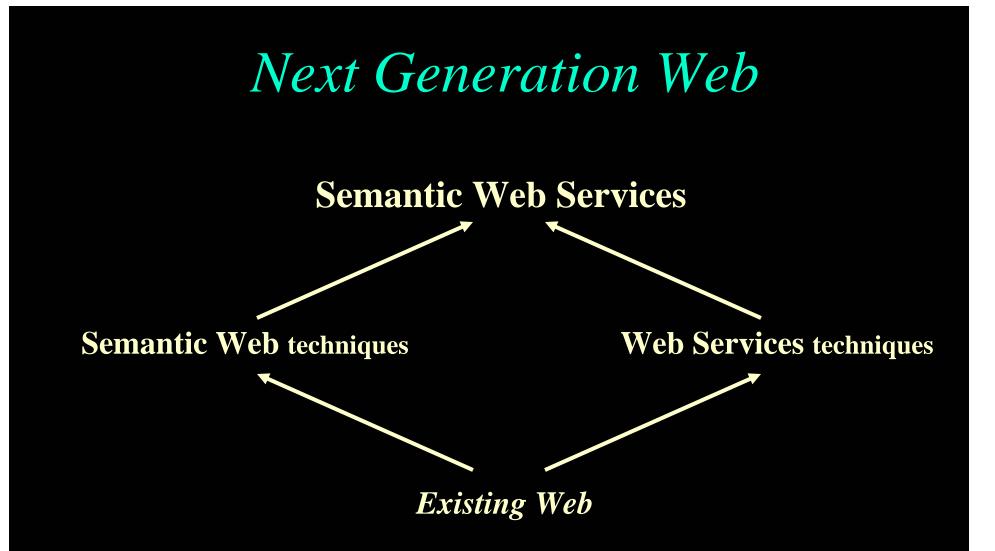
# Semantic Web Services, Rules, and E-Contracting: Overview and Relationship to AutoID

### Benjamin Grosof

Douglas Drane Assistant Professor of Information Technologies, MIT Sloan School of Management <u>http://ebusiness.mit.edu/bgrosof</u>

Slides presented at MIT Auto-ID Labs Web Services WAN SIG Launch Workshop, Mar. 9, 2004 <u>http://autoidlabs.mit.edu</u>; <u>wswansig-info@autoidlabs.mit.edu</u>


# Outline of Talk

- I. Overview: Semantic Web Services (SWS) and Rules
  - Concepts, Today's Scene, Visions
  - Applications, incl. B2B
  - End-to-end e-contracting, and policies
  - Strategy: adoption roadmap
- II. How does this apply to AutoID?
  - B2B Tasks; end-to-end e-contracting, and policies
  - SWS Research Directions

### • Optional: More Details, esp. on e-contracting and rules

# Quickie Bio of Presenter

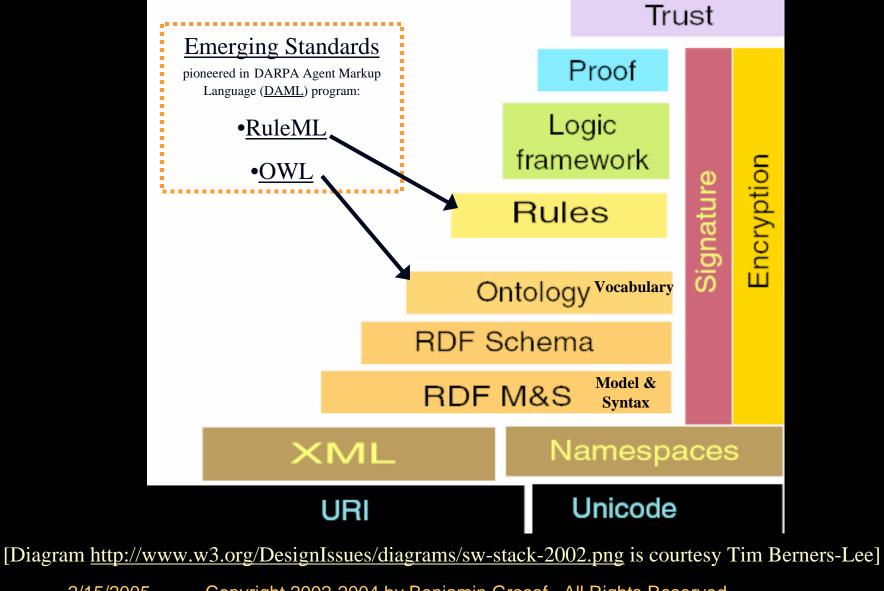
- MIT professor since 2000
- 12 years at IBM T.J. Watson Research; 2 years at startups
- PhD Comp Sci, Stanford; BA Applied Math Econ/Mgmt, Harvard
- Semantic web services is main research area:
  - Rules as core technology
  - Business Applications, Implications, Strategy:
    - e-contracting/supply-chain; finance; trust; ...
  - Overall knowledge representation, e-commerce, intelligent agents
- Co-Founder, Rule Markup Language Initiative the leading emerging standards body in semantic web rules (<u>http://www.ruleml.org</u>)
- Core participant in Semantic Web Services Initiative which coordinates world-wide SWS research and early standards (<u>http://www.swsi.org</u>)
  - Area Editor for Contracts & Negotiation, Language Committee
  - Co-Chair, Industrial Partners program (SWSIP)



