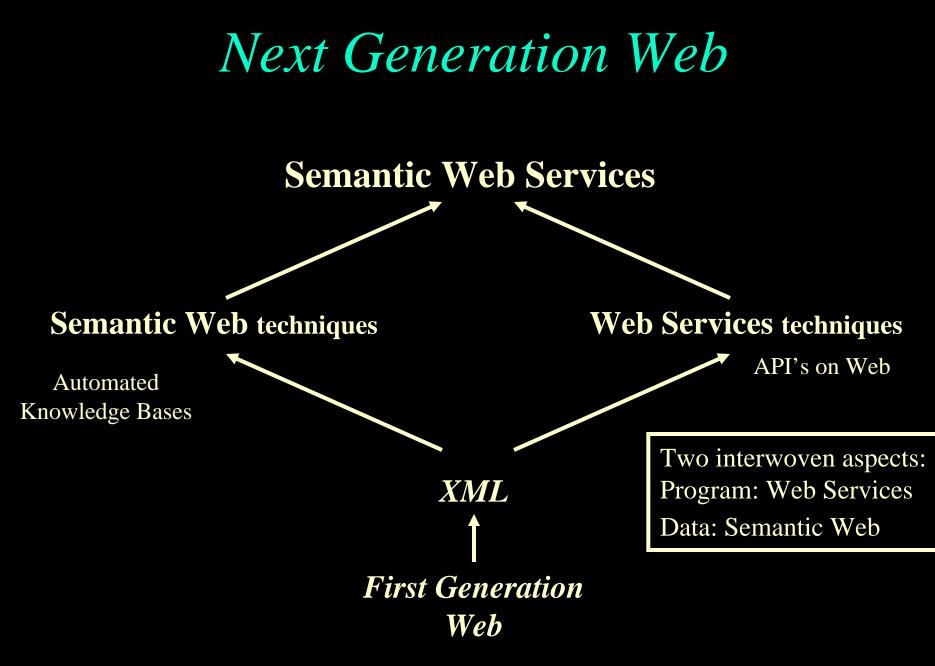
E-Services on the New Generation Web: Automating Business Process Knowledge Management


Benjamin Grosof

MIT Sloan School of Management Information Technologies group http://ebusiness.mit.edu/bgrosof

Slides presented at Center for eBusiness @ MIT Research Seminar, Apr. 14, 2004 MIT Sloan School of Management http://ebusiness.mit.edu

Outline of Talk

- Intro: Research on Semantic Web Services (SWS), its Business Uses
 - Rules, contracting, trust, policies
 - Integration, knowledge representation, standards
- Problem: Reusable Knowledge to Describe Services
 - Technique: knowledge representation to standardize on
 - Content investment: how to leverage legacy business process K
- New Technical Approach to represent OO Frameworks using SW
 - <u>Courteous Inheritance</u>: default rules increases reuse in ontologies
- New Strategy: go where the knowledge already is, then work outwards
 - Begin with <u>MIT Process Handbook</u> open-source version in development
 - Example: process knowledge about selling
 - Future: <u>Transformational wrappers</u> around various legacy OO frameworks
- Roadmapping Market Evolution
 - Early adopters, creators, catalysts
 - Strategic players, forces

Brief Tour of some relevant websites

- <u>http://ccs.mit.edu/ph</u> MIT Process Handbook, Open Process Handbook Initiative
- <u>http://www.w3.org/2002/ws</u> World Wide Web Consortium, e.g., its Web Services and Semantic Web standards
- <u>http://www.oasis-open.org</u> Oasis, e.g., its web services standards
- <u>http://www.amazon.com/gp/browse.html/ref=smm_sn_aws/002-8992958-</u> 7364050?node=3435361 Amazon's web services – 1000's of developers
- <u>http://www.swsi.org</u> Semantic Web Services Initiative standards 40 partners
- <u>http://zdnet.com.com/2100-1106-975870.html</u> Fidelity's web services for EAI
- <u>http://www.ruleml.org</u> Rule Markup Language Initiative standards, 30+ partners
- <u>http://iswc2003.semanticweb.org</u> Intl. Semantic Web Conference 400 researchers

Big Questions about the New Generation Web

- What are the critical features/aspects of the new technology?
- What business problems does it help solve?
- What are the likely innovation evolution paths, and associated entrepreneurial opportunities?

