RC 21491 (96965) 28 May 1999
Computer Science

IBM Research Report

An Approach to using XML and
a Rule-based Content Language

with an Agent Communication Language

Benjamin N. Grosof and Yannis Labrou

IBM Research Division

T.J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY 10598, USA

Internet e-mail: grosof@us.ibm.com (alt. grosof@cs.stanford.edu)
Web: http://www.research.ibm.com/people/g/grosof/

(914) 784-7783

Electrical Engineering and Computer Science Department

University of Maryland, Baltimore County; Baltimore, MD, 21250, USA
Internet e-mail: jklabrou@cs.umbc.edu

Web: http://www.cs.umbc.edu/"~ jklabrou/

(410) 455-3624

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It
has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside
publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties).
Copies may be requested from IBM T.J. Watson Research Center [Publications 16-220 ykt], P.O. Box 218, Yorktown Heights, NY
10598, or via email: reports@us.ibm.com .

Some reports are available on the World Wide Web, at http://www.research.ibm.com (navigate to Research Reports) or at
http://domino.watson.ibm.com/library/CyberDig.nsf/home .

IB M Research Division
Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

Abstract: We argue for an XML encoding of FIPA Agent Communication Language (ACL),
and give an alpha version of it, called Agent Communication Markup Language (ACML),
which we have implemented. The XML approach facilitates: (a) developing/maintaining
parsers, integrating with WWW-world software engineering, and (b) the enriching capabil-
ity to (hyper-)link to ontologies and other extra information. The XML approach applies
similarly to KQML as well.

Motivated by the importance of the content language aspect of agent communication, we
focus in particular on business rules as a form of content that is important in e-commerce
applications such as bidding negotiations. A leading candidate content language for busi-
ness rules is Knowledge Interchange Format (KIF), which is currently in the ANSI standards
committee process. We observe several major practical shortcomings of KIF as a content
language for business rules in e-commerce. We argue instead for a knowledge representa-
tion (KR) approach based on Courteous Logic Programs (CLP) that overcomes several of
KIF’s representational limitations, and argue for this CLP approach, e.g., for its logical non-
monotonicity and its computational practicality. CLP is a previous KR that expressively
extends declarative ordinary logic programs cf. Prolog; it includes negation-as-failure plus
prioritized conflict handling.

We argue for an XML encoding of business rules content, and give an alpha version of
it, called Business Rules Markup Language (BRML), which we have implemented. BRML
can express both CLP and a subset of KIF (i.e., of first-order logic) that overlaps with CLP.
BRML expressively both extends and complements KIF. The overall advantages of an XML
approach to content language are similar to those for the XML approach to ACL, and indeed
complements the latter since content is carried within ACL messages.

Publication and Copyright Information: This paper (formatted differently) is to appear
in the Proceedings of the IJCAI-99 Workshop on Agent Communication Languages (ACL-
99), edited by Frank Dignum et al, http://wwwis.win.tue.nl/ac199/, to be held Aug.
1, 1999, in Stockholm, Sweden, in conjunction with the IJCAI-99 conference. IJCAI is
the International Joint Conference on Artificial Intelligence, http://www.ijcai.org. The
Limited Distribution Notice on the front page notwithstanding (it is standard boilerplate
for all IBM Research Reports), the IJCAI Workshop Proceeding’s copyright to this paper
is non-exclusive — the author(s) and IBM retain unrestricted copyright to distribute this

paper.

Related Papers and Material: can be found via the authors’ Web addresses and as IBM
Research Reports at http://www.research.ibm.com .

Keywords Beyond Title: intelligent agents, industry standards, Foundation for Intelli-
gent Physical Agents (FIPA), Knowledge Query and Manipulation Language (KQML), ANSI
Knowledge Interchange Format (KIF), courteous logic programs, Business Rules Markup
Language (BRML), speech acts, Agent Communication Markup Language (ACML), soft-
ware engineering, XML DTD, specification, World Wide Web, declarative knowledge repre-
sentation, prioritized default reasoning, non-monotonic reasoning.

1 Introduction

The concept of an Agent Communication Language (ACL) has its origins in the work of
the Knowledge Sharing Effort (KSE). The KSE work gave birth to Knowledge Query and
Manipulation Language (KQML) in the early 1990’s, out of which in turn infuenced the
Foundation for Intelligent Physical Agents (FIPA standards body) ACL!. (Terminology: In
this paper, by “ACL” we mean either KQML (which has now several variants) or FIPA
ACL. Since then the problem of an adequate semantics of an ACL has dominated the debate
on ACL’s. Despite the substantial amount of work on this problem, the issue of an agent’s
conformance with the ACL semantics is as thorny as ever [18] and moreover puts into ques-
tion the degree of usefulness of semantic accounts. But even worse, the emphasis on ACL
semantics has drawn attention away from other issues that are perhaps even more important
to the success of ACL’s: (1) how do agents find one another and manage to establish a
“conversation”; (2) having achieved that, what is the “content” about which they actually
talk; and (3) the relationship between ACL’s and WWW technologies. We are interested in
the latter two issues. 2

KQML and FIPA ACL have evolved at a considerable distance from the mainstream of
Internet technologies and standards. No Internet standardization organization has ACL’s in
their agenda. With the exception of the Artimis project (France Telecom), no major industry
player has committed major resources to depend upon, or to develop, ACL’s, although there
are some plans for future work that will take advantage of FIPA technologies, as they become
available. At the same time the WWW is a huge repository of information and agents are
almost always referred to in conjuction with the WWW. ACL’s are driving a great part of
the agent work (FIPA ACL is the centerpiece of the FIPA effort); it is thus reasonable to
suggest that ACL work ought to integrate easily with the WWW and to be able to leverage
WWW tools and infrastructure. This motivates us to give (and to advocate) an Extensible
Markup Language (XML) encoding of ACL messages, as a first step towards this kind of
integration.