### Web Service -- definition

- (For purposes of this talk:)
- A procedure/method that is invoked through a Web protocol interface, typically with XML inputs and outputs

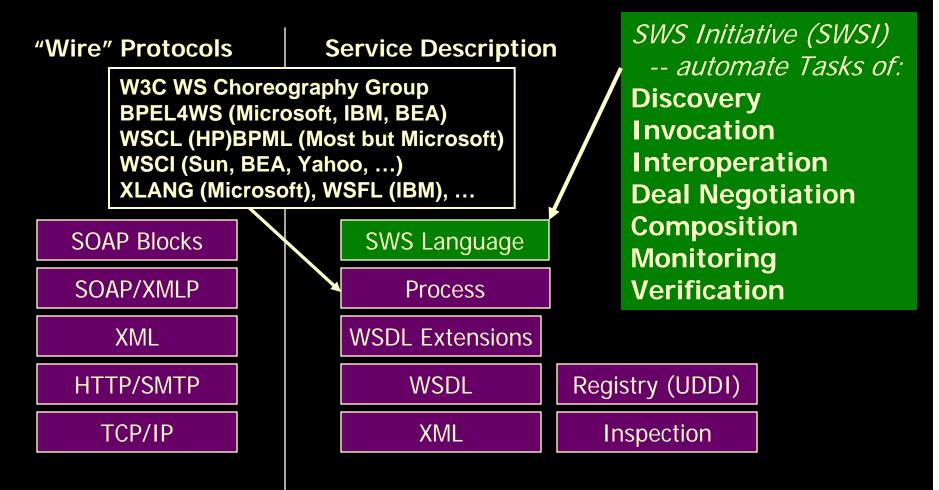
### Semantic Web: concept, approach, pieces


- Shared semantics when interchange data ∴ knowledge
- Knowledge Representation (cf. AI, DB) as approach to semantics
  - Standardize KR syntax, with KR theory/techniques as backing
- Web-exposed <u>Databases</u>: SQL; XQuery (XML-data DB's)
  - Challenge: share DB schemas via meta-data
- RDF: "Resource Description Framework" W3C proposed standard
  - Meta-data lower-level mechanics: unordered directed graphs (vs. ordered trees)
  - RDF-Schema extension: simple class/property hierarchy, domains/ranges
- <u>Ontology</u> = formally defined vocabulary & class hierarchy
  - <u>OWL</u>: "Ontologies Working Language" W3C proposed standard
    - Subsumes RDF-Schema and Entity-Relationship models
    - Based on Description Logic (DL) KR ~subset of First-Order Logic (FOL))
- <u>Rules</u> = if-then logical implications, facts ~subsumes SQL DB's
  - <u>RuleML</u>: "Rule Markup Language" emerging standard
    - Based on Logic Programs (LP) KR ~extension of Horn FOL

### Some Semantic Web Advantages for Biz

- Builds upon XML's much greater capabilities (vs. HTML\*) for <u>structured</u> <u>detailed descriptions</u> that can be processed <u>automatically</u>.
  - Eases application development effort for assimilation of data in <u>inter-enterprise interchange</u>
- Knowledge-Based E-Markets -- where Agents Communicate (Agent = knowledge-based application)
  - — ∴ potential to <u>revolutionize</u> *interactivity* in Web
     <u>marketplaces</u>: B2B, …
- Reuse same knowledge for multiple purposes/tasks/app's

   Exploit declarative KR; Schemas
  - \* new version of HTML itself is now just a special case of XML


### W3C Semantic Web "Stack": Standardization Steps



### Semantic Web Services

- Convergence of Semantic Web and Web Services
- Consensus definition and conceptualization still forming
- Semantic (Web Services):
  - Knowledge-based service descriptions, deals
    - Discovery/search, invocation, negotiation, selection, composition, execution, monitoring, verification
  - Integrated knowledge
- (Semantic Web) Services: e.g., infrastructural
  - Knowledge/info/DB integration
  - Inferencing and translation

### SWS Language effort, on top of Current WS Standards Stack



[Slide authors: Benjamin Grosof (MIT Sloan), Sheila McIlraith (Stanford), David Martin (SRI International), James Snell (IBM)]

# Outline of Talk

- I. Overview: Semantic Web Services (SWS) and Rules
  - Concepts, Today's Scene, Visions
  - Applications, incl. B2B
  - End-to-end e-contracting, and policies
  - Strategy: adoption roadmap
- II. How does this apply to AutoID?
  - B2B Tasks; end-to-end e-contracting, and policies
  - SWS Research Directions

