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Abstract We present an overview of recent developments of HDG methods for
numerically solving partial differential equations in fluid mechanics.

1 Background

In recent years, discontinuous Galerkin (DG) finite element methods have emerged
as a competitive alternative for solving nonlinear hyperbolic systems of conserva-
tion laws. The advantages of the DG methods over classical finite difference and
finite volume methods are well-documented in the literature: the DG methods work
well on arbitrary meshes, result in stable high-order accurate discretizations of the
convective and diffusive operators, allow for a simple and unambiguous imposi-
tion of boundary conditions and are very flexible to parallelization and adaptivity.
Despite all these advantages, DG methods have not yet made a significant impact for
practical applications. This is largely due to the high computational cost associated
to them when compared to finite differences or finite volume schemes.

The hybridizable discontinuous Galerkin (HDG) methods were recently intro-
duced to try to address this issue. In this paper, we present an overview of the recent
developments of these methods with implicit time-marching integration as applied
to some basic models in fluid mechanics.

The HDG methods retain the advantages of standard DG methods and result in a
significantly reduced degree of freedom count, therefore allowing for a substantial
reduction in the computational cost and memory storage. Hybridizable DG methods
were initially developed for elliptic problems [4, 5, 9, 10, 12, 13] and have already
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been developed and demonstrated for linear and nonlinear convection-diffusion
problems [6, 20, 21], linear elasticity [27], and incompressible flow [7, 11, 22–24].

The HDG methods we consider have the following main advantages over many
existing discontinuous Galerkin methods:

" Reduced number of globally coupled degrees of freedom Unlike many other
DG methods (analyzed in [1]) which result in a final system involving all the
degrees of freedom of the approximate field variables, the HDG methods pro-
duce a final system in terms of the degrees of freedom of the approximate traces
of the field variables. Since the approximate traces are defined on the element
borders only, the HDG methods have significantly less the globally coupled
unknowns as other DG methods. In fact, a variant of the HDG method – the
Embedded DG method (EDG) [12, 17]) – has the same number of globally cou-
pled unknowns than a standard continuous Galerkin method. This large reduction
in the degrees of freedom can lead to significant savings for both computational
time and memory storage.

" Superconvergence For convection-diffusion problems, the HDG methods pro-
vide optimal convergence for the approximation of the gradient – a special
convergence property of the HDG methods for diffusion problems – whereas, for
all of the DG methods studied in [1], as well as the standard continuous Galerkin
approach the approximate gradient converges suboptimally. For incompressible
flows, the approximate velocity, pressure, velocity gradient, and vorticity con-
verge with the optimal order. This has to be contrasted with the fact that all the
other DG methods display the suboptimal order of convergence for the approx-
imate pressure, velocity gradient, and vorticity. Moreover, the HDG methods
have superconvergence properties for the numerical traces and the average of
the approximate variables.

" Local postprocessing Based on the optimal convergence and superconvergence
of the HDG methods, local postprocessing can be developed to increase by one
the spatial order of convergence of the numerical solution. For incompressible
flows, local postprocessing can be employed to obtain a new approximation
of the velocity which is exactly divergence-free, H .div/-conforming, and con-
verges with an additional order. For time-dependent problems, postprocessing
only needs to be done at those time levels for which a more accurate result is
desired. Moreover, since the postprocessing is performed at the element level, it
is less expensive than the solution procedure.

" Geometric flexibility and mesh adaptation The HDG methods can be imple-
mented on general unstructured meshes and are well suited to handle h=p
adaptivity since grid refinement or coarsening can be achieved without taking
into account the continuity restrictions typical of conforming methods, and since
different order of approximations can be used on different elements/subdomains.
Adaptivity is of particular importance in compressible flow given the complexity
of the solution structure and geometries involved.

" Parallelization The HDG methods remain highly parallelizable even when
implicit time integration is used since the local problems are formulated at the
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element or subdomain level, they can be solved independently for each of the sub-
domain blocks. For the global problem, the iterative techniques with p-multigrid
and block ILU preconditioning developed for DG methods can also be applied
here [26].

We attempt to give an overview of recent developments of the HDG methods for
fluid dynamics. In Sect. 2 we describe the basic ideas of HDG methodology for a
convection-diffusion model equation: a mixed formulation of the model equation, a
characterization of the numerical solution in terms of the approximate trace, rela-
tionship between the HDG method and the standard DG methods, the choice of the
stabilization parameter, and the local postprocessing to improve the order of conver-
gence. In Sect. 3 we show how the main ideas can be extended to time-dependent
and nonlinear convection-diffusion problems, Stokes flows, and incompressible
Navier–Stokes equations. In Sect. 4 we present numerical results for fluid dynam-
ics to demonstrate the performance and accuracy of the HDG method. Finally, in
Sect. 5, we end the paper with some concluding remarks on future developments.

2 The HDG Method

2.1 The Convection-Diffusion Model Equation

We will describe the main ideas behind the hybridized discontinuous Galerkin
method using the linear convection-diffusion equation as a model problem

r ! .cu/" r ! .!ru/ D f; in ˝; (1)

with boundary conditions

u D gD ; on "D;
."!ruC cu/ ! n D gN ; on "N :

(2)

Here u is the field variable, c and ! > 0 are constant and f , gD and gN are given
(see [20] for additional details).

