X
r�N

	rpriy
r
jj �

X
r�N

	rprjy
r
ii

�
X
r�N


	rpri � prj�y
r
ij � 	iy

i
jj � 	jy

j
ii � 
	iy

i
ij � 
	jy

j
ij

�
	i�� pii � pij�x
i
j � 
	j�� pji � pjj�x

j
i � �	ipij � 	jpji� 

�

i� j 
 N �

The �ow conservation constraints were �rst derived for multi�station MQNETs by Bert�

simas� Paschalidis and Tsitsiklis �	�� and by Kumar and Kumar �
��� using a potential

function approach� The derivation we presented is from Bertsimas and Ni�no�Mora ����
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��� Positive semide�nite constraints

We present in this section� a set of positive semide�nite constraints that strengthen the

formulations obtained through equilibrium relations� Recall that the performance measures

x�y are moments of random variables� Applying Theorem 
 to the performance variables

introduced in Table � yields directly the following result�

Theorem � Under any dynamic stable policy� the following semide�nite constraints hold�

�a� Let rk � rkii�i�N and r�m � r�mii �i�N �
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��� On the power of the semide�nite relaxation

Our objective in this section is to compare computationally the linear and semide�nite

relaxations of the multiclass queueing network performance optimization problem� The

��



linear programming relaxation is de�ned as follows�

ZLP � minimize c�x� d�y

subject to Projection constraints � ��� 
�� ���

De�nitional constraints � ��� ��� ��� 	�� ���

Lower bound constraints � ���� ���� ���� ���� ���� ���� ���� �	��

Flow� conservation constraints � 
��� 
���

x 	 ��y 	 ��

The semide�nite relaxation ZSD is obtained by adding the constraints 
��� 
��� 
�� 
���
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Figure �� A Multiclass Network�

We consider the network of Figure �� In this network external arrivals come into either class

� or class �� and so �� � �� � �� In our computations we �x the service times as shown in

the �gure� and vary only the arrival rates� We maintain the symmetry between classes� and

so we set �� � �� � �� where � varies from ��� to ����� We select ci � � and di � �� i�e��

we are interested in minimizing the expected number of jobs in the system in steady�state�

We present below the optimal values ZLP and ZSD � The SDP relaxation has 
�� variables

including slack variables� and 
�� constraints� We solve the semide�nite relaxation using

the package SDPA developed by Fujisawa� Kojima and Nakata ��
�� In certain cases SDPA

was unable to solve the relaxation to the desired accuracy� but returned primal and dual

feasible solutions� in such cases we report the cost of the best primal and dual feasible

solutions obtained by SDPA� This has nothing to do with the size of the SDP relaxation�

but perhaps something to do with the particular values of the constraint matrices� All of
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Table 
� Comparison of LP and SDP relaxations for the network of Figure ��

these instances were solved in less than one minute by SDPA on a Pentium II workstation

as the SDP relaxation has a simple block structure�

For comparison purposes� we also report simulation results for a particular policy that

was derived from �uid optimal control see Avram et� al� �
��� When both L�t�� L�t�  B�

the �rst station gives preemptive priority to class � and the second station gives preemptive

priority to class 
� When L�t� � B� class � has preemptive priority over class 
� Similarly�

when L�t� � B� class � has preemptive priority over class �� We call this policy last�

bu�er��rst�served with a threshold B� denoted by LBFS �B� We let E�ZLBFS�B� denote

the expected number of jobs under this policy� We select the value of B optimally using

simulation�

In Table 
� we report the values ZLP � a primal feasible value for ZSD� a dual feasible

value for ZSD � the simulation value E�ZLBFS�B�� and the value of the threshold B that

�	



gives the optimal performance� The computational results suggest the following�

�a� The semide�nite relaxation substantially improves the linear programming relaxation�

In our experiments the improvement is in the range of �������� The improvement

is more substantial as the tra�c intensity 
 increases�

�b� The value of the semide�nite relaxation is close to the expected value of the policy

