
10/29/2002 by Benjamin Grosof copyrights reserved

Introduction to RuleML

Part 2 of 2:
ADDITIONAL OPTIONAL SLIDES

to accompany the
Slides presented at 10/29/2002 Teleconference Meeting of

Joint US/EU ad hoc Markup Language Committee
http://www.daml.org/committee

Benjamin Grosof
MIT Sloan School of Management
Information Technologies group

http://www.mit.edu/~bgrosof

With thanks to Steve Ross-Talbot, Bruce Spenser, Said Tabet, and Gerd Wagner

10/29/2002 by Benjamin Grosof copyrights reserved

MORE-DETAILS
SLIDES FOLLOW

10/29/2002 by Benjamin Grosof copyrights reserved

RuleML News
• Overall: more tools, more participants.
• Situated courteous LP (SCLP) as extension of spec.

– Implemented in SweetRules [Grosof 2001] inferencing and translation.
• DAMLRuleML draft spec.: DAML+OIL spec. for RuleML's syntax.

– Implemented in SweetJess [Grosof, Gandhe, and Finin 2002].
• SweetJess translator of SCLP RuleML to/from Jess, inferencing via Jess.

– 1st bridge between Prolog/RDBMS and OPS5/ECA.
• Reactive rules subgroup effort launching.
• Applications:

– Configurable reusable e-contracts (SweetDeal).
– Ontology-based financial knowledge integration (ECOIN).

• Oasis interest in “Policy RuleML” (tentative name) as possible TC.
– RuleML for interchange between policy languages.

• Engaging on W3C front, as well.
• Events aimed for in 2003: W3C Plenary, WWW Conf., ISWC.
• More news is on the RuleML main site http://www.dfki.de/ruleml

10/29/2002 by Benjamin Grosof copyrights reserved

Standardizing XML Rules:
Overall Goals

Provide a basis for a standardized rule markup language,
with declarative KR semantics

interoperability of heterogeneous rule systems and applications
information integration of heterogeneous rule KB’s/services

Start with commercially important flavors of rules

Start simple with a kernel KR, then add extensions
incrementally.

10/29/2002 by Benjamin Grosof copyrights reserved

Standardizing XML Rules: More Goals
Add extensions incrementally to:

raise KR expressiveness and syntactic convenience
connect cleanly to procedural mechanisms
pass-thru/bundle-in system-specific (meta-)info
exploit Web-world functionality, standards

Synergize with other KR aspects of Semantic Web:
RDF; Ontologies: DAML+OIL/Description-Logic

rules in/for ontologies, ontologies for/of rules
Complement XML non-SW ontologies already evolving
Synergize with other Web standards: P3P APPEL, XML Query,
Web Services, ...

10/29/2002 by Benjamin Grosof copyrights reserved

• Initial Step: Keep It Simple, focus primarily on:
– Currently Commercially Important (CCI) kinds of rules
– with XML syntax
– with shared semantics and interoperability
– BUT: foresee to max. smooth evolution, back-compatibility

• Later: get fancier in regard to:
– Web-izing: features, synergy with other standards
– KR expressiveness
– incorporate new fundamental research results & consensus

• Rationale: speed acceptance & deployment; avoid
“bleeding edge”

Incremental Strategy of
Standards Development

10/29/2002 by Benjamin Grosof copyrights reserved

• Analytic Insight [many]:
– Horn FOL is a shared KRsem. E.g., KIF conformance level

• Analytic Insight [Grosof 99]:
– !!Can do better -- closer, more expressive!!
– Start with Horn Logic Program (LP), esp. Datalog

• closer correspondence to what CCI rule systems actually do
• generate ground-literal conclusions only, no other “tautologies” (e.g., OR’s)
• Unique Names Assumption (UNA) is typical; opt.: explicitly add equalities
• {Datalog + {bounded # logical variables per rule} } is frequent, tractable

– Extend LP to negation, priorities, procedures
• needed in CCI rule systems, fairly well-understood fundamentally

Technical Challenge #1:
which initial core KR semantics?

10/29/2002 by Benjamin Grosof copyrights reserved

• CCI non-monotonicity is heavily used, includes:
– negation
– priorities (Prolog, OPS5, DB updates, inheritance exceptions)

• Common CCI Theme: enable modularity in specification

• Analytic Insight [many]:
– negation-as-failure (NAF), not classical negation, is the

form of negation typically used in CCI
• more natural/easy to implement, more flexible

Technical Challenge #2:
how to handle CCI non-monotonicity?