We introduce the auxiliary variable q D "!ru and rewrite the above equation
as a first order system of equations

q C !ru D 0; in ˝;
r ! .cuC q/ D f; in ˝;

(3)

with boundary conditions

u D gD ; on "D;
.q C cu/ ! n D gN ; on "N :

(4)

Next, we introduce the notation necessary for the description of the HDG method.
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2.2 Mesh and Trace Operators

Let Th be a collection of disjoint elements that partition ˝ . We denote by @Th the
set f@K W K 2 Thg. For an element K of the collection Th, F D @K \ @˝ is the
boundary face if the d " 1 Lebesgue measure of F is nonzero. For two elements
KC andK# of the collection Th, F D @KC\@K# is the interior face betweenKC

and K# if the d " 1 Lebesgue measure of F is nonzero. Let E o
h

and E @
h

denote the
set of interior and boundary faces, respectively. We denote by Eh the union of E oh
and E @

h
.

Let nC and n# be the outward unit normals of @KC and @K#, respectively, and
let .q˙; u˙/ be the traces of .q; u/ on F from the interior of K˙. Then, we define
the mean values ff!gg and jumps !!" as follows. For F 2 E o

h
, we set

ffqgg D .qC C q#/=2 ffugg D .uC C u#/=2;

!q ! n" D qC ! nC C q# ! n# !un" D uCnC C u#n#:

For F 2 E @h , the set of boundary edges on which q and u are singled value, we set

ffqgg D q ffugg D u;

!q ! n" D q ! n !un" D un:

Note that the jump in u is a vector, but the jump in q is a scalar. Furthermore, the
jumps will be zero for a continuous function.

2.3 Approximation Spaces

Let Pm.D/ denote the set of polynomials of degree at most m on a domainD. We
introduce discontinuous finite element spaces

Wh D fw 2 L2.˝/ W wjK 2Pk.K/; 8K 2 Thg;

and
V h D fv 2 .L2.˝//d W vjK 2 .Pk.K//

d ; 8K 2 Thg:
Here L2.D/ is the space of square integrable functions on D. In addition, we
introduce a traced finite element space

Mh D f# 2 L2.Eh/ W #jF 2Pk.F /; 8F 2 Ehg:

We also set Mh.gD/ D f# 2 Mh W # D PgD on "Dg, where P denotes the
L2-projection into the space f#j@˝ 8# 2 Mhg. Note that Mh consists of functions
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which are continuous inside the faces (or edges) F 2 Eh and discontinuous at their
borders.

For functions w and v in .L2.D//d , we denote .w; v/D D
R
D w ! v. For functions

u and v in L2.D/, we denote .u; v/D D
R
D uv ifD is a domain in Rd and hu; viD DR

D uv if D is a domain in Rd#1. We finally introduce

.w; v/Th
D

X

K2Th

.w; v/K ; h$; %i@Th
D

X

K2Th

hw; vi@K ; h#; &iEh
D

X

F2Eh

h#; &iF ;

for functions w; v defined on Th, $; % defined on @Th, and #; & defined on Eh.

2.4 HDG Formulation

We seek an approximation .qh; uh/ 2 V h #Wh such that for all K 2 Th,

!
!#1qh; v

"
K
" .uh;r ! v/K C hbuh; v ! ni@K D 0; 8 v 2 .Pk.K//

d ;

" .cuh C qh;rw/K C h.bcuh Cbqh/ ! n;wi@K D .f;w/K ; 8w 2Pk.K/:
(5)

Here, the numerical traces bcuh Cbqh andbuh are approximations to cu " !ru and u
over @K , respectively. Next, we express .qh; uh/ in terms ofbuh only. To this end,
we consider numerical traces bcuh Cbqh of the form

bcuh Cbqh D cbuh C qh C '.uh "buh/n; on @K: (6)

Here, ' is the so-called local stabilization parameter; it has an important effect on
both the stability and accuracy of the resulting scheme. The selection of the value
of the parameter ' will be described below. Note that both bcuh and cbuh are different
approximations to the same quantity cu and that the former is defined in terms of
the latter.

We next expressbuh in terms of the boundary data gD and a new variable (h 2
Mh.0/ as

buh D
#

PgD ; on Eh \ "D;
(h; on Ehn"D:

By adding the contributions of (5) over all the elements and enforcing the continuity
of the normal component of the numerical flux, we arrive at the following problem:
find an approximation .qh; uh;(h/ 2 V h #Wh #Mh.0/ such that

.!#1qh; v/Th
" .uh;r ! v/Th

C h(h; v ! ni@Th
D "hgD ; v ! ni!D

; 8v 2 V h;

".cuh C qh;rw/Th
C h.bcuh Cbqh/ ! n;wi@Th

D .f;w/Th
; 8w 2 Wh;

h!.bcuh Cbqh/ ! n";#iEh
D hgN ;#i!N

; 8# 2 Mh.0/:
(7)

cockburn@math.umn.edu



68 N.C. Nguyen et al.

Note that the Dirichlet boundary condition has been enforced by requiring thatbuh D
PgD on Eh \ "D , whereas the continuity of the normal component of bcuh Cbqh is
enforced explicitly by the last equation.

We observe that (h is uniquely defined over each edge since (h belongs to Mh.
Furthermore, if !.bcuh Cbqh/ ! n" belongs to Mh, then the last equation (7) simply
states that !.bcuhCbqh/!n" D 0 pointwise over Ehn"N and that .bcuhCbqh/!n D PgN
on "N ; in other words, the normal component of the numerical trace bcuh Cbqh is
single-valued. Hence, both (h and bcuhCbqh are conservative fluxes according to the
definition in [1]. Note that our numerical traces remain conservative even when the
diffusion coefficient ! is discontinuous at the interior element interface.

We note that, due to the discontinuous nature of both V h and Wh, the first two
equations in (6) can be used to eliminate both qh and uh to obtain a weak formula-
tion in terms of (h only and thus a global system of equations involving the degrees
of freedom of (h, as described below.

