SILK: Higher Level Rules with Defaults and Semantic Scalability

Benjamin Grosof*

October 26, 2009 1.5-Hour presentation at RR 2009**

* Vulcan Inc., benjaming@vulcan.com
http://www.mit.edu/~bgrosof/

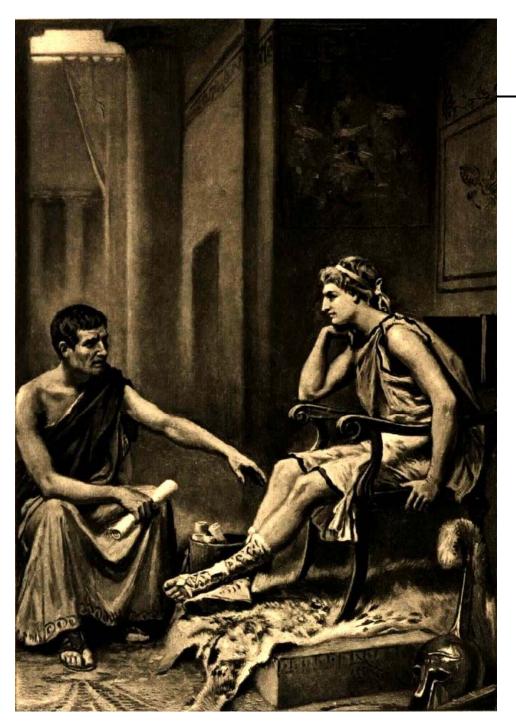
http://silk.semwebcentral.org

** 3rd International Conference on Web Reasoning and Rules, Chantilly, VA, USA

http://www.rr-conference.org/RR2009/

Outline of Talk

- Overview of SILK effort
 - Vision, Origins in parent Project Halo, Goals
 - Effort, Requirements, Approach, Roots, Status, Plans
 - Prototype, Theory, Language
- Examples and Use Cases: E-Science, E-Commerce, Trust, ...
- Hyper Logic Programs KR approach and expressive features
 - More details on Requirements and Design
 - Higher-Order Defaults
 - Argumentation Theories approach (LPDA) to Defeasibility
 - Remedying FOL Semantics' Lack of Scalability
 - Weakened Classical, via Hypermonotonic mapping.
 - Comparison to other semantic rule systems and standards
 - RIF, BRMS, OWL, DBMS, etc.
- Conclusions and Directions
 - Roadmap for SILK and Industry
 - How You can be Involved


Vulcan's Project Halo Begins; 1st system is AURA

- Vision of Digital Aristotle
 - Put the bulk of the world's scientific and similar knowledge on-line
 - Answer questions, act as personal tutor, with deep reasoning
- How to operationalize Digital Aristotle as a research effort?
- College-level science selected as initial domain focus
 - Medium wide, medium deep.

PROJECT

- Good metrics available: textbook-type exam Q's. Initial domain task focus is:
 - Advanced Placement Exam (AP) in Physics, Chemistry, and Biology
 - Taken by USA high-school students to get credit for 1st-year college courses
- AURA expert system developed (see http://www.ai.sri.com/project/aura)
 - Novel combination of available techniques from AI
 - Controlled Natural Language, GUI, Frame-based KR, Problem-Solving
 - Students as users formulate questions, formulate knowledge
 - Initial version 2004, then refined extensively and tested rigorously

Aristotle Tutoring Alexander

Image in public domain (copyright has expired), downloaded from http://commons.wikimedia.org/wiki/Image:Aristotle_tutoring_Alexander _by_J_L_G_Ferris_1895.jpg

Halo Enters Semantic Web Era; 2nd system is SMW+

How to enable effective Knowledge Acquisition (KA)?

- + By Subject Matter Experts (SMEs), not programmers or knowledge engineers
- + Collaboratively incorporate large #s of SMEs in KB construction & maintenance
- + Leveraging the Web

Halo Extension to Semantic MediaWiki (SMW+) developed.

- Open source extension of the MediaWiki software Wikipedia runs on
- Supports RDF and OWL subset, interleaved tightly with hypertext
- Rapid maturation of initial functionality
- Standing queries. Data import/export. Plug-ins.
- Upcoming release: simple semantic rules (Horn) and access control
- Strong community uptake, early commercial adoption already
- For more, see http://wiki.ontoprise.de

But need better KR too, in part for sake of KA.

- The underlying KR is the target for KA: "The KR is the deep UI"
- Web knowledge interchange (with merging) for scalability of collaborative KA

Goals for SILK KR Effort – Halo's 3rd system

- Expressiveness + Semantics + Scalability
 - Push the Frontier: high risk, high return
- Address requirements for AURA on AP task (& for SMW+)
 - Expressive power (e.g., defaults and processes)
 - Understandability via semantics and expressiveness
 - Raise abstraction level closer to the user's natural language and cognition
- Address requirements for long-term Digital Aristotle vision
 - · Wider set of domains and tasks, via KR expressiveness and better KA
 - Knowledge interchange via semantics and expressiveness
 - Performance scalability of reasoning (incl. truth maintenance)

Expressiveness "Brittleness" Areas Targeted

- Defaults/Exceptions/Defeasible (incl. nonmonotonic reasoning, theory revision, argumentation, truth maintenance)
 - A kinematics problem situation has standard earth gravity, and no air resistance. [physics AP]
 - A given organism has the anatomy/behavior that is typical/normal for its species, e.g., a bat has 2 wings and flies. [bio AP]
 - · Price info for an airplane ticket on Alaska Air's website is accurate and up to date. [e-shopping]
 - Practical reasoning almost always involves a potential for exceptions

Hypotheticals

- If Apollo astronaut Joe golfed a ball on the moon, then standard earth gravity would not apply. [negative hypothetical] [conflict between defaults, resolved by priority among them]
- If I had swerved my car 5 seconds later than I did, I would have hit the debris in the left lane with my tire. [counterfactual]

Actions and Causality

- If a doorkey is incompletely inserted into the keyhole, turning the key will fail. [precondition]
- During the mitotic stage of prometaphase, a cell's nuclear envelope fragments [biology AP]
- After a customer submits an order on the website, Amazon will email a confirmation and ship the item. [Event-Condition-Action (*ECA*) rule] [policy]

Processes (i.e., representing and reasoning about processes)

- Mitosis has five stages; its successful completion results in two cells. [compose] [partial description]
- If Amazon learns that it will take an unexpectedly long time to stock an ordered item, then it emails the customer and offers to cancel the order without penalty. [exception handling]
- A Stillco sensor-based negative feedback thermal regulator is adequate to ensure the overnight vat fermentation of the apple mash will proceed within desired bounds of the alcohol concentration parameter. [science-based business process]

Ubiquitous in science, commonsense, business, etc. All are interrelated.

SILK's ambitious Vision for longer-term Impact

- Key Knowledge Representation (KR) infrastructure sufficient to enable
 creation of global, widely-authored, very large knowledge bases (VLKBs)
 about science and business*
 that answer questions
 and proactively supply information,
 using powerful reasoning about rules and processes,
 that can be customized in their content and actions
 for individual organizations or people
- Newest part of Vulcan's Project Halo which addresses the problems of scale and brittleness in KBs, including the Knowledge Acquisition and UI aspects

^{* &}quot;Business" here is shorthand for human affairs, incl. government

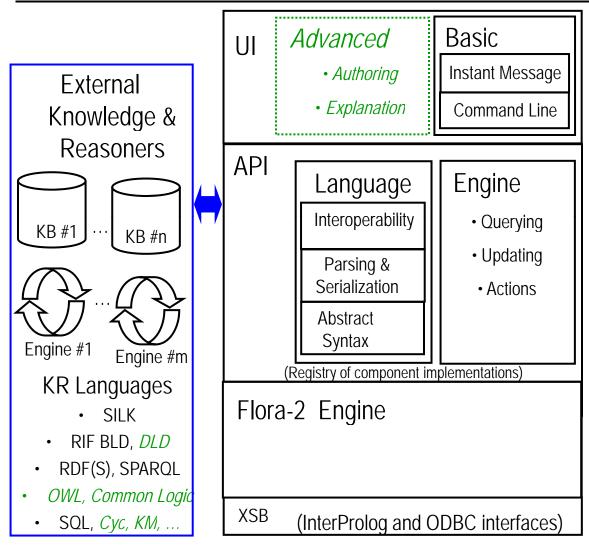
SILK & Hyper LP: Overview

- A KR Language and KR System with reasoner, UI, interchange
 - Syntax & semantics, forward & backward inferencing, Java API, translators
- Goal: Expressiveness + Semantics + Scalability + Web
- Focus: Defaults and Processes
- Largest rule research program in the US (that we are aware of)
 - Begun in 2008, part of Vulcan's Project Halo, primarily via contractors
- Hyper LP KR combines new features
 - <u>Defaults</u> and Weakened Classical, cf. generalized Courteous LP and Hypermon. map.
 - External Actions and Events and Queries, cf. generalized Production LP

with previous advanced features

- Higher-order and Frames, cf. Hilog and F-Logic
- Webized syntax, cf. RIF/RuleML and OWL/RDF
- Closed-World, cf. well-founded unstratified NAF
- Good Efficiency of reasoner performance
- Equality, Functions, and misc. other less glamorous features
- Status: prototype engine, language spec, and theory for expressive core
 - V1 adds Higher-Order Defaults to FLORA-2
- Extensive requirements analysis, use cases, benchmarking; ReCyc translation V2 in development adds more features and Java API (See ISWC-2009 Demo!)