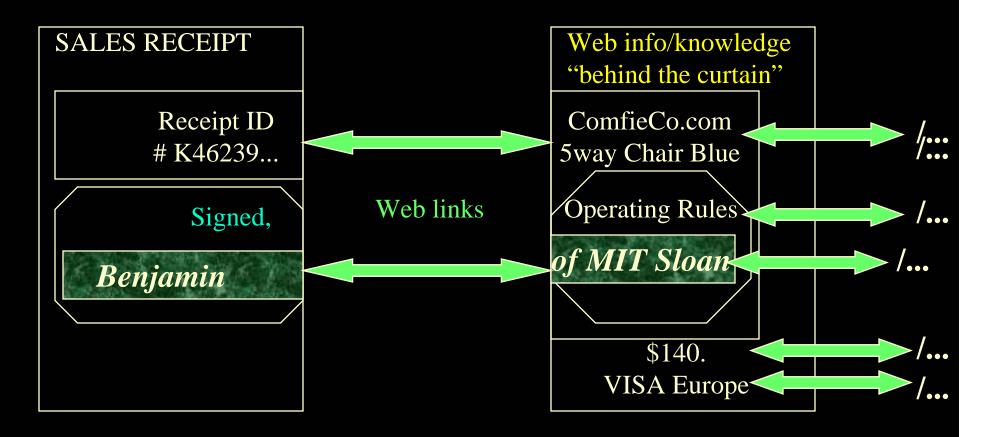
### • Optional: More Details, esp. on e-contracting and rules

# B2B Tasks: Communication for Business Processes with Partners

- B2B business processes involving significant Communication with customers/suppliers/other-partners is overall a natural locus for future first impact of SWS.
- Customer Relationship Management (CRM)
  - sales leads and status
  - customer service info and support
- Supply Chain Management (SCM):
  - source selection
  - inventories and forecasts
  - problem resolution
  - transportation and shipping, distribution and logistics
- orders; payments, bill presentation

# Some B2B Tasks (continued)

- bids, quotes, pricing, CONTRACTING; AUCTIONS; procurement
- authorization (vs. authentication) for credit or trust
- database-y: e.g.,
  - catalogs & their merging
  - policies
- inquiries and answers; live feedback
- notifications
- trails of biz processes and interactions
- ratings, 3rd party reviews, recommendations
- knowledge management with partners/mkt/society


# Vision of Evolution:

Agents in Knowledge-Based E-Markets

Coming soon to a world near you:...

- billions/trillions of agents (= k-b applications)
- ...with smarts: knowledge gathering, reasoning, economic optimization
- ...doing our bidding
  - but with some autonomy
- A 1st step: ability to communicate with sufficiently precise shared meaning... via the SEMANTIC WEB

### Looks Simple To Start... then Gets Interestingly Precise A Vision/Approach of what Web & Agents enable



### End-to-End E-Contracting Tasks

- Discovery, advertising, matchmaking
  - Search, sourcing, qualification/credit checking
- Negotiation, bargaining, auctions, selection, forming agreements, committing
  - Hypothetical reasoning, what-if'ing, valuation
- Performance/execution of agreement
  - Delivery, payment, shipping, receiving, notification
- Problem Resolution, Monitoring
  - Exception handling

### SWS Tasks at higher layers of WS stack

Automation of:

Web service <u>discovery</u>

Find me a shipping service that will transport frozen vegetables from San Francisco to Tuktoyuktuk.

- Web service invocation
   Buy me "Harry Potter and the Philosopher's Stone" at
   <u>www.amazon.com</u>
- Web service <u>deals</u>, i.e., contracts, and their <u>negotiation</u> *Propose a price with shipping details for used Dell laptops to Sue Smith.*
- Web service <u>selection</u>, <u>composition</u> and <u>interoperation</u> Make the travel arrangements for my WWW11 conference.

[Modification of slide also by Sheila McIIraith (Stanford) and David Martin (SRI International)]

#### SWS Tasks at higher layers of WS stack, continued

- Web service <u>execution monitoring</u> and <u>problem resolution</u> Has my book been shipped yet? ... [NO!] Obtain recourse.
- Web service <u>simulation</u> and <u>verification</u> Suppose we had to cancel the order after 2 days?
- Web service <u>executably specified at "knowledge level"</u> *The service is performed by running the contract ruleset through a rule engine.*

[Modification of slide also by Sheila McIIraith (Stanford) and David Martin (SRI International)]

### New Research Application Scenarios for Rule-based Semantic Web Services

- SweetDeal [Grosof & Poon WWW-2003] configurable reusable <u>e-contracts</u>:
  - Represents modular modification of proposals, service provisions
    - LP <u>rules</u> as KR. E.g., prices, late delivery exception handling.
    - <u>On top of</u> DL <u>ontologies</u> about business processes from MIT Process Handbook

- Evolved from EECOMS pilot on agent-based manufacturing SCM (\$51M NIST ATP 1996-2000 IBM, Boeing, TRW, Vitria, others)

<u>Financial</u> knowledge integration (ECOIN) [Firat, Madnick, & Grosof 2002]
 Maps between contexts using LP rules, equational ontologies, SQL DB's.