Our Overall SWS Research Agenda

- Invent Core Technologies and concepts of the New Generation Web
 - Semantic Web; Rules and RuleML emerging standard
 - supporting <u>knowledge representation</u> theory of Situated Courteous Description Logic Programs
 - Semantic Web Services; Business Process Automation for B2B and EAI
 - Requirements analysis
- Pilot Business Application Scenarios
 - End-to-end e-contracting, e.g., in manufacturing supply chain
 - SweetDeal approach using rules
 - <u>Financial</u> information and reporting:
 - ECOIN approach mapping ontologies
 - Other: security authorization, travel, ...
- Analyze Prospective Early Adopter Areas
 - Strategy: Adoption Roadmap; Market Evolution
 - Entrepreneurial Opportunities

Some Answers to: "Why does SWS Matter to Business?"

- 1. "Death. Taxes. Integration." They're always with us.
- 2. "Business processes require communication between organizations / applications." - Data and programs cross org./app. boundaries, both intra- and inter- enterprise.
- 3. "It's the *automated knowledge* economy, stupid!"

 The world is moving towards a knowledge economy. And it's moving towards deeper and broader automation of business processes. The first step is automating the use of <u>structured</u> knowledge.
 - Theme: *reuse* of knowledge across multiple tasks/app's/org's

B2B Tasks: Communication for Business Processes with Partners

- B2B business processes involving significant Communication with customers/suppliers/other-partners is overall a natural locus for future first impact of SWS.
- Customer Relationship Management (CRM)
 - sales leads and status
 - customer service info and support
- Supply Chain Management (SCM):
 - source selection
 - inventories and forecasts
 - problem resolution
 - transportation and shipping, distribution and logistics
- orders; payments, bill presentation

Some B2B Tasks (continued)

- bids, quotes, pricing, CONTRACTING; AUCTIONS; procurement
- authorization (vs. authentication) for credit or trust
- database-y: e.g.,
 - catalogs & their merging
 - policies
- inquiries and answers; live feedback
- notifications
- trails of biz processes and interactions
- ratings, 3rd party reviews, recommendations
- knowledge management with partners/mkt/society

New Research Application Scenarios for Rule-based Semantic Web Services

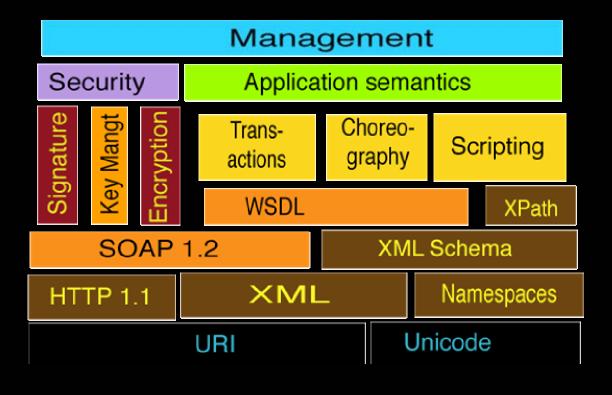
- SweetDeal [Grosof & Poon WWW-2003] configurable reusable <u>e-contracts</u>:
 - Represents modular modification of proposals, service provisions
 - LP <u>rules</u> as KR. E.g., prices, late delivery exception handling.
 - <u>On top of</u> DL <u>ontologies</u> about business processes from MIT Process Handbook

- Evolved from EECOMS pilot on agent-based manufacturing SCM (\$51M NIST ATP 1996-2000 IBM, Boeing, TRW, Vitria, others)

<u>Financial</u> knowledge integration (ECOIN) [Firat, Madnick, & Grosof 2002]
 Maps between contexts using LP rules, equational ontologies, SQL DB's.

• Business Policies:

 <u>Trust</u> management (Delegation Logic) [Li, Grosof, & Feigenbaum 2003]: Extend LP KR to multi-agent delegation. Ex.: security authorization.