2.5 Characterization of the Numerical Trace

We first introduce the so-called local solver which associate to each function
.m; f / 2 Mh # L2.˝/, the pair .qm;f

h ; um;f
h / on ˝ whose restriction to each

element K is in .Pk.K//
d #Pk.K/ and satisfies

.!#1qm;f
h

; v/K " .um;f
h

;r ! v/K D " hm; v ! ni@K ; (8a)

".cum;f
h
C q

m;f
h

;rw/K C
D
.bcum;f

h
Cbqm;f

h
/ ! n;w

E

@K
D .f;w/K ; (8b)

for all .v;w/ 2 .Pk.K//
d #Pk.K/, where

bcum;f
h Cbqm;f

h D cmC q
m;f
h C '.um;f

h "m/n: (8c)

It is now clear, see (7), that the approximate solution .qh; uh/ 2 V h #Wh satisfies

1qh D q
"h;f
h ; uh D u"h;f

h ; (9a)

where (h 2 Mh.0/ is such that

D
!.bcu"h;f

h
Cbq"h;f

h
/ ! n";#

E

Eh

D hgN ;#i!N
; 8# 2Mh.0/: (9b)

We next show that we can eliminate qh and uh from the above equations to obtain a
weak formulation in terms of (h only.

Let .qm;0
h
; um;0
h
/ (respectively, .q0;f

h
; u0;f
h
/) solve (8) when we set f D 0

(respectively, m D 0). If, for all & and # 2Mh, we set
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ah.&;#/ D "
D
!.bcu#;0h Cbq

#;0
h / ! n";#

E

Eh

; (10a)

bh.#/ D
D
!.bcu0;f

h
Cbq0;f

h
/ ! n";#

E

Eh

; (10b)

we have from (9b) and linearity of the problem (8) that the function (h 2 Mh.0/ is
the solution of the variational formulation

ah.(h;#/ D bh.#/ " hgN ;#i!N
; 8# 2 Mh.0/: (11)

The existence and uniqueness of the numerical trace (h is presented in [20].
The above weak formulation gives rise to a matrix system of the form

K ) D F; (12)

where ) is the vector of degrees of freedom of (h, K is the matrix associated with
the bilinear form ah.!; !/, and F the vector associated with the linear form bh.!/ "
hgN ; !i!N

. Note that since

ah.&;#/ D "
D
.bcu#;0

h
Cbq#;0

h
/ ! n;#

E

@Th

;

we can easily deduce that if the support of & is the interior face F D @KC\@K#, or
the boundary face F D @K\@˝ , then ah.&;#/ D 0when the support of # does not
intersect @KC [ @K#, or @K , respectively. Thus, the matrix K has a block-structure
of blocks of square matrices of order dim Pk . In each block-row or block-column,
there are at most five non-zero blocks when the elements are triangles, and at most
seven non-zero blocks in three space dimension.

The construction of the matrix system (12) can be carried out in two steps. In the
first step, we solve the local problem (8) for every element K 2 Th. In the second
step, we evaluate the face integrals (10) by using the standard finite element quadra-
ture rule and assembly. This procedure can be implemented for arbitrary polynomial
degrees. The detailed implementation discussed in [20] is omitted here to save space.

2.6 Relation to Other DG Methods

In order to derive an explicit expression for the numerical traces in terms of .uh; qh/,
we proceed as follows. Since the conservativity condition implies !.dcuhCbqh/ !n" D
0 pointwise, we have, using expression (6), that

!qh ! n"C 'CuC
h
C '#u#

h " .'C C '#/(h D 0; on E oh :

Solving for (h and inserting the result into the expression for bcuh C bqh (6), we
obtain on E o

h
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(h D
'C

'C C '# uC
h C

'#

'C C '# u#
h C

$
1

'C C '#

%
!qh ! n";

bcuh Cbqh D c(h C
'#

'C C '# qC
h C

'C

'C C '# q#
h C

$
'C'#

'C C '#

%
!uhn":

(13)

These expressions for the numerical traces highlight the relationship between the
HDG method and the more standard DG methods, as discussed below.

In the convective limit we have ! D 0 and consequently qh D 0. In this case, the
expressions (13) become

(h D
'C

'C C '# uC
h
C '#

'C C '# u#
h ;

bcuh ! nC D 'C

'C C '# .c ! n
C C '#/uC

h C
'#

'C C '# .c ! n
C " 'C/u#

h :

(14)

In the diffusive limit c D 0, expressions (13) become

(h D
'C

'C C '# uC
h
C '#

'C C '# u#
h C

$
1

'C C '#

%
!qh ! n";

bqh D
'#

'C C '# qC
h
C 'C

'C C '# q#
h C

$
'C'#

'C C '#

%
!uhn":

(15)

This case has been originally studied in [3]; see also [4, 9, 13].
By rearranging terms these expressions can be transformed into the more stan-

dard form considered in [3],

bqh D ffqhgg C C11!uhn"C C 12!qh ! n";
(h D Ouh D ffuhgg " C 12 ! !uhn"C C22!qh ! n" :

(16)

where,

C11 D
$

'C'#

'C C '#

%
; C 12 D

1

2

$ !'n"
'C C '#

%
; C22 D

$
1

'C C '#

%
:

It is interesting to note that for the simple choice of '˙ of order unity everywhere
HDG methods yield optimal convergence rate of k C 1 for both the scalar vari-
able and the flux, and that they display superconvergence properties of the scalar
variable [4, 6, 13].