SILK & Hyper LP Overview (cont.'d)


- Radically extends the KR power of W3C OWL, SPARQL, and RIF and of SQL
 - Defaults and robust conflict handling cope with knowledge quality and context
 - Higher-order and flexible meta-reasoning elevate meta-data to meta-knowledge
 - Actions and events, cf. production rules and process models activate knowledge
- Raises the KR abstraction level for business users (SMEs) and NL KA/UI
- Use cases in business policies, ontology mapping, e-commerce, biomed, ...
- Redefining the KR playing field for Semantic Web, business rules, and rulebased process management
 - Defaults and Higher-Order yet retain computational web scalability
 - Escape from Glass Bubble– yet retain grade-AAA model-theoretic semantics
- Motto: "Transforming Knowledge"
 - Composes a set of KR transformations for ...
 - Expressive extensions language and semantics
 - Translations between KRs/syntaxes, for interchange
 - Reuse of previous algorithms and implementations
- http://silk.semwebcentral.org

PROJECT

SILK V2 Architecture and V3 Directions

- V2 Functionality
 - Higher-order defaults reasoning, combines many other advanced KR features
 - SILK and external KR language support integrated tightly with reasoning engine
- Future Items
 - · Meet Process req.'s
 - More UI is key: graphical, limited NI.
 - Integrate with AURA
 - SILK KR: truth maintenance, probabilistic & constraints, parallelization
- Test Sets Focus
 - Defaults, Process
 - AP esp. Bio

NB: *Italics* indicate future items beyond V2

Hyper Logic Programs: Other Features

- HLP combines further a number of other extensions of LP, notably:
- Webizing, cf. RuleML and RIF
 - URIs for predicates and other logical constants
 - Load-time import of knowledge bases over the Web
- External Queries and Actions, cf. Production LP (and Situated LP)
 - Via procedural attachments. Including built-ins.
 - Enables interoperation with Production/ECA rules (via SweetRules technique)
 - Brings Actions (and events) to the semantic party
- External Events, via <u>newly modified approach</u>
- Equality, incl. explicit derived, via <u>newly modified approach</u>
- Lloyd-Topor, Aggregations, Integrity Constraints, Skolemization, Functions, misc. other features
- HLP is still under development (there's a lot of new expressiveness)

SILK Current Status – More

- New approach to representing causal change in processes
 - Uses defaults
- Use cases, incl. survey
 - Science AP
 - Business domains
- ReCyc: Rough prototype translator from Cyc to SILK
 - 3 Million axioms from ResearchCyc (translates 99% of the KB)
- Benchmarking of relevant rule systems
 - OpenRuleBench [Liang et al. WWW-2009]
- SILK V2 is in development
 - Currently alpha with most functionality but needs general polishing
 - Upcoming conference demos at ISWC-2009 and RuleML-2009

SILK Contributors current/past (partial list)

- Vulcan (Benjamin Grosof, Mark Greaves, Dave Gunning)
- Stony Brook University (Michael Kifer; students H. Wan, S. Liang, P. Fodor)
- SRI International (Vinay Chaudhri, David Martin, Ken Murray, Bill Jarrold)
- BBN Technologies (Mike Dean, Dave Kolas, Matt Rubin)
- Ontoprise GmbH (Daniel Hansch, Jurgen Angele)
- Automata (Paul Haley)
- Boeing (Peter Clark)
- Cycorp (Keith Goolsbey, Doug Lenat, Ben Rode)
- University of Texas (Bruce Porter, Ken Barker)
- University of Toronto (Sheila McIlraith; students S. Sohrabi, H. Ghaderi)
- University of Amsterdam (Bert Bredeweg)
- University of Freiburg (Georg Lausen)
- University of Michigan (Michael Wellman)
- Richard Fikes, consultant (Stanford University)
- Raphael Volz, consultant

UNIVERSITY

SILK-relevant Cooperations (partial list)

- Project Halo has cooperations with other major research efforts:
- LarKC (The Large Knowledge Collider), funded by EU
 - http://www.larkc.eu
- NeOn (Lifecycle Support for Networked Ontologies), funded by EU
 - http://www.neon-project.org
- DARPA

Outline of Talk

Overview of SILK effort

- Vision, Origins in parent Project Halo, Goals
- Effort, Requirements, Approach, Roots, Status, Plans
- Prototype, Theory, Language
- Examples and Use Cases: E-Science, E-Commerce, Trust, ...
- Hyper Logic Programs KR approach and expressive features
 - More details on Requirements and Design
 - Higher-Order Defaults
 - Argumentation Theories approach (LPDA) to Defeasibility
 - Remedying FOL Semantics' Lack of Scalability
 - Weakened Classical, via Hypermonotonic mapping.
 - Comparison to other semantic rule systems and standards
 - RIF, BRMS, OWL, DBMS, etc.

Conclusions and Directions

- Roadmap for SILK and Industry
- How You can be Involved

Ecology Ex. of Causal Process Reasoning in SILK

```
Toxic discharge into a river causes fish die-off. */
/* Init. facts, and an "exclusion" constraint that fish count has a unique value */
 occupies(trout, Squamish).
 fishCount(s0,Squamish,trout,400).
 silk:opposes(fishCount(?s,?r,?f,?C1), fishCount(?s,?r,?f,?C2) :- ?C1!=?C2.
/* Action/event description that specifies causal change, i.e., effect on next state */
 @tdf1 fishCount(?s+1,?r,?f,0) :- occurs(?s,toxicDischarge,?r) and occupies(?f,?r).
/* Persistence ("frame") axiom */
 @pef1 fishCount(?s+1,?r,?f,?p) :- fishCount(?s,?r,?f,?p).
/* Action effect axiom has higher priority than persistence axiom */
 @pr1 silk:overrides(tdf1,pef1).
/* An action instance occurs */
 @UhOh occurs(s0+1,toxicDischarge,Squamish).
As desired: |= fishCount(s0+1,Squamish,trout,400) and
                    fishCount(s0+2,Squamish,trout,0).
```


Notes: @ prefixes a rule label. ? prefixes a variable. :- means if. Opposes indicates an exclusion constraint between two literals, which means "it's a conflict if"...