Agents, while conversing, exchange their information content; specifically we focus on
the language used to describe it, i.e., the content language in ACL terminology. An ACL
message’s content layer, which contains descriptions in the content language, is distinct
from the propositional-attitude layer which contains the (speech act type of) primitive of
the ACL message. (Terminology: In this paper, by an ACL communication “primitive”,
we mean what KQML calls a “performative” and what FTPA ACL calls a “communicative
act”.) The KSE developed the Knowledge Interchange Format (KIF) as a general-purpose
content language. However, it is important for ACL’s to support multiple, e.g., special-
purpose, content languages. We are particularly interested in representing business rules for
e-commerce applications of agent communications. For this purpose, we observe that KIF
has significant shortcomings, notably, its inability to represent logical non-monotonicity.
Accordingly, we give a new content language for business rules: an extended form of logic
programs, with deep declarative semantics, encoded moreover in XML. This language, called
Business Rules Markup Language (BRML), overcomes several limitations of KIF, yet broadly

Thttp:/ /www.fipa.org
2We do not deal with the first issue in this paper. See [11] for such a discussion.

overlaps with KIF both syntactically and semantically; it thus extends and complements KIF.
Next, we give an outline of the remainder of this paper. In Section 2, we argue for the
advantages of encoding ACL messages in XML and then present ACML, an XML language
for that purpose. In Section 3 we review the content language concept and some existing
content languages, then discuss our focus on business rules for e-commerce applications such
as bidding negotiations. In Section 4, we review KIF and critique its shortcomings as a
representation for business rules. In Section 5, we give a business rules content language,
called Courteous Logic Programs (CLP), that extends and complements KIF, while address-
ing several of KIF’s shortcomings. In Section 6 we present BRML, the XML encoding of
CLP. In Section 7, we describe our implementation. Current and future work directions are
discussed in appropriate spots throughout the paper but we summarize them in Section 8.

2 XML Embodiment of FIPA ACL

In this section, we give an encoding of FIPA ACL messages in XML, and observe that using
XML has several advantages. This leads us to suggest that in future industry practice,
the preferred encoding for ACL messages should be XML rather than pure ASCIIL. (We
are focusing on FIPA ACL but the same arguments and approach would apply to KQML
too.) Finin, Labrou, and Grosof together first advocated this idea to FIPA during the FIPA
meeting in Dublin, in July 1998. Although other groups of researchers have been considering
a XML encoding for FIPA ACL, this paper is (to the the best of our knowledge) the first
published treatment of this issue. As we will detail in Section 6, we advocate using XML
also for the content of the ACL message itself, for similar reasons. Keep in mind, however,
that the content need not be in XML even if the ACL message is in XML, or vice versa.

2.1 Brief Review of XML

XML is a language for creating markup languages that describe data. XML is a machine-
readable and application-independent encoding of a “document”, e.g., of a FIPA ACL mes-
sage including its content.

In contrast to HI'ML which describes document structure and visual presentation, XML
describes data in a human-readable format with no indication of how the data is to be
displayed. It is a database-neutral and device-neutral format; data marked up in XML can
be targeted to different devices using, for example, eXtensible Style Language (XSL). The
XML source by itself is not primarily intended directly for human viewing, though it is
human-understandable. Rather, the XML is rendered using standard available XML-world
tools, then browsed, e.g., using standard Web browsers or specialized other browsers/editors.
(Netscape and Microsoft already are supporting XML in the latest versions of their Web
browsers, for example.) One leading method for rendering is via XSL, in which one specifies
a stylesheet.

XML is a meta- language used to define other domain- or industry-specific languages. To
construct a XML language (also called a ”vocabulary”), one supplies a specific Document
Type Definition (DTD), which is essentially a context-free grammar like the Extended BNF
(Backus Naur Form) used to describe computer languages. In other words, a DTD provides

the rules that define the elements and structure of the new language. For example, if we
want to describe employee records, we would define a DTD which states that the <NAME>
element consists of three other elements called <FIRST>, <MIDDLE>, and <LAST>, in
that order. The DTD would also indicate if any of the nested elements is optional, can be
repeated, and/or has a default value. Any browser (or application) having an XML parser
could interpret the employee document instance by ”learning” the rules defined by the DTD.

2.2 Review of ACL

The core semantics of an ACL is defined as the “deep” semantics (i.e., semantics in the sense
of declarative knowledge-representation) of its (communication) primitives. This semantics
are expressed in some knowledge representation language: SL in the case of FIPA ACL. This
semantics only takes into account the speaker, the hearer (in speech act terminology) and the
content of the communicative act. The speaker, the hearer and the content correspond to
the :sender, the :receiver and the :content of the syntactic representation of the ACL.
The previous canonical syntactic form of the ACL message (for both KQML and FIPA ACL)
is a Lisp-like ASCII sequence.

The (previous) canonical ACL message syntax (both in FIPA ACL and KQML) further
includes additional message parameters whose semantics go beyond that of the primitives.
These parameters are unaccounted for in the deep semantics but are essential to the pro-
cessing of an ACL message. In other words, the ACL includes several “pragmatic” (i.e.,
operational) aspects, in addition to the primitives aspect. One pragmatic aspect is parsing
in and out of the ACL, i.e., digesting and composing well-formed ACL syntax (which is
Lisp-like) to extract or insert message parameters. A second pragmatic aspect is queueing
(and de-queueing) ACL messages for delivery through TCP or some other network protocol.

Further pragmatic issues being dealt with in the context of ACL efforts include the agent
naming scheme, and the conventions for finding agents and initiating interaction; although,
in our view, these issues are actually outside of the ACL’s scope. Actually, the various APIs
for KQML and FIPA ACL provide nothing (as expected) regarding the actual processing of
ACL messages (depending on the primitive), since the respecting the deep semantics of the
primitives is the responsibility of the application that makes use of those API’s. Such APT’s
today mainly take care of the parsing and queueing tasks mentioned above. Performing
these tasks is what using KQML (or FIPA ACL, for that matter) has come to mean. For all
intents and purposes, compliance with the ACL’s specification means compliance with all
these pragmatic conventions. Such conventions are not part of the standard (to the extent
that the ACL semantics is standardized) and the subtle (or not so subtle) discrepancies
amongst their implementations account in large part for the situation today in which there
is often a lack of interoperability between systems using the same ACL. 3

2.3 Introducing ACML

Next, we give an alpha-version specification of FIPA ACL in XML, which we call Agent
Communication Markup Language (ACML). To begin with, we need to define a DTD

3The differences in sets of primitives used and their intended meaning constitute a second-in-order inter-
operability barrier that is not confronted due to these more mundane “lower-level” obstacles.

for ACML “. We have indeed defined an alpha-version DTD for ACML, and have a running
prototype implementation of ACML that uses this DTD.

We begin with an example of a XML encoding of a FIPA ACL message. Figure 1 shows an
example FIPA ACL message, in the previous (ASCII, Lisp-like) syntax. Figure 2 shows the
same FIPA ACL message encoded in XML, i.e., in ACML. The content is a KIF expression
which is not encoded in XML in this example. The DTD for ACML is shown in Figure 3.
This is an alpha version.

The deep semantics of the communication primitives in ACML is simply taken to be
the same as previously. This semantics is not affected by encoding in XML instead of the
previous ASCII; it is defined independently of the choice of syntactic encoding.

