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Abstract Modern cryptographic protocols require good

entropy sources. Unfortunately, many networked devices lack

subsystems dedicated to this task, being potentially suscepti-

ble to random number generator (RNG) attacks. Yet, most of

these systems allow software upgrades and host communica-

tion ports, providing the option of a retrofit. This work illus-

trates how chaotic dynamics can be used to design a sub-10$

entropy source capable of an over 48kbit/s rate and offering

multiple serial communication abilities. Operation is based on

a standardmicrocontroller and exploits a loop built aroundone

of its analog to digital converters (ADCs). The design offers

self-testing features and enables an experimental validation of

some recent results on the choice of the best state quantization

function to employ when using chaotic maps as RNGs.

Keywords True-RNG � Chaotic map � Hidden Markov

process � Analog to digital converter (ADC) �
Microcontroller

1 Introduction

One of the major areas of concern in information technology

is certainly that of security. The issue is aggravated by the

recent trend of networking an immense number of devices

that were meant to operate in isolation until a recent past.

Forecasts suggest that by 2020 more than 25 billion devices

will be interconnected [1]. This internet of things (IoT) can

bring smartness to many environments whose items gain the

ability to cooperate but, at the same time, creates an immense

attack surface [2]. Moreover, many devices lack important

security-oriented subsystems since the IoT paradigm often

applies to mundane items for which cost strongly influences

engineering and awareness on security is still building up. As

a consequence, a legacy of security-critical networked

apparatuses is being created, probably to be long-lasting

since humble devices are usually replaced only when they

break. This outlook is supported by the observation that

already half of the networking devices found in business are

on the brink of obsolescence [3]. Such a dangerous phe-

nomenon can be contrasted in two major ways: (i) conceiv-

ing security subsystems that can be used to economically

upgrade/augment current designs; (ii) implementing secu-

rity subsystems that can be added as low-cost retrofits to

current devices.

Both strategies are sufficiently obvious when dealing

with software units, less so for subsystems that must nec-

essarily be hardware based. This is the case of good ran-

dom number generators (RNGs), that are required by

virtually all applications based on cryptography [4]. Poor

unpredictability results in potential susceptibility to RNG

attacks, that cannot be completely excluded unless one

employs generators based on physical entropy sources [5],

namely true-RNGs (TRNGs). Such attacks should not be

underestimated since a significant list of past incidents

already exists [6]. TRNGs and hardware entropy sources

are now becoming mainstream in computers [7] but are still

missing from most low-cost/embedded devices.

This paper illustrates the design of a chaos based entropy

source suitable for TRNGs. The proposal is declined in two
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forms. The first one is a self-contained plugin applicable as a

retrofit to existing systems on field. A prototype with

Universal Serial Bus (USB) connection is shown in Fig. 1.

Attachments based on Inter-Integrated Circuit (I2C), Serial

Peripheral Interface (SPI), or Universal Synchronous/

Asynchronous Receiver/Transmitter (USART) data trans-

fers are also possible. The second form consists in a sche-

matic upgrade that a manufacturer can apply during revision

of existing productswithminimal disruption. In the first case,

the estimated cost is below10$,while in the second one it can

fall below 5$, subject to the availability of a microcontroller

(lC) with spare capacity in the product. In either case, the

entropy rate can be in the few tens kbit/s depending on the

lC (with a PIC18F2550, rates in excess of 48kbit/s have been

experimentally observed1).

The market for retrofittable entropy sources is growing,

with solutions pricing approximately in the 40–1000$

range (i.e., at far higher costs, even considering selling

margins). Closest competitors include the TRNG98 mod-

ules [8], the Simtec Entropy Key [9], the OneRNG [10], the

NeoG FTS-01. The public domain Infnoise TRNG design

[11] is also worth mentioning. Yet, the current proposal

differs from all the others in being suitable not just as a

pluggable USB dongle, but also as a design augmentation

for existing products. Another distinguishing note is the use

of chaotic dynamics. Most alternatives rely on the ampli-

fication of noise on a specific electronic component (a

resistor, an avalanche diode, etc.). This makes shielding

mandatory as the latter may also become a noise injection

point for tampering. Conversely, the use of chaos makes

the system inherently less susceptible to intentional inter-

ference and side channels attacks [12].