E-Commerce Ex. of Causal Process Reasoning

```
/* E-commerce delivery logistics. */
/* Initial fact, and prevention constraint that location is unique */
 loc(s0,PlasmaTV46,WH_LasVegasNV);
 silk:opposes(loc(?s,?item,?posn1), loc(?s,?item,?posn2)) :- ?posn1!=?posn2;
/* Action/event description that specifies causal change, i.e., effect on next state */
 @{mov1} loc(?s+1,?item,?addr) and neg loc(?s+1,?item,?warehouse) :-
      shipment(?s,?item,?warehouse,?addr) and loc(?s,?item,?warehouse);
/* Persistence ("frame") axioms about location */
 @{pel} loc(?s+1,?item,?posn) :- loc(?s,?item,?posn);
 @{pel} neg loc(?s+1,?item,?posn) :- neg loc(?s,?item,?posn);
/* Action effect axiom has higher priority than the persistence axioms */
 silk:overrides(mov1,pell.
/* An action instance occurs */
 @{deliv57} shipment(s0+1, PlasmaTV46, WH_LasVegasNV, Nine_Fog_St_SeattleWA);
As desired:
                   loc(s0+2, PlasmaTV46, Nine_Fog_St_SeattleWA);
                   neg loc(s0+2, PlasmaTV46, WH_LasVegasNV);
```

Trust Mgmt. Ex. of Higher-Order Defaults in SILK

illustrating also basic Knowledge-level Communication, and Frame syntax

In Frame syntax: subject[property -> object] stands for property(subject,object).

```
Trust policy administration by multiple agents, about user permissions */
/* Admin. Bob controls printing privileges including revocation (neg). */
 Bob[controls -> print]. Bob[controls -> neg print]; /* neg print means it's disallowed.*/
 Cara[controls -> ?priv]; /* Cara is the most senior admin., so controls all privileges. */
/* If an administrator controls a privilege and states at a time (t) that a user has a privilege,
 then the user is granted that privilege. Observe that ?priv is a higher-order variable. */
 @grant(?t) ?priv(?user) :- ?admin[states(?t) -> ?priv(?user)] and ?admin[controls(?priv)];
/* More recent statements have higher priority, in case of conflict. */
 overrides(grant(?t2), grant(?t1)) :- ?t2 > ?t1;
/* Admin.'s Bob and Cara make conflicting statements over time about Al's printing */
 Cara[states(2007) -> print(Al)]. Cara[states(2007) -> webPage(Al)];
 Bob[states(2008) -> neg print(Al)];
As desired: |= neg print(Al) and webPage(Al).
                          /* Currently, Al is permitted a webpage but not to print. */
```


SILK Roots

SILK draws upon previous work on semantic rules

- W3C Rule Interchange Format (RIF)
- RuleML incl. SWRL
- SWSL (Semantic Web Services Lang.) and WSML
- Flora and XSB, SweetRules, DLV
- IBM Common Rules, Ontoprise Ontobroker
- Description LP, W3C OWL 2 RL, Oracle SW rules
- OMG PRR
- ISO Common Logic and OMG SBVR
- Jena, cwm and N3
- SQL, SPARQL, XQuery
- Theory and algorithms of KR from LP, AI, and DB communities

Use Cases for SILK beyond commercial state of art

- There are many!
- Existing use cases from SILK's research-y or standardsdesign roots
 - E.g., from RIF, RuleML, SWSL documents and prototypes
 - E-commerce, financial, health, trust, SOA, policies, regulations, mobile, biomed, defense, etc.
 - Many of these are not yet implementable in current well-supported, wellperforming commercially deployed systems
 - E.g., they use defaults
 - E.g., they use feature combinations that are not easily available

Outline of Talk

- Overview of SILK effort
 - Vision, Origins in parent Project Halo, Goals
 - Effort, Requirements, Approach, Roots, Status, Plans
 - Prototype, Theory, Language
- Examples and Use Cases: E-Science, E-Commerce, Trust, ...
- Hyper Logic Programs KR approach and expressive features
 - More details on Requirements and Design
 - Higher-Order Defaults
 - Argumentation Theories approach (LPDA) to Defeasibility
 - Remedying FOL Semantics' Lack of Scalability
 - Weakened Classical, via Hypermonotonic mapping.
 - Comparison to other semantic rule systems and standards
 - RIF, BRMS, OWL, DBMS, etc.
- Conclusions and Directions
 - Roadmap for SILK and Industry
 - How You can be Involved

LP is the Core KR in today's world ... including the Semantic Web

- LP is the core KR of structured knowledge management today
 - Databases
 - Relational / SQL
 - XML semi-structured / XQuery
 - RDF semi-structured / SPARQL (triple stores)
 - Semantic Rule Standards
 - RuleML standards design
 - Rule Interchange Format (RIF)*
 - Semantic Ontologies
 - Most commercial implementations of OWL & RDFS are based on semantic rules: Description Logic Programs (DLP) + moderate extensions. E.g., Oracle.
 - OWL 2* includes the RL Profile, i.e., its Rules subset
- The Semantic Web today is mainly based on LP KR
 - ... and thus essentially equivalent to semantic rules
 - You might not have realized that!

Sem Tech Industry Requirements targeted by SILK

- Need to <u>raise abstraction level</u>, e.g., for SME and NL KA/UI
 - (SME = Subject Matter Expert, a.k.a. Business User)
- Need robustness & meta-reasoning for web KB integration
 - Cope with conflict, mediation, context, knowledge quality
 - Defaults ⇒ robustness, modularity ⇒ scalability
 - Higher-order ⇒ puts the meta- deeply in knowledge not just data
- Hope: be like advance of the Relational model in DBMS
 - Will Hyper LP be to the 2010s what Relational was to 1970s-80s?
 - (NB: software industry clockspeed was slower back then)

Strategy on Expressiveness

- Start from declarative LP
 - Semantics available, but enables nonmonotonicity, unlike classical
 - A multitude of small and large expressive extensions available
 - Can hope to combine defaults with most of the other major ones
- Opportunity: newly combine tightly and synergize several major strands of pure-research progress in logical KR based on extensions of LP from the last 20 years
 - Good stuff, but pieces on the floor
- Build up expressiveness in layers (and by relaxing restrictions)
 - Extend syntax and semantics as we go

More KR Rationale about SILK & Hyper LP

- "Hyper" since it is Web (hypertext) centric, and it behaves hypermonotonically
- It integrates several major LP extensions never previously combined:
 - Higher-order and Frames and Skolemization, cf. F-Logic
 - + Defaults, cf. Courteous LP (and Defeasible Logic)
 - Newly generalized and modified approach using Argumentation Theories
 - · Sound Interchange with Full Classical Logic, via Hypermonotonic mapping
 - Unrestricted clauses, plus skolemization: greatly generalizes DLP, OWL RL
 - · Behaves robustly in the face of knowledge quality errors and conflicting merging
 - Pervasively combined with all other KR features
- Give up reasoning by cases
 - Source of exponential worst-case complexity in classical, disjunctive LP, stable LP
 - Can hope to reintroduce in restricted or altered form, or develop work-arounds, later
 - But there are many apps not requiring it, e.g., DBMS, BRMS
- Can realistically hope to be <u>web-scalable</u> performance-wise, unlike highly expressive classical or answer set programs
 - Polynomial computational complexity, under non-onerous restrictions
 - · Same complexity as Horn rules!! (Must be careful of recursion through functions.)
 - Many optimizations available

PROJECT

Established track record of high scalability for relational databases

Driving Requirements for SILK Expressiveness

- Processes [For science, BPM. E.g., >50% of questions on Environmental Sci. AP.]
 - Actions, Causality, Events, Reactivity, State Change
- Knowledge-level Communication [Knowledge, science, & business are societal]
 - I.e., Import and Merge of External Knowledge, incl. data/facts, ontologies, rules
 - Via Pull/Query, and Via Push/Events
 - From Web, built-ins, specialized reasoners, broad-purpose reasoners
 - Mediate ontologies and contexts
 - Interchange with Classical logic KR, as well as with LP/rules KR
 - Uses for Classical include:
 - Background KBs, e.g., ontology, e.g., about processes
 - Existing techniques and KBs for equations, constraints, and processes
 - · Common Logic (and KIF), SBVR, OWL, RDF

Uses of Major SILK Expressive Features

- Defaults (beyond naf) [For many purposes, pervasively]
 - Exceptions, Priorities, Inheritance, Strong Negation, Preventive Integrity Constraints
 - For OO, robust KB merging/updating, process causality, policy and regulation/law, natural language incl. KA, import of classical, argumentation, hypotheticals and counterfactuals
- Higher-order, incl. for Meta-reasoning [For many purposes, pervasively]
 - Convenient, concise abstraction for KR designers, and for KE/SME users
 - Many KRs have some of it, incl. RDF, OWL-Full, BRMS, Cyc. E.g., transitive_closure(?P).
 - Meta-reasoning uses include: KR macros, KB translation/import, ontology mappings, reasoning control, provenance, KB modularization, navigation in KA, multi-agent & nested belief, context, modals. Plus the Web is about meta-data.