By XML-ifying the syntactic representation we enhance (i.e., extend) the (previous)
canonical (pure ASCII) syntactic representation by introducing markup for parsing (the
“tags”, in XML terminology). This markup significantly facilitates the development effort
needed for parsing in and out.

The XML representation also facilitates introducing pragmatic/operational elements that
go beyond what the pure ASCII previous syntax did: notably, via links (in a similar sense
as does HTML compared to ASCII). And we indeed introduced such extras in our alpha
DTD and example. For example, the ACL message of Figure 1 includes information beyond
what is equivalent to that in Figure 2. Here, the receiver is not just some symbolic name but
is also a URL that points to a particular network location which could provide additional
information about the receiver agent’s identity (e.g., how to contact its owner, its network
ports, etc.).

2.4 Advantages of XML Approach

Encoding ACL messages in XML offers some advantages that we believe are potentially quite
significant.

e The XML-encoding is easier to develop parsers for than the Lisp-like encoding.
The XML markup provides parsing information more directly. One can use the off-the-
shelf tools for parsing XML — of which there are several competent, easy-to-use ones
already available — instead of writing customized parsers to parse the ACL messages.
A change or an enhancement of the ACL syntax does not have to result to a re-writing
of the parser. As long as such changes are reflected in the ACL DTD, the XML parser
will still be able to handle the XML-encoded ACL message. In short, a significant
advantage is that the process of developing or maintaining a parser is much simplified.

Indeed, we have first-hand experience that this parsing advantage is significant. In
our own implementation efforts, we have developed parsers for FIPA ACL and for
content languages (both KIF and logic programs), both for ASCII encoding and for
XML encoding.

e More generally, XML-ifying makes ACL more “WWW-friendly”, which facilitates
Software Engineering of agents. Agent development ought to take advantage and

“The same will be done for the content language (see Section 6).

build on what the WWW has to offer as a software development environment. XML
parsing technology is only one example. Using XML will facilitate the practical inte-
gration with a variety of Web technologies. For example, an issue that has been raised
in the ACL community ® is that of addressing security issues, e.g. authentication of
agents’ identities and encryption of ACL messages, at the ACL layer. The WWW
solution is to use certificates and SSL. Using the same approach for agent security
considerations seems much simpler and more intuitive than further overloading ACL
messages and the ACL infrastructure to accommodate such a task.

As we mentioned earlier, the operational semantics of the pragmatic aspects of ACL
can differ subtly between implementations or usages, and there is today a problem
practically of interoperability. XML can help with these pragmatics, by riding on
standard WWW-world technologies: to facilitate the engineering, and as a by-product
to help standardize the operational semantics, thereby helping make interoperability
really happen.

e Because XML incorporates links into the ACL message, this takes a significant step
toward addressing the problem (or representational layer) of specifying and sharing the
ontologies used in an ACL message’s content. The values of the ACL parameters are
not tokens anymore, but links that can point to objects and/or definitions. Although
the ontology slot has been present since the inception of ACLs, the ACL community
has not been very clear on how this information is to be used by the agent. This vague-
ness, further compounded by the scarcity of published ontologies, can be addressed by
“interfacing” the ACL message to the knowledge repository that is the WWW.

e More generally, links may be useful for a variety of other purposes. For ex-
ample, the receiver parameter might have a link to network location that provides
information about the agent’s identity: e.g., its owner, contact and administrative
information, communication primitives that the agent understands, network protocols
and ports at which it can receive messages, conversation protocols it understands, etc..
This type of information is necessary for a establishing an extended interaction with
another agent and has to somehow be available to an agent’s potential interlocutors.
The same argument can be made about the other message parameters.

3 ACL Content Languages, e.g., for Business Rules

3.1 Layered Approach of Knowledge Sharing Effort

Our and many other current efforts in inter-agent communication approaches are influenced
by the pioneering approach of the Knowledge Sharing Effort [13, 14] (KSE)® The KSE was
initiated as a research effort circa 1990 with encouragement and relatively modest fund-
ing from U.S. government agencies (DARPA especially). The KSE was highly active for
roughly five years thereafter, and enjoyed the participation of dozens of researchers from

5Private communication at FIPA meetings
6http:/ /www.cs.umbc.edu/kse/

both academia and industry. Its goal was to develop techniques, methodologies and soft-
ware tools for knowledge sharing and knowledge reuse between knowledge-based (software)
systems, at design, implementation, or execution time. Agents, especially intelligent agents,
are an important kind of such knowledge-based systems (other kinds include expert systems
or databases, for example). The central concept of the KSE was that knowledge sharing
requires communication, which in turn, requires a common language; the KSE focused on
defining that common language.

In the KSE model, agents (or, more generally, knowledge-based systems) are viewed
as (virtual) knowledge bases that exchange propositions using a language that expresses
various propositional attitudes. Propositional attitudes are three-part relationships between:
(1) an agent, (2) a content-bearing proposition (e.g., “it is raining”), and (3) a finite set of
propositional attitudes an agent might have with respect to the proposition (e.g., believing,
asserting, fearing, wondering, hoping, etc.). For example, < a, fear, raining(t,ow) > .

The KSE model includes three layers of representation: (1) specifying propositional
attitudes; (2) specifying propositions (i.e., “knowledge”) — this is often called the (proposi-
tional) content layer; and (3) specifying the ontology [10] (i.e., vocabulary) of those propo-
sitions. The KSE accordingly includes a component (with associated language) for each of
these: Knowledge Query and Manipulation Language (KQML) for propositional attitudes,
Knowledge Interchange Format (KIF) [4]” for propositions, and Ontolingua [3] (which
had supporting software tools) for ontology.

Within the KSE approach, the three representational layers are viewed as mainly inde-
pendent of another. In particular, the language for propositional content (i.e., the content
language) can be chosen independently from the language for propositional attitudes. In
other words, in the KSE approach, the role of an ACL such as FIPA’s is only to capture
propositional attitudes, regardless of how propositions are expressed, even though proposi-
tions are what agents will be “talking” about.

In a similar spirit, the approach of the technical committee that worked on FIPA ACL
is that the content language should be viewed as orthogonal to the rest of the ACL message
type.

The KSE focused especially on developing one general-purpose content language: KIF.
However, the KSE also recognized that it is important to support multiple special-purpose
content languages, since some are more expressive or more convenient for a particular pur-
pose. Indeed, the KSE also included a fourth component effort (abbreviated “KRSS”) de-
voted to defining a special-purpose content language for “description logics” (a.k.a. “termi-
nological logics”, descended from KL-ONE).