10/29/2002 by Benjamin Grosof copyrights reserved

• canonical semantics of NAF in LP is well-understood theoretically
since 1990’s:
– Well-Founded Semantics (WFS); nuanced for unrestrictedly recursive rules
– consensus has formed in fundamental research community
– only modestly increases computational complexity compared to Horn

(frequently linear, at worst quadratic)

• ...but practice in Prolog and other CCI is often “sloppy”
(incomplete / cut-corners) relative to canonical semantics
– in cases of recursive rules, WFS algorithms required are more complex
– ongoing diffusion of WFS theory & algorithms, beginning in Prolog’s

Semantics of Negation As Failure in CCI

10/29/2002 by Benjamin Grosof copyrights reserved

• {Horn LP} + NAF = “Ordinary” LP (OLP)
– a.k.a. “general”, “normal”, …
– e.g., “pure” Prolog is backward-direction OLP

Ordinary Logic Programs as Shared KR

10/29/2002 by Benjamin Grosof copyrights reserved

Ordinary Logic Programs as basic
representation: Definition

• A LP is a set of (premise) rules; semantically, it specifies a set of conclusions.
• replyInterval(?msg,CustomerRep,quick)
• ← from(?msg,?s) ∧ customer(?s) ∧ ~urgency(?msg,low).
•
• where the “?” prefix indicates a logical variable.
• Generally, a rule has the form of Head IF Body :
• H ← B_1 ∧ ... ∧ B_j ∧ ~B_j+1 ∧ ... ∧ ~B_m .
• where m ≥ 0 ; ∧ stands for logical “AND”; ← stands for logical “IF”; and

H, B_1, ..., B_m are each an atom with form: Predicate(Term_1, ..., Term_k).
• A predicate = a relation. An atom semantically denotes a boolean.
• ~ stands for negation-as-failure (a.k.a. weak negation, default negation).

– The negation-as-failure construct is logically non-monotonic.
– Intuitively, ~p means p’s truth value is either false OR unknown.

Example Rule

10/29/2002 by Benjamin Grosof copyrights reserved

Ordinary Logic Programs:
Definition (continued)

• Each argument Term_1, ..., Term_k is a term.
• A term is either a logical constant (e.g., “Joe”) OR a logical variable (e.g.,

“?msg”) OR a functional expression of the form:
• LogicalFunction(Term_1, ..., Term_k)
• A functional expression semantically essentially denotes a logical constant.
• A term, atom, or rule is called “ground” when it has no logical variables.

• A fact is a ground rule with empty body.
• A primitive conclusion has the form of a ground atom (compound conclusions

are built up from these via logical operators such as AND etc.).
• Semantically, a rule or LP stands for the set of all its ground instances.
• (Observe that a rule body can represent an expression in relational algebra cf.

relational DB’s (e.g., SQL).)

10/29/2002 by Benjamin Grosof copyrights reserved

Ordinary Logic Programs as basic
representation: Advantages

• Declarative: semantics is independent of inferencing procedure
implementation, e.g., forward vs. backward chaining, sequencing of
executing rules or conditions within rules.

• Expressive: relational expressions cf. SQL, large fragment of first-
order logic, chaining, basic logical non-monotonicity (unlike first-
order logic / ANSI-draft Knowledge Interchange Format).

• Efficient: computationally tractable given two reasonable restrictions:
– 1. Datalog = no logical functions of non-zero arity.
– 2. Bounded number v of logical variables per rule.
– m = O(n^(v+1)), where n = ||LP||, m = ||ground-instantiated LP||.
– Inferencing time is O(m) for broad case (stratified), O(m^2) generally

(for well-founded semantics).
– By contrast, first-order-logic inferencing is NP-hard.