#### • Business Policies:

 <u>Trust</u> management (Delegation Logic) [Li, Grosof, & Feigenbaum 2003]: Extend LP KR to multi-agent delegation. Ex.: security authorization.

What's Doable Today in rule-based agent contracting, based on our approach to rule representation ("SweetDeal")

- Communicate: with deep shared semantics
  - XML, inter-operable with same sanctioned inferences
  - $\Leftrightarrow \underline{heterogeneous}$  rule systems / rule-based agents
- Execute contract provisions:
  - infer; ebiz actions; authorize; ...
- Modify easily: contingent provisions
  - default rules; modularity; exceptions, overriding
- Reason about the contract/proposal
  - hypotheticals, test, evaluate; tractably
  - (also need "solo" decision making/support by each agent)

### Approach:

### **Rule**-based Contracts for E-commerce

- Rules as way to specify (part of) business processes, policies, products: as (part of) contract terms.
- Complete or partial contract.
  - As default rules. Update, e.g., in negotiation.
- Rules provide high level of conceptual abstraction.
  - easier for non-programmers to understand, specify, dynamically modify & merge. E.g.,
  - by multiple authors, cross-enterprise, cross-application.
- Executable. Integrate with other rule-based business processes.

### Examples of Contract Provisions Well-Represented by Rules in Automated Deal Making

- Product descriptions
  - Product catalogs: properties, conditional on other properties.
- Pricing dependent upon: delivery-date, quantity, group memberships, umbrella contract provisions
- Terms & conditions: refund/cancellation timelines/deposits, lateness/quality penalties, ordering lead time, shipping, creditworthiness, biz-partner qualification, <u>Service</u> provisions
- Trust
  - Creditworthiness, authorization, required signatures
- Buyer Requirements (RFQ, RFP) wrt the above
- Seller Capabilities (Sourcing, Qualification) wrt the above

# SW Early Adoption Candidates: High-Level View

- "Death. Taxes. Integration."
- Application/Info Integration:
  - Intra-enterprise
    - EAI, M&A; XML infrastructure trend
  - Inter-enterprise
    - E-Commerce: procurement, SCM
  - Combo
    - Business partners, extranet trend

### SWS Adoption Roadmap: Strategy Considerations

- Expect see beginning in a lot of B2B interoperability or heterogeneous-info-integration intensive (e.g., finance, travel)
  - Actually, probably 1st intra-enterprise, e.g., EAI
- Reduce costs of communication in procurement, operations, customer service, supply chain ordering and logistics
  - increase speed, creates value, increases dynamism
  - macro effects create
    - stability sometimes (e.g., supply chain reactions due to lag; other negative feedbacks)
    - volatility sometimes (e.g., perhaps financial market swings)
  - increase flexibility, decrease lock-in
- Agility in business processes, supply chains

# Outline of Talk

- I. Overview: Semantic Web Services (SWS) and Rules
  - Concepts, Today's Scene, Visions
  - Applications, incl. B2B
  - End-to-end e-contracting, and policies
  - Strategy: adoption roadmap
- II. How does this apply to AutoID?
  - B2B Tasks; end-to-end e-contracting, and policies
  - SWS Research Directions

### • Optional: More Details, esp. on e-contracting and rules

# <u>AutoID in</u> B2B Tasks: Communication for Business Processes with Partners

- B2B business processes involving significant Communication with customers/suppliers/other-partners is overall a natural locus for future first impact of SWS.
  - Green underlined stuff seems especially relevant to AutoID
- Customer Relationship Management (CRM)
  - sales leads and status
  - customer service info and support
- Supply Chain Management (SCM):
  - source selection
  - inventories and forecasts
  - problem resolution
  - transportation and shipping, distribution and logistics
- orders; payments, bill presentation

### <u>AutoID in</u> Some B2B Tasks (continued)

- bids, quotes, pricing, CONTRACTING; AUCTIONS; procurement
- authorization (vs. authentication) for credit or trust
- database-y: e.g.,
  - catalogs & their merging
- policies
- inquiries and answers; live feedback
- <u>notifications</u>
- trails of biz processes and interactions
- ratings, 3rd party reviews, recommendations
- knowledge management with partners/mkt/society

# Some more Thoughts on AutoID and SWS

- AutoID needs infrastructure that provides abstraction layers above basic logistics and networked data, and integrates into e-commerce generally
  - Info about goods/objects
  - Info about <u>services</u> surrounding those goods
  - <u>Business processes</u>, their automation
- End-to-end Contracting is at the heart of ecommerce, SCM, CRM
  - Can view as one big business process, composed of many smaller ones

# Some more Thoughts on AutoID and SWS, continued

- Policies are at the heart of contracts. E.g.,
  - Pricing
  - Lead time for ordering, shipping
  - Exceptions, returns, problem resolution
  - Authorization for access, transactions.
- Rules often good for representing policies. E.g., in RuleML, SweetDeal
- Need business process ontologies, too.