We agree with the view that it is important to support multiple content languages.
Beyond the KSE, a number of important specialized content languages have been developed
which are particularly good at describing certain fields. For example, STEP (Standard for
the Exchange of Product Model Data) [12] is an ISO standards project working towards
developing mechanisms for the representation and exchange of a computerized model of
a product in a neutral form. SGML is an example of a language, which is designed to
describe the logical structure of a document. There are special languages for describing
workflow, processes, chemical reactions, etc. SQL and OQL are somewhat more general

Thttp:/ /logic.stanford.edu/kif/ and http://www.cs.umbc.edu/kif/

content languages: for relational and object databases.

3.2 Business Rules in E-Commerce as focus

Motivated by the importance of the content language aspect of agent communication, we
focus in particular on rules as a form of content that is important in e-commerce applications
such as bidding negotiations, i.e., “business rules”. We are particularly interested in this kind
of application, and have been developing techniques for it [15] (to describe these is beyond
the scope of this paper, however).

In bidding negotations, agents exchange requests for bids, (i.e., proposals), make propos-
als, make counter-proposals, until agreeing or giving up. Rules are useful to represent the
contents of these proposals and requests for proposals: e.g., to describe the products/services,
prices, quantities, delivery dates, customer service agreements, contractual terms & condi-
tions, and other surrounding agreements that together constitute the content of a bid. Rules
are also useful to represent relevant aspects of business processes, e.g., how to place an order,
respond to an RFQ, return an item or cancel a delivery.

The usefulness of rules for the overall area of agent communication, particularly for
such e-commerce applications is based largely on their following advantages relative to other
software specification approaches and programming languages. First, rules are at a relatively
high level of abstraction, closer to human understandability, especially by business domain
experts who are typically non-programmers. Second, rules are relatively easy to modify
dynamically and by non-programmers.

Rules provide an expressive yet automatically executable form for the substance of these
specifications. Rules with deep declarative semantics® are valuable because they help enable
business rules to be specified dynamically, i.e., at run-time, and relatively easily by business
domain experts who are non-programmers.

There are a number of different rule representations in wide deployment today. A major
challenge in communicating content between e-commerce agents is thus the heterogeneity of
rule representations (within agents/applications) to be integrated, e.g., during negotation.
In translating content via a common rule representation, deep semantics (in the sense of
declarative KR) is desirable. However, one can only hope to obtain deep semantics for
expressive cores, i.e., for the expressive cases that overlap between the source and target
rule KR’s. Beyond the cores, translation must be performed with superficial semantics.

To begin with, we are focusing on three broad families of rule representations that are cur-
rently commercially important for business rules in e-commerce. These are both executable
and practically important in the software world at large. One family is logic programs
(LP’s): including, but not limited to, Prolog. Logic programs have a general, declarative
sense; they can be forward-chaining as well as backward-chaining, and need not be a general-
purpose programming language in the manner of Prolog. Baral & Gelfond [1] gives a useful
review of declarative logic programs as a KR. Another family is production rules: descen-
dants of OPS5 [2], e.g., the public domain system Jess®. A third (relatively loose) family is

8in the sense of declarative knowledge representation, in which a set of premises entails a set of conclusions,
independent of the inferencing procedure, e.g., whether it is forward or backward direction, what its control
strategy is, etc..

http://herzberg.ca.sandia.gov/jess/ . Jess is written in Java and is an update of CLIPS

7

Event-Condition-Action (ECA) rules. Both logic programs and ECA rules are important in
commercial databases[17] [16] and related standards (including SQL). Rules in these three
families are to be found, for example, in object-oriented applications and worfklows, as well.

4 KIF and its Shortcomings for Business Rules Con-
tent

A leading candidate content language for rules is KIF. KIF is currently well along in the
ANSI standards committee process. Supporting or endorsing KIF is also being considered
informally in several other standards efforts relevant to agent communication, e.g., FIPA.

KIF has pioneered the concept of a KR content language for agent communication. That
said, there are some important differences between (1) the goals of the KIF effort and (2) our
goals for a business rules content language (for practical e-commerce agents’ communication).
The KIF effort’s goals were initially to facilitate exchange among research systems rather
than commercial systems. Also, it aimed to help at least somewhat with exchange of many
forms of knowledge beyond just rules. It was designed with an orientation towards knowledge
as a non-executable specification as much or more than towards knowledge as executable.
Finally, the KIF effort has focused more on a highly inclusively expressive representation
than on ease of developing translators in and out of that representation.

KIF is a prefix'® version of first-order predicate calculus (i.e., first-order classical logic)
with extensions to support the “quote” operator (thus enabling additional expressiveness akin
to that of classical higher-order logic) and definitions. The language description includes a
specification not only for its syntax but also for its semantics. Its deep semantics is based on
classical logic, which is logically monotonic. Its primary focus (in terms of deep semantics)
is on first-order logic, which is highly expressive and computationally intractable for the
general case (as well as logically monotonic).

KIF can express a broad class of rules. However, it has several important shortcomings as
a content language for business rules in e-commerce. In particular, it has two shortcomings
of its fundamental knowledge representation.

(1) KIF is a logically monotonic KR. KIF cannot conveniently express rules that are
logically non-monotonic, e.g., rules that employ negation-as-failure or default rules.
Thus it cannot conveniently express conflict handling, e.g., where some rules are subject
to override by higher-priority conflicting rules, e.g., by special-case exceptions, by
more-recent updates, or by higher-authority sources. Most commercially important rule
systems employ non-monotonic reasoning as an essential, highly-used feature. Typically,
they employ some form of negation-as-failure. Often they employ some form of prioritized
override between rules, e.g., the static rule sequence in Prolog or the computed rule-activation
sequence/ “agenda” in OPS5-heritage production rule systems.

Early in the KIF effort, incorporating logical non-monotonicity was considered seriously.
However, no technical agreement could be reached on an approach, largely because of its

(http://www.ghg.net/clips/CLIPS.html).
0The current draft ANSI specification of KIF (http://logic.stanford.edu/kif/dpans.html) also includes an
infix version of KIF intended for human consumption rather than automated exchange.

ambitions for great expressive generality in the direction of full classical logic. The current
ANSI draft proposal of KIF is logically monotonic.

(2) KIF is a pure-belief KR. KIF cannot conveniently express “procedural attach-
ments”: the association of procedure calls (e.g., a call to a Java method Procuremen-
tAuthorization.set ApprovalLevel) with belief expressions (e.g., a logical predicate such as
approval AuthorizationLevel). Procedural attachments are crucial in order for rules to have
actual effect beyond pure-belief inferencing, i.e., for actions to be invoked/performed as a
result after rule conclusions are inferred. While procedures can of course be invoked by
an application based on KIF premises or conclusions, KIF provides no way to express this,
and its semantics do not treat the connection to such invocations, i.e., to such procedural
attachments.