10/29/2002 by Benjamin Grosof copyrights reserved

Ordinary Logic Programs:
Advantages (continued)

• Widely deployed and familiar:
– relational DB’s, SQL
– Prolog
– knowledge-based systems and intelligent agents

– (e.g., IBM’s Agent Building Environment)
• Common core shared semantically by many rule systems: e.g.,

– relational DB’s, SQL
– Prolog
– production rules (OPS5 heritage)
– Event-Condition-Action rules
– first-order-logic

10/29/2002 by Benjamin Grosof copyrights reserved

• Synthetic Insight [Grosof 97..99]:
– “Courteous” LP (CLP) [Grosof 97..99] is able to

represent the basic kinds of priorities used in CCI
• static rule sequence, e.g., in Prolog
• dynamically-computed rule sequence, e.g., in OPS5
• inheritance with exceptions
• DB updates

– CLP only moderately increases computational complexity
compared to OLP (frequently linear, worst-case cubic)

– CLP modular for software engineering
• compileable into OLP (preserving ontology)

how to handle CCI non-monotonicity?
continued

10/29/2002 by Benjamin Grosof copyrights reserved

EECOMS Example of Conflicting Rules:
Ordering Lead Time

• Vendor’s rules that prescribe how buyer must place or modify an order:
• A) 14 days ahead if the buyer is a qualified customer.
• B) 30 days ahead if the ordered item is a minor part.
• C) 2 days ahead if the ordered item’s item-type is backlogged at the vendor,

the order is a modification to reduce the quantity of the item, and the buyer is a
qualified customer.

• Suppose more than one of the above applies to the current order? Conflict!

• Helpful Approach: precedence between the rules. Often only partial order of
precedence is justified. E.g., C > A.

10/29/2002 by Benjamin Grosof copyrights reserved

Courteous LP’s:
Ordering Lead Time Example

• <leadTimeRule1> orderModificationNotice(?Order,14days)
• ← preferredCustomerOf(?Buyer,?Seller) ∧
• purchaseOrder(?Order,?Buyer,?Seller) .
• <leadTimeRule2> orderModificationNotice(?Order,30days)
• ← minorPart(?Buyer,?Seller,?Order) ∧
• purchaseOrder(?Order,?Buyer,?Seller) .
• <leadTimeRule3> orderModificationNotice(?Order,2days)
• ← preferredCustomerOf(?Buyer,?Seller) ∧
• orderModificationType(?Order,reduce) ∧
• orderItemIsInBacklog(?Order) ∧
• purchaseOrder(?Order,?Buyer,?Seller) .
• overrides(leadTimeRule3 , leadTimeRule1) .
• ⊥ ← orderModificationNotice(?Order,?X) ∧
• orderModificationNotice(?Order,?Y); GIVEN ?X ≠?Y.

10/29/2002 by Benjamin Grosof copyrights reserved

• Ignoring procedural control (cf. inferencing control strategies)…

• CCI procedural aspects are heavily used, including:
– Prolog: built-ins
– OPS5/ECA: actions, some conditions

• key to embeddability in mainstream software dev.

– “triggers” and “active rules” in relational DB’s

• Analytic Insight [Grosof 99]:
– view as procedural attachments (cf. KR theory)

Technical Challenge #3:
how to handle CCI procedural aspects?

10/29/2002 by Benjamin Grosof copyrights reserved

• Synthetic Insight [Grosof 95..00]:
– “Situated” LP (SLP) [Grosof 97..00] appears able to

represent the basic kinds of procedural attachments
used in CCI, though with more discipline(/restrictions)

• “aproc” = external attached procedure

• “effecting”: drawing pure-belief conclusion triggers
invocation of action aproc for sake of its side-effects

• “sensing”: test pure-belief antecedent condition by invoking
purely-informational query to aproc

• discipline: restrict state changes from external procedures
– querying (sensor) attached procedures does not change state
– performing effector associate predicates with external procedures

how to handle CCI procedural aspects?
continued

10/29/2002 by Benjamin Grosof copyrights reserved

Situated LP’s: Overview

• phoneNumberOfPredicate ::s:: BoeingBluePagesClass.getPhoneMethod .
ex. Of sensor statement

• shouldSendPagePredicate ::e:: ATTPagerClass.goPageMethod .
ex. effector statement

• Sensor procedure may require some arguments to be ground, i.e.,
bound; in general it has a specified binding-signature.

• Enable dynamic loading and remote loading of the attached procedures
(exploit Java goodness).

• Overall: cleanly separate out the procedural semantics as a declarative
extension of the pure-belief declarative semantics. Easily separate
chaining from action.

10/29/2002 by Benjamin Grosof copyrights reserved

Going Beyond KIF/CommonLogic
• KIF/CL is KR Ag. Comm. Lang.’s point of departure:

– Intent: general-knowledge interlingua.
– Emerging standard, in ISO process
– Main focus: classical logic, esp. first-order.

• This is the declarative core, with deep semantics.
– Has major limitations:

• general-purpose-ness
• logically monotonic
• pure-belief

– no invoking of procedures external to the inference engine.