### SWS Research Directions

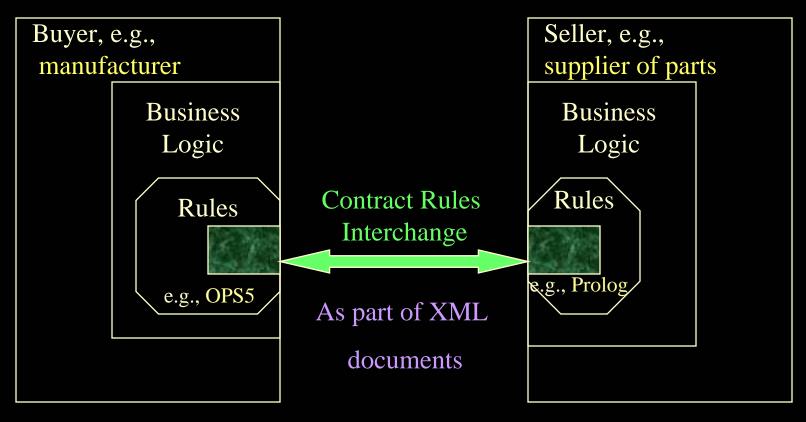
- Requirements Analysis
- Fundamental KR theory, techniques, tools:
  - Recent: Courteous LP, Situated LP, Description LP
  - More: nonmon OO ontologies, multi-agent nonmon, equational ontologies, context mappings, ...
- Fundamental theory of semantic descriptions of services
- Web Services / Business Processes Knowledge Bases:
  - MIT Process Handbook as candidate nucleus for shared business process ontology for SWS
    - Open Process Handbook Initiative: an open-source version, is in progress. (<u>http://ccs.mit.edu/ph</u>)

### SWS Research Directions, continued

- Standards: Rules (RuleML/DAML), SWS (SWSI); W3C; Oasis; (also OAG, OMG, others); incl. wrt ecommerce (e.g., ebXML, EDI), vertical industries, horizontal tasks
- Applications: e-contracting, finance, trust mgm., travel
- Fundamental theory for e-contracting
  - Interoperable business objects, policies (e.g., trust), business processes, 3<sup>rd</sup>-party services
- Strategy wrt SWS uses, adoption, markets

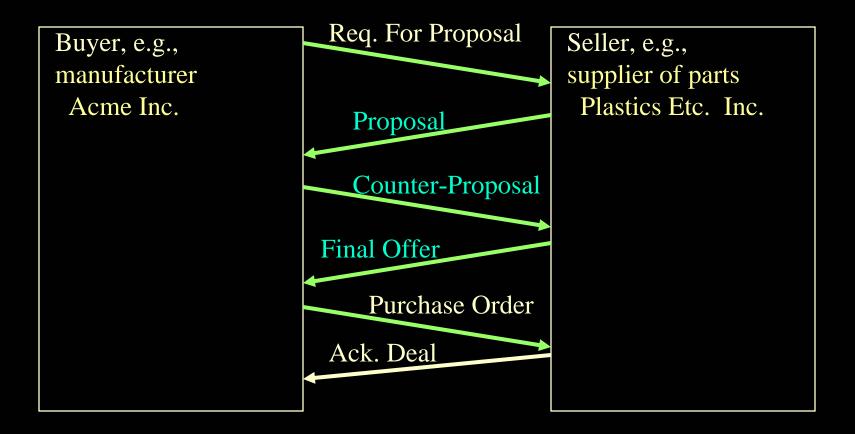
**Opportunities for Auto-ID Focus** wrt SWS Research Directions

- Usage Scenarios e.g., driven by sponsors
   Tasks, business processes, vertical-industry domains
  - Combine selected technologies and standards
- Shared Business Process Semantics in support of those


# Outline of Talk

- I. Overview: Semantic Web Services (SWS) and Rules
  - Concepts, Today's Scene, Visions
  - Applications, incl. B2B
  - End-to-end e-contracting, and policies
  - Strategy: adoption roadmap
- II. How does this apply to AutoID?
  - B2B Tasks; end-to-end e-contracting, and policies
  - SWS Research Directions

### • Optional: More Details, esp. on e-contracting and rules


# **Optional Slides** with More Details, esp. on rules and e-contracting, FOLLOW

# Contract Rules during Negotiation



Contracting parties NEGOTIATE via shared rules.