5 A Logic Program Based Business Rule Content KR

5.1 Overall Approach: Ordinary, Courteous, and Situated LP’s

We identified two fundamental shortcomings of KIF as a KR for business rules content:
logical non-monotonicity and procedural attachments. In this paper, we focus on selecting a
business rules content KR to remedy the first shortcoming only. We select a business rules
content KR to enable logical non-monotonicity, including two steps. (1) Negation-as-failure,
a basic form of non-monotonicity, is the first step. (2) Prioritized override between conflicting
rules (i.e., prioritized default rules and conflict handling) is the second step.

Our approach is to use ordinary Logic Programs to provide the first step. By Logic
Program, we mean in the declarative sense, e.g., c¢f. [1]!!. Inferencing for LP’s can be run
forward or backward, using a variety of control strategies and algorithms; Prolog, by contrast,
does backward-only inferencing, using a particular control strategy. Ordinary LP’s (OLP’s)
offer several other significant advantages beyond enabling non-monotonicity, including: com-
putational tractability, wide practical deployment, semantics shared with other practically
important rule systems, relative algorithmic simplicity, yet considerable expressive power.

Our approach is then to use Courteous Logic Programs (CLP’s), an expressive ex-
tension of ordinary Logic Programs, to provide the second step. Courteous Logic Programs
[6] [8] [7] provide a computationally low-overhead, semantically-clean capability for priori-
tized handling of conflicts between rules. CLP’s permit classical negation; syntactically they
also permit optional rule labels which are used as handles for specifying prioritization.

In current work, we are also enabling procedural attachments as well — in a semantically
clean manner (i.e., declaratively in a particular well-defined sense). Our approach to en-
abling procedural attachments is based on Situated Logic Programs, another expressive
extension of ordinary logic programs. Situated Logic Programs [5] [9] hook beliefs to drive
procedural API’s. Procedural attachments for testing conditions (sensing) and performing
actions (effecting) are specified as part of the knowledge representation: via sensor and ef-
fector link statements. Each sensor or effector link associates a predicate with an attached

HThey call an ordinary LP: a “general” LP. This is also known in the literature as a “normal” LP, and
also sometimes as (declarative) pure Prolog.

procedure.!?

5.2 Ordinary LP’s: Core & Advantages

Our point of departure for the business rules content KR is pure-belief ordinary LP’s. “Pure-
belief” here means without procedural attachments.

OLP’s include negation-as-failure and thus support basic non-monotonicity. Yet they are
relatively simple, and are not overkill representationally. OLP’s are also relatively fast com-
putationally. Under commonly-met restrictions (e.g., no logical functions of non-zero arity,
a bounded number of logical variables per rule), inferencing (i.e., rule-set execution) in LP’s
can be computed in (worst-case) polynomial-time. By contrast, under similar restrictions,
first-order-logic (cf. KIF) inferencing is (co-)NP-hard.

To obtain deep semantics that is/will-be shared widely among heterogeneous rule systems,
however, the core must be an expressively restricted case of OLP’s. Our alpha-version
choice of this expressive restricion is: “predicate-acyclic” (pure-belief) OLP’s — below, we
discuss this in more detail. This core has a deep semantics that is useful, well-understood
theoretically and highly declarative. Moreover, this semantics reflects a consensus in the
rules representation community beyond just the LP community: this semantics is widely
shared among all three of the rule system families we mentioned in subsection 3.2.

This core is also relatively computationally efficient, in the sense we described above.

The unrestricted case of declarative OLP’s, with unrestricted recursion/cyclicity (in a
sense explained below) interacting with negation-as-failure, has problems semantically, is
more complex computationally and, perhaps even more importantly, is more difficult in
terms of software engineering. It requires more complicated algorithms and is not widely
deployed.

OLP’s have been widely deployed practically, in contrast to full first-order-logic which
has not been. Moreover, there is a large population of software developers who are familiar
with Prolog and OLP’s, in contrast to general first-order-logic theorem-proving for which
there is not.

5.3 Ordinary LP’s: Semantics & Recursion

Ordinary LP’s have been well-studied, and have a large literature (reviewed, for example,
in [1]). For several broad but restricted expressive cases, their (declarative) semantics is
uncontroversial.!> However, OLP’s have problematic semantics for the unrestricted case,
due essentially to the interaction of recursion with negation-as-failure. “Recursion” here
means that there is a cyclic (path of syntactic) dependency among the predicates (or, more
generally, among the ground atoms) through rules. 4

12Note that “link” here does not mean in the sense of an XML or HTML hypertext link.

13¢.g., for the predicate-acyclic, stratified, locally stratified, and weakly stratified cases; these form a series
of increasing expressive generality

!Tn each rule, the predicate(s) appearing in the consequent/head of the rule has a directed dependency
arc to each of the predicates appearing in the antecedent/body of the rule. Accumulating such dependency
arcs for a whole rule set, and taking their transitively closed paths, defines which predicates are dependent
on which others for a given LP.

10

There is a lack of consensus in the research community about which semantics to adopt
for the fully general case of OLP’s: e.g., well-founded semantics versus stable semantics,
etc.; these semantics coincide for the uncontroversial restricted cases but diverge beyond
that. Under the well-founded semantics, probably the currently most popular semantics, the
unrestricted case is tractable.

Our approach for an initial practically-oriented LP-based business rules content KR is
to keep to expressively restricted cases that have uncontroversial (i.e., consensus) semantics;
these have other virtues as well: e.g., they are algorithmically and computationally simpler.
More precisely, our approach is to define/expect deep semantics (including for translation
between agents) only for these restricted cases.

Our starting choice for such an expressive restriction is: predicate-acyclic, i.e., where
there are no cycles of (syntactic) dependency among predicates. This expressive restriction
can be checked syntactically with a relatively simple algorithm and with relatively low com-
putational cost. Inferencing for the predicate-acyclic case is also simpler algorithmically and
computationally than for the expressively unrestricted case.

In our XML embodiment (next section) of the LP-based content language, we define
an alpha-version DTD that is syntactically inclusive: it permits unrestricted OLP’s. It is
thus useful there to have an optional tag to indicate which semantical variant of LP’s is
intended: the DTD accordingly defines an optional “documentation” link which can be used
to specify the intended semantics (e.g., well-founded versus stable). For the alpha-version,
our approach is to choose the well-founded semantics to be the default semantics for the
expressively unrestricted case.

5.4 Courteous Logic Programs

Courteous LP’s expressively generalize OLP’s by adding the capability to conveniently ex-
press prioritized conflict handling, i.e., where some rules are subject to override by higher-
priority conflicting rules. For example, some rules may be overridden by other rules that are
special-case exceptions, more-recent updates, or from higher-authority sources. Courteous
LP’s facilitate specifying sets of rules by merging and updating and accumulation, in a style
closer (than ordinary LP’s) to natural language descriptions.