LBFS�B� This shows that not only the semide�nite relaxation produces near optimal

bounds� but the particular policy we constructed is a near optimal�

A multiclass single queue

We consider a single station network with four classes� Our objective here is to minimize
P�

i�� xi � yii� For the case that we do not include terms involving yii in the objective

function� the LP relaxation is exact see Bertsimas and Ni�no�Mora �����

We assume that the arrival rate for each class is the same� and that the mean service

times for the job classes are ����� ���� ��
� and ��� respectively� The results of the LP and

SDP relaxations are tabulated in Table �� In this experiment the SDP relaxation has 
��

variables and 

� constraints� All of these instances were solved in less than two minutes

by SDPA on a Pentium II workstation�

For comparison purposes we have simulated the following dynamic priority policy P �

At every service completion time t� we give priority to the class that has the highest index

�iLit�� The policy was derived from �uid optimal control see Avram et� al� �
���

We observe again that the semide�nite relaxation provides a sustantial improvement

over the value of the LP relaxation often by an order of magnitude�

Both computational experiments demonstrate that� unlike the LP relaxation� the semidef�

inite relaxation provides practically useful suboptimality guarantees that can be used to

assess the closeness to optimality of heuristic policies� We believe that the combination

of �uid optimal control methods to generate near optimal policies for large scale problems

see Luo and Bertsimas �
���� and semide�nite relaxation to provide near optimal bounds

is perhaps the most promising methodology to address the multiclass queueing network

optimization problem�
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Table �� Comparison of LP and SDP relaxations for a multiclass queue�
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� Optimal Bounds in Probability

In this section� we review the work of Bertsimas and Popescu ���� Suppose that � is a

feasible moment sequence and X has a ��feasible distribution� We now de�ne the central

problem we address in this section�

The 	n�k�	

bound problem

Given a sequence � of up to kth order moments

�k � E�Xk�
� Xk�

� � � �Xkn
n �� k� � k� � � � �� kn � k�

of a multivariate random variableX � X�� X�� � � � � Xn� on � � Rn� �nd the  best possible!

or  tight! upper and lower bounds on P X 
 S�� for arbitrary events S � ��

The term  best possible! or  tight! upper and by analogy lower� bound above is de�ned

as follows�

De�nition 
 We say that � is a tight upper bound on P X 
 S�� and we will denote it by

sup
X��

P X 
 S� if �

�a� it is an upper bound� i�e�� P X 
 S� � � for all random variables X � ��

�b� it cannot be improved� i�e�� for any �  � there is a random variable X� � � for which

P X� 
 S�  �� ��

The well known inequalities due to Markov� Chebyshev and Cherno�� which are widely

used if we know the �rst moment� the �rst two moments� and all moments i�e�� the gener�

ating function� of a random variable� respectively� are feasible but not necessarily optimal

solutions to the �� k����bound problem� i�e�� they are not necessarily tight bounds�

In the univariate case� the idea that optimization methods and duality theory can be

used to address these type of questions is due to Isii ��	�� Thirty years later� Smith �
��

has generalized this work to the multivariate case� and proposed interesting applications

in decision analysis� dynamic programming� statistics and �nance� He also introduces a

computational procedure for the n� k� Rn��bound problem� although he does not refer to

it in this way� Unfortunately� the procedure is far from an actual algorithm� as there is

no proof of convergence� and no investigation theoretical or experimental� of its e�ciency�


�



Bertsimas and Popescu ���� whose work we survey in this paper� have proposed convex

optimization algorithms to address the n� k����bound problem�

We examine the existence of an algorithm that on input hn� k��� �i computes a value � 


������ ������ where �� � sup
X��

P X 
 S�� and runs in time polynomial in n� k� log�max and

log �
�
� where �max � max�k�� We assume the availability of an oracle to test membership

in S  �� and we allow our algorithm to make oracle queries of the type  is x in S "!�

Primal and dual formulations

The n� k����upper bound problem can be formulated as the following optimization problem