10/29/2002 by Benjamin Grosof copyrights reserved

Criteria for Agent-Communication
Rule Representation

• High-level: Agents reach common understanding; ruleset is easily
modifiable, communicatable, executable.

• Inter-operate: heterogeneous commercially important rule systems.
• Expressive power, convenience, natural-ness.
• ... but: computational tractability.
• Modularity and locality in revision.
• Declarative semantics.
• Logical non-monotonicity: default rules, negation-as-failure.

– essential feature in commercially important rule systems.
• Prioritized conflict handling.
• Ease of parsing.
• Integration into Web-world software engineering.
• Procedural attachments.

1

2

3

OLP}
Courteous

} XML

Situated

10/29/2002 by Benjamin Grosof copyrights reserved

MORE OPTIONAL
SLIDES FOLLOW

10/29/2002 by Benjamin Grosof copyrights reserved

Important KR’s today in E-Business
• Rules, relational databases

– emerging standard: RuleML

• Description Logic, frames, taxonomies
– emerging standard: DAML+OIL

• (other) Classical Logic
– emerging standard: Knowledge Interchange Format (KIF)

• Bayes Nets & Decision Theory: probabilities, dependencies, utilities
– early, primarily for researchers: Bayes Net Interchange Format (BNIF)

• (other) Data Mining inductive predictive models: neural nets,
associations, fuzzy, regressions, … -- early: Predictive Model Markup Lang.

• Arguably: Semi-Structured Data: XML Query, RDF
• Arguably: UML

10/29/2002 by Benjamin Grosof copyrights reserved

Applications of Agent Communication in
Knowledge-Based E-Markets (KBEM)

• Bids in auctions and reverse auctions
• Orders in supply chain or B2C
• Contracts/Deals/Proposals/RequestsForProposals

– prices; product/service descriptions; refunds, contingencies
• Buyer/Seller interests, preferences, capabilities, profiles

– recommender systems; yellow pages; catalogs
• Ratings, reputations; customer feedback or problems
• Demand forecasts in manufacturing supply chain
• Constraints in travel planning
• Creditworthiness, trustworthiness, 3rd-party recommendations

• Industry-verticals: computer parts, real estate, …

10/29/2002 by Benjamin Grosof copyrights reserved

Technology Research Directions:
KR for Agent Communication

• Aims:
– deeper reasoning intra-agent

• “understanding” what receive
– more modularity in:

• content
• software engineering

– KR of the kind needed for e-market applications
• catalogs, contracts, negotiation/auctions, trust,

profiles/preferences/targeting, …
– play with XML standards, capabilities, mentality

10/29/2002 by Benjamin Grosof copyrights reserved

Technology Research Direction:
KR on the Web

• Apply KR viewpoint and techniques to Web info
• “Web-ize” the KR’s

– exploit Web/XML hyper-links, interfaces, tools
– think global, act global : as part of whole Web

• Radically raise the level of shared meaning
– level = conceptual/abstraction level
– meaning = sanctioned inferences / vocabularies
– shared = tight correspondence

• “The Semantic Web”, “The Web of Trust” [Tim B-L]
• Build: The Web Mark II

10/29/2002 by Benjamin Grosof copyrights reserved

Current Uses of Rules in E-Business
• Inferencing in

– business rules
– workflow
– database queries and triggers
– intelligent agents, KB systems

• Transformation in (XML) document translation

• Identified as a Design Issue of the W3C Semantic Web

10/29/2002 by Benjamin Grosof copyrights reserved

Automating Contracting

• “Contract” in broad sense: = offering or agreement.
• “Automate” in deep sense: =

– 1. Communicatable automatically.
– 2. Executable within appropriate context of contracting

parties’ business processes.
– 3. Evaluable automatically by contracting parties.

• “reason about it”.
– 4. Modifiable automatically by contracting parties.

• negotiation, auctions.

10/29/2002 by Benjamin Grosof copyrights reserved

Idea/Vision #1:
Rule-based Contracts for E-commerce

• Rules as way to specify (part of) business processes,
policies, products: as (part of) contract terms.

• Complete or partial contract.
– As default rules. Update, e.g., in negotiation.

• Rules provide high level of conceptual abstraction.
– easier for non-programmers to understand, specify,

dynamically modify & merge. E.g.,
– by multiple authors, cross-enterprise, cross-application.

• Executable. Integrate with other rule-based business
processes.