Courteous LP’s also expressively generalize ordinary LP’s permit classical-negation to
appear in head (i.e., consequent) or body (i.e., antecedent) literals (negation-as-failure must
appear outside, not inside, the scope of classical-negation). They also permit rules to have
optional labels, which are used as handles for specifying priorities. A syntactically-reserved
(but otherwise ordinary) predicate overrides is used to specify prioritization. Priorities are
represented via a fact comparing rule labels: overrides(labl, lab2) means semantically that
a rule having label labl has higher priority than another rule having label lab2. If two such
rules conflict, then the rule with the higher priority will win the conflict; the lower priority
rule’s head will not be concluded.

The prioritization specified is a partial ordering, rather than a total ordering. Classical
negation is enforced: p and classical-negation-of-p are never both concluded, for any belief
expression p.

In the alpha-version business rules content KR (BRML), the Courteous LP KR is also
expressively restricted in two further regards cf. [6]: (1) priority is specified via ground

11

facts only, and (2) priority is specified to be a strict partial order. Elsewhere[7], we give
an expressive generalized version of Courteous LP’s that relaxes these restrictions and the
predicate-acyclicity restriction. In current work, we are further expressively generalizing
Courteous LP’s [8].

Courteous LP’s have several virtues semantically and computationally. A Courteous LP
is guaranteed to have a consistent, as well as unique, set of conclusions. Priorities and
merging behave in an intuitively natural fashion. Execution (inferencing) of courteous LP’s
is fast: only relatively low computational overhead is imposed by the conflict handling.

From a software engineering viewpoint as well, CLP’s are a relatively straightforward
extension of OLP’s. A CLP can always be tractably compiled into a semantically
equivalent OLP — indeed, we have implemented CLP’s using such a “courteous compiler”
[7] [8].

Detailed computational complexity analysis for courteous LP inferencing and the cour-
teous compiler is given in [6] and [7]; next, we summarize that analysis. The complexity
of courteous compilation is worst-case quadratic, both in time and in output size. Suppose
the input LP, having size n, is either ground or Datalog (no logical functions of more than
zero arity), and has an upper bound v on the number of logical variables appearing in any
rule. As we mentioned earlier, the worst-case time complexity of inferencing in OLP’s under
these restrictions is tractable (i.e., polynomial). Courteous LP inferencing then has the same
worst-case time and space complexity as: OLP inferencing where the bound v on the number
of variables per rule has been increased to v + 1.

There are several other formalisms for prioritized LP’s that have similar syntax to Cour-
teous LP’s but different semantics in regard to conflict handling (see [6] [7] for a review). A
direction in our current work is to explore this dimension of heterogeneity.

5.5 Relationship to KIF; Discussion

In this subsection, we discuss how the alpha-version business rules content KR, i.e., CLP cf.
[6] encoded in XML as BRML, relates to KIF.

Syntactically, the alpha CLP adds two (optional) features to OLP: classical negation
and rule labels. KIF permits classical negation but not negation-as-failure. Also KIF re-
markably lacks rule labels (or rule names/id’s), even though this is rather routine as a basic
naming/scoping mechanism in rule specification systems and many programming languages.
Syntactically, the alpha CLP thus adds two (optional) features to KIF: negation-as-failure
and rule labels.

Syntactically, OLP and first-order-logic/KIF overlap to a considerable degree: OLP with-
out negation-as-failure is logically monotonic!®. Syntactically and semantically, such mono-
tonic OLP is simply Horn and is thus a restricted case of first-order logic/KIF. Semanti-
cally, OLP entailment /inferencing is sound but incomplete when compared to first-order-
logic (FOL). The incompleteness can be described as: an OLP’s entailed conclusions are
equivalent to a set of ground atoms.

Syntactically, CLP and FOL/KIF overlap to an even more considerable degree: CLP

15when one interprets lack of membership in the minimal/least model of the OLP as corresponding to
classical non-entailment rather than to classical falsity

12

without negation-as-failure is logically monotonic. Such monotonic CLP with its labels
omitted or ignored is thus syntactically a restricted case of FOL/KIF. Semantically, a mono-
tonic CLP may contain conflict; we say it is “classically consistent” or “conflict free” when
it is consistent when viewed as FOL. Semantically, a consistent monotonic CLP is sound but
incomplete when compared to FOL. The incompleteness is similar to that of OLP; it can be
described as: a CLP’s entailed conclusions are equivalent to a set of ground classical literals.

6 XML Embodiment: Business Rules Markup Lan-
guage

Just as we have defined an XML encoding for ACL messages in Section 2.3, we have defined
an XML encoding for CLP rulesets. We refer to this language as Business Rules Markup
Language (BRML). BRML inherits the deep semantics of CLP.

Figure 4 gives an example of a single-rule CLP ruleset, in BRML. Figure 5 gives the
(alpha) BRML DTD. The XML encoding extends the pure ASCII syntactic representation of
CLP (not shown here for reasons of space and focus) with parsing information (and eventually
with various optional links). The optional documentation attribute in the BRML DTD could
point to a link which has information such as the semantical variant of the language.

In the draft DTD shown, we do not yet allow a predicate (or another token such as a
logical constant or function, etc.) to have an associated link, because here we are focused on
specifying the basic XML encoding of CLP. However, we plan to permit such links: e.g., the
loyalCustomer predicate, for example, could then point to a URL containing a document
that provides an account in natural language of what the particular company considers a
loyal customer. Or, in the case of the example of Figure 2, the particular laptop for sale
could include a linked picture and a URL with the full natural-language description of the
laptop’s technical specification.

The advantages of an XML encoding for business rules content are similar to those
for ACL that we discussed in Section 2. As compared to plain ASCII text, XML is easier to
automatically parse, generate, edit, and translate: because there are standard XML-world
tools for these tasks. The hyper-text (i.e., links) aspects of XML are also useful. For example,
a rule set may via XML have some associated URL’s which point to documents describing
that rule set’s knowledge representation or authors or application context. Or it may have
associated URL’s which point to tools for processing that rule set, e.g., to execute it, edit it,
analyze it, or validate it (syntactically or semantically). Particularly useful for our nearer-
term purposes is that an associated URL may point to documents describing the semantics
and algorithms for translator services or components, as well as to translator tools and
examples. Representing business rules in XML has a further advantage: it will complement
domain-specific ontologies (i.e., vocabularies) available in XML. Many such ontologies exist
already, and many more are expected to be developed in the next few years, including in
e-commerce domains.