Chaotic dynamics has already been used in a large number

of engineering applications, ranging from spread spectrum

communication [13] to signal synthesis [14], from electro-

magnetic interference reduction [15] to analog testing [16,

17], etc. Certainly, this is not the first time that chaos is

proposed for RNGs [18–20]. Incidentally, also the above

mentioned Infnoise TRNG is ultimately chaos-based, even if

the authors fails to recognize it. However, the current pro-

posal can reuse an analog to digital converter (ADC) readily

available on a lC, which simplifies the implementation and,

at the same time, makes it more flexible. The use of an ADC

as the main building block for a chaotic TRNG was first

introduced in [21] and has already seen experimental vali-

dation but, until now, only on full custom integrated circuits

with specially crafted pipeline data converters [12]. The

present design, that made its debut in [22], shows the pos-

sibility of relying on a commercial lC ADC with a tradi-

tional successive approximation architecture. The approach

takes advantage of the theory developed in [17, 21, 23] and is

consistent with recent ideas on how TRNG should be vali-

dated and designed for test [24–26].With respect to [22], this

followup illustrates more design options and highlights how

the flexibility offered by the use of a lC ADC enables an

experimental verification of some recent concepts on the

fundamental limits of chaotic maps as RNGs [27] and on the

choice of the bestway to deliver a digital output from themap

analog state.

The paper is organized as follows:

– Section 2 provides background material. It reviews

RNG security requirements and discusses TRNG

architectures and entropy source classes;

– Section 3 describes the theory of operation of the

proposed entropy source;

– Section 4 considers the implementation of the proposed

entropy source, also dealing with robustness and

testability;

– Section 5 focuses on the design of alternative (and

better) ways to obtain a digital output from the chaotic

map;

– Section 6 provides experimental results, confirming

correct operation and proving the applicability of some

recent results on chaos based entropy sources.

2 Security, RNGs, and entropy sources

The security of cryptographic systems relies on the exis-

tence of some secret data known to authorized users and

unpredictable by others. To warrant unpredictability, ran-

dom strings are often employed (e.g., in keys, salts,

nounces, challenges, initialization vectors, and other one-

time quantities). In many cases, recommended lengths for

these strings are precisely based on the assumption of a

random synthesis (leading to equidistributed and indepen-

dent bits). However, the generation of these strings is not

trivial, because, by nature, digital systems cannot behave

randomly. The traditional solution has been to substitute

Fig. 1 Prototype of self-contained entropy source with USB port.

Diagnostic LEDs, control switches, trimmers, test-pads, and a wide

SOIC lC package significantly enlarge the layout

1 Considering the overhead of USB data transmission.
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computational complexity for real unpredictability by the

use of so called pseudo-RNGs (PRNGs), namely finite state

automata capable of expanding short seeds into long

sequences with good statistical features [25, 28]. A well

designed automaton makes the estimation of the current

state from past outputs an exceedingly intensive compu-

tational task, so achieving practical security. It is worth

recalling that discovery of the state by an attacker would

result in a disclosure of all the future ‘‘random’’ quantities

with a full breakage of the cryptographic measures [4]

based on them. Unfortunately, with PRNGs, such an event

cannot be thoroughly excluded and some high-impact

incidents have happened in the past (typically, because of

bad automata, bad seeding or information leaks) [6].

The ultimate solution is provided by TRNGs, that typi-

cally consist of a physical device (i.e., with analog nature)

capable of expressing a noisy behavior, followed by an

acquisition (digitalization) mechanism, and by a digital

processing stage, often indicated as entropy distiller, as in

Fig. 2. The first block has the fundamental role of harvesting

information from some phenomena so intricated at the

microcosmic level to appear random at the macroscopic

scale [22, 24]. Together, the physical device and the quan-

tization mechanism constitute an entropy source. At its

output, the statistical features (distribution and high order

moments) may still be not perfect and the entropy rate may

be lower than the bit rate (the concept is formalized in

Sect. 5). In [24, 25], data at this point is indicated as digitized

analog signal (DAS) random numbers. Post-processing is

then applied to de-bias and de-correlate the sequences. The

amount of post-processing can vary significantly, depending

on the quality of the entropy source. The key operation is

mixing, which generally implies a dynamical processing.

Data rate reductions are also typically applied to match the

bit and information rates, otherwise it is theoretically

impossible to have true random data [27, 29, 30]. Hence, the

higher the entropy per bit in the DAS numbers, the better.

Practical post-processors often involve hash functions or

PRNGs constantly re-seeded from the DAS words. Follow-

ing [24, 25], the entropy distillation delivers so-called in-

ternal random numbers. Finally, some output logic lets

random bits be pulled from TRNG as needed, delivering

external random numbers.

Nowadays, big players of information technology tend

to incorporate full fledged TRNGs in their larger and newer

systems [7, 31]. However, being the entropy source the

most delicate and expensive part, many low-cost or legacy

systems still compromise on it. Frequently, software solu-

tions are employed capable of gathering entropy from

peripherals that end up ‘‘observing’’ physical phenomena

complex enough to be assumed random as a side effect of

their primary duty. For instance, many operating systems

have access to mouse movements, key press timings, hard

disk latencies, etc, which are all highly irregular quantities.