We point out that in the Local DG method [15], the trace (h is chosen to be
independent of qh, that is C22 D 0. This has the advantage of allowing the degrees
of freedom associated with the qh to be locally eliminated and a global system
involving only the degrees of freedom associated to uh is thus solved. However,
using C22 D 0 yields suboptimal convergence for the approximate gradient. It
is shown in [13] that the superconvergent schemes require that C22 be non-zero.
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While this presents a serious inconvenience for LDG methods, for HDG methods
this represents no difficulty.

2.7 The Local Stabilization Parameter '

To account for the diffusion and convection effects our local stabilization parameter
' will take the following form

' D 'd C 'c
where 'd and 'c are the local stabilization parameters related to the diffusion and
convection, respectively. This allows us to write each component of the numerical
tracebqh C bcuh as

bqh D qh C 'd .uh " (h/n;
bcuh D c(h C 'c.uh " (h/n:

A suitable expression for 'c and 'd is to take on each edge 'C
c D '#

c D &c and
'C
d D '#

d D &d , where

&c D jc ! nj; &d D
!

`
; (17)

where ` denotes a representative diffusive length scale which is typically of unity
order and independent of the mesh size h. In this case, the expressions for the
numerical traces becomes

(h D ffuhgg C
1

2'
!qh ! n";

bcuh Cbqh D c (hCffqhgg C
'

2
!uhn":

It can be shown that the HDG method is well-defined with the above choice of the
stabilization parameter. Alternative forms for 'c and 'd can be found in [20].

Numerical experiment and theory (see [6, 20]) confirm that the above choice of
the stabilization parameter is optimal in the sense that both the approximate scalar
variable and gradient converge with the optimal order k C 1. We point out that our
stabilization parameter is independent of the polynomial degree and the mesh size.
This is different from some DG methods such as the interior penalty DG method
which typically select stabilization parameter to depend on the mesh size.

2.8 Local Postprocessing

We first show that we can postprocess the total approximate flux qTh D qh C cuh
and its numerical tracebqTh D bqh C bcuh with an element-by-element procedure to
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obtain an approximation of qCcu, denoted qT $
h

that belongs toH.div;˝/ and also
converges in an optimal fashion [2, 6, 14]. On each simplex K 2 Th, we define the
new total flux qT$

h as the only element of .Pk.K//
d C xPk.K/ satisfying, for

k $ 0,

h.qT$
h "bqTh / ! n;#iF D 0; 8# 2Pk.F /;8F 2 @K;
.qT$
h " qTh ; v/K D 0; 8v 2 .Pk#1.K//d if k $ 1:

(18)

It is clear that the function qT$
h

belongs toH.div;˝/, thanks to the singlevaluedness
of the normal component of the numerical tracebqh C bcuh.

Next, we consider postprocessing uh, qh, and bqh to obtain the new approxi-
mate scalar variable u$

h of u. Towards this end, we find .u$
h; q

$
h;(

$
h/ 2 Pk!.K/ #

.Pk!.K//d # .Pk!.F //dC1 for k$ D k C 1 on the simplex K 2 Th such that

!
!#1rq$

h; v
"
K
"
!
u$
h;r ! v

"
K
C
˝
($
h; v ! n

˛
@K
D 0

"
!
q$
h C cu$

h;rw
"
K
C
˝
.bq$
h C bcu$

h/ ! n;w
˛
@K
D
&
r ! qT$

h ;w
'

K
;

˝
.bq$
h C bcu$

h/ ! n;#
˛
@K
D
D
qT$
h ! n;#

E

@K
;

!
u$
h; 1

"
K
D .uh; 1/K ;

(19)

for all .v;w;#/ 2 .Pk! .K//d #Pk!.K/# .Pk!.F //dC1, where

bq$
h C bcu$

h D q$
h C c($

h C '.u$
h " ($

h/n:

We note that this local postprocessing is nothing but the HDG discretization at the
element level of the following convection-diffusion Neumann problem

r ! ."!ruC cu/ D r ! qT$
h ; in K;

."!ruC cu/ ! n D qT $
h ! n; on @K;

.u; 1/K D .uh; 1/K :
(20)

Therefore, the new approximation u$
h

is even much less expensive to compute than
the original approximation uh. This is because the local problems (19) have very
few degrees of freedom and also because they can be solved independently of each
other.

Our postprocessing procedure relies on the optimal convergence of qT$
h and its

divergence r ! qT$
h , and on the superconvergence of the average of the approxi-

mate scalar variable uh. In fact, these properties for the HDG method have been
theoretically analyzed and confirmed by numerical experiments for the steady sym-
metric diffusion case in [4, 13]: both qT$

h and r ! qT$
h converge with order k C 1,

while .uh; 1/K superconverges with order kC 2. We may thus expect that the scalar
variable u$

h converges with order k C 2.
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3 Extensions of the Basic Algorithm

In this section, we present several extensions of the basic algorithm described in the
previous section.