OPTIONAL BACKUP SLIDES FOLLOW

• About what are Semantic Web, Web Services, and Semantic Web Services

Web Service -- definition

- (For purposes of this talk:)
- A procedure/method that is invoked through a Web protocol interface, typically with XML inputs and outputs

Web Services Stack outline

NOTES:

WSDL is a Modular Interface spec SOAP is Messaging and Runtime Also:

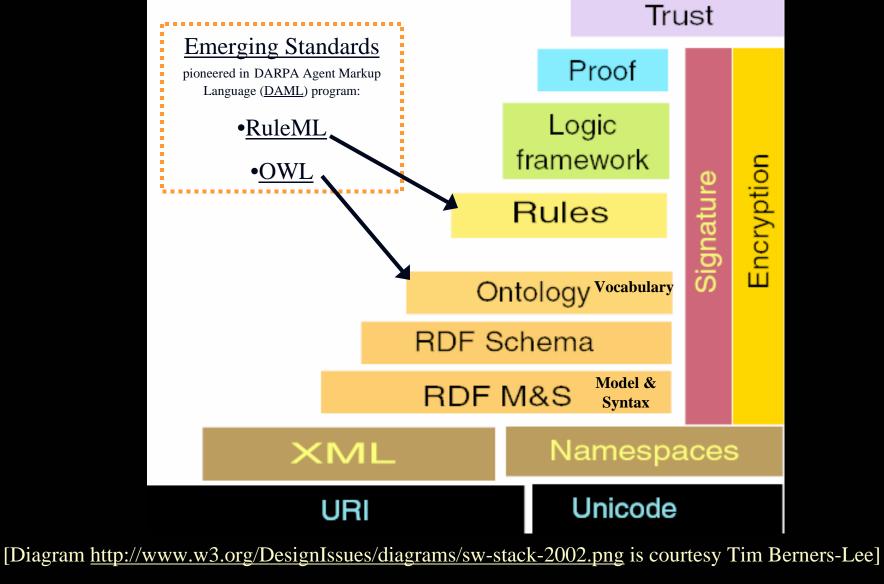

- UDDI is for Discovery
- BPEL4WS, WSCI, ... are for transactions
- Routing, concurrency, ...

Diagram courtesy Tim Berners-Lee: http://www.w3.org/2004/Talks/0309-ws-sw-tbl/slide6-0.html

Semantic Web: concept, approach, pieces

- Shared semantics when interchange data ∴ knowledge
- Knowledge Representation (cf. AI, DB) as approach to semantics
 - Standardize KR syntax, with KR theory/techniques as backing
- Web-exposed <u>Databases</u>: SQL; XQuery (XML-data DB's)
 - Challenge: share DB schemas via meta-data
- **RDF:** "Resource Description Framework" W3C proposed standard
 - Meta-data lower-level mechanics: unordered directed graphs (vs. ordered trees)
 - RDF-Schema extension: simple class/property hierarchy, domains/ranges
- <u>Ontology</u> = formally defined vocabulary & class hierarchy
 - <u>OWL</u>: "Ontologies Working Language" W3C proposed standard
 - Subsumes RDF-Schema and Entity-Relationship models
 - Based on Description Logic (DL) KR ~subset of First-Order Logic (FOL))
- <u>Rules</u> = if-then logical implications, facts ~subsumes SQL DB's
 - <u>RuleML</u>: "Rule Markup Language" emerging standard
 - Based on Logic Programs (LP) KR ~extension of Horn FOL

W3C Semantic Web "Stack": Standardization Steps

Semantic Web Services

- Convergence of Semantic Web and Web Services
- Consensus definition and conceptualization still forming
- Semantic (Web Services):
 - Knowledge-based service descriptions, deals
 - Discovery/search, invocation, negotiation, selection, composition, execution, monitoring, verification
 - Integrated knowledge
- (Semantic Web) Services: e.g., infrastructural
 - Knowledge/info/DB integration
 - Inferencing and translation

END OF OPTIONAL BACKUP SLIDES

• About what are Semantic Web, Web Services, and Semantic Web Services

Outline of Talk

- Intro: Research on Semantic Web Services (SWS), its Business Uses
 - Rules, contracting, trust, policies
 - Integration, knowledge representation, standards
- Problem: Reusable Knowledge to Describe Services
 - Technique: knowledge representation to standardize on
 - Content investment: how to leverage legacy business process K
- New Technical Approach to represent OO Frameworks using SW
 - <u>Courteous Inheritance</u>: default rules increases reuse in ontologies
- New Strategy: go where the knowledge already is, then work outwards
 - Begin with <u>MIT Process Handbook</u> open-source version in development
 - Example: process knowledge about selling
 - Future: <u>Transformational wrappers</u> around various legacy OO frameworks
- Roadmapping Market Evolution
 - Early adopters, creators, catalysts
 - Strategic players, forces