P ��

P � ZP � maximize
Z
S

fz�dz

subject to
Z
�
zk�� � � �zknn fz�dz � �k� � k� � � � �� kn � k�

fz� � fz�� � � � � zn� 	 �� � z � z�� � � � � zn� 
 ��

Notice that if Problem P � is feasible� then � is a feasible moment sequence� and any

feasible distribution fz� is a ��feasible distribution�

In the spirit of linear programming duality theory� we associate a dual variable uk with

each equality constraint of the primal� We can identify the vector of dual variables with a

k�degree� n�variate dual polynomial�

gx�� � � � � xn� �
X

k������kn�k

ukx
k�
� � � �xknn �

We refer to such a polynomial as a k�degree� n�variate polynomial� The dual objective

translates to �nding the smallest value of�

X
k

uk�k �
X
k

ukE�Xk�
� � � �Xkn

n � � E�gX���

where the expected value is taken over any ��feasible distribution� In this framework� the

Dual Problem D� corresponding to Problem P � can be written as�

D� ZD � minimize E�gX��

subject to gx� k�degree� n�variate polynomial�

gx� 	 �Sx�� � x 
 ��


�



where �Sx� is the indicator function of the set S� de�ned by�

�Sx� �

���
��

�� if x 
 S�

�� otherwise�

Notice that in general the optimum may not be achievable� Whenever the primal opti�

mum is achieved� we call the corresponding distribution an extremal distribution� We

next establish weak duality�

Theorem � �Weak duality� ZP � ZD�

Proof

Let fz� be a primal optimal solution and let gz� be any dual feasible solution� Then�

ZP �
Z
S

fz�dz �
Z
�
�Sz�fz�dz �

Z
�
gz�fz�dz � E�gX���

and hence ZP � inf
g	�
��S	�


E�gX�� � ZD �

Theorem 	 indicates that by solving the Dual Problem D� we obtain an upper bound

on the primal objective and hence on the probability we are trying to bound� Under some

mild restrictions on the moment vector �� the dual bound turns out to be tight� This strong

duality result follows from a more general theorem �rst proved in one dimension by Isii ��	��

and in arbitrary dimensions by Smith �
��� The following theorem is a consequence of their

work�

Theorem � �Strong Duality and Complementary Slackness� If the moment vector

� is an interior point of the set M of feasible moment vectors� then the following results

hold�

�a� Strong Duality� ZP � ZD�

�b� Complementary Slackness� If the dual is bounded� there exists a dual optimal solution

gopt�� and a discrete extremal distribution concentrated on points x� where goptx� �

�Sx�� that achieves the bound�

It can also be shown that if the dual is unbounded� then the primal is infeasible� i�e��

the multidimensional moment problem is infeasible� Moreover� if � is a boundary point of

M� then it can be shown that the ��feasible distributions are concentrated on a subset ��







of �� and strong duality holds provided we relax the dual to �� see Smith �
��� p� �
��� In

the univariate case� Isii ��	� proves that if � is a boundary point of M � then exactly one

��feasible distribution exists�

If strong duality holds� then by optimizing over Problem D� we obtain a tight bound

on P X 
 S�� On the other hand� solving Problem D� is equivalent to solving the corre�

sponding separation problem� under certain technical conditions see Gr#otschel� Lov�asz and

Schrijver ������

��� Explicit bounds for the 	n���	
� 	n���Rn

bound problems

In this section� we present tight bounds as solutions to n convex optimization problems for

the n� �� Rn
���bound problems� and as a solution to a single convex optimization problem

for the n� 
� Rn��bound problem for the case when the event S is a convex set� The proof

of the theorem uses duality for convex optimization problems�

Theorem � �a� The tight n� �� Rn
��	upper bound for an arbitrary convex event S is given

by�

sup
X�M

P X 
 S� � min



�� max

i�������n

Mi

infx�Si xi

�
� 
��

where Si � S � �j 	�ifxj Mixj �Mjxi � �g��

�b� If the Bound ���� is achievable� then there is an extremal distribution that exactly

achieves it� otherwise� there is a sequence of distributions with meanM� that asymptotically

achieve it�

Theorem � constitutes a multivariate generalization of Markov�s inequality� We denote by

P X M
e��� � P Xi  � � �i�Mi � �i � �� � � � � n��

where � � ��� � � � � �n��� e � �� �� � � � � ��� and M� � ��M�� � � � � �nMn��� Then� applying