3.1 Time-Dependent Convection-Diffusion Problems

We consider the time-dependent convection-diffusion model written as a system of
first-order equations

q C !ru D 0; in ˝ # .0; T *;
@u
@t
Cr ! .cuC q/ D f; in ˝ # .0; T *;

u D gD ; on "D # .0; T *;
.q C cu/ ! n D gN ; on "N # .0; T *;

u D u0; in ˝ for t D 0:

(21)

The HDG method of lines for the above problem seeks an approximation .qh; uh/ 2
V h #Wh such that for all K 2 Th,

!
!#1qh; v

"
K
" .uh;r ! v/K C hbuh; v ! ni@K D 0;

!@uh
@t
;w
"
K
" .cuh C qh;rw/K C h.bcuh Cbqh/ ! n;wi@K D .f;w/K ;

(22)

for all .v;w/ 2 .Pk.K//
d #Pk.K/ and for all t 2 .0; T *. Here, the numerical

traces bcuhCbqh andbuh are approximations to cu"!ru and u over @K , respectively.
The above HDG formulation (22) can then be discretized in time using an

appropriate time-stepping scheme. Here we consider backward difference formu-
laes (BDF) for the discretization of the time derivative. For instance, using the
Backward-Euler scheme at time-level tn with timestep +tn the HDG method then
seeks an approximation .qnh; u

n
h;(

n
h/ 2 V h #Wh #Mh.0/ such that

.!#1qn
h
; v/Th

" .un
h
;r ! v/Th

C
˝
(n
h
; v ! n

˛
@Th
D "hgD ; v ! ni!D

;
1

+tn
!
unh;w

"
Th
" .cunh C qnh;rw/Th

C
˝
.bcunh Cbqnh/ ! n;w

˛
@Th
D .f;w/Th

C 1

+tn

&
uk#1
h ;w

'

Th

;
˝
!.bcunh Cbqnh/ ! n";#

˛
Eh
D hgN ;#i!N

;

(23)
for all .v;w;#/ 2 V h #Wh #Mh.0/, where, as we did for the steady-state case, we
choose bcunh Cbqnh of the form

bcunh Cbqnh D cbunh C qnh C '.unh "bunh/n; on @K:

cockburn@math.umn.edu



74 N.C. Nguyen et al.

This discrete system has a similar form as the system (7) for the steady-state case.
Hence, we can apply exactly the same solution procedure described earlier for the
steady-state case to the time-dependent case at every time step.

Of course, a similar procedure can be applied to treat any higher-order BDF
method such as the widely used second-order and third-order BDF schemes. The
HDG method can also work with other implicit time-stepping methods such as the
fully implicit Runge–Kutta methods and DG methods in time.

The post-processing method described for the steady state convection diffusion
problem can also be applied in the time-dependent case with identical results. That
is, both qTh and r !qTh converge spatially with order pC1, while .uh; 1/K supercon-
verges in space with order pC2. This means that it is then possible to reconstruct, at
any desired time level, a new scalar variable, u$

h
, which superconverges with order

p C 2 (see [20] for additional details).

3.2 Nonlinear Convection-Diffusion Problems

Here, we describe the HDG method for steady-state nonlinear convection-diffusion
equations presented in [21]. Consider a nonlinear convection-diffusion equation of
the form

"r ! .!ru/Cr ! F .u/ D f; in ˝;
u D gD ; on @˝:

(24)

We rewrite the above equation as a first order system of equations

q C !ru D 0; in ˝;
r ! .q C F .u// D f; in ˝;

u D gD ; on @˝:
(25)

Here, F 2 .L1.˝//d are vector-valued nonlinear functions of the scalar variable u.
Multiplying the first two equations of (25) by test functions, integrating by parts,

and enforcing the continuity of the normal component of the total numerical flux,
we obtain the following problem: find an approximation .qh; uh;buh/ 2 V h #Wh #
Mh.gD/ such that

!
!#1qh; v

"
Th
" .uh;r ! v/Th

C hbuh; v ! ni@Th
D 0;

" .qh C F .uh/;rw/Th
C
D&
bqh C bF h

'
! n;w

E

@Th

D .f;w/Th
;

D
.bqh C bF h/ ! n;#

E

@Th

D 0;

(26)

for all .v;w;#/ 2 V h #Wh #Mh.0/, where

bqh C bF h D qhCF .buh/C '.uh;buh/.uh "buh/n; on Eh: (27)
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This completes the definition of the general form of the HDG method. This nonlin-
ear system of equations is solved by the Newton–Raphson method as described in
[21]. Here we observe that, at each Newton iteration, we recover the HDG structure
of the linear problem (7), and thus solve for the degrees of freedom ofbuh only.

The choice of the numerical fluxbqh C bF h is an extension of the expression for
the numerical flux used for the linear case. The main difference is that, due to the
nonlinearity of the convection, the stabilization function '.!; !/ W @Th ! IR can
now be a nonlinear function of uh andbuh. This implies that the last equation (26)
cannot force the normal component of the total flux bqh C bF h to be single valued
on all interior faces e 2 E oh ; it only forces its L2-projection into Mh.0/ to be single
valued. This is enough to guarantee the local conservativity of the method, as we
can see from the second term of the left-hand side of the second equation (26).

Suitable expressions for the stabilization function and the associated entropy
inequality as well as the extension to nonlinear time dependent problems and the
postprocessing procedure are described in [21].

3.3 Stokes Flows

We describe here a hybridizable discontinuous Galerkin (HDG) method for the
Stokes system [22]

",+uCrp D f ; in ˝;
r ! u D 0; in ˝;

u D g; on @˝:
(28)

We rewrite the above equation as the following first order system of equations

L " ru D 0; in ˝
",r ! LCrp D f ; in ˝;

r ! u D 0; in ˝;
u D g on @˝:

(29)

As usual we assume that g satisfies the compatibility condition
R
@˝ g ! n D 0.

