Version of July 8, 2009

Hyper Logic Programs in SILK For Business and Science: An Overview

Benjamin Grosof*

July 16, 2009 25-minute presentation at CULP 2009**

* Vulcan Inc., <u>benjaming@vulcan.com</u> <u>http://silk.semwebcentral.org</u> <u>http://www.mit.edu/~bgrosof/</u>

** Workshop on Commercial Users of Logic Programming, co-located with the 25th International Conference on Logic Programming (ICLP-2009), Pasadena, California <u>http://www.cs.kuleuven.be/~toms/CULP2009/</u>

Outline of Talk

- Intro to the SILK effort, and its parent Project Halo
- Hyper Logic Programs KR approach and expressive features
 - Higher-Order Defaults
 - Examples and Use Cases
 - Remedying FOL Semantics' Lack of Scalability
 - Comparison to other semantic rule systems and standards
 - RIF, BRMS, OWL, DBMS, etc.
- Conclusions and Directions
 - How You can be Involved

SILK's ambitious Vision for longer-term Impact

- Key Knowledge Representation (KR) infrastructure sufficient to enable creation of global, widely-authored, very large knowledge bases (VLKBs) about science and business* that answer questions and proactively supply information, using powerful reasoning about rules and processes, that can be customized in their content and actions for individual organizations or people
- Newest part of Vulcan's Project Halo which addresses the problems of scale and brittleness in KBs, including the Knowledge Acquisition and UI aspects

* "Business" here is shorthand for human affairs, incl. government

SILK Effort

- SILK = <u>Semantic</u> Inferencing on <u>Large</u> <u>K</u>nowledge
 - What the next generation Web will be spun from
- A KR Language and KR System with reasoner, UI, interchange
- Goal: Expressiveness + Semantics + Scalability + Web
- Begun in 2008
 - Part of Halo Advanced Research (HalAR), the new half of Project Halo
- Largest rule research program in the US (that we're aware of)
 - Primarily via contractors

SILK Contributors current/past (partial list)

- Vulcan (Benjamin Grosof, Mark Greaves, Dave Gunning)
- Stony Brook University (Michael Kifer; students H. Wan, S. Liang, P. Fodor)
- SRI International (Vinay Chaudhri, David Martin, Ken Murray, Bill Jarrold)
- BBN Technologies (Mike Dean, Dave Kolas, Matt Rubin)
- Ontoprise GmbH (Daniel Hansch, Jurgen Angele)
- Automata (Paul Haley)
- Boeing (Peter Clark)
- Cycorp (Keith Goolsbey, Doug Lenat, Ben Rode)
- University of Texas (Bruce Porter, Ken Barker)
- University of Toronto (Sheila McIlraith; students S. Sohrabi, H. Ghaderi)
- University of Amsterdam (Bert Bredeweg)
- University of Freiburg (Georg Lausen)
- University of Michigan (Michael Wellman)
- Richard Fikes, consultant (Stanford University)
- Raphael Volz, consultant

What Starts Here Changes The World

cYcorp

DEING ®

Vulcan's Project Halo ; 1st system is AURA

- Vision of Digital Aristotle
 - Put the bulk of the world's scientific and similar knowledge on-line
 - Answer questions, act as personal tutor, with deep reasoning
- How to operationalize Digital Aristotle as a research effort?
- College-level science selected as initial domain focus
 - Medium wide, medium deep.
 - Good metrics available: textbook-type exam Q's. Initial domain task focus is:
 - Advanced Placement Exam (AP) in Physics, Chemistry, and Biology
 - Taken by USA high-school students to get credit for 1st-year college courses
- AURA expert system developed (see http://www.ai.sri.com/project/aura)
 - Novel combination of available techniques from AI
 - Controlled Natural Language, GUI, Frame-based KR, Problem-Solving
 - Students as users formulate questions, formulate knowledge
 - Initial version 2004, then refined extensively and tested rigorously

Aristotle Tutoring Alexander

Image in public domain (copyright has expired), downloaded from http://commons.wikimedia.org/wiki/Image:Aristotle_tutoring_Alexander _by_J_L_G_Ferris_1895.jpg

Halo Enters Semantic Web Era; 2nd system is SMW+

- How to enable effective Knowledge Acquisition (KA)?
 - + By Subject Matter Experts (<u>SMEs</u>), not programmers or knowledge engineers
 - + <u>Collaboratively</u> incorporate large #s of SMEs in KB construction & maintenance
 - + Leveraging the \underline{Web}
- Halo Extension to Semantic MediaWiki (SMW+) developed.
 - Open source extension of the MediaWiki software Wikipedia runs on
 - Supports RDF and OWL subset, interleaved tightly with hypertext
 - Rapid maturation of initial functionality
 - Standing queries. Data import/export. Plug-ins.
 - Upcoming release: simple semantic rules (Horn) and access control
 - Strong community uptake, early commercial adoption already
 - For more, see <u>http://wiki.ontoprise.de</u>
- But need better KR too, in part for sake of KA.
 - The underlying KR is the target for KA: "The KR is the deep UI"
 - Web knowledge interchange (with merging) for scalability of collaborative KA