More SILK Expressive Requirements

- External Actions, Events, and Queries
 - Via procedural attachments. E.g., query built-ins.
 - Similar to production rules and Event-Condition-Action rules
 - For knowledge communication and processes
- Webized syntax
 - URI names for predicates, individuals, functions, KBs, and attached procedures
 - XML/RDF interchange format for the KR
 - For knowledge communication
- Equality (derived via non-fact rules) [For entity identity and numerical reas.]
 - Complex explicit derived equalities/equations. Inequalities too.
- Functions (logical) [For higher-order and process recursion]

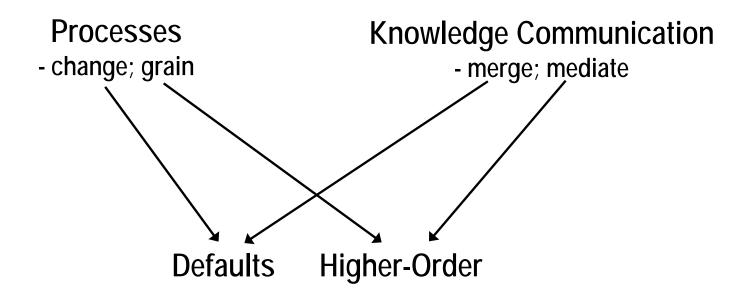
More SILK Expressive Requirements, continued

- Closed-World [For defaults, numerical, collections, and meta-reasoning]
 - Unstratified (not just stratified) negation-as-failure (NAF, a.k.a. "weak" negation)
 - Well-founded semantics for NAF so as to preserve tractability and well-definedness
 - Aggregate operators, e.g., count, total, average, setOf. NB: these depend on NAF.
 - Lloyd-Topor (freer appearance of logical connectives). NB: this depends on NAF.
 - {and, naf, or, exists, forall, implies} in body, {and, implies, forall} in head
- Frame syntax [Convenient & familiar, e.g., RDF, OWL, UML, Aura]
 - Frame (Object-Oriented style) syntax cf. F-Logic
- Skolemized existentials [Convenient & familiar, e.g., RDF, OWL, UML, Aura]
- Integrity constraints [Convenient & familiar, e.g., DBMS, UML, Aura]
 - Report violations
 - Prevent violations (via "exclusions")

Relevant Expressive Foundations – from our ISWC-2009 Tutorial

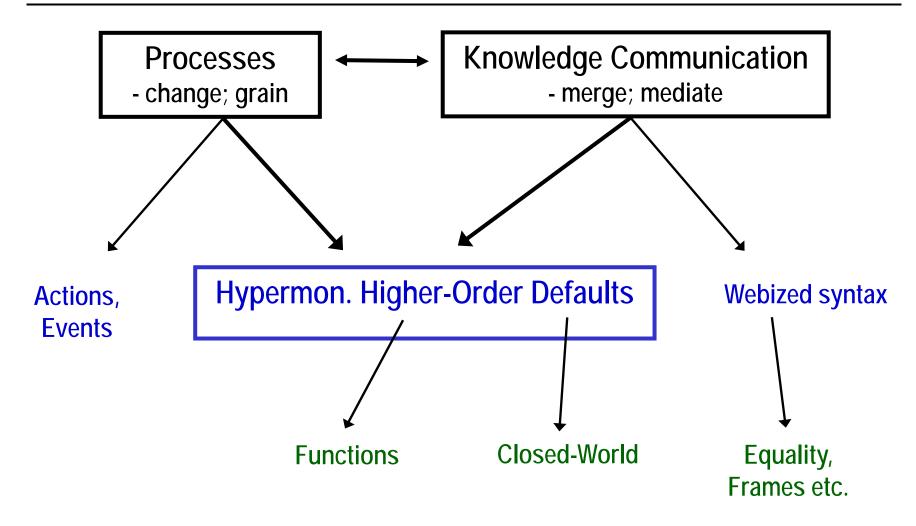
- 1. Overview of Logical Knowledge Representations
 - Logic Programs (LP) and its relationship to First Order Logic (FOL)
 - Rule-based Ontologies: Description Logic, Description LP, OWL RL
- 2. Basics: Horn Case; Functions
- 3. F-Logic, Frame Syntax, Object Oriented Style
- 4. HiLog, Higher-Order Syntax, Reification, Meta-Reasoning
- 5. W3C Rule Interchange Format: Dialects, Framework
- 6. Nonmonotonicity: Defaults, Negation, Priorities; FOL's Glass Bubble
 - Semantics for Default Negation
 - Courteous LP, Argumentation Theories
 - \triangleright Hypermonotonic Mapping: FOL \leftrightarrow LP, Soundly
- 7. Procedural Attachments to Actions, Queries, Built-ins, and Events
 - Production/Situated LP, Production Rules
- 8. Additional Features: Integrity Constraints, Inheritance, Lloyd-Topor, Equality, Skolemization, Aggregation, Datatypes, "Constraints"
- 9. Hyper LP and SILK Putting it all together

SILK Other Reasoning Requirements


- Explanations: to users and machines
- Performance Scalability of Inferencing
 - Exploit Parallelism
- Support Forward-Direction and Persistence in Inferencing
 - Persistent queries and conclusions
 - Truth Maintenance, handling nonmonotonicity and update/event flows
- Knowledge interchange, with translation between KRs/systems
 - Via Pull and Push, dynamically, over Web.
 - Data/Facts, Ontologies, Rules
 - Support relevant standards, therefore, e.g., RIF, OWL, RDF, Common Logic
 - Interoperate with Production Rules and similar Event-Condition-Action (ECA) rules
 - Trust management

PROJECT

Live in a Distributed World, generally



Dependencies among Requirements I

Dependencies among Requirements II

Outline of Talk

Overview of SILK effort

- Vision, Origins in parent Project Halo, Goals
- Effort, Requirements, Approach, Roots, Status, Plans
- Prototype, Theory, Language
- Examples and Use Cases: E-Science, E-Commerce, Trust, ...
- Hyper Logic Programs KR approach and expressive features
 - More details on Requirements and Design
 - Higher-Order Defaults
 - Argumentation Theories approach (LPDA) to Defeasibility
 - Remedying FOL Semantics' Lack of Scalability
 - Weakened Classical, via Hypermonotonic mapping.
 - Comparison to other semantic rule systems and standards
 - RIF, BRMS, OWL, DBMS, etc.

Conclusions and Directions

- Roadmap for SILK and Industry
- How You can be Involved

Ubiquity of Priorities in Commercially Important Rules -- and Ontologies

- Updating in relational databases
 - more recent fact overrides less recent fact
- Static rule ordering in Prolog
 - rule earlier in file *overrides* rule later in file
- Dynamic rule ordering in production rule systems (OPS5)
 - "meta-"rules can specify agenda of rule-firing sequence
- Event-Condition-Action rule systems rule ordering
 - often static or dynamic, in manner above
- Exceptions in default inheritance in object-oriented/frame systems
 - subclass's property value overrides superclass's property value,
 e.g., method redefinitions
- All lack Declarative KR Semantics

Defeasible Reasoning

Rules can be true by default but may be defeated

A form of commonsense reasoning

Application domains:

- policies, regulations, and law
- actions, change, and process causality
- Web services
- inductive/scientific learning
- natural language understanding
- •

Existing approaches:

- Courteous Logic Programs (Grosof, 1997)
 - The main approach used commercially (IBM Common Rules, 1999)
- Defeasible logic (Nute, 1994) [similar to Courteous LP]
- "Prioritized defaults" (Gelfond & Son, 1997)
- Preferred answer sets (Brewka & Eiter, 2000)
- Compiling preferences (Delgrande et al., 2003)

Semantical KR Approaches to Prioritized LP

The currently most important for Semantic Web are:

- 1. Courteous LP
 - KR extension to Ordinary LP
 - In RuleML, since 2001
 - Commercially implemented and applied
 - IBM CommonRules, since 1999
- 2. Defeasible Logic
 - Closely related to Courteous LP
 - Less general wrt typical patterns of prioritized conflict handling needed in e-business applications
 - In progress: theoretical unification with Courteous LP

Courteous LP: the What

- Updating/merging of rule sets: is crucial, often generates conflict.
- Courteous LP's feature prioritized handling of conflicts.
- Specify scope of conflict via a set of <u>exclusion</u> constraints
 - Each is a <u>preventive</u> spirit integrity constraint on a set of competing literals
 - It says that not all of the competing literals can be entailed as true.
 - opposes(p, q) \approx (\perp :- p and q) // Case of 2 competing literals
 - opposes(discount(?product, "5%"), discount(?product, "10%"));
 - opposes(loyalCustomer(?cust,?store), premiereCustomer(?cust,?store));
- Permit <u>strong negation</u> of atoms: (NB: a.k.a. (quasi-) <u>"classical"</u> negation.)
 - ¬p means p has truth value *false* . ¬p is also written as: neg p in ASCII.
 - implicitly, for every atom p: opposes(p, ¬p);
- <u>Priorities</u> between rules: <u>partially-ordered</u>.
 - Represent priorities via <u>reserved predicate</u> that compares <u>rule labels</u>:
 - overrides(rule1, rule2) means rule1 is higher-priority than rule2.
 - Each rule optionally has a rule label whose form is a functional term.
 - overrides <u>can be reasoned about</u>, just like any other predicate.