13

Further discussion of our DTD

Actually, our BRML DTD permits a syntactic superset of our alpha expressive core, i.e. a
superset of CLP cf. [6]. Applications using the BRML need to perform additional “valida-
tion”, i.e., checking of syntactic restrictions, beyond what is furnished by XML parsers that
validate with respect to the DTD. However, such additional syntactic validation would be
necessary even if the DTD was as “tight” as XML made possible; various other conditions
such as predicate-acyclicity are impractically difficult (if not impossible) to capture in a
DTD.

As a syntactic convenience, we permit the OR connective and nested sub-expressions to
appear in the body, and we permit the AND connective to appear in the head. This does
not change the essential expressiveness of OLP or CLP (see, e.g., [12]) '°.

It appears fairly straightforward to extend our DTD in stages so as to express full first-
order logic and then full KIF. A direction for future work is to create a DTD, maximally
compatibly with BRML, that expresses full KIF.

7 Implementation

We have a running prototype implementation of ACML, and of BRML and Courteous
LP’s as a Java library. Based on the DTD’s we gave earlier, this includes encoding and
parsing in/out in both XML and ASCII (including KIF for the content). It also includes
translators to two other ASCII rule representations in the logic program family, used by
previously existing OLP inferencing engines built by others and implemented in C. One is
backward-direction: XSB, by David Warren et al, http://www.cs.sunysb.edu/~sbprolog/ .
The other is exhaustive forward-direction: Smodels (first version), by Ilkka Niemela and
Patrik Simons, http://saturn.hut.fi/html/staff/ilkka.html . All the encoding, parsing, and
translating preserves the deep semantics of the alpha core that we described in Section 5.
The implementation further includes a courteous compiler, and a rule inferencing/execution
engine.

The prototype implementation of BRML and Courteous LP’s will made publicly available
via the Web in spring 1999. An overview of it, with long example, is given in [8], and its
courteous compiler algorithms are given in [7].

8 Future Work: Summary

Future work includes extending this XML content language expressively in multiple direc-
tions. One such direction is to cover full KIF; another is to incorporate semantically-clean
procedural attachments, cf. the existing Situated Logic Programs KR; a third is to expres-
sively generalize the Courteous LP conflict handling aspects .

though in the worst-case depending on inferencing engine implementation this may cost exponential
time/space caused by converting to the representation without OR’s

14

Acknowledgements

Hoi Y. Chan (IBM T.J. Watson Research Center), Michael Travers (IBM T.J. Watson Re-
search Center), and Xiaocheng Luan (of UMBC, while at IBM T.J. Watson Research Center),
contributed to the current implementation of the CLP KR, BRML, and the associated trans-
lators. Michael Travers’ contribution was especially to the XML embodiment, and uses a
tool he wrote, called Skij, which implements the Scheme programming language in Java.
Hoi Y. Chan and Miao Jin (UMBC) contributed to the XML DTD’s. Tim Finin at UMBC
contributed to the formulation of our ideas for the XML embodiment of the FIPA ACL,
which he first presented at the FIPA meeting in Dublin, in July 1998.

References

[1] Chitta Baral and Michael Gelfond. Logic programming and knowledge representation.
Journal of Logic Programming, 19,20:73-148, 1994. Includes extensive review of litera-
ture.

[2] Thomas Cooper and Nancy Wogrin. Rule-based Programming with OPS5. Morgan
Kaufmann Publishers, San Francisco, CA, 1988. ISBN 0-934613-51-6.

[3] Adam Farquhar, Richard Fikes, and James Rice. The ontolingua server: A tool for
collaborative ontology construction. In KAW96, November 1996.

[4] M. Genesereth and R. Fikes et. al. Knowledge interchange format, version 3.0 reference
manual. Technical report, Computer Science Department, Stanford University, 1992.

[6] Benjamin N. Grosof. Building Commercial Agents: An IBM Research Per-
spective (Invited Talk). In Proceedings of the Second International Conference
and Ezhibition on Practical Applications of Intelligent Agents and Multi-Agent
Technology (PAAMY97), P.O. Box 137, Blackpool, Lancashire, FY2 9UN, UK.
http://www.demon.co.uk./ar/PAAM97, April 1997. Practical Application Company
Ltd. Held London, UK. Also available as IBM Research Report RC 20835 at World
Wide Web http://www.research.ibm.com .

[6] Benjamin N. Grosof. Prioritized Conflict Handling for Logic Programs. In Jan Maluszyn-
ski, editor, Logic Programming: Proceedings of the International Symposium (ILPS-97),
pages 197-211, Cambridge, MA, USA, 1997. MIT Press. Held Port Jefferson, NY, USA,
Oct. 12-17, 1997. http://www.ida.liu.se/~ilps97. Extended version available as IBM Re-
search Report RC 20836 at http://www.research.ibm.com .

[7] Benjamin N. Grosof. Compiling Prioritized Default Rules Into Ordinary
Logic Programs. Technical report, IBM T.J. Watson Research Center,
http://www.research.ibm.com , search for Research Reports; P.O. Box 704, Yorktown
Heights, NY 10598, USA, May 1999. IBM Research Report RC 21472.

15

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Benjamin N. Grosof. DIPLOMAT: Compiling Prioritized Default Rules Into Ordinary
Logic Programs, for E-Commerce Applications (extended abstract of Intelligent Sys-
tems Demonstration). In Proceedings of AAAI-99, San Francisco, CA, USA, 1999.
Morgan Kaufmann. Extended version available in May 1999 as an IBM Research Re-
port RC21473, http://www.research.ibm.com, search for Research Reports; P.O. Box
704, Yorktown Heights, NY 10598, USA.

Benjamin N. Grosof, David W. Levine, Hoi Y. Chan, Colin P. Parris, and Joshua S.
Auerbach. Reusable Architecture for Embedding Rule-Based Intelligence in In-
formation Agents. In Proceedings of the ACM Conference on Information and
Knowledge Management (CIKM-95) Workshop on Intelligent Information Agents,
http://www.cs.umbc.edu/iia/, December 1995. Published via the World Wide Web.
Held Baltimore, MD. Paper also available as IBM Research Report RC 20305. World
Wide Web http://www.research.ibm.com .

Thomas R. Gruber. A translation approach to portable ontology specifications. Knowl-
edge Acquisition, 2:199-220, 1993.

Yannis Labrou, Tim Finin, and Yun Peng. Agent communication languages: the current
landscape. IEEFE Intelligent Systems, May 1999.

J. W. Lloyd. Foundations of Logic Programming, second edition. Springer, Berlin,
Germany, 1987.

R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, and W. Swartout.
Enabling technology for knowledge sharing. AI Magazine, 12(3):36-56, Fall, 1991.