Theorem � leads to�

sup
X�M

P X M
e��� � min

i�������n

�

� � �i
�


�



The 	n���Rn

bound problem for convex sets

We �rst rewrite the n� 
� Rn��bound problem in a more convenient form� Rather than

assuming that E�X� and E�XX�� are known� we assume equivalently that the vector M �

E�X� and the covariance matrix � � E�X�M�X�M��� are known� Given a set S  Rn�

we �nd tight upper bounds� denoted by sup
X�	M��


P X 
 S�� on the probability P X 
 S�

for all multivariate random variables X de�ned on Rn with meanM � E�X� and covariance

matrix � � E�X�M�X�M����

First� notice that a necessary and su�cient condition for the existence of such a random

variable X� is that the covariance matrix � is symmetric and positive semide�nite� Indeed�

given X� for an arbitrary vector a we have�

� � E�a�X�M���� � a�E�X�M�X�M���a � a��a�

so � must be positive semide�nite� Conversely� given a symmetric semide�nite matrix $

and a mean vector M� we can de�ne a multivariate normal distribution with mean M and

covariance �� Moreover� notice that � is positive de�nite if and only if the components of

X�M are linearly independent� Indeed� the only way that � � a��a � E�a�X�M����

for a nonzero vector a is that a�X�M� � ��

We assume that � has full rank and is positive de�nite� This does not reduce the

generality of the problem� it just eliminates redundant constraints� and thereby insures

that Theorem � holds� Indeed� the tightness of the bound is guaranteed by Theorem �

whenever the moment vector is interior to M� If the moment vector is on the boundary� it

means that the covariance matrix of X is not of full rank� implying that the components of

X are linearly dependent� By eliminating the dependent components� we reduce without

loss of generality the problem to one of smaller dimension for which strong duality holds�

Hence� the primal and the dual problems P � and D� satisfy ZP � ZD�

Theorem �� �a� The tight n� 
� Rn�	upper bound for an arbitrary convex event S is given

by�

sup
X�	M��


P X 
 S� �
�

� � d�
� ���

where d� � inf
x�S

x�M�����x�M�� is the squared distance from M to the set S� under

the norm induced by the matrix ����
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�b� If M �
 S and if d� � inf
x�S

x�M�����x�M� is achievable� then there is an extremal

distribution that exactly achieves the Bound ����� otherwise� ifM 
 S or if d� is not achiev	

able� then there is a sequence of M���	feasible distributions that asymptotically approach

the Bound �����

Theorem �� constitutes a multivariate generalization of Chebyshev�s inequality� The tight

multivariate one�sided Chebyshev bound is

sup
X�	M��


P X M
e��� �

�

� � d�
� ���

where d� is given by�

d� � minimize x����x �
�

subject to x 	M��

or alternatively d� is given by the Gauge dual problem of �
��

�

d�
� minimize x��x ���

subject to x�M� � �

x 	 ��

If ���M� 	 �� then the tight bound is expressible in closed form�

sup
X�	M��


P X M
e��� �

�

� �M�
�
���M�

� ���

Surprisingly� the bound ��� improves upon the Chebyshev�s inequality for scalar random

variables� In order to express Chebyshev�s inequality we de�ne the squared coe�cient of

variation� C�
M �

M� �M�
�

M�
�

� Chebyshev�s inequality is given by�

P X  � � ��M�� �
C�
M

��
�

where as bound ��� is stronger�

P X  � � ��M�� �
C�
M

C�
M � ��

�

In Section ���� we review a polynomial time algorithm for the n� 
� Rn��upper bound

problem� when the set S is a disjoint union of convex sets�
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��� The complexity of the 	n���Rn

�
� 	n�k�R
n

bound problems

In this section� we show that the separation problem associated with Problem D� for the

cases n� 
� Rn
��� n� k� R

n��bound problems are NP�hard for k 	 �� By the equivalence of

optimization and separation see Gr#otschel� Lov�asz and Schrijver ������ solving Problem D�

is NP�hard as well� Finally� because of Theorem 
� solving the n� 
� Rn
��� n� k� R

n��bound

problems with k 	 � is NP�hard�

The complexity of the 	n���Rn

�

bound problem

The separation problem can be formulated as follows in this case�

Problem �SEP� Given a multivariate polynomial gx� � x�Hx�c�x�d� and a set S � Rn
��

does there exist x 
 S such that gx� � � "