Priorities are available and useful

- Priority information is naturally available and useful. E.g.,
 - <u>recency</u>: higher priority for more recent updates.
 - <u>specificity</u>: higher priority for more specific cases (e.g., exceptional cases, subcases, inheritance).
 - <u>authority</u>: higher priority for more authoritative sources (e.g., legal regulations, organizational imperatives).
 - <u>reliability</u>: higher priority for more reliable sources (e.g., security certificates, viadelegation, assumptions, observational data).
 - <u>closed world</u>: lowest priority for catch-cases.
- Many practical rule systems employ priorities of some kind, often implicit. E.g.,
 - rule sequencing in Prolog and production rules.
 - Courteous LP subsumes this as a special case (totally-ordered priorities)
 - Also Courteous LP enables: merging, more flexible & principled treatment.

Courteous LP: Advantages

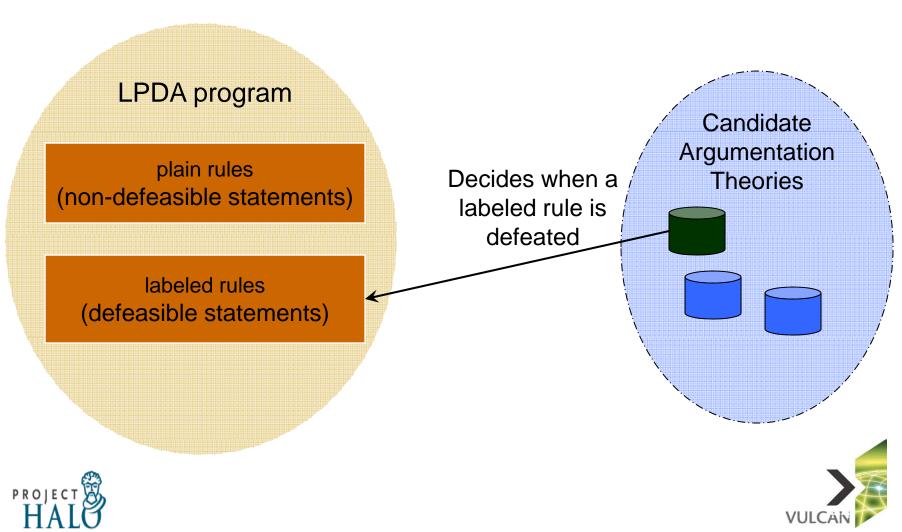
- Facilitate updating and merging, modularity and locality in specification.
- <u>Expressive</u>: strong negation, exclusions, partially-ordered prioritization, reasoning to infer prioritization.
- Guarantee consistent, unique set of conclusions.
 - Exclusion is enforced. E.g., never conclude discount is both 5% and that it is 10%, nor conclude both p and ¬p.
- Scaleable & Efficient: low computational overhead beyond ordinary LPs.
 - <u>Tractable</u> given reasonable restrictions (VB Datalog):
 - extra cost is equivalent to increasing v to (v+2) in Ordinary LP, worst-case.
 - By contrast, more expressive prioritized rule representations (e.g., Prioritized Default Logic) add NP-hard overhead.
- Modular software engineering:
 - Transform: $CLP \rightarrow \rightarrow OLP$. Via simple "argumentation theory" approach.
 - Add-on to variety of OLP rule systems, with modest effort.

New Theory & Algorithms for Higher-Order Defaults

- Combines Courteous + Hilog, and generalizes
- New approach to defaults: "argumentation theories"
 - Meta-rules specify when rules are defeated
 - [Wan, Grosof, Kifer, et al. ICLP-2009]
- Extends straightforwardly to combine with other key features
 - E.g., Frame syntax, external Actions
- Significantly improves on previous Courteous approach in other ways
 - Eliminates a complex transformation
 - Much simpler to implement
 - 20-30 background rules instead of 1000's of lines of code
 - Much faster when updating the premises
 - More flexible control of edge-case behaviors
 - Much simpler to analyze theoretically

LPDA approach, continued

More Advantages


- 1st way to generalize defeasible LP, notably Courteous, to HiLog higher-order and F-Logic frames
- Well-developed model theory, reducible to normal LP
- Reducibility and well behavior results
- Unifies almost all previous defeasible LP approaches
 - Each reformulated as an argumentation theory
- Cleaner, more flexible and extensible semantics
 - Enables smooth and powerful integration of features
- Leverages most previous LP algorithms & optimizations
- Implemented in SILK V1 via an extension of FLORA-2
 - Public release planned for approx. winter 2009-2010

LPDA Framework

Logic Programs with Defaults and Argumentation theories

Example – AT for Courteous (AT_GCLP)

\$candidate(?R) :- body(?R,?B), call(?B). \$conflict(?R,?S) :- \$candidate(?R), \$candidate(?S), opposes(?R,?S).

opposes(?R, ?S) :- opposes(?S, ?R).

opposes(?L1,?L2):- head(?L1,?H), head(?L2, neg?H).

Outline of Talk

- Overview of SILK effort
 - Vision, Origins in parent Project Halo, Goals
 - Effort, Requirements, Approach, Roots, Status, Plans
 - Prototype, Theory, Language
- Examples and Use Cases: E-Science, E-Commerce, Trust, ...
- Hyper Logic Programs KR approach and expressive features
 - More details on Requirements and Design
 - Higher-Order Defaults
 - Argumentation Theories approach (LPDA) to Defeasibility
 - Remedying FOL Semantics' Lack of Scalability
 - Weakened Classical, via Hypermonotonic mapping.
 - Comparison to other semantic rule systems and standards
 - RIF, BRMS, OWL, DBMS, etc.
- Conclusions and Directions
 - Roadmap for SILK and Industry
 - How You can be Involved

Basic Hypermonotonic Mapping: clausal FOL ⇒ Courteous LP

An FOL clause C:

```
L1 or L2 or ... or Lk
```

is mapped to k <u>directed</u> clauses, one for each choice of head literal:

```
L1: neg L2 and neg L3 and ... and neg Lk
L2: neg L1 and neg L3 and ... and neg Lk
...
Lk: neg L1 and neg L2 and ... and neg Lk-1
```

- This is called the *omnidirectional ruleset* for C, a.k.a. the *omni*
- Conversely, a naf-free Courteous LP rule is mapped to FOL as a material implication, thus clausal. (It's fairly easy to stick to naf-free.)
- A KR S behaves hypermonotonically == S is nonmonotonic and when its premises are viewed classically, then entailment in S is <u>sound</u> but incomplete w.r.t. classical
 - Incompleteness is desirable when there's conflict

Examples of Basic Hypermonotonic mapping

```
    /* SBVR Car rental: A driver ?p is Approved only if ?p has a Validated application. */

    /* FOL: */ forall ?p. Validated(?p) <== Approved(?p).</li>
    becomes the ff. omnidirectional ruleset in Hyper LP:

    neg Approved(?p) :- neg Validated(?p) . /* Exploit strong negation feature (neg). */

    Validated(?p) :- Approved(?p).

    /* OWL 2 DL beyond RL: The classes Cat and Bird are disjoint. */

        /* FOL */ forall ?x. neg (Cat(?x) and Bird(?x) ).
    becomes the ff. omnidirectional ruleset in Hyper LP:

    neg Cat(?x) :- Bird(?x).

        neg Bird(?x) :- Cat(?x).

    /* Scheduling: Joe's meeting will be at 3pm or 4pm or 5pm today. */

        /* FOL source: */ mtg(3p) or mtg(4p) or mtg(5p).
        becomes the ff. omnidirectional ruleset in Hyper LP:
        mtg(5p) :- neg mtg(3p) and neg mtg(4p).
        mtg(4p) :- neg mtg(3p) and neg mtg(5p).
```

mtg(3p) :- neg mtg(4p) and neg mtg(5p).