Goals for SILK KR Effort – Halo's 3rd system

- Expressiveness + Semantics + Scalability
 - Push the Frontier: high risk, high return
- Address requirements for AURA on AP task (& for SMW+)
 - Expressive power (e.g., defaults and processes)
 - Understandability via semantics and expressiveness
 - Raise abstraction level closer to the user's natural language and cognition
- Address requirements for long-term Digital Aristotle vision
 - Wider set of domains and tasks, via KR expressiveness and better KA
 - Knowledge interchange via semantics and expressiveness
 - Performance scalability of reasoning (incl. truth maintenance)

Expressiveness "Brittleness" Areas Targeted

- Defaults/Exceptions/Defeasible (incl. nonmonotonic reasoning, theory revision, argumentation, truth maintenance)
 - A kinematics problem situation has standard earth gravity, and no air resistance. [physics AP]
 - A given organism has the anatomy/behavior that is typical/normal for its species, e.g., a bat has 2 wings and flies. [bio AP]
 - Price info for an airplane ticket on Alaska Air's website is accurate and up to date. [e-shopping]
 - Practical reasoning almost always involves a potential for exceptions

Hypotheticals

- If Apollo astronaut Joe golfed a ball on the moon, then standard earth gravity would not apply. [negative hypothetical]
 [conflict between defaults, resolved by priority among them]
- If I had swerved my car 5 seconds later than I did, I would have hit the debris in the left lane with my tire. [counterfactual]

Actions and Causality

- If a doorkey is incompletely inserted into the keyhole, turning the key will fail. [precondition]
- During the mitotic stage of prometaphase, a cell's nuclear envelope fragments [biology AP]
- After a customer submits an order on the website, Amazon will email a confirmation and ship the item. [Event-Condition-Action (*ECA*) rule] [policy]

• Processes (i.e., representing and reasoning about processes)

- Mitosis has five stages; its successful completion results in two cells. [compose] [partial description]
- If Amazon learns that it will take an unexpectedly long time to stock an ordered item, then it emails the customer and offers to cancel the order without penalty. [exception handling]
- A Stillco sensor-based negative feedback thermal regulator is adequate to ensure the overnight vat fermentation of the apple mash will proceed within desired bounds of the alcohol concentration parameter. [science-based business process]

Ubiquitous in science, commonsense, business, etc. All are interrelated.

Outline of Talk

- Intro to the SILK effort, and its parent Project Halo
- Hyper Logic Programs KR approach and expressive features
 - Higher-Order Defaults
 - Examples and Use Cases
 - Comparison to other semantic rule systems and standards
 - RIF, BRMS, OWL, DBMS, etc.
- Conclusions and Directions
 - How You can be Involved

SILK's New KR: <u>Hyper</u> Logic Programs

- Hyper Logic Programs KR combines new features
 - <u>Defaults</u> and Weakened Classical, cf. generalized Courteous LP
 - Higher-order defaults with priorities, cancellation, contraposition, multi-way conflicts
 - Sound interchange with classical logic (via hypermonotonic mapping)
 - External Actions, Events, & Queries, cf. generalized Production LP
 - Via procedural attachments. Including built-ins.
 - Enables interoperation with Production/ECA rules (via SweetRules technique)
 - Brings Actions (and events) to the semantic party

with previous advanced features

- <u>Higher-order</u> and Frames, cf. Hilog and F-Logic
- Webized syntax and Knowledge Interchange, cf. RIF/RuleML and OWL/RDF
- Closed-World, cf. well-founded unstratified NAF
- Good Efficiency of reasoner performance. With persistency & truth maintenance.
- Equality, Lloyd-Topor, Aggregation, Functions, Skolemization, Integrity Constraints