We first introduce discontinuous finite element approximation spaces for the
gradient, velocity, and pressure as

Gh D fG 2 .L2.Th//d%d W GjK 2 .Pk.D//
d%d ; 8K 2 Thg;

V h D fv 2 .L2.Th//d W vjK 2 .Pk.K//
d ; 8K 2 Thg;

Ph D fq 2 L2.Th/ W qjK 2Pk.K/; 8K 2 Thg:

In addition, we introduce a finite element approximation space for the approximate
trace of the velocity

Mh D f! 2 .L2.Eh//d W !jF 2 .Pk.F //
d ; 8F 2 Ehg:
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We also set
Mh.g/ D f! 2Mh W ! D Pg on @˝g;

where P denotes the L2-projection into the space f!j@˝ 8 ! 2 Mhg. We further
denote by -h the set of functions in L2.@Th/ that are constant on each @K for all
elements K

-h D fr 2 L2.@Th/ W r 2P0.@K/; 8K 2 Thg:

The mean of our approximate pressure will belong to this space. For a function q in
L2.@Th/, the mean of q on the element boundary @K of an elementK is defined as

qj@K D
1

j@Kj

Z

@K

q:

Obviously, we have q D q for any q in -h.
We next define various inner products for our finite element spaces as

.r; q/Th
D
X

K2Th

.r; q/K ; .w; v/Th
D
X

K2Th

.w; v/K ; .H;G/Th
D
X

K2Th

.H;G/K ;

for r; q 2 L2.Th/, w; v 2 .L2.Th//d , and H;G 2 .L2.Th//d%d . We also define
the boundary inner products as

hr; qi@Th
D
X

K2Th

hr; qi@K ; hw; vi@Th
D
X

K2Th

hw; vi@K ; hH;Gi@Th
D
X

K2Th

hH;Gi@K ;

for r; q 2 L2.Eh/, w; v 2 .L2.Eh//d , and H;G 2 .L2.Eh//d%d . Recall the standard
notation .H;G/D D

R
D tr.HTG/, where tr is the trace operator.

The HDG method then seeks an approximation .Lh;uh; ph;buh; %h/ 2 Gh#V h#
Ph #Mh.g/ # -h such that

.Lh;G/Th
C .uh;r ! G/Th

" hbuh;G ! ni@Th
D 0;

.,Lh " phI;rv/Th
C
D
.",bLh CbphI/ ! n; v

E

@Th

D .f ; v/Th
;

".uh;rq/Th
C hbuh ! n; q " qi@Th

D 0;

ph " %h D 0;D
.",bLh CbphI/ ! n;!

E

@Th

D 0;
˝
buh ! n;  

˛
@Th
D 0;

.ph; 1/Th
D 0;

(30)

for all .G; v; q;!;  / 2 Gh # V h # Ph #Mh.0/ # -h, where

" ,bLh CbphI D ",Lh C phIC S.uh "buh/˝ n: (31)

cockburn@math.umn.edu



Hybridizable Discontinuous Galerkin Methods 77

Here S is the second-order tensor consisting of stabilization parameters and I is the
second-order identity tensor. Note also that the Dirichlet boundary condition has
been enforced by requiring thatbuh 2Mh.g/.

The first four equations of (30) define the local solver which can be used to elim-
inate all the variables Lh, uh, and ph by inserting them into the last three equations
of (30), thereby obtaining a linear system in terms of .buh; %h/ only. Since buh is
defined on the element faces and %h has one degree of freedom per element, the
HDG method reduces significantly the number of the globally coupled unknowns.
In practice, we implement the HDG method by using the augmented Lagrangian
approach [16]; see [22] for a detailed discussion.

Finally, we use the element-by-element postprocessing proposed in [11] obtain
a new approximate velocity which is exactly divergence-free, H .div/-conforming,
and converges with the order k C 2. In the three dimensional case, we define the
postprocessed approximate velocity u?

h
on the tetrahedron K 2 Th as the element

of .PkC1.K//d such that

h.u?h "buh/ ! n;#iF D 0 8 # 2Pk.F /; (32a)

h.n # r/.u?h ! n/" n # . ffLthggn/; .n # r/#iF D 0 8 # 2PkC1.F /?; (32b)

for all faces F of K , and such that

.u?h " uh;rw/K D 0 8 w 2Pk.K/; (32c)

.r # u?h " wh; .r # v/ BK/K D 0 8 v 2 S k.K/: (32d)

Here

PkC1.F /? WD f# 2PkC1.F / W h#;e#iF D 0; 8e# 2Pk.F /g;

and
wh WD .Lh32 " Lh23;L

h
13 " Lh31;L

h
21 " Lh12/

is the approximation to the vorticity. Furthermore, BK is the so-called symmetric
bubble matrix introduced in [8], namely,

BK WD
3X

`D0
(`#3(`#2(`#1r(` ˝r(`;

where (i are the barycentric coordinates associated with the tetrahedronK . Finally,
S k.K/ WD fp 2 N k W .p;r./K D 0 for all . 2 PkC1.K/g, where N k D
Pk#1.K/˚ S k and S ` is the space of vector-valued homogeneous polynomials v
of degree ` such that v ! x D 0; see [18, 19].

In the two dimensional case, the postprocessing is defined by the above equations
if (32d) is replaced by
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.r # u?h " wh;w bK/K D 0 8 w 2Pk#1.K/;

where bK WD (0(1(2 and wh WD Lh21 " Lh12.
We refer the reader to [11] for a proof of the fact that u?

h
is a divergence-free

velocity in H .d iv;˝/ and converges with the order k C 2 in the L2-norm.

3.4 Incompressible Navier–Stokes Equations

Let us extend the HDG method described above to the steady incompressible
Navier–Stokes equations written in conservative form

L " ru D 0; in ˝
",r ! LCrp Cr ! .u˝ u/ D f ; in ˝;

r ! u D 0; in ˝;
u D g; on @˝:

(33)

The Navier–Stokes system differs from the Stokes one due to the presence of the
nonlinear convective term r ! .u˝ u/.