Preview: Hypermon. Mapping from full FOL

- Greatly generalizes the approach of Description LP and OWL 2 RL
- Leverages generalized higher-order defaults feature of Hyper LP
- Each FOL clause is mapped to a small set of LP rules (defaults)
- Covers FOL <u>unrestricted clauses</u> (not just Horn)
- Can further add <u>skolemization</u>, thus cover <u>full FOL</u>
- Can further add <u>Higher-order</u> and <u>Frames</u>, thus cover "FOL++"
- Thus can cover <u>full</u> OWL/RDF, <u>full</u> Common Logic, most of SBVR
- Give up disjunction / reasoning by cases, so is weakened
- Hyper LP handles conflict robustly

Remedying FOL Semantics' Lack of Scalability

- Hyper LP handles conflict robustly
 - Whereas FOL is a "Glass Bubble" it's <u>perfectly</u> brittle semantically in face of contradictions from ...
 - Quality problems/errors in the data and knowledge
 - Conflict when merging KBs

E.g., OWL beyond the RL subset suffers this problem

A VLKB with a million or billion axioms formed by merging from multiple Web sources, is unlikely to have zero KB/KA conflicts from:


- Human knowledge entry/editing
- Implicit context, cross-source ontology interpretation
- Updating cross-source
- Source trustworthiness

PROJECT

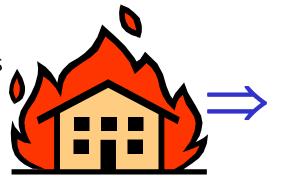
- Weakening provides a <u>critical</u> advantage for VLKB scalability
 - <u>semantically</u>, as well as computationally

FOL: A Glass Bubble

Extreme sensitivity to conflict limits its scalability in # of axioms and # of merges

VULCAN

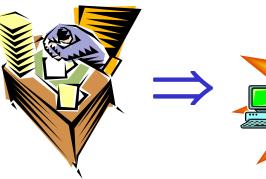
KR Conflict Handling – A Key to Scalability


BEFORE

KR: Classical Logic (FOL, OWL)

AFTER

KR: LP with Defaults (Courteous-style)


Contradictory conflict is globally contagious, invalidates all results.

Contradictory conflict is contained locally, indeed tamed to aid modularity.

Knowledge integration involving conflict is labor-intensive, slow, costly.

Knowledge integration involving conflict is highly automated, faster, cheaper.

Outline of Talk

- Overview of SILK effort
 - Vision, Origins in parent Project Halo, Goals
 - Effort, Requirements, Approach, Roots, Status, Plans
 - Prototype, Theory, Language
- Examples and Use Cases: E-Science, E-Commerce, Trust, ...
- Hyper Logic Programs KR approach and expressive features
 - More details on Requirements and Design
 - Higher-Order Defaults
 - Argumentation Theories approach (LPDA) to Defeasibility
 - Remedying FOL Semantics' Lack of Scalability
 - Weakened Classical, via Hypermonotonic mapping.
 - Comparison to other semantic rule systems and standards
 - RIF, BRMS, OWL, DBMS, etc.
- Conclusions and Directions
 - Roadmap for SILK and Industry
 - How You can be Involved

Providing Declarative Semantics for Procedural Attachments

- Procedural attachments historically viewed in KR theory as ... well ... procedural ;-) ... rather than declarative.
 - Not much theoretical attention
- Needed for Semantic Web: a declarative KR approach to them
- Production LP is probably the most important approach today
 - E.g., SILK, RuleML, SweetRules, IBM Common Rules, predecessors
 - Formerly called <u>Situated</u> LP
 - Provides <u>disciplined expressive abstraction</u> for two broad, often-used categories of procedural attachments:
 - External Queries: Purely-informational permitted in rule bodies
 - External Actions : Side-effectful permitted in rule heads
 - Makes <u>restrictions</u>: assumptions become explicit
 - Declarative semantic guarantees, interoperability
 - · Embodies primarily analytical insight, initially
 - Provides also: <u>expressive generalizations</u>, <u>algorithms/techniques</u>

Updating & Events in Production LP

- "Event" is a set of facts/rules, constituting an update to KB
- An interesting kind of thing to do with a Production LP is to <u>update</u> its premises, and perform <u>incremental</u> inferencing+action.
 - new PLP $P2 = (update U2) \cup (previous P1)$
 - Incremental inferencing+action is defined as:
 - Generate the inferences that are <u>novel</u>
 NovelConclusions = Conclusions(*P2*) Conclusions(*P1*)
 - Perform the external actions (effecting) associated with NovelConclusions
- Extension to PLP:

PROJECT

- An <u>event channel</u> is an attached procedure that delivers events as updates
 - <u>Listening</u> to an event channel can be viewed as a <u>persistent</u> external query

Outline of Talk

Overview of SILK effort

- Vision, Origins in parent Project Halo, Goals
- Effort, Requirements, Approach, Roots, Status, Plans
- Prototype, Theory, Language
- Examples and Use Cases: E-Science, E-Commerce, Trust, ...
- Hyper Logic Programs KR approach and expressive features
 - More details on Requirements and Design
 - Higher-Order Defaults
 - Argumentation Theories approach (LPDA) to Defeasibility
 - Remedying FOL Semantics' Lack of Scalability
 - Weakened Classical, via Hypermonotonic mapping.
 - Comparison to other semantic rule systems and standards
 - RIF, BRMS, OWL, DBMS, etc.

Conclusions and Directions

- Roadmap for SILK and Industry
- How You can be Involved

Semantic Rules KR: Features Comparison

Level ("generation")	Groups of features		SILK V1	Flora	RIF-BLD
1G. Basic	ie: Horn, chaining, external queries, built-ins (Le	evel Summary)	Υ	Υ	Υ
2G. Advanced	(Le	evel Summary)	Most!	lots	some
	Equality (derived via	non-fact rules)	Υ	Υ	Υ
	Functions		Υ	Υ	Υ
	Convenience Package: Frames, integrity constru	aints, skolemization	Υ	Υ	R. frames
	Closed-World: unstratified NAF, aggregates, Llo	yd-Topor	Υ	Υ	N
	Higher-Order (in	cl. reification)	Υ	Υ	N
	Actions (external) (via procedural	attachments)	Developing	N	N
	Base Defaults (prioritized, o	f. Courteous)	Υ	N	N
	Webized syntax (URI names and XI	ML/RDF KBs)	Developing	N	Υ
3G. Hyper	(Le	vel Summary)	Pioneer!	N	N
	Higher-Order Defaults		Υ	N	N
	Weakened Classical (sound interchange wi	h default rules)	Developing	N	N
Other Misc.			(NA)	(NA)	(NA)
	Other Expressive		Developing	R. inherit.	-
	Reasoner Efficiency (upper-tier on Op-	enRuleBench)	good	good	NA (standard)

Summarizes detailed analysis of 40 KR expressive features, 17 systems.

■ Notes: R. = Restricted; RIF-BLD = W3C Rule Interchange Format - Basic Logic Dialect.

Level	Groups of Features	SILK1	Flora	RIF- BLD	Jena	Onto- broker	Jess	IBM C.R.	DLV	SQL	SPA- RQL	Common Logic	OWL2 RL	OWL2 DL
Basic	Horn chain. etc.	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	R.	R.	Υ	R.	R.
Advan ced	(Level summary)	Most!	lots	some	some	some	some	some	some	some	some	some	some	some
	Equality	Υ	Υ	Υ	R.	R.	R.	N	Υ	R.	R.	Υ	R.	Υ
	Functions	Υ	Υ	Υ	N	N	N	Υ	Υ	N	N	Υ	N	N
	Frames etc.	Υ	Υ	R.	R.	R.	R.	R.	R.	R.	R.	R.	R.	R.
	Closed-World	Υ	Υ	N	N	Υ	R.	R.	most	R.	R.	N	N	N
	Higher-Order	Υ	Υ	N	N	N	R.	N	N	R.	R.	Υ	R. bit	R. bit
	Actions	Dev.	N	N	N	N	Υ	Υ	N	N	N	N	N	N
	Base Defaults	Υ	N	N	N	N	N	Υ	N	N	N	N	N	N
	Webized	Dev.	R.	Υ	Υ	R.	R.	R.	R.	N	Υ	Υ	Υ	Υ
Hyper	(Level summary)	1st!	N	N	N	N	N	N	N	N	N	N	N	N
	H-O. Defaults	Υ	N	N	N	N	N	N	N	N	N	N	N	N
	Weak. Classi.	Dev.	N	N	N	N	N	N	N	N	N	N	N	N
Misc.		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Other Expres.	Dev.	inherit.	-	-	-	events	-	disju.	R.	R.	classical	-	classic.
_	Efficiency	good	good	NA	fair	good	fair	poor	good	NA	NA	NA	NA	NA

- Summarizes detailed analysis of 40 KR expressive features, 17 systems.
- Notes: Dev. = Developing, R. = Restricted; C.R.=Common Rules; disju.=disjunctive.