Problem: Reusable Knowledge to Describe Services

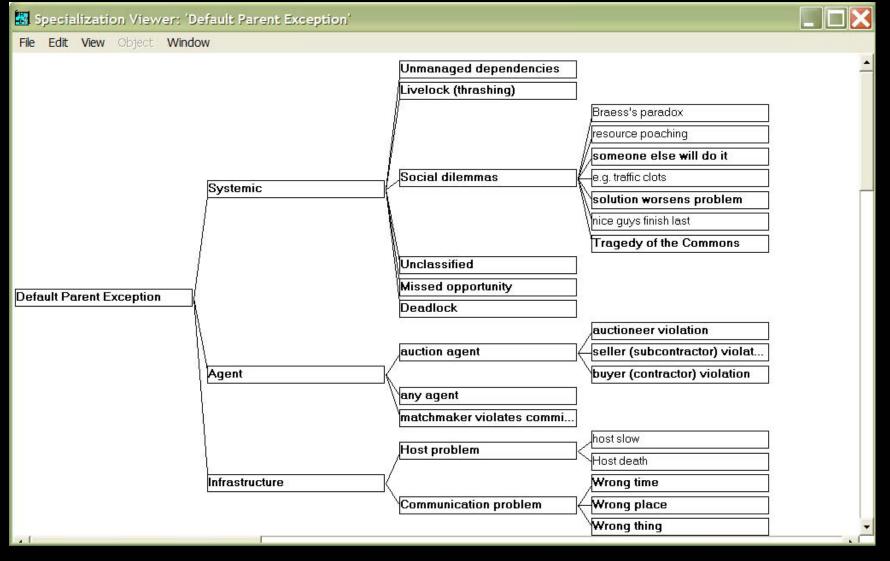
- Has two aspects:
 - 1. Technical/technique problem: what form of knowledge? I.e., what knowledge representation to standardize on?
 - 2. Content investment problem: how to leverage to accomplish the reuse of legacy business process knowledge?

Outline of Talk

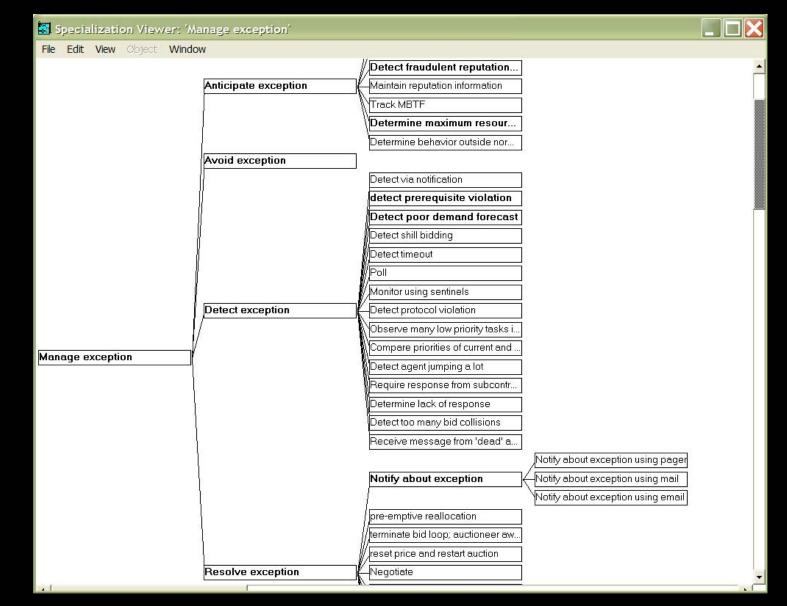
- Intro: Research on Semantic Web Services (SWS), its Business Uses
 - Rules, contracting, trust, policies
 - Integration, knowledge representation, standards
- Problem: Reusable Knowledge to Describe Services
 - Technique: knowledge representation to standardize on
 - Content investment: how to leverage legacy business process K
- New Technical Approach to represent OO Frameworks using SW
 - <u>Courteous Inheritance</u>: default rules increases reuse in ontologies
- New Strategy: go where the knowledge already is, then work outwards
 - Begin with <u>MIT Process Handbook</u> open-source version in development
 - Example: process knowledge about selling
 - Future: <u>Transformational wrappers</u> around various legacy OO frameworks
- Roadmapping Market Evolution
 - Early adopters, creators, catalysts
 - Strategic players, forces