The HDG method for the above system seeks an approximation .Lh;uh; ph;buh;
%h/ 2 Gh # V h # Ph #Mh.g/ # -h such that

.Lh;G/Th
C .uh;r ! G/Th

" hbuh;Gni@Th
D 0;

.,Lh " phI " uh ˝ uh;rv/Th

C
D
.",bLh CbphICbuh ˝buh/n; v

E

@Th

D .f ; v/Th
;

".uh;rq/Th
C hbuh ! n; q " qi@Th

D 0;
ph " %h D 0;D

.",bLh CbphICbuh ˝buh/n;!
E

@Th

D 0;
˝
buh ! n;  

˛
@Th
D 0;

.ph; 1/Th
D 0;

(34)

for all .G; v; q;!;  / 2 Gh # V h # Ph #Mh.0/ # -h, where

&
",bLh CbphI

'
n D .",Lh C phI/nC sh.uh;buh/: (35)

Here sh.uh;buh/ is the stabilization vector-valued function the choice of which is
crucial since it does have an important effect on both the stability and accuracy of
the method. We consider an extension of the expression for sh.uh;buh/ proposed in
[11, 22] for the Stokes system as follows

sh.uh;buh/ D S.uh;buh/.uh "buh/; (36)

where S.uh;buh/ is the stabilization tensor which may depend on uh andbuh.
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Substituting (35) into (34) we obtain that .Lh;uh; ph;buh; %h/ 2 Gh#V h#Ph #
Mh.g/ # -h is the solution of

.Lh;G/Th
C .uh;r ! G/Th

" hbuh;Gni@Th
D 0;

.r ! .",Lh C phI/; v/Th
" .uh ˝ uh;rv/Th

Ch.buh ˝buh/nC sh.uh;buh/; vi@Th
D .f ; v/Th

;

".uh;rq/Th
C hbuh ! n; q " qi@Th

D 0;

ph " %h D 0;

h.",Lh C phICbuh ˝buh/nC sh.uh;buh/;!i@Th
D 0;˝

buh ! n;  
˛
@Th
D 0;

.ph; 1/Th
D 0;

(37)

for all .G; v; q;!;  / 2 Gh # V h # Ph #Mh.0/ # -h.
The above nonlinear system of equations is solved by the Newton–Raphson

method: Given the mth current iterate .Lmh ;u
m
h ; p

m
h ;bu

m
h ; %

m
h /, we find an increment

.ıLmh ; ıu
m
h ; ıp

m
h ; ıbu

m
h ; ı%

m
h / 2 Gh # V h # Ph #Mh.0/ # -h such that

.ıLmh ;G/Th C .ıumh ;r & G/Th # ˝
ıbumh ;Gn

˛
@Th D r1.G/;

.r & .#,ıLmh C ıpmh I/; v/Th # .ıumh ˝ umh C umh ˝ ıumh ;rv/Th

C ˝
.ıbumh ˝bumh Cbumh ˝ ıbumh /n C @1sh.umh ;bu

m
h /ıu

m
h C @2sh.umh ;bu

m
h /ıbumh ; v

˛
@Th D r2.v/;

#.ıumh ;rq/Th C ˝
ıbumh & n; q # q

˛
@Th D r3.q/;

ıpmh # ı%mh D r4;
˝
.#,ıLmh C ıpmh I C ıbumh ˝bumh Cbumh ˝ ıbumh /n

˛
@Th

C ˝
@1sh.umh ;bu

m
h /ıu

m
h C @2sh.umh ;bu

m
h /ıbumh ;!

˛
@Th D r5.!/;

˝
ıbumh & n;  

˛
@Th D r6. /;

.ıpmh ; 1/Th D r7;

(38)

for all .G; v; q;!;  / 2 Gh#V h#Ph#Mh.0/#-h. Note here that the right-hand
side residuals are evaluated from (37) at the current iterate.

We observe that the above system (38) has a similar structure as the HDG sys-
tem (30) for the Stokes flow except that there are some additional terms due to the
convective nonlinearity. Therefore, it can be solved in a similar manner by means
of the hybridization technique. This leads to a linear system of algebraic equations
involving the degrees of freedom of .ıbum

h
; ı%mh / only. Alternatively, we may apply

the augmented Lagrangian approach to the nonlinear system (37) and then use the
hybridization technique to obtain a system in terms of ıbum only [23].

Although our discussion has focused primarily on the steady-state case, the same
HDG method can be applied to the time-dependent problem with using an implicit
time-stepping method; see Sect. 3.1 for further details. Finally, we emphasize that
the postprocessing procedure described for Stokes flow can be used for both the
steady and unsteady Navier–Stokes problems.
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4 Numerical Results

In this section, we present numerical results for a benchmark problem in
fluid dynamics. We would like to refer the readers to the previous work [4, 6, 7,
11, 20–23, 27] for many other examples which demonstrate the performance and
accuracy of the HDG methods described in this paper.

The Taylor vortex problem is a well-known example of the unsteady incompress-
ible Navier–Stokes equations. The problem has an exact solution of the form

ux D " cos./x/ sin./y/ exp
&

#2$2t
Re

'
;

uy D sin./x/ cos./y/ exp
&

#2$2t
Re

'
;

p D "1
4
.cos.2/x/C cos.2/y// exp

&
#4$2t
Re

'
;

where Re D 1=, is the Reynolds number. We consider the above problem on ˝ D
.0; 1/2 with Reynolds numberRe D 20 and final time T D 1. We take the Dirichlet
boundary condition for the velocity as the restriction of the exact solution to the
domain boundary and the initial condition as an instantiation of the exact solution
at t D 0.