If we consider the special case c � �� d � �� and S � Rn
�� Problem 
SEP reduces to the

question whether a given matrix H is co�positive� which is NP�hard see Murty and Kabadi

�
����

The complexity of the 	n�k�Rn

bound problem for k � �

For k 	 �� the separation problem can be formulated as follows�

Problem 
SEP� Given a multivariate polynomial gx� of degree k 	 �� and a set S � Rn�

does there exist x 
 S such that gx� � � "

Bertsimas and Popescu ��� show that problem �SEP is NP�hard by performing a re�

duction from �SAT �

� Moment Problems in Finance

The idea of investigating the relation of option and stock prices just based on the no�

arbitrage assumption� but without assuming any model for the underlying price dynamics

has a long history in the �nancial economics literature� Cox and Ross ���� and Harrison

and Kreps ���� show that the no�arbitrage assumption is equivalent with the existence of a

probability distribution � the so�called martingale measure� such that that option prices

become martingales under �� In this section� we survey some recent work of Bertsimas and

Popescu ��� that sheds new light to the relation of option and stock prices� and shows that
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the natural way to address this relation� without making distributional assumptions for the

underlying price dynamics� but only using the no�arbitrage assumption� is the use of convex

optimization methods�

In order to motivate the overall approach we formulate the problem of deriving optimal

bounds on the price of a European call option given the mean and variance of the underlying

stock price solved by Lo �

�� A call option on a certain stock with maturity T and strike k

gives the owner of the option the right to buy the underlying stock at time T at price k� If

X is the price of the stock at time T � then the payo� of such an option is zero if X � k the

owner will not exercise the option�� and X � k if X 	 k� i�e�� it is max�� X� k�� Following

Cox and Ross ���� and Harrison and Kreps ����� the no�arbitrage assumption is equivalent

with the existence of a probability distribution � of the stock price X � such that the price

of any European call option with strike price k is given by

qk� � E�max�� X � k���

where the expectation is taken over the unknown distribution �� Note that we have assumed�

without loss of generality� that the risk free interest rate is zero� Moreover� given that the

mean and variance of the underlying asset are observable�

E�X � � �� and V ar�X � � ���

the problem of �nding the best possible upper bound on the call price� written as

Z� � sup
X�	����
�

E�max�� X � k���

can be formulated as follows�

Z� � sup E�max�� X � k��

subject to E�X � � �

V ar�X � � ���

Conversely� the problem of �nding sharp upper and lower bounds on the moments of

the stock price using known option prices� can be formulated as follows�

sup � inf E�X � � or E�X�� � or E�max�� X � k��

subject to E�max�� X � ki�� � qi � i � �� � � � � n�


	



These formualtions naturally lead us to the following general optimization problem�

sup � inf E��X��

subject to E�fiX�� � qi � i � �� �� � � � � n �
���

where X � X�� � � � � Xm� is a multivariate random variable� and � � Rm � R is a real�

valued objective function� fi � R
m � R� i � �� � � � � n are also real�valued� so�called moment

functions whose expectations qi 
 R� referred to as moments� are known and �nite� We

assume that f�x� � � and q� � E�f�X�� � �� corresponding to the implied probability�

mass constraint�

Note that the problem of �nding optimal bounds on P X 
 S� of the previous section

given moments ofX can be formulated as a special case of Problem ��� with �x� � �Sx��

��� E�cient algorithms

In this section� we propose a polynomial time algorithm for Problem ���� We analyze the

upper bound problem� since we can solve the lower bound problem by changing the sign of

the objective function ��

P � ZP � sup E��X��

subject to E�fiX�� � qi � i � �� �� � � � � n�
���

We de�ne the vector of moment functions f � f�� f�� � � � � fn� and the corresponding vector

of moments q � q�� q�� � � � � qn�� Without loss of generality� we assume that the moment

functions are linearly independent on Rm� meaning that there is no nonzero vector y so

that y�fx� � � for all x 
 Rm�

The dual problem can be written as

D� ZD � inf E�y�fX�� � inf y�q

subject to y�fx� 	 �x�� �x 
 Rm�
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Smith �
�� shows that if the vector of moments q is interior to the feasible moment

set M � fE�fX�� j X arbitrary multivariate distributiong� then strong duality holds�

ZP � ZD�

Thus by solving Problem D� we obtain the desired sharp bounds� On the other hand�

under certain technical conditions see Gr#otschel� Lov�asz and Schrijver ������ solving Prob�

lem D� is equivalent to solving the corresponding separation problem S��

The Separation Problem �S��

Given an arbitrary y � y�� y�� � � � � yn�� check whether gx� � y�x� � �x� 	 �� for all

x 
 Rm� and if not �nd a violated inequality�

The following theorem shows that for important special cases Problem ��� is solvable

in polynomial time�

Theorem �� If � and fi� i � �� � � � � n are quadratic or piecewise linear functions �or

piecewise constant� over d convex sets� and d is a polynomial in n�m� then Problem ����

can be solved in polynomial time�

Proof�

We consider �rst the case when all functions are quadratic or linear� �x� � x�Ax�b�x�c

and fix� � x�Aix� b�ix� ci � i � �� � � � � n� Then�

gx� � y�fx�� �x� � y� �
nX
i��

yifix�� �x� � x� %Ax� %b�x� %c�

where %A �
nP
i��

yiAi � A � %b �
nP
i��

yibi � b � %c �
nP
i��

yici � y� � c� We show that solving

the separation problem  inf
x�Rm

gx� 	 �"! reduces to checking whether the matrix %A �

nP
i��

yiAi � A is positive semide�nite� and in that case� solving the corresponding convex

quadratic optimization problem�

The following algorithm solves the separation problem in polynomial time�

Algorithm A�

�a� If %A is not positive semide�nite� then we �nd a vector x� so that gx�� � �� We

decompose %A � Q��Q� where � � diag	�� � � � � 	n� is the diagonal matrix of eigen�

values of %A� Let 	i � � be a negative eigenvalue of %A� Let u be a vector with uj � ��


�



for all j �� i� and ui large enough so that 	iu
�
i �Q%b�iui�%c � �� Let x� � Q�u� Then�

gx�� � x��
%Ax� � %b�x� � %c

� u�QQ��QQ�u� %b�Q�u� %c

� u��u� %b�Q�u � %c

�
nX
j��

	ju
�
j �

nX
j��

Q%b�juj � %c

� 	iu
�
i � Q%b�iui � %c � ��

This produces a violated inequality�

�b� Otherwise� if %A is positive semide�nite� then we test if gx� 	 �� �x 
 Rm by solving

the convex quadratic optimization problem�

inf
x�Rm

gx��

If the optimal value is z� � �� we �nd x� such that gx�� � �� which represents a

violated inequality�

We next examine the case that some of the functions � or fi� i � �� � � � � n are piecewise

linear over d convex sets� with d being a polynomial in n�m� In this case� the function

gx� � y�x� � �x� can be written as gx� � x� %Ax � %b�kx � %ck� for all x 
 Dk� k �

�� � � � � d� where the sets Dk form a convex partition of Rm and d � polyn�m�� We show

that in this case� again� solving the separation problem reduces to checking whether the

matrix %A is positive semide�nite� and in that case solving the convex quadratic problems

inf
x�Dk

gx� � k� �� � � � � d� This can be done in polynomial time using ellipsoid algorithm see

������ The following algorithm solves the separation problem in polynomial time�

Algorithm B�

�a� If %A is not positive semide�nite� we �nd a violated inequality in exactly the same way

as part a� of Algorithm A�

�b� Otherwise� if %A is positive semide�nite� then we test if gx� 	 �� �x 
 Rm by solving

a polynomial number d of convex quadratic optimization problems�

inf
x�Dk

x� %Ax� %b�kx� %ck � for k � �� � � � � d�

If the optimal value in any of these problems is zk� � �� we �nd xk� such that gxk�� � ��

which represents a violated inequality�

��



Remarks�

�a� Theorem �� covers the case� in which we would like to �nd optimal bounds for an

option� given prices for other options and the �rst two moments of the underlying