Ramesh S. Patil, Richard E. Fikes, Peter F. Patel-Schneider, Don McKay, Tim Finin,
Thomas Gruber, and Robert Neches. The darpa knowledge sharing effort: Progress
report. In Michael Huhns and Munindar Singh, editors, Readings in Agents. Morgan
Kaufmann Publishers, 1997. (reprint of KR-92 paper).

Daniel M. Reeves, Benjamin N. Grosof, Michael Wellman, and Hoi Y. Chan. To-
ward a Declarative Language for Negotiating Executable Contracts. In Proceedings of
the AAAI-99 Workshop on Artificial Intelligence in Electronic Commerce (AIEC-99),
Menlo Park, CA, USA; http://www.aaai.org , search for workshop Technical Reports;
AIEC-99 Workshop Web page is http://www.cs.umbc.edu/aiec/;, 1999. American As-
sociation for Artificial Intelligence (AAAT Press). Also available in May 1999 as IBM
Research Report RC 21476, http://www.research.ibm.com , search for Research Re-
ports; P.O. Box 704, Yorktown Heights, NY 10598, USA. Earlier version appeared at
the IBM Institute for Advanced Commerce Workshop on Internet Negotation Technolo-
gies, http://www.ibm.com/iac/ .

Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, volume 1.
Computer Science Press, Rockville, Maryland, 1988.

Jeffrey D. Ullman and Jennifer Widom. A First Course in Database Systems. Prentice-
Hall, 1997.

16

[18] Michael Wooldridge. Verifiable semantics for agent communication languages. In Inter-
national Conference on Multi-Agent Systems (ICMAS’98), Paris, France, 1998.

17

(inform
:sender jklabrou
:receiver grosof
:content (CPU libretto50 pentium)
:ontology laptop
:language kif)

Figure 1: A FIPA ACL message.

<?xml version='"pre-1.0"7>
<!DOCTYPE fipa_acl SYSTEM "fipa_acl.dtd">
<message>
<messagetype>
not-understood
</messagetype>
<messageparameter>
<sender link="http://www.cs.umbc.edu/~jklabrou">
jklabrou
</sender>
</messageparameter>
<messageparameter>
<receiver link="http://www.research.ibm.com/people/g/grosof/">
grosof
</receiver>
</messageparameter>
<messageparameter>
<ontology link="http://www.cs.umbc.edu/” jklabrou/ontology/laptop.html">
laptop
</ontology>
</messageparameter>
<messageparameter>
(CPU librettob0 pentium)
</content>
</messageparameter>
<messageparameter>
<language link="http://www.stanford.edu/kif.html">
kif
</language>
</messageparameter>
</message>

Figure 2: An example of a FIPA ACL message encoded in XML, i.e., expressed in ACML.
Notice that the XML encoding carries additional information as compared to the canonical
ASCII encoding: in particular, links (as well as parsing information).

18

<?xml version="pre-1.0" encoding="US-ASCII"?7>

<!ENTITY J messagetp "accept-proposal | agree | cancel |cfp |confirm
disconfirm | failure | inform | inform-if | inform-ref |
not-understood | propose | query-if | query-ref | refuse |
reject-proposal | request | request-when | request-whenever |
subscribe'">

<!ELEMENT message (messagetype, messageparameter*)>

<!ELEMENT messagetype (%messagetp;)>

<!ELEMENT messageparameter (sender | receiver | content | reply-with |
reply-by| in-reply-to | envelope | language | ontology | protocol |

conversation-id)>

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ELEMENT
<VATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT

<!ELEMENT

sender (agentname)>
sender link CDATA #REQUIRED >

receiver (agentname)>
receiver link CDATA #REQUIRED >

content (#PCDATA)>
content link CDATA #REQUIRED >

reply-with (#PCDATA)>

reply-by (#PCDATA)>

in-reply-to (#PCDATA)>

in-reply-to link CDATA #REQUIRED >

(#PCDATA)>
(#PCDATA)>
link CDATA #REQUIRED >

envelope
language
language

ontology (#PCDATA)>
ontology link CDATA #REQUIRED >

(#PCDATA)>
link CDATA #REQUIRED >

protocol
protocol

conversation-id (#PCDATA)>

agentname (#PCDATA)>

Figure 3: A DTD for ACML. The DTD is in draft form.

19

Let C; be a simple example CLP ruleset that contains the single rule

giveDiscount (percent5 , 7Cust) <- shopper(?Cust) and loyalCustomer(7Cust).

, shown here in ASCII encoding. This rule says to give a 5% discount to loyal customers. The
CLP ruleset C; can be expressed in BRML as follows:

<?xml version="1.0"7>
<!DOCTYPE brml SYSTEM "brml.dtd">
<clp>
<erule rulelabel="emptyLabel">
<head>
<cliteral predicate="giveDiscount">
<function name="percent5"/>
<variable name="7Cust"/>
</cliteral>
</head>
<body>
<and>
<fcliteral predicate="shopper">
<variable name="7?Cust"/>
</fcliteral>
<fcliteral predicate="loyalCustomer">
<variable name="7?Cust"/>
</fcliteral>
</and>
</body>
</erule>
</clp>

Figure 4: An example of a single-rule CLP ruleset expressed in BRML.

20

<?7xml version="1.0" encoding="US-ASCII"?7>

<!ENTITY % bool "yes|no">

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ATTLIST

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ATTLIST
<!ATTLIST
<!ELEMENT
<!ATTLIST
<VATTLIST
<VATTLIST
<!ELEMENT

<!ELEMENT

<!ELEMENT
<!ATTLIST

<!ELEMENT
<'ATTLIST

<!ELEMENT
<!ATTLIST

clp (erule*, mutex*)>
documentation link CDATA #IMPLIED>

erule (head, body?)>
erule rulelabel CDATA #IMPLIED>

mutex (cliteral, cliteral)>

head (cliteral | and)>

body (fcliteral | and | or)>

cliteral ((function|variable|string)*)>
cliteral predicate CDATA #REQUIRED>
cliteral cneg (%bool;) #IMPLIED>

fcliteral ((function|variable|string)*)>
fcliteral predicate CDATA #REQUIRED>
fcliteral cneg (%bool;) #IMPLIED>
fcliteral fneg (%bool;) #IMPLIED>

and ((cliteral|fcliteralland|or), (cliteral|fcliteral|and|or)+)>

or ((fcliterall|and|or), (fcliteralland|or)+)>

function ((function|variable|string)*)>
function name CDATA #REQUIRED>

variable EMPTY>
variable name CDATA #REQUIRED>

string EMPTY>
string value CDATA #REQUIRED>

Figure 5: A DTD for BRML. The DTD is in draft form.

21