Opportunity for MIT Process Handbook in SWS

- Need for Shared Web Services / Business Processes Knowledge Bases
- MIT Process Handbook as candidate nucleus for shared business process ontology for SWS
 - 5000+ business processes, + associated class/property concepts, as structured knowledge
 - Open Process Handbook Initiative: an open-source version, is in progress. (<u>http://ccs.mit.edu/ph</u>)
- Related: use in particular for E-Contracting
 - Interoperable business objects, business processes
 - Also for policies (e.g., trust), 3rd-party services


Some Specializations of "Sell" in the MIT Process Handbook (PH)

🔠 Specialization Viewer: 'Sell'							
File	Edit	View	Object	Window	N		
					Sell how?	Sell via store Sell via electronic store Sell via face-to-face sales Sell via physical store Sell via face-to-face sales Sell via direct mail Sell via other direct Sell via email / fax Sell via television direct respons Sell via television direct respons	
Sell	-				Sell what?	Sell via telemarketing Sell service	r.
					Sell with what customization?	Sell standard item from stock Sell standard item to order Sell custom item to order	
					Sell to whom?	Sell to businesses Sell business to business e-com)
					Sell - VIEWS		


OPTIONAL BACKUP SLIDES FOLLOW

 About SweetDeal's use of Process Handbook ontology in rule-based econtracts

Some Exceptions in the MIT Process Handbook

Some exception handlers in the MIT Process Handbook

SCLP TextFile Format for RuleML

payment(?R,base,?Payment) <http://xmlcontracting.org/sd.daml#result(co123,?R) AND
price(co123,?P) AND quantity(co123,?Q) AND
multiply(?P,?Q,?Payment) ;</pre>

<drm:imp>

```
<drm:_head> <drm:atom>
```

```
<drm:_opr><drm:rel>payment</drm:_opr></drm:rel>
```

<drm:var>R</drm:var> <drm:ind>base</drm:ind> <drm:var>Payment</drm:var>
</drm:tup></drm:atom> </drm: head>

<drm:_body>

<drm:andb>

```
<drm:atom> <drm:_opr>
```

drm = namespace for RuleML

<drm:rel href= "http://xmlcontracting.org/sd.daml#result"/>

</drm:_opr> <drm:tup>

<drm:ind>col23</drm:ind> <drm:var>Cust</drm:var>

</drm:tup> </drm:atom>

••• </drm:andb> </drm:_body> </drm:imp>

Example Contract Proposal, Continued: lateDeliveryPenalty exception handler module

lateDeliveryPenalty_module {

- // lateDeliveryPenalty is an instance of PenalizeForContingency
- // (and thus of AvoidException, ExceptionHandler, and Process)
- http://xmlcontracting.org/pr.daml#PenalizeForContingency(lateDeliveryPenalty);
- // lateDeliveryPenalty is intended to avoid exceptions of class
- // LateDelivery.

http://xmlcontracting.org/sd.daml#avoidsException(lateDeliveryPenalty,

http://xmlcontracting.org/pr.daml#LateDelivery);

// penalty = - overdueDays * 200 ; (negative payment by buyer)

<lateDeliveryPenalty_def> payment(?R, contingentPenalty, ?Penalty) <-</pre>

http://xmlcontracting.org/sd.daml#specFor(?CO,?PI) AND

http://xmlcontracting.org/pr.daml#hasException(?PI,?EI) AND

http://xmlcontracting.org/pr.daml#isHandledBy(?EI,lateDeliveryPenalty) AND

http://xmlcontracting.org/sd.daml#result(?CO,?R) AND

http://xmlcontracting.org/sd.daml#exceptionOccurred(?R,?EI) AND

shippingDate(?CO,?CODate) AND shippingDate(?R,?RDate) AND

subtract(?RDate,?CODate,?OverdueDays) AND

multiply(?OverdueDays, 200, ?Res1) AND multiply(?Res1, -1, ?Penalty) ;

}

<lateDeliveryPenaltyHandlesIt(e1)> // specify lateDeliveryPenalty as a handler for e1
http://xmlcontracting.org/pr.daml#isHandledBy(e1,lateDeliveryPenalty);

END OF OPTIONAL BACKUP SLIDES

 About SweetDeal's use of Process Handbook ontology in rule-based econtracts

Outline of Talk

- Intro: Research on Semantic Web Services (SWS), its Business Uses
 - Rules, contracting, trust, policies
 - Integration, knowledge representation, standards
- Problem: Reusable Knowledge to Describe Services
 - Technique: knowledge representation to standardize on
 - Content investment: how to leverage legacy business process K
- New Technical Approach to represent OO Frameworks using SW
 - <u>Courteous Inheritance</u>: default rules increases reuse in ontologies
- New Strategy: go where the knowledge already is, then work outwards
 - Begin with <u>MIT Process Handbook</u> open-source version in development
 - Example: process knowledge about selling
 - Future: <u>Transformational wrappers</u> around various legacy OO frameworks
- Roadmapping Market Evolution
 - Early adopters, creators, catalysts
 - Strategic players, forces