stock price� In these cases the functions fx� and �x� are quadratic or piecewise

linear� We will see in the next section that we can derive an explicit answer in the

univariate case�

�b� If �x� � �Sx� where S is a disjoint union of d convex sets� and thus �x� is piecewise

constant�� fx� � x� x�M�x�M���� q � M��� and n �m then Problem ��� is

the n� 
� Rn��upper bound problem sup
X�M

P x 
 S�� where S is a disjoint union of d

convex sets� We have seen in the previous section that when S is a convex set� then

we can �nd an explicit answer for the problem Theorem ���� Theorem �� provides an

algorithmic solution if the set S is a disjoint union of a polynomial number of convex

sets�

�c� The semide�nite property plays an important role in the proof of Theorem ��� Not only

we check whether the matrix %A is semide�nite as a �rst step of both Algorithms A and

B� but we also solve convex quadratic optimization problems over polyhedral spaces

assuming that the sets Dk are polyhedral� which is typically the case in applications��

which can be formulated as semide�nite programming problems�

��� Bounds on option prices given moment information

In this section� we derive an explicit upper bound for the case of a single stock� and a

European call option with strike k� �x� � max�� x� k�� The solution is due to Lo �

��

Our proof follows Bertsimas and Popescu ���� The proof illustrates the use of duality�

Theorem �� �Tight upper bound on option prices� The tight upper bound on the

price of an option with strike k� on a stock whose price at maturity has a known mean �

and variance ��� is computed by�

max
X�	����
�

E�max�� X � k�� �

�����
����

�




�
�� k� �

q
�� � �� k��

�
� if k 	

�� � ��


�
�

� � k � k
��

�� � ��
� if k �

�� � ��


�
�

��



Proof�

The dual in this case can be formulated by associating dual variables y�� y�� y� with the

probability�mass� mean and respectively� variance constraints� We obtain the following

dual formulation�

ZD � minimizey �� � ��� y� � � y� � y�

subject to gx� � y� x
� � y� x� y� 	 max�� x� k� � �x 	 � �

A dual feasible function g�� is any quadratic function that� on the positive orthant� is

nonnegative and lies above the line x�k�� In an optimal solution� such a quadratic should

be tangent to the line x� k�� so we can write gx�� x� k� � ax� b�� � for some a 	 ��

The nonnegativity constraint on g�� can be expressed as ax � b�� � x � k 	 � � �x 	 ��

Let x� � b�
�


a
be the point of minimum of this quadratic� Depending whether x� is

nonnegative or not� either the inequality at x � x� or at x � � is binding in an optimal

solution� We have two cases�

�a� If b 	
�


a
� then �

�

�a
� b� k � � binding constraint at x���

Substituting a �
�

�b� k�
in the objective� we obtain�

ZD � min
b

�� k� � b� k��� � ��

�b� k�
�

�




�
�� k� �

q
�� � �� k��

�
�

achieved at b� �
�� � ��

�
� This bound is valid whenever b� 	

�


a�
� 
b� � k�� that is

�� � ��


�
� k�

�b� If b �
�


a
� then ab� � k � � binding constraint at x � ���

Substituting a �
k

b�
in the objective� we obtain�

ZD � min
b

k

b�
�� � ���� 


k

b
�� � � �� k

��

�� � ��
�

achieved at b� �
�� � ��

�
�

This bound is valid whenever b� �
�


a�
�

b��

k

� that is
�� � ��


�
 k�

�




� Moment Problems in Discrete Optimization

In this section� we explore the connection of moment problems and discrete optimization�

We consider the maximum s � t cut problem� Goemans and Williamson ���� showed that

a natural semide�nite relaxation is within ���	� of the value of the maximum s � t cut�

Bertsimas and Ye ���� provide an alternative interpretation of their method that makes

the connection of moment problems and discrete optimization explicit� We review this

development in this section�

Given an undirected graph on n nodes� and weights cij on the edges we would like to