SILK – Summary

- Status: prototype engine, language, and theory for expressive heart
 - V1 adds Higher-Order Defaults to Flora
 - Extensive requirements analysis, use cases, benchmarking; ReCyc translation
 - V2 in development: adds Java API, Actions/Events, Interchange with RIF and Classical, ...
- Radically extends the KR power of W3C OWL, SPARQL, and RIF and of SQL
 - Defaults and robust conflict handling *cope with knowledge quality and context*
 - Higher-order and flexible meta-reasoning *elevate meta-data to meta-knowledge*
 - Actions and events, cf. production rules and process models *activate knowledge*
- Raises the KR abstraction level for business users (SMEs) and NL KA/UI
- Use cases in business policies, ontology mapping, e-commerce, biomed, ...
- Redefining the KR playing field for semantic web, business rules, and rule-based process management
 - Defaults and Higher-Order yet retain computational web scalability
- Escape from FOL's Extreme Brittleness yet retain grade-AAA model-theoretic semantics
 PROJECT

More Rationale about Hyper LP KR

Give up reasoning by cases

- Source of exponential worst-case complexity in classical, disjunctive LP, stable LP
- Can hope to reintroduce in restricted or altered form, or develop work-arounds, later
- But there are many apps not requiring it, e.g., DBMS, BRMS
- Can realistically hope to be <u>web-scalable</u> performance-wise, unlike highly expressive classical
 - Polynomial computational complexity, under non-onerous restrictions
 - Same complexity as Horn rules!! (Must be careful of recursion through functions.)
 - Many optimizations available
 - Established track record of high scalability for relational databases

New Theory & Algorithms for Higher-Order Defaults

- Combines Courteous + Hilog, and generalizes
- New approach to defaults: "argumentation theories"
 - Meta-rules specify when rules are defeated
 - [Wan, Grosof, Kifer, et al. ICLP-2009]
- Extends straightforwardly to combine with other key features
 - E.g., Frame syntax, external Actions
- Significantly improves on previous Courteous approach in other ways
 - Eliminates a complex transformation
 - Much simpler to implement
 - 20-30 background rules instead of 1000's of lines of code
 - Much faster when updating the premises
 - More flexible control of edge-case behaviors
 - Much simpler to analyze theoretically

SILK Current Status – More

- New approach to representing causal change in processes
 - Uses defaults
- Use cases, incl. survey
 - Science AP
 - Business domains
- ReCyc: Rough prototype translator from Cyc to SILK
 - 3 Million axioms from ResearchCyc (translates 99% of the KB)
- Benchmarking of relevant rule systems
 - OpenRuleBench [Liang *et al.* WWW-2009]
- SILK V2 is in development. Near term steps include:
 - Add expressive features, e.g., Weakened Classical, external Actions
 - Webize more fully, e.g., knowledge interchange, UI

Ecology Ex. of Causal Process Reasoning in SILK

- /* Toxic discharge into a river causes fish die-off. */
- /* Init. facts, and an "exclusion" constraint that fish count has a unique value */ occupies(trout,Squamish).
 - fishCount(s0,Squamish,trout,400).
 - !- fishCount(?s,?r,?f,?C1) and fishCount(?s,?r,?f,?C2) | ?C1 != ?C2.
- /* Action/event description that specifies causal change, i.e., effect on next state */ @tdf1_fishCount(?s+1,?r,?f,0) :- occurs(?s,toxicDischarge,?r) and occupies(?f,?r).
- /* Persistence ("frame") axiom */

@pef1 fishCount(?s+1,?r,?f,?p) :- fishCount(?s,?r,?f,?p).

- /* Action effect axiom has higher priority than persistence axiom */ @pr1 overrides(tdf1,pef1).
- /* An action instance occurs */

@UhOh occurs(s0+1,toxicDischarge,Squamish).

As desired: |= fishCount(s0+1,Squamish,trout,400) and fishCount(s0+2,Squamish,trout,0).

Notes: @ prefixes a rule label. ? prefixes a variable. :- means if. !- prefixes an exclusion, and means "it's a conflict if". In an exclusion, | means given that.

E-Commerce Ex. of Causal Process Reas. in SILK

- /* E-commerce delivery logistics. */
- /* Initial fact, and prevention constraint that location is unique */ loc(s0,PlasmaTV46,LasVegasWH).
 - !- loc(?s,?item,?posn1) and loc(?s,?item,?posn2) | ?posn1 != ?posn2.
- /* Action/event description that specifies causal change, i.e., effect on next state */
 @mov1 loc(?s+1,?item,?addr) and neg loc(?s+1,?item,?warehouse) :shipment(?s,?item,?warehouse,?addr) and loc(?s,?item,?warehouse).
- /* Persistence ("frame") axioms about location */
 - @pel1 loc(?s+1,?item,?posn) :- loc(?s,?item,?posn).
 - @pel2 neg loc(?s+1,?item,?posn) :- neg loc(?s,?item,?posn).
- /* Action effect axiom has higher priority than the persistence axioms */
 overrides(mov1,pel1). overrides(mov1,pel2).
- /* An action instance occurs */

@deliv57 shipment(s0+1,PlasmaTV46, WH_LasVegasNV, 9_Fog_St_SeattleWA).