New Technical Approach: Courteous Inheritance in the Process Handbook

- Use SW KR and standards to represent Object-Oriented framework knowledge: class hierarchy, types, generalization-specialization, domain & range, properties/methods' association with classes
- Surprise: use SW *rule* language not the main SW *ontology* language! I.e., use RuleML not OWL.
- Exploit RuleML's nonmonotonic ability to represent prioritized default reasoning as kind of knowledge representation (KR)

New Technical Approach, continued

- Courteous Inheritance KR is built simply on top of the (Situated) Courteous Logic
 Programs KR of RuleML
 - A few dozen background axioms. Linearsize reformulation. Inferencing is tractable computationally.
- Particularly: represent PH's structured part –a scheme specific to PH's flavor of OO
- PH4/becomeist as Solly Septences SII onto bogy

New Technical Approach, continued more

• Example(s): selling, PO, price, shipping, delivery, payment, lateness.

- For details, see submitted paper "Beyond Monotonic Inheritance: Towards Semantic Web Process Ontologies" on webpage.
 - Example: selling process

Brief Tour of selling example in the paper.

Outline of Talk

- Intro: Research on Semantic Web Services (SWS), its Business Uses
 - Rules, contracting, trust, policies
 - Integration, knowledge representation, standards
- Problem: Reusable Knowledge to Describe Services
 - Technique: knowledge representation to standardize on
 - Content investment: how to leverage legacy business process K
- New Technical Approach to represent OO Frameworks using SW
 - <u>Courteous Inheritance</u>: default rules increases reuse in ontologies
- New Strategy: go where the knowledge already is, then work outwards
 - Begin with <u>MIT Process Handbook</u> open-source version in development
 - Example: process knowledge about selling
 - Future: <u>Transformational wrappers</u> around various legacy OO frameworks
- Roadmapping Market Evolution
 - Early adopters, creators, catalysts
 - Strategic players, forces

Larger Approach: Transformation Wrappers for OO Frameworks

- New Strategy: go where the knowledge already is, then work outwards
- Future: <u>Transformational wrappers</u> around various legacy OO frameworks
 - C++
 - Java, C#
 - UML
- Can use XSLT, SW tools, and/or XQuery engines to implement the transformations, guided by SWS ontology standardization practices

Outline of Talk

- Intro: Research on Semantic Web Services (SWS), its Business Uses
 - Rules, contracting, trust, policies
 - Integration, knowledge representation, standards
- Problem: Reusable Knowledge to Describe Services
 - Technique: knowledge representation to standardize on
 - Content investment: how to leverage legacy business process K
- New Technical Approach to represent OO Frameworks using SW
 - <u>Courteous Inheritance</u>: default rules increases reuse in ontologies
- New Strategy: go where the knowledge already is, then work outwards
 - Begin with <u>MIT Process Handbook</u> open-source version in development
 - Example: process knowledge about selling
 - Future: <u>Transformational wrappers</u> around various legacy OO frameworks
- Roadmapping Market Evolution
 - Early adopters, creators, catalysts
 - Strategic players, forces

Some relevant example companies

- Users: *Amazon, Fidelity, Boeing; UPS, GM,
 *Orbitz, eBay
- Vendors: IBM, Microsoft, Oracle, HP, BEA, SAP; Sun, *Compiere

 Standards-oriented organizations: *SWSI, *BPMI, *OPHI, UN CEFACT

Brief Tour of some More relevant websites

- <u>http://www.bpmi.org</u> Business Process Management Initiative
- <u>http://www.orbitz.com</u> Orbitz, e.g., their vacation travel packages
- <u>http://www.compiere.org</u> Compiere open source ERP

Market Evolution: Discussion Questions

- Existing and prospective early adopters
- Importance of open source content: seems to be an assumption/axiom for many people
- Prospective sources of open source content

Strategy Questions for Discussion

? Who/players: adopters, creators, catalysts ?

- ? What forces/drivers for acceleration of adoption or investment, vs. inertia ?
 - ? Which additional interesting questions ?