### Exchange of Rules Content during Negotiation: example



## Negotiation Ex. Doc. Rules: Counter-Proposal from manufCo to supplierCo

- <usualPrice> price(per\_unit, ?PO, \$60) ← ...
- <volumeDiscount> price(per\_unit, ?PO, \$51)  $\leftarrow$
- purchaseOrder(?PO, supplierCo, ?AnyBuyer) ∧
- quantity\_ordered( ?PO, ?Q)  $\land$  (?Q  $\geq$  5)  $\land$  (?Q  $\leq$  1000)  $\land$
- shipping\_date(?PO, ?D)  $\land$  (?D  $\ge$  28Apr00)  $\land$  (?D  $\le$  12May00). overrides(volumeDiscount, usualPrice).
- $\perp \leftarrow \text{price}(\text{per\_unit}, ?\text{PO}, ?X) \land \text{price}(\text{per\_unit}, ?\text{PO}, ?Y) \text{ GIVEN } (?X \neq ?Y).$
- <aSpecialDeal> price(per\_unit, ?PO, \$48) ←
  - purchaseOrder(?PO, supplierCo, manufCo) ∧
  - quantity\_ordered( ?PO, ?Q)  $\land$  (?Q  $\ge$  400)  $\land$  (?Q  $\le$  1000)  $\land$

Simply

added

rules!

- shipping\_date(?PO, ?D)  $\land$  (?D  $\ge$  02May00)  $\land$  (?D  $\le$  12May00).
- overrides(aSpecialDeal, volumeDiscount).
- overrides(aSpecialDeal, usualPrice).

# -- Negotiation Example -- XML Encoding of Rules in RuleML

- <rulebase>
- <imp>
- <\_rlab>usualPrice</\_rlab>
- <\_head>
- <cslit>
- <\_opr><rel>price</rel></\_opr>
- <ind>per\_unit</ind>
- <var>PO</var>
- <ind>\$60</ind>
- </cslit>
- </\_head>
- </imp>
- • •
- </rulebase>

#### Negotiation Example --

#### XML Encoding of Rules in RuleML, Continued

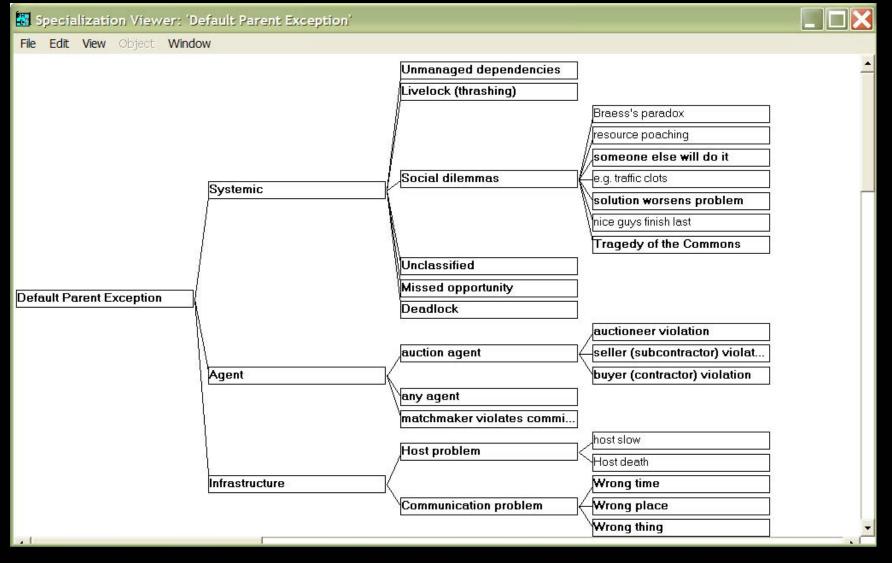
- <\_body>
- <andb>
- <fclit>
- <\_opr><rel>purchaseOrder</rel></\_opr>
- <var>PO</var>
- <ind>supplierCo</ind>
- <var>AnyBuyer</var>
- </fclit>
- <fclit>
- • • •
- </fclit>
- ...
- </andb>
- </\_body>