As desired: |= loc(s0+2,PlasmaTV46, 9_Fog_St_SeattleWA) and neg loc (s0+2,PlasmaTV46, WH_LasVegasNV).

Notes: @ prefixes a rule label. ? prefixes a variable. :- means if. !- prefixes an exclusion, and means "it's a conflict if". In an exclusion, | means given that.

Trust Mgmt. Ex. of Higher-Order Defaults in SILK

illustrating also basic Knowledge-level Communication, and Frame syntax

In Frame syntax: subject[property -> object] stands for property(subject,object).

- /* Trust policy administration by multiple agents, about user permissions */ /* Admin. Bob controls printing privileges including revocation (neg). */ Bob[controls -> print]. Bob[controls -> neg print]. /* neg print means it's disallowed.*/ Cara[controls -> ?priv]. /* Cara is the most senior admin., so controls all privileges. */
- /* If an administrator controls a privilege and states at a time (t) that a user has a privilege, then the user is granted that privilege. Observe that ?priv is a higher-order variable. */ @grant(?t) ?priv(?user) :- ?admin[states(?t) -> ?priv(?user)] and ?admin[controls(?priv)].
- /* More recent statements have higher priority, in case of conflict. */ overrides(grant(?t2), grant(?t1)) :- ?t2 > ?t1.
- /* Admin.'s Bob and Cara make conflicting statements over time about AI's printing */
 Cara[states(2007) -> print(AI)]. Cara[states(2007) -> webPage(AI)].
 Bob[states(2008) -> neg print(AI)].

As desired: |= neg print(Al). webPage(Al).

/* Currently, AI is permitted a webpage but not to print. */

Notes: @ prefixes a rule label. ? prefixes a variable. :- means if. !- prefixes an exclusion, and means "it's a conflict if". In an exclusion, | means given that.

Use Cases for SILK beyond commercial state of art

- There are many!
- Existing use cases from SILK's research-y or standardsdesign roots
 - E.g., from RIF, RuleML, SWSL documents and prototypes
 - E-commerce, financial, health, trust, SOA, policies, regulations, mobile, biomed, defense, etc.
 - Many of these are not yet implementable in current well-supported, wellperforming commercially deployed systems
 - E.g., they use defaults
 - E.g., they use feature combinations that are not easily available

Outline of Talk

- Intro to the SILK effort, and its parent Project Halo
- Hyper Logic Programs KR approach and expressive features
 - Higher-Order Defaults
 - Examples and Use Cases
 - Remedying FOL Semantics' Lack of Scalability
 - Comparison to other semantic rule systems and standards
 - RIF, BRMS, OWL, DBMS, etc.
- Conclusions and Directions
 - How You can be Involved

Remedying FOL Semantics' Lack of Scalability

- Hyper LP handles conflict robustly
 - Whereas FOL is a "Glass Bubble" it's perfectly brittle semantically in face of contradictions from ...
 - Ouality problems/errors in the data and knowledge
 - Conflict when merging KBs

E.g., OWL beyond the RL subset suffers this problem

A VLKB with a million or billion axioms formed by merging from multiple Web sources, is unlikely to have <u>zero</u> KB/KA conflicts from:

- Human knowledge entry/editing
- Implicit context, cross-source ontology interpretation
- Updating cross-source
- Source trustworthiness

Р К О Ј Е С Т 🕅

- Weakening provides a <u>critical</u> advantage for VLKB scalability
 - <u>semantically</u>, as well as computationally

FOL: A Glass Bubble

Extreme sensitivity to conflict limits its scalability in # of axioms and # of merges

Keijo Kopra from Finland as he competes in the littala Cup glass-blowing competition June 7, 2008. (Reuters)