Yet More Discussion Questions: Early Adoption Application Prospects for SWS

- What business applications do you think are likely or interesting?
 - By vertical industry domain, e.g., health care or security
 - By task, e.g., authorization
 - By kind of shared information, e.g., patient records
 - By aspect of business relationships, e.g., provider network
- What do you think are entrepreneurial opportunity areas?

WRAP-UP: Outline of Talk

- Intro: Research on Semantic Web Services (SWS), its Business Uses
 - Rules, contracting, trust, policies
 - Integration, knowledge representation, standards
- Problem: Reusable Knowledge to Describe Services
 - Technique: knowledge representation to standardize on
 - Content investment: how to leverage legacy business process K
- New Technical Approach to represent OO Frameworks using SW
 - <u>Courteous Inheritance</u>: default rules increases reuse in ontologies
- New Strategy: go where the knowledge already is, then work outwards
 - Begin with <u>MIT Process Handbook</u> open-source version in development
 - Example: process knowledge about selling
 - Future: <u>Transformational wrappers</u> around various legacy OO frameworks
- Roadmapping Market Evolution
 - Early adopters, creators, catalysts
 - Strategic players, forces

OPTIONAL BACKUP SLIDES FOLLOW

• About early adopter prospects in SWS

SW Early Adoption Candidates: High-Level View

- "Death. Taxes. Integration."
- Application/Info Integration:
 - Intra-enterprise
 - EAI, M&A; XML infrastructure trend
 - Inter-enterprise
 - E-Commerce: procurement, SCM
 - Combo
 - Business partners, extranet trend

SWS Adoption Roadmap: Strategy Considerations

- Expect see beginning in a lot of B2B interoperability or heterogeneous-info-integration intensive (e.g., finance, travel)
 - Actually, probably 1st intra-enterprise, e.g., EAI
- Reduce costs of communication in procurement, operations, customer service, supply chain ordering and logistics
 - increase speed, creates value, increases dynamism
 - macro effects create
 - stability sometimes (e.g., supply chain reactions due to lag; other negative feedbacks)
 - volatility sometimes (e.g., perhaps financial market swings)
 - increase flexibility, decrease lock-in
- Agility in business processes, supply chains

SW Early Adopters: Areas by Industry or Task

- Early SW techniques already in use:
 - e-contracting, supply chain incl. procurement
 - manufacturing, e.g. computer/electronics (RosettaNet), automotive (Covisint),
 - EECOMS pilot (Boeing, IBM, TRW, Baan)
 - office supplies (OBI)
 - retailing: shopbots and salesbots: comparisons, recommendations
 - extensive standards activity: Oasis ebXML, XML eContracts, UN UBL, EDI

SW Early Adopters: Areas by Industry or Task

- *Continued:* Early SW techniques already in use:
 - cyber goods:
 - financial services (rules; onto translation)
 - travel "agency", i.e.: tickets, packages (AI smarts for scheduling)
 - military intelligence (e.g., funded DAML)

END OF OPTIONAL BACKUP SLIDES

• About early adopter prospects in SWS

OPTIONAL SLIDES FOLLOW

• About Presenter's SWS Research Agenda

Quickie Bio of Presenter

- MIT Sloan professor since 2000
- 12 years at IBM T.J. Watson Research; 2 years at startups
- PhD Comp Sci, Stanford; BA Applied Math Econ/Mgmt, Harvard
- Semantic web services is main research area:
 - Rules as core technology
 - Business Applications, Implications, Strategy:
 - e-contracting/supply-chain; finance; trust; ...
 - Overall knowledge representation, e-commerce, intelligent agents
- Co-Founder, Rule Markup Language Initiative the leading emerging standards body in semantic web rules (<u>http://www.ruleml.org</u>)
- Core participant in Semantic Web Services Initiative which coordinates world-wide SWS research and early standards (<u>http://www.swsi.org</u>)
 - Area Editor for Contracts & Negotiation, Language Committee
 - Co-Chair, Industrial Partners program (SWSIP)

More about our SWS Technical Research Agenda

- Requirements Analysis $(Biz \rightarrow Tech)$
 - New Application scenarios: e.g., SweetDeal e-contracting
 - Integrating rules, ontologies from many sources
 - Interoperability, power, consistency, scaleability
- New Fundamental Theory (*Theory* \rightarrow *Tech*)
 - Description Logic Programs: bridging rules and ontologies
 - Situated Logic Programs: hooking rules to services
 - Courteous Logic Programs: prioritized conflict handling
- More:
 - Contributions to Early Standards Efforts: RuleML, SWSI
 - Piloting Early Adopter Areas: E-Contracts/SCM, Finance, Travel
 - Strategy Considerations and Implications