## Commercial Implementation & Piloting

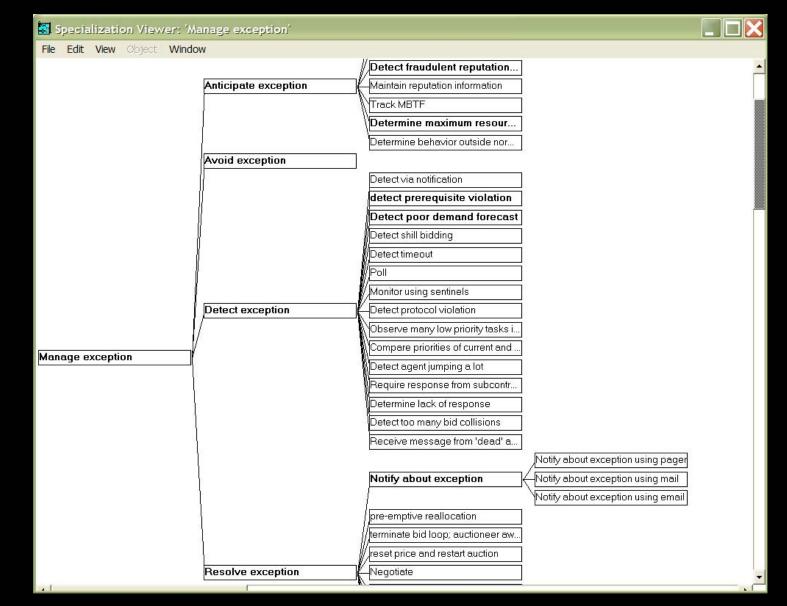
- IBM CommonRules: AlphaWorks Java library
  - <u>implements</u> rule-based capabilities:
    - XML inter-operability; prioritized conflict handling
- Rule Markup Language: nascent <u>industry standards</u> effort
  - XML Knowledge Representation (KR)  $\rightarrow$  make the Web be "Semantic"
  - KR: Situated Courteous Logic Programs in XML
- EECOMS industry consortium including Boeing, Baan, TRW, Vitria, IBM, universities, small companies
  - \$29Million 1998-2000; 50% funded by NIST ATP
  - <u>application piloted</u>
    - contracting & negotiation; authorization & trust

Flavors of Rules Commercially Most Important today in E-Business

- E.g., in OO app's, DB's, workflows.
- <u>Relational databases, SQL</u>: Views, queries, facts are all rules.
  - SQL99 even has recursive rules.
- <u>Production rules</u> (OPS5 heritage): e.g.,
  - Blaze, ILOG, Haley: rule-based Java/C++ objects.
- <u>Event-Condition-Action rules</u> (loose family), cf.:
  - business process automation / workflow tools.
  - active databases; publish-subscribe.
- <u>Prolog</u>. *"logic programs" as a full programming language.*
- (Lesser: other knowledge-based systems.)


#### Using: MIT Process Handbook

- Our example scenario's process ontologies are drawn partly from the MIT Process Handbook (PH) ...
- A previously-existing repository of business process descriptions
- Uniquely large & well-used (by industry biz process designers) [Malone *et al* '95-]
- Includes taxonomic/hierarchical aspects, as a fraction
- Includes exception handling ontology [Klein et al 2002]
- New here:
  - <u>formalize</u> PH knowledge in XML Description Logic: DAML+OIL
    - (only a small fraction of its content, so far)
  - enables practical deep inferencing with the PH knowledge
    - ... using Semantic Web tools (RuleML/LP and DAML+OIL/OWL/DL)
- Previously PH content was only shallowly automated for inferencing
  - Was NOT represented in Description Logic KR nor in XML (not Webized)
  - (there was a partial PIF encoding, mapping to KIF)
     2/15/2005 Copyright 2002-2004 by Benjamin Grosof. All Rights Reserved


## Some Specializations of "Sell" in the MIT Process Handbook (PH)

| Specialization Viewer: 'Sell' |      |      |        |        |                                       |                                                                                                                                                                                                                                                            |  |
|-------------------------------|------|------|--------|--------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| File                          | Edit | View | Object | Window | w                                     |                                                                                                                                                                                                                                                            |  |
|                               |      |      |        |        | Sell how?                             | Sell via store       Sell via electronic store         Sell via face-to-face sales       Sell via direct mail         Sell via other direct       Sell via email / fax         Sell via television direct respons       Sell via television direct respons |  |
| Sell                          | -    |      |        |        | -Sell what?<br>Sell via what channel? | Sell via telemarketing Sell service                                                                                                                                                                                                                        |  |
|                               |      |      |        | ľ      | Sell with what customization?         | Sell standard item from stock<br>Sell standard item to order<br>Sell custom item to order                                                                                                                                                                  |  |
|                               |      |      |        |        | Sell to whom?<br>Sell - views         | Sell to consumers Sell to businesses Sell business to business e-com                                                                                                                                                                                       |  |
| . 1888                        |      |      |        |        |                                       |                                                                                                                                                                                                                                                            |  |

#### Some Exceptions in the MIT Process Handbook



#### Some exception handlers in the MIT Process Handbook



# Also Currently Being Developed in the world today

- Delegations between agents
- XML Ontologies (Vocabularies )
  - knowledge representation: infer with definitional knowledge
  - specific domain/industry vocabularies
- DARPA Agent Markup Language: ontologies, rules
- Industry Standards:
  - Web, incl. Web services
  - Agents, Business Processes, Workflow
  - E-Commerce: ebXML, ...
  - Industry-Specific
  - Legal XML
- Law: Electronic Signatures, ...
- Reusable Contract doc's on Web: CommonAccord, our work, ...