10/29/2002 by Benjamin Grosof copyrights reserved

Examples of Rules in Contracts

• Terms & conditions, e.g., price discounting.
• Service provisions, e.g., rules for refunds.
• Surrounding business processes, e.g., lead time to order.
• Price vs. quantity vs. delivery date.
• Cancellations.
• Discounting for groups.
• Product catalogs: properties, conditional on other properties.
• Creditworthiness, trustworthiness, authorization.

10/29/2002 by Benjamin Grosof copyrights reserved

Contract Rules
across Applications / Enterprises

Application 1, e.g.,
seller e-storefront

Application 2, e.g.,
buyer shopbot agent

Business
Logic

Business
Logic

Rules RulesContract Rules
Interchange

e.g., OPS5 e.g., Prolog

“E-Business” “E-Business”“E-Commerce”

Contracting parties integrate e-businesses via shared rules.

10/29/2002 by Benjamin Grosof copyrights reserved

Courteous LP’s: the What
• Updating/merging of rule sets: is crucial, often generates conflict.
• Courteous LP’s feature prioritized handling of conflicts.
• Specify scope of conflict via a set of pairwise mutual exclusion constraints.

– E.g., ⊥ ← discount(?product,5%) ∧ discount(?product,10%) .
– E.g., ⊥ ← loyalCustomer(?c,?s) ∧ premiereCustomer(?c,?s) .
– Permit classical-negation of atoms: ¬p means p has truth value false

• implicitly, ⊥ ← p ∧ ¬p for every atom p.
• Priorities between rules: partially-ordered.

– Represent priorities via reserved predicate that compares rule labels:
• overrides(rule1,rule2) means rule1 is higher-priority than rule2.
• Each rule optionally has a rule label whose form is a functional term.
• overrides can be reasoned about, just like any other predicate.

10/29/2002 by Benjamin Grosof copyrights reserved

Priorities are available and useful
• Priority information is naturally available and useful. E.g.,

– recency: higher priority for more recent updates.
– specificity: higher priority for more specific cases (e.g., exceptional cases,

sub-cases, inheritance).
– authority: higher priority for more authoritative sources (e.g., legal

regulations, organizational imperatives).
– reliability: higher priority for more reliable sources (e.g., security

certificates, via-delegation, assumptions, observational data).
– closed world: lowest priority for catch-cases.

• Many practical rule systems employ priorities of some kind, often
implicit, e.g.,
– rule sequencing in Prolog and production rules.

• courteous subsumes this as special case (totally-ordered priorities),
plus enables: merging, more flexible & principled treatment.

10/29/2002 by Benjamin Grosof copyrights reserved

Set of Unrefuted Candidates for p1,...,pk:
Team for p1, ..., Team for pk

Run Rules for p1,...,pk

Set of Candidates for p1,...,pk:
Team for p1, ..., Team for pk

Prioritized Refutation

Skepticism

Conclude Winning Side if any: at most one of {p1,...,pk}

Conclusions from opposition-locales previous to this opposition-locale {p1,...,pk}

Prioritized argumentation in an opposition-locale.

(Each pi is a ground classical literal. k ≥ 2.)

10/29/2002 by Benjamin Grosof copyrights reserved

Situated LP’s: Overview

• Point of departure: LP’s are pure-belief representation, but most
practical rule systems want to invoke external procedures.

• Situated LP ‘s feature a semantically-clean kind of procedural
attachments. I.e., they hook beliefs to drive procedural API’s outside
the rule engine.

• Procedural attachments for sensing (queries) when testing an
antecedent condition or for effecting (actions) upon concluding a
consequent condition. Attached procedure is invoked when testing or
concluding in inferencing.

• Sensor or effector link statement specifies an association from a
predicate to a procedural call pattern, e.g., a method. A link is
specified as part of the representation. I.e., a SLP is a conduct set that
includes links as well as rules.

10/29/2002 by Benjamin Grosof copyrights reserved

Summary:
Courteous (Situated) LP’s as Core KR

• Key Observations about Declarative OLP:
– captures common core among commercially important rule systems.
– is expressive, tractable, familiar.
– advantages compared to classical logic / ANSI-draft KIF:

• + + logical non-monotonicity, negation-as-failure.
• − − disjunctive conclusions.
• + + tractable.
• + + procedural attachments: Situated LP’s.