In our experiments, we consider triangular meshes that are obtained by splitting a
regular n#n Cartesian grid into a total of 2n2 triangles, giving uniform element sizes
of h D 1=n. On these meshes, we consider polynomials of degree k to represent all
the approximate variables using a nodal basis within each element, with the nodes
uniformly distributed. We use the third-order backward difference formula (BDF3)
for the temporal discretization. The stabilization tensor S is chosen as

S D
$
' 0

0 '

%
;

where ' is equal to 1 on Eh.
We first look at the convergence and accuracy in terms of both k and h refine-

ments. For this purpose, we select a small timestep of+t D 0:005, so that the spatial
error is dominant and the temporal error is negligible. We present in Table 1 the his-
tory of convergence of the HDG method at the final time t D 1. We observe that
the approximate velocity, pressure, and velocity gradient converge with the optimal
order k C 1 for k D 1; 2; 3. The fact that the HDG method yields optimal conver-
gence for both the approximate pressure and velocity gradient is a very important
advantage since many other DG methods provide suboptimal convergence of order
k for the approximate pressure and velocity gradient. Moreover, we observe that all
the approximate variables converge exponentially with the polynomial degree k as
depicted in Fig. 1. We emphasize that these results are obtained with ' being set to
1 and thus independent of both k and h.

Equally important is the fact that the postprocessed velocity u$
h converges with

the order k C 2, which is one order higher than the original approximate velocity
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Table 1 History of convergence of the HDG method for the Taylor vortex problem withRe D 20

Degree Mesh ku # uhkTh kp # phkTh kL # LhkTh ku # u?hkTh

k 1/h Error Order Error Order Error Order Error Order

2 4.73e–2 – 3.44e–2 – 3.29e–1 – 3.40e–2 –
4 1.27e–2 1.89 8.59e–3 2.00 1.26e–1 1.39 8.04e–3 2.08

1 8 2.94e–3 2.11 2.14e–3 2.01 3.85e–2 1.71 1.34e–3 2.59
16 6.95e–4 2.08 5.38e–4 1.99 1.07e–2 1.84 1.89e–4 2.82
32 1.70e–4 2.03 1.36e–4 1.99 2.85e–3 1.91 2.50e–5 2.92
2 1.14e–2 – 6.67e–3 – 1.04e–1 – 8.35e–3 –

4 1.26e–3 3.17 8.43e–4 2.98 1.72e–2 2.60 6.12e–4 3.77
2 8 1.51e–4 3.06 1.07e–4 2.98 2.60e–3 2.73 4.07e–5 3.91

16 1.87e–5 3.01 1.33e–5 3.00 3.64e–4 2.84 2.70e–6 3.91
32 2.33e–6 3.00 1.67e–6 3.00 4.85e–5 2.91 1.76e–7 3.94
2 1.81e–3 – 1.00e–3 – 2.01e–2 – 1.22e–3 –

4 1.08e–4 4.06 7.00e–5 3.84 1.72e–3 3.54 4.67e–5 4.70
3 8 6.59e–6 4.04 4.33e–6 4.01 1.29e–4 3.74 1.63e–6 4.84

16 4.08e–7 4.01 2.68e–7 4.01 8.92e–6 3.85 5.48e–8 4.89
32 2.55e–8 4.00 1.67e–8 4.00 5.88e–7 3.92 1.82e–9 4.91
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Fig. 1 The L2 error in log scale as a function of h and k for uh (top left), ph (top right), Lh (bottom
left), and u!

h (bottom right)
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Fig. 2 The approximate velocity uh (left) and the postprocessed velocity u!
h (right) for k D 2 on

the grid h D 1=2, with horizontal velocity at the top and vertical velocity at the bottom

uh. Furthermore, we emphasize that u$
h is an exactly divergence-free and H .div/-

conforming velocity field. To visualize the effect of the local postprocessing, we
show in Fig. 2 the plots of the approximate velocity and the postprocessed velocity
for k D 2 on the grid h D 1=2. We observe that the local postprocessing does
provide a significant improvement in the approximation of the velocity field, since
u$
h is clearly superior to uh.

Moreover, since the local postprocessing is performed at the element level and
only at the timestep where higher accuracy is desired, it adds very little to the over-
all computational cost. As a result, with the HDG method, the .k C 2/-convergent
velocity, .kC 1/-convergent pressure, and .kC 1/-convergent velocity gradient can
be computed at the cost of a DG approximation using polynomials of degree k.

5 Conclusions

We present an overview of recent developments of HDG methods for numerically
solving partial differential equations in fluid mechanics. The main philosophy of the
HDG methodology includes the following steps:
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" Identify the globally coupled unknowns as the numerical traces of the field
variables associated with the essential boundary condition.

" Enforce explicitly the continuity of the normal component of the numerical
fluxes associated with the Neumann boundary condition. This is called the
conservativity condition.

" Define the local solver by applying the HDG method to the governing equations
at the element level.

" Substitute all the volumetric unknowns from the local solver into the conser-
vativity condition to obtain a final system in terms of the numerical traces
only.

" Apply the local postprocessing to obtain an improved approximation of the field
variables.

The above guidelines are very general and applicable beyond problems consid-
ered in this paper. Indeed, based on this general framework we have successfully
developed HDG methods for the compressible Euler and Navier–Stokes equa-
tions [25]. Inspired by the simplicity and generality of this new DG methodology,
our current research effort focuses on devising HDG methods for multi-physics
applications.
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