Analysis:

High-Level Requirements for SWS

- Support Biz-Process Communication
 E.g., B2B SCM, CRM
 - E.g., e-contracts, financial info, trust management.
- Support SWS Tasks above current WS layers:
 - Discovery/search, invocation, deal negotiation, selection, composition, execution, monitoring, verification

New Analysis:

Key Technical Requirements for SWS

- 1. Combine rules with ontologies, from many web sources, with:
 - Rules on top of ontologies
 - Interoperability of heterogeneous rule and ontology systems
 - Power in inferencing
 - Consistency wrt inferencing
 - Scaleability of inferencing
- 2. Hook rules (with ontologies) up to web services
 - Ex. web services: enterprise applications, databases
 - Rules use services, e.g., to query, message, act with side-effects
 - Rules constitute services executably, e.g., workflow-y business processes
 - Rules describe services non-executably, e.g., for discovery, deal negotiation
 - On top of web service process models, coherently despite evolving messiness

3 Areas of New Fundamental KR Theory that enable Key Technical Requirements for SWS

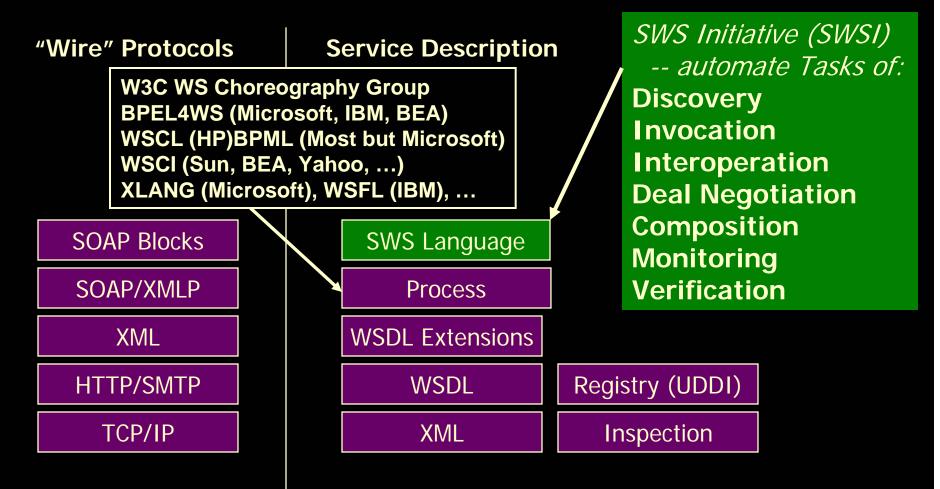
• 1. Description Logic Programs:

- KR to combine LP (RuleML) rules on top of DL (OWL) ontologies, with:
- Power in inferencing (including for consistency)
- Scaleability of inferencing

• 2. Situated Logic Programs:

- KR to hook rules (with ontologies) up to (web) services
- Rules use services, e.g., to query, message, act with side-effects
- Rules constitute services executably, e.g., workflow-y business processes
- 3. Courteous Logic Programs:
 - KR to combine rules from many sources, with:
 - Prioritized conflict handling to enable consistency, modularity; scaleably
 - Interoperable syntax and semantics

OPTIONAL SLIDES FOLLOW


• About Semantic Web, Web Services

Some Semantic Web Advantages for Biz

- Builds upon XML's much greater capabilities (vs. HTML*) for <u>structured</u> <u>detailed descriptions</u> that can be processed <u>automatically</u>.
 - Eases application development effort for assimilation of data in <u>inter-enterprise interchange</u>
- Knowledge-Based E-Markets -- where Agents Communicate (Agent = knowledge-based application)
 - — ∴ potential to <u>revolutionize</u> *interactivity* in Web
 <u>marketplaces</u>: B2B, …
- Reuse same knowledge for multiple purposes/tasks/app's

 Exploit declarative KR; Schemas
 - * new version of HTML itself is now just a special case of XML

SWS Language effort, on top of Current WS Standards Stack

[Slide authors: Benjamin Grosof (MIT Sloan), Sheila McIlraith (Stanford), David Martin (SRI International), James Snell (IBM)]