• Cleverness of Courteous extension to the OLP representation:
– prioritized conflict handling → modularity in specification. And consistency.
– courteous compiler → modularity in software engineering.
– mutex’s & conflict locales → keep tractability. (Compiler is O(n^3).)

10/29/2002 by Benjamin Grosof copyrights reserved

Declarative Semantics at Core

• Desire: deep semantics (model-theoretic) to
– understand and execute imported rules.

• Possible only for shared expressive subsets: “cores”.
– Rest translated with superficial semantics.

• Approach: declarativeness of core / rep’n (in sense of knowledge
representation theory).
– A given set of premises entails a set of sanctioned conclusions.

Independent of implementation & inferencing control (bkw vs. fwd).
– Maximizes overall advantages of rules:

• Non-programmers understand & modify.
• Dynamically (run-time) modify.

10/29/2002 by Benjamin Grosof copyrights reserved

Technical Approach of RuleML
Start with: Datalog Logic Programs with rules labeled as kernel
Add: expressive extensions/restrictions, URI’s

negation-as-failure (well-founded semantics); classical negation (limited)
prioritized conflict handling cf. Courteous Logic Programs (stays tractable!)

modular rulesets; modular compiler to Ordinary Logic Programs
procedural attachments: actions, queries ; cf. Situated Logic Programs
logical functions: standard built-ins, user-defined
1st-order logic type expressiveness cf. Lloyd LP’s, DAML+OIL, KIF
more: equivalence/rewriting rules; ... temporal, Bayesian, fuzzy, …

Family of DTD’s: a generalization-specialization hierarchy (lattice)
define DTD’s modularly, using XML entities (~macros)

optional header to describe expressive-class using “meta-”ontology

10/29/2002 by Benjamin Grosof copyrights reserved

Webizing Rule KR
• URIs for logical vocabulary and knowledge subsets
• labels for rules/rulebases, import/export
• headers: meta-data describes doc's expressive class
• procedural attachments using Web protocols;

queries or actions via CGI/servlets/SOAP/…

• Other practical mechanics:
– build on existing W3C standards: namespaces, …
– share mechanisms with RDF/RDFS, DAML+OIL
– use ontologies for rules, and rules for ontologies

• ontology tags in: rulebase, predicate symbol, …

10/29/2002 by Benjamin Grosof copyrights reserved

RuleML has some First Steps of
Webizing Rule KR

• URIs for logical vocabulary and knowledge subsets
– RuleML V0.8: predicates, functions, rules, rulebases
– RuleML V0.8: labels for rules/rulebases

• Support RDF:
– RuleML V0.8:

• syntax: mostly unorderedness of graph
• … with explicit orderedness
• partial first drafts of alternative RDF syntax

• Support evolution and tight description of KR expressive classes:
– RuleML Syntax defined as generalization-specialization lattice

of DTD’s
• uses XML entity mechanism

10/29/2002 by Benjamin Grosof copyrights reserved

RuleML’s First Steps of Webizing
Rule KR (continued)

• Exploratory features in RuleML 0.8 [FEEDBACK PLEASE!]:
– meta “role” convention in DTD: to aid RDF-friendliness
– argument “roles” for atom/term argument lists

• step toward OO support and RDF support

• RuleML Tools beginning to appear
– several links on website

10/29/2002 by Benjamin Grosof copyrights reserved

More Bibliography
• Firat, Aykut and Madnick, Stuart, and Grosof, Benjamin. “Knowledge Integration

to Overcome Ontological Heterogeneity: Challenges from Financial Information
Systems”. Proc. Intl. Conf. on Information Systems (ICIS), 12/02.

• Firat, Aykut and Madnick, Stuart, and Grosof, Benjamin. “Financial Information
Integration in the Presence of Equational Ontological Conflicts”. Proc. Wksh. on
Information Technologies and Systems (WITS-02), held 12/02 at the Intl. Conf. on
Information Systems (ICIS). Describes ECOIN system.

• Grosof, Benjamin. “Representing E-Business Rules for the Semantic Web:
Situated Courteous Logic Programs in RuleML”. Proc. Wksh on Information
Technologies and Systems (WITS-01), held 2001 at the Intl. Conf. on Information
Systems (ICIS). Describes SweetRules tool as well as RuleML.

• Li, Ninghui and Grosof, Benjamin and Feigenbaum, Joan. “Delegation Logic: A
Logic-based Approach to Distributed Authorization”. Forthcoming, ACM Trans.
on Information Systems Security (TISSEC) journal.