# Rule-based Semantic Web Services

- Rules/LP in appropriate combination with DL as KR, for RSWS
   DL good for <u>categorizing</u>: a service overall, its inputs, its outputs
- Rules to describe <u>service process models</u>
  - rules good for representing:
    - <u>preconditions</u> and <u>postconditions</u>, their contingent relationships
    - <u>contingent</u> behavior/features of the service more generally,
      - e.g., exceptions/problems
  - familiarity and naturalness of rules to software/knowledge engineers
- Rules to specify <u>deals about services</u>: cf. e-contracting.

## Rule-based Semantic Web Services

- Rules often good to <u>executably specify</u> service process models
  - e.g., business process automation using procedural attachments to perform side-effectful/state-changing actions ("effectors" triggered by drawing of conclusions)
  - e.g., rules obtain info via procedural attachments ("sensors" test rule conditions)
  - e.g., rules for knowledge translation or inferencing
  - e.g., info services exposing relational DBs
- <u>Infrastructural</u>: rule system functionality as services:
  - e.g., inferencing, translation

### Analysis:

# High-Level Requirements for SWS

- Support Biz-Process Communication
   E.g., B2B SCM, CRM
  - E.g., e-contracts, financial info, trust management.
- Support SWS Tasks above current WS layers:
  - Discovery/search, invocation, deal negotiation, selection, composition, execution, monitoring, verification

## New Analysis:

# Key Technical Requirements for SWS

- 1. Combine rules with ontologies, from many web sources, with:
  - Rules on top of ontologies
  - Interoperability of heterogeneous rule and ontology systems
  - Power in inferencing
  - Consistency wrt inferencing
  - Scaleability of inferencing
- 2. Hook rules (with ontologies) up to web services
  - Ex. web services: enterprise applications, databases
  - Rules use services, e.g., to query, message, act with side-effects
  - Rules constitute services executably, e.g., workflow-y business processes
  - Rules describe services non-executably, e.g., for discovery, deal negotiation
  - On top of web service process models, coherently despite evolving messiness

#### 3 Areas of New Fundamental KR Theory that enable Key Technical Requirements for SWS

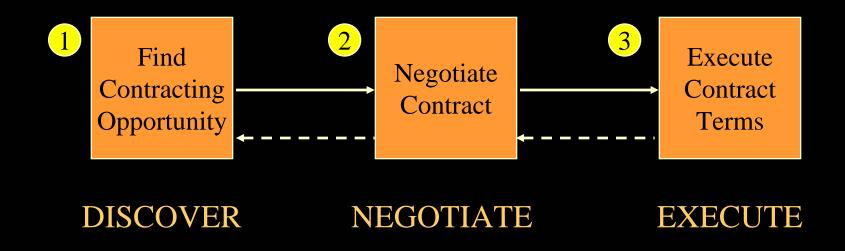
#### • 1. Description Logic Programs:

- KR to combine LP (RuleML) rules on top of DL (OWL) ontologies, with:
- Power in inferencing (including for consistency)
- Scaleability of inferencing

#### • 2. Situated Logic Programs:

- KR to hook rules (with ontologies) up to (web) services
- Rules use services, e.g., to query, message, act with side-effects
- Rules constitute services executably, e.g., workflow-y business processes
- 3. Courteous Logic Programs:
  - KR to combine rules from many sources, with:
  - Prioritized conflict handling to enable consistency, modularity; scaleably
  - Interoperable syntax and semantics

# Contributions to Early Standards Efforts: RuleML, SWSI


#### • RuleML Initiative

- Co-Lead, Co-Founder
- RuleML based largely on IBM CommonRules
- Designed most key RuleML features
- RuleML already has basic support for Description LP, Situated LP, Courteous LP

#### • Active in SWSI, esp. on Rules

- Member of SWS Language committee
- Co-chair Industrial Partners forum: several dozen companies
- Technical challenge: representing service pre- / post-conditions, coherently on top of evolving messiness of WS process models (e.g., BPEL4WS)

# Contracting 1-2-3



- Applies to any contracting, electronic or not.
- May iterate or interleave these steps.
- Boundaries not necessarily sharp.

SW Early Adopters: Areas by Industry or Task

- Early SW techniques already in use:
  - e-contracting, supply chain incl. procurement
    - manufacturing, e.g. computer/electronics (RosettaNet), automotive (Covisint),
    - EECOMS pilot (Boeing, IBM, TRW, Baan)
    - office supplies (OBI)
    - retailing: shopbots and salesbots: comparisons, recommendations
    - extensive standards activity: Oasis ebXML, XML eContracts, UN UBL, EDI

SW Early Adopters: Areas by Industry or Task

- *Continued:* Early SW techniques already in use:
  - cyber goods:
    - financial services (rules; onto translation)
    - travel "agency", i.e.: tickets, packages (AI smarts for scheduling)
  - military intelligence (e.g., funded DAML)