Level	Groups of Features	SILK1	Flora	RIF- BLD	Jena	Onto- broker	Jess	IBM C.R.	DLV	SQL	SPA- RQL	Common Logic	OWL2 RL	OWL2 DL		
Basic	Horn chain. etc.	Back	arour	nd on	Svste	ems ar	nd Sta	ndar	ds:							
Advan ced	(Level summary)		•		J					luctio	n rule	e (PR) s	ystem	ı. PR		
	Equality		shown 5-7 years ago to have a semantic subset (based on the													
	Functions		eetRules translation). The currently most commercially important iness rule management systems (BRMS) are based on PR or similar													
	Frames etc.							(BKI	/IS) ar	e bas	ed on	PR or si	milar			
	Closed-World	event	-conai	tion (ECA) a	action r	uies.									
	Higher-Order		W3C Rule Interchange Format (RIF)'s Basic Logic Dialect (BLD) is its ain semantic part. There is also a framework for extensions. RIF is based													
	Actions			-										sed		
	Base Defaults	prima	rily or	i Kule	eiviL, ex	сері іс)r Kif"	S Pro	auctic	on Ku	ie Diai	ect (PRI	J).			
	Webized	- W30	COW	L 2 R	L is O	WL's F	Rules	subs	et (b	ased	on De	escripti	on LP)).		
Hyper	(Level summary)] - Jen	a is a	popu	ılar op	en-so	urce :	sema	ntic	web t	oolkit	t, incl. f	or rule	S.		
	H-O. Defaults	- Ont≀	ohrok	or ic	a con	nmerci	al for	ward	-chai	nina	I D cv	ıstam				
	Weak. Classi.									J	,					
Misc.] - IBM	Com	mon	Rules	(C.R.)	intro	duce	d the	base	e defa	ults fea	iture.			
	Other Expres.] - Con	nmon	Logi	c (CL)) is an	ISO s	tanda	ard fo	or cla	ssica	l logic,	used a	lso		
	Efficiency											R) standa				
PRO	LECT 📆 🔳	4														

- DLV is a disjunctive LP system, by Univ. of Calabria (it has OR in rule heads)

Level	Groups of Features	SILK1	Flora	RIF- BLD	Jena	Onto- broker	Jess	IBM C.R.	DLV	SQL	SPA- ROL	Common Logic	OWL2 RL	OWL2 DL
Basic	Horn chain. etc.	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	R.	R.	Υ	R.	R.
Advan ced	(Level summary)	Most!	lots	some	some	some	some	some	some	some	some	some	some	some
	Equality	Υ	Υ	Υ	R.	R.	R.	N	Υ	R.	R.	Υ	R.	Υ
	Functions	Υ	Y	Υ	N	N	N	Υ	Υ	N	N	Υ	N	N
	Frames etc.	Υ	V	R.	R.	R.	R.	R.	R.	R.	R.	R.	R.	R.
	Closed-World	Υ	Υ	N	N	Υ	R.	R.	most	R.	R.	N	Ν	N
	Higher-Order	Υ	Υ	N	N	N	R.	N	N	R.	R.	Υ	R. bit	R. bit
	Actions	Dev.	N	N	N	N	Υ	Υ	N	N	N	N	N	N
	Base Defaults	Υ	N	N	N	N	N	Υ	N	N	N	N	N	N
	Webized	Dev.	R.	Υ	Υ	R.	R.	R.	R.	N	Υ	Υ	Υ	Υ
Hyper	(Level summary)	1st!	N	N	N	N	N	N	N	N	N	N	N	N
	H-O. Defaults	Υ	2	N	N	N	N	N	N	N	N	N	N	N
	Weak. Classi.	Dev.	N	N	N	/lore	fea	atıır	29	tha	n a	ny o	ther	
Misc.		NA	NA	NA L	N		100	Itai		tria	ııı u	ily O		
	Other Expres.	Dev.	inherit.	-	-	-	events	-	disju.	R.	R.	classical	-	classic.
	Efficiency	good	good	NA	fair	good	fair	poor	good	NA	NA	NA	NA	NA

- Summarizes detailed analysis of 40 KR expressive features, 17 systems.
- Notes: Dev. = Developing, R. = Restricted; C.R.=Common Rules; disju.=disjunctive.

VULCAN

Level	Groups of Features	SILK1	Flora	RIF- BLD	Jena	Onto- broker	Jess	IBM C.R.	DLV	SQL	SPA- RQL	Common Logic	OWL2 RL	OWL2 DL	
Basic	Horn chain. etc.	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	R.	R.	Υ	R.	R.	
Advan ced	(Level summary)	Most!	lots	some	some	some	some	some	some	some	some	some	some	some	
	Equality	Υ	Υ	Υ	R.	R.	R.	N	Υ	R.	R.	Υ	R.	Υ	
	Functions	Υ	Υ	Υ	N	N	N	Υ	Υ	N	N	Υ	N	N	
	Frames etc.	Υ	Υ	R.	R.	R.	R.	R.	R.	R.	R.	R.	R.	R.	
	Closed-World	Υ	Υ	N	N	Υ	R.	R.	most	R.	R.	N	N	N	
	Higher-Order	Υ	Υ	N	N	N	R.	N	Much more						
	Actions	Dev.	N	N	N	N	Υ	Υ							
	Base Defaults	Υ	N	N	N	N	N	Υ		axe	res	sive	thai	า	
	Webized	Dev.	R.	Υ	Υ	R.	R.	R.		•					
Hyper	(Level summary)	1st!	N	N	N	N	N	N		oro	auc	ction	EU	4	
	H-O. Defaults	Υ	N	N	N	N	N	N	rules						
	Weak. Classi.	Dev.	N	N	N	N	N	N	N	N	N	N	N	N	
Misc.		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Other Expres.	Dev.	inherit.	-	-	-	events	-	disju.	R.	R.	classical	-	classic.	
	Efficiency	good	good	NA	fair	good	fair	poor	good	NA	NA	NA	NA	NA	

- Summarizes detailed analysis of 40 KR expressive features, 17 systems.
- Notes: Dev. = Developing, R. = Restricted; C.R.=Common Rules; disju.=disjunctive.

Level	Groups of Features	SILK1	Flora	RIF- BLD	Jena	Onto- broker	Jess	IBM C.R.	DLV	SQL	SPA- RQL	Common Logic	OWL2 RL	OWL2 DL
Ba <mark>s</mark> ic	Horn chain. etc.	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	R.	R.	Υ	R.	R.
Advan ¢ed	(Level summary)	Most!	lots	some	some	some	some	some	some	some	some	some	some	some
	Equality	Υ	Υ	Υ	R.	R.	R.	N	Υ	R.	R.	Υ	R.	Υ
Ι.	Functions	Υ	Υ	Υ	N	N	N	Υ	Υ	N	N	Υ	N	N
	Frames etc.	Υ	Υ	R.	R.	R.	R.	R.	R.	R.	R.	R.	R.	R.
	Closed-World	Υ	Υ	N	N	Υ	R.	R.	most	R.	R.	N	N	N
	Higher-Order	Υ	Υ	N	N	N	R.	N	N	R.	R.	Υ	R. bit	R. bit
	Actions	Dev.	N	N	N	N	Υ	Υ	N	N	N	N	N	N
	Base Defaults	Υ	N	N	N	N	N	Υ	N	N	N	N	N	N
	Webized	Dev.	R.	Υ	Υ	R.	R.	R.	R.	N	Υ	Υ	Υ	Υ
Hypel (Level summary) H-C NEWLY COMBINES previous advanced features: e.g., {full Frames + Base Defaults} + {full Closed-World + Actions} + {fully Webized + good Efficiency} Notes: Dev. = Developing, R. = Restricted; C.R.=Common Rules; disju.=disjunctive.														