�nd an s� t cut of maximum weight� We formulate the problem as follows�

ZIP � maximize
�




X
i�j

cij�� xixj�

subject to xs � xt � ��

x�j � �� j � �� � � � � n�

�	�

and consider the semide�nite relaxation

ZSD � maximize
�




X
i�j

cij�� yij�

subject to yst � ��

yjj � �� j � �� � � � � n�

Y � ��

���

We solve the semide�nite relaxation ��� and obtain the semide�nite matrix Y� In order to

understand the closeness of ZSD and ZIP � we create a feasible solution to the s�t maximum

cut problem by interpreting the matrix Y as a covariance matrix�

Randomized heuristic H�

�� We generate a vector x from a multivariate normal distribution with � mean and

covariance matrix Y� that is�

x � N��Y��

�� We create a vector %x with components equal to � or ���

%x � signx�� ���

i�e�� %xj � � if xj  �� and %xj � �� if xj � ��

��



Notice that instead of using a multivariate normal distribution for x we can use any

distribution that has covariance Covx� � Y� What is interesting is that we show the

degree of closeness of ZSD and ZIP by considering results regarding the normal distributed

that were known in �����

Proposition �

E�%xj� � �� E�%x�j � � �� j � �� 
� � � � � n�

E�%xi%xj � �



�
arcsinyij�� i� j � �� 
� � � � � n�

Proof�

The marginal distribution of xi is N�� ��� and thus P%xi � �� � P%xi � ��� � ��
� Thus�

E�%xi� � � and E�%x�i � � �� Furthermore�

E�%xi%xj �

� P %xi � �� %xj � �� � P %xi � ��� %xj � ���� P %xi � �� %xj � ���� P %xi � ��� %xj � ��

� P xi 	 �� xj 	 �� � P xi � �� xj � ��� P xi 	 �� xj � ��� P xi � �� xj 	 ���

The tail probabilities of a multivariate normal distribution is a problem that has been

studied in the last ��� years� Sheppard �
�� shows see Johnson and Kotz ����� p� ��� that

P xi 	 �� xj 	 �� � P xi � �� xj � �� �
�

�
�

�


�
arcsinyij�

P xi 	 �� xj � �� � P xi � �� xj 	 �� �
�

�
�

�


�
arcsinyij��

This leads to

E�%xi%xj � �



�
arcsinyij�� ���

Theorem �
 Heuristic H provides a feasible solution for the s � t maximum cut problem

with objective value ZH�

E�ZH � 	 ���	�ZSD�

Proof

First� we notice that E�%xs � %xt� � �� and

E�%xs � %xt�
�� � 
 � 
E�%xs%xt� � 
 �

�

�
arcsin��� � 
� 
 � ��

��



i�e�� %xs � %xt � � with probability �� i�e�� the solution is feasible�

Moreover� the value of the heuristic solution is

E�ZH � �
X
ij

cij



P %xi � �� %xj � ��� � P %xi � �� %xj � ���

�

�
X
ij

cij



�



�

�

�
arcsinyij�

�

	 ���	�
�




X
ij

cij�� yij�

� ���	�ZSD�

where we used the inequality
�



�

�

�
arcsinyij� 	 ���	��

�



� � yij� from Goemans and

Williamson �����

Bertsimas and Ye ���� show that the interpretation of the matrix Y as a covariance ma�

trix leads to interesting bounds for several problems� such as the graph bisection problem�

the s� t� u maximum cut problem� and constrained quadratic maximization� If the distribu�

tion used is the multivariate normal distribution the method is equivalent to the Goemans

and Williamson ���� method� However� it would be interesting to explore the generation

of random variables x using a distribution other than the multivariate normal distribution�

For the max cut problem� the bound ���	� is not known to be tight� Generating a random

vector using a distribution other than the normal� might lead to a sharper bound�

� Concluding Remarks

We would like to leave the reader with the following closing thoughts�

�a� Convex optimization has a central role to play in moment problems arising in proba�

bility and �nance� Optimization not only o�ers a natural way to formulate and study

such problems� it leads to unexpected improvements of classical results�

�b� Semide�nite optimization represents a promising direction for further research in the

area of stochastic optimization� The two major areas in which semide�nite program�

ming has had a very positive impact are discrete optimization and control theory�

Paralleling the development in discrete optimization� we believe that semide�nite pro�

gramming can play an important role in stochastic optimization by increasing our

ability to �nd better lower bounds�

��
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