Features Comparison – More Systems & Stds

Level	Groups of Features	SILK1	Flora	RIF- BLD	Jena	Onto- broker	Jess	IBM C.R.	DLV	SQL	SPA- RQL	Common Logic	OWL2 RL	OWL2 DL
Basic	Horn chain. etc.	Y	Y	Y	Y	Y	Y	Y	Y	R.	R.	Υ	R.	R.
Advan ced	(Level summary)	Most!	lots	some	some	some	some	some	some	some	some	some	some	some
	Equality	Y	Y	Y	R.	R.	R.	Ν	Y	R.	R.	Y	R.	Y
	Functions	Υ	Y	Y	Ν	Ν	Ν	Y	Y	Ν	Ν	Y	Ν	Ν
	Frames etc.	Υ	Y	R.	R.	R.	R.	R.	R.	R.	R.	R.	R.	R.
	Closed-World	Y	Y	Ν	Ν	Y	R.	R.	most	R.	R.	Ν	Ν	N
	Higher-Order	Υ	Y	Ν	Ν	Ν	R.	Ν	Ν	R.	R.	Υ	R. bit	R. bit
	Actions	Dev.	Ν	Ν	Ν	Ν	Y	Y	Ν	Ν	Ν	Ν	Ν	Ν
	Base Defaults	Υ	N	Ν	Ν	Ν	Ν	Y	Ν	Ν	Ν	N	Ν	Ν
	Webized	Dev.	R.	Y	Y	R.	R.	R.	R.	Ν	Y	Y	Υ	Y
Hyper	(Level summary)	1st!	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
	H-O. Defaults	Υ	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
	Weak. Classi.	Dev.	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Misc.		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Other Expres.	Dev.	inherit.	-	-	-	events	-	disju.	R.	R.	classical	-	classic.
	Efficiency	good	good	NA	fair	good	fair	poor	good	NA	NA	NA	NA	NA
 Summarizes detailed analysis of 40 KR expressive features, 17 systems. Notes: Dev. = Developing, R. = Restricted: C.R.=Common Rules: disju.=disjunctive. 														

Outline of Talk

- Intro to the SILK effort, and its parent Project Halo
- Hyper Logic Programs KR approach and expressive features
 - Higher-Order Defaults
 - Examples and Use Cases
 - Comparison to other semantic rule systems and standards
 - RIF, BRMS, OWL, DBMS, etc.
- Conclusions and Directions
 - How You can be Involved

Future Directions for SILK

- Process more complex
- Natural Language KA and UI
- Parallelism in reasoning
- Connectors to Semantic Web, legacy BRMS and DBMS
- Uncertainty, Disjunction
- And Use Cases, of course
- Halo is part of an increasingly-integrated strategy at Vulcan to invest in semantics and advanced knowledge tools
 - Other investments: Radar Networks, ZoomInfo, Evri, etc.
 - Semantic MediaWiki+ is an early spinout

Impact Opportunities for SILK and HalAR

- Improve by orders of magnitude:
 - Scale of practical semantic default+actions reasoning
 - <~1000 rules \Rightarrow ?100,000+ rules
 - Collaboration costs of multifold KB merging when there's conflict (as is usual)
 - Can take human out of the loop at run time
 - Population of users capable of specifying semantic rules
 - "KR Power to the People!" Leverage Aura and SMW+ KA/UI front-ends.
- Synergize best of last 20 years of pure-research progress in LP KR
 - \Rightarrow Redefine KR playing field of semantic web, business rules, & process management
- Provide a key missing research piece for SOA / web services
 - Enable building shared business/govt KBs on processes & policies \Rightarrow virtuous circle
- Hope: be like advance of the Relational model in DBMS
 - Will Hyper LP be to the 2010s what Relational was to 1970s-80s?

Key KR infrastruct. for widely-authored VLKBs for science and business that answer questions, proactively supply information, and reason powerfully

How You can be Involved

- General Contact: Benjamin Grosof benjaming@vulcan.com
 - Suggest design, use cases, experts, cooperations
- Visit the SILK webpage and sign up for the mailing list so you'll be alerted of announcements about SILK
 - URL: http://silk.semwebcentral.org
 - Mailing list: semwebcentral.org (very low volume)
- Provide comments on SILK language design
 - Initial public draft in ~ fall 2009
 - Plan to propose a RIF extension with defaults and actions
 - Corresponding to a large expressive subset of SILK
- Try out SILK software
 - Prototype, free for research use
 - V1 public release in ~ fall 2009; V2 in 2010; selected earlier users sooner
 - Also SMW+ upcoming release will have simple semantic LP rules of SILK-y flavor
 In ~ fall 2009. Limited to Horn.

28

Acknowledgements

- SILK contributors
 - (previously listed)
- Contributors to several key previous KR efforts
 - RuleML and SWSL (Semantic Web Services Language) standards designs
 - SweetRules and Flora-2 systems
- Especially:
 - Michael Kifer, Mark Greaves, Dave Gunning, Mike Dean, Hui Wan, Paul Haley, Vinay Chaudhri, David Martin, Keith Goolsbey, Harold Boley, Said Tabet, and Guizhen Yang

SILK – Transforming Knowledge

Thank You

Disclaimer: The preceding slides represent the views of the author only. All brands, logos and products are trademarks or registered trademarks of their respective companies.

© This presentation is copyright Benjamin Grosof and Vulcan Inc. All rights reserved.