Level	Groups of Features	SILK1	Flora	RIF- BLD	Jena	Onto- broker	Jess	IBM C.R.	DLV	SQL	SPA- RQL	Common Logic	OWL2 RL	OWL2 DL
Basic	Horn chain. etc.	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	R.	R.	Υ	R.	R.
Advan ced	(Level summary)	Most!	lots	some	some	some	some	some	some	some	some	some	some	some
	Equality	Υ	Υ	Υ	R.	R.	R.	N	Υ	R.	R.	Υ	R.	Υ
	Functions	Υ	Υ	Υ	N	N	N	Υ	Υ	N	N	Υ	N	N
	Frames etc.	Υ	Υ	R.	R.	R.	R.	R.	R.	R.	R.	R.	R.	R.
	Closed-World	Υ	Υ	N	N	Υ	R.	R.	most	R.	R.	N	N	N
	Higher-Order	Υ	Υ	N	N	N	R.	N	N	R.	R.	Υ	R. bit	R. bit
	Actions	Dev.	N	N	N	N	Υ	Υ	N	N	N	N	N	N
	Base Defaults	Υ	N	N	N	N	N	Υ	N	N	N	N	N	N
	Webized	Dev.	R.	Υ	Υ	R.	R.	R.	R.	N	Υ	Υ	Υ	Υ
Hyper	(Level summary)	1si	N	^ 1						- A				
	H-O. Defaults	Υ	N	4dv	anc	ced-	Lev	'el L	JEL	_IA	S W	<i>ı</i> .r.t. I	-lor	a: 👖
	Weak. Classi.	Dev.	N			V	1 · R	356	ם ב	բ <mark>f</mark> ai	ults	•		
Misc.		NA	N/											
	Other Expres.	Dev.	inhe	V2 (in Dev.): Actions, Webized										
	Efficiency	good	good	NA	tair	good	fair	poor	good	NA	NA	NA	NA	NA

- Summarizes detailed analysis of 40 KR expressive features, 17 systems.
- Notes: Dev. = Developing, R. = Restricted; C.R.=Common Rules; disju.=disjunctive.

Level	Groups of Features	SILK1	Flora	RIF- BLD	Jena	Onto- broker	Jess	IBM C.R.	DLV	SQL	SPA- ROL	Common Logic	OWL2 RL	OWL2 DL
Basic	Horn chain. etc.	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	R.	R.	Υ	R.	R.
Advan ced	(Level summary)	Most!	lots	some	some	some	some	some	some	some	some	some	some	some
	Equality	Υ	Υ	Y	R.	R.	R.	N	Υ	R.	R.	Υ	R.	Υ
	Functions	Υ	Υ	Y		FUI	VID.	1 ///F	FMT	ΓΔΙ	IY	NEW		
	Frames etc.	Υ	Υ	F										
	Closed-World	Υ	Υ	<u></u>	Hyper-Level features: V1: Higher-Order Defaults;									
	Higher-Order	Υ	Υ	The state of the s										
	Actions	Dev.	N	N										
	Base Defaults	Υ		l	V2 (in D	ev.)): W	lea l	ker	ed	Clas	sica	
	Webized	Dev.	R.	γ	Υ	K.	K.	R.	K.	N	Υ	Υ	Υ	Υ
Hyper	(Level summary)	1st!	N	N	N	N	N	N	N	N	N	N	N	N
	H-O. Defaults	Υ	N	N	N	N	N	N	N	N	N	N	N	N
	Weak. Classi.	Dev.	N	N	N	N	N	N	N	N	N	N	N	N
Misc.		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Other Expres.	Dev.	inherit.	-	-	-	events	-	disju.	R.	R.	classical	-	classic.
	Efficiency	good	good	NA	fair	good	fair	poor	good	NA	NA	NA	NA	NA

- Summarizes detailed analysis of 40 KR expressive features, 17 systems.
- Notes: Dev. = Developing, R. = Restricted; C.R.=Common Rules; disju.=disjunctive.

KR Features Comparison: Cyc

- SILK also draws upon Cyc
 - Plenty to learn from Cyc's design and experience
- Cyc lacks (as yet) a well-understood semantics, so it's not quite a semantic rule system
 - Previously, Cycorp has described it both in terms of FOL and defaults
 - However, preliminary indications from the ReCyc translation effort indicates Cyc's KR is closer in spirit to LP than to Classical
- Cyc's set of KR features correspond roughly to SILK's
 - This provides some confirmation for SILK's goals w.r.t. features

Outline of Talk

Overview of SILK effort

- Vision, Origins in parent Project Halo, Goals
- Effort, Requirements, Approach, Roots, Status, Plans
- Prototype, Theory, Language
- Examples and Use Cases: E-Science, E-Commerce, Trust, ...
- Hyper Logic Programs KR approach and expressive features
 - More details on Requirements and Design
 - Higher-Order Defaults
 - Argumentation Theories approach (LPDA) to Defeasibility
 - Remedying FOL Semantics' Lack of Scalability
 - Weakened Classical, via Hypermonotonic mapping.
 - Comparison to other semantic rule systems and standards
 - RIF, BRMS, OWL, DBMS, etc.

Conclusions and Directions

- Roadmap for SILK and Industry
- How You can be Involved

BRMS Industry Roadmap: facing disruption

- Semantic rules is a prospectively truly disruptive innovation for the existing business rules management systems (BRMS) industry sector
- See "The New Rules of Business" [Grosof EBRC-2007 keynote]
 - Strategic analysis of evolving market dynamics and what players should do about it
 - Done with a Management professor hat on
 - http://www.mit.edu/~bgrosof/#EBRC2007Talk

Impact Opportunities for SILK and HalAR

- Improve by orders of magnitude:
 - · Scale of practical semantic default+actions reasoning
 - $<\sim 1000 \text{ rules} \Rightarrow ?100,000 + \text{ rules}$
 - Collaboration costs of multifold KB merging when there's conflict (as is usual)
 - Can take human out of the loop at run time
 - Population of users capable of specifying semantic rules
 - "KR Power to the People!" Leverage Aura and SMW+ KA/UI front-ends.
- Synergize best of last 20 years of pure-research progress in LP KR
 - ⇒ Redefine KR playing field of semantic web, business rules, & process management
- Provide a key missing research piece for SOA / web services
 - Enable building shared business/govt KBs on processes & policies ⇒ virtuous circle
- Hope: be like advance of the Relational model in DBMS
 - Will Hyper LP be to the 2010s what Relational was to 1970s-80s?

Key KR infrastruct. for widely-authored VLKBs for science and business that answer questions, proactively supply information, and reason powerfully

Future Directions for SILK

- Process more complex
- Explanation and Abduction for science and UI
- Truth maintenance, Termination
- Natural Language KA and UI
 - Controlled English
- Uncertainty, Disjunction, Constraints
- Distributed and Parallel reasoning
- More Connectors & Translations to other KR/DB/services
- Meta-reasoning for control of inferencing
- And Use Cases, of course
- Halo is part of an increasingly-integrated strategy at Vulcan to invest in semantics and advanced knowledge tools
 - Other investments: Radar Networks, ZoomInfo, Evri, etc.
 - · Semantic MediaWiki+ is an early spinout

How You can be Involved

- General Contact: Benjamin Grosof <u>benjaming@vulcan.com</u>
 - Suggest design, use cases, experts, cooperations
- Visit the SILK webpage and sign up for the mailing list so you'll be alerted of announcements about SILK
 - URL: http://silk.semwebcentral.org
 - Mailing list: <u>silk-announce@semwebcentral.org</u> (very low volume)
- Provide comments on SILK language design
 - Initial public draft in early 2010; selected earlier reviewers starting Nov. 2009
 - Plan to propose a RIF extension with defaults and actions
 - Corresponding to a large expressive subset of SILK
- Try out SILK software
 - Prototype, free for research use
 - V2 release in 2010; selected earlier users of the alpha starting Nov. 2009
 - Upcoming: refereed demos of SILK at ISWC-2009 and RuleML-2009

Acknowledgements

SILK contributors

(previously listed)

Contributors to several key previous KR efforts

- RuleML and SWSL (Semantic Web Services Language) standards designs
- SweetRules and Flora-2 systems

Especially:

• Michael Kifer, Mark Greaves, Dave Gunning, Mike Dean, Hui Wan, Paul Haley, Vinay Chaudhri, David Martin, Keith Goolsbey, Harold Boley, Said Tabet, and Guizhen Yang

SILK – Transforming Knowledge

Thank You

Disclaimer: The preceding slides represent the views of the author only. All brands, logos and products are trademarks or registered trademarks of their respective companies.