By their use, one gets what some recent standards call non-

physical TRNGs [25]. This is somehow a misnomer, since

the data is ultimately derived from physical sources, yet the

latter are not co-designed with the rest of the system, nor

fully under its control. In this setup, one generally has

multiple entropy sources with the distiller taking the

additional role of mixing among them. This works fairly

well for standard computers, but may fail badly for little

devices in an IoT scenario. In fact, the latter may lack most

of the peripherals needed to collect entropy (for instance,

little routers, networked thermostats, and similar systems

do not have mouses, keyboards or hard-disks). With this,

entropy distillation may become counterproductive, giving

a false sense of security while one falls back to a PRNG

behavior due to absence of inputs.

Clearly, the only real fix is to bring physical TRNGs

also to humble devices. Doing so in the form of hardware

retrofits requires a careful weighing the available options.

The most straightforward physical sources are based on the

direct amplification and acquisition of noise on an elec-

tronic component, such a resistor or a junction device. This

can be effective but is inherently exposed to tampering,

since interference may be easily exchanged from genuine

noise. Hence, shields, that can be expensive and bulky, are

generally mandatory [8, 10]. Alternative forms of noise

amplification exploit the meta-stability of positive feed-

back structures, races in signal paths, or phase noise in

oscillators that mutually sample each other. The latter

techniques enable a ‘‘digital’’ design, since the analog

quantity becomes time. Furthermore, tampering is made

harder by the more indirect harvesting. Finally, one can

adopt circuits based on chaotic dynamics, which is prob-

ably the most sophisticated approach. First of all, chaotic-

RNGs replicate at the circuit level some traits, including

sensitivity to initial conditions and other stochastic features

[32, 33], that are conjectured to be at the root of random-

ness in natural systems. Secondly, they harvest noise in a

quite different way than non-chaotic sources. The latter

require some element to continuously provide new noise

samples. Conversely, chaotic sources could in principle

rely just on the uncertainty in their start-up state thanks to

sensitivity to initial conditions. In practice, noise will

Fig. 2 Basic building blocks of a TRNG
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anyway be present throughout all the operating time, but

this ends up as a bonus not strictly required for correct

operation. As a side effect, noise and interference collected

during operation normally have a very low influence on the

output quality (unless they are rather large, a case where

tampering can typically be detected with ease).

3 Operating principle of the proposed entropy
source

When one designs a chaotic source in view of engineering

applications, it makes sense to pick the simplest model for

the task, choosing among those for which mathematical

analysis tools are best developed [34]. For TRNGs, one

dimensional (1-D) maps are particularly appealing. These

are based on the recurrence relation

xnþ1 ¼ MðxnÞ; ð1Þ

where x is a scalar andMð�Þ is a nonlinear function that admits

a finite invariant set, here normalized to ½0; 1� with no loss of
generality. A notable mathematical tool is then given by the

Perron-Frobenius operator (PFO) PM associated toMð�Þ that
lets one observe the propagation of probability density func-

tions (PDFs) through the map [33, 34]. Namely, if x0 is drawn

in ½0; 1� according to a PDF q0ð�Þ, one can compute the PDF

associated to x1 ¼ Mðx0Þ as q1ðxÞ ¼ PM½q0�ðxÞ. The PFO is

linear. Under some relatively easy to satisfy conditions over

Mð�Þ, namely its beingmixing or exact, it can be proved that a

single invariant density �qð�Þ exists (i.e., there is one and only
one �qð�Þ for which �q ¼ PM½�q�). Furthermore, the trajectory of

the map distributes according to it for non-singular initial

conditions [34].

Among 1-D maps, it is then convenient to further restrict

to piecewise-affine Markov (PWAM) ones. For them, an

interval partitionP ¼ fI0; . . .; IP�1g of ½0; 1� exists such that:
the map is affine on all the intervals Ii; and Ii � MðIjÞ _ Ii \
MðIjÞ ¼ ; for any couple of intervals Ii, Ij (this last statement

corresponds to the requirement that the image of a partition

interval is a union of partition intervals). The PWAM

property ensures the existence of a finite-dimensional

restriction of PM to densities that are step-wise over P.
Furthermore, �qðxÞ belongs to such subset of densities, so that
it can be found via the restricted PFO. The latter can be

expressed through a kneading matrix K ¼ ðki;jÞ such that ki;j
is the fraction of Ii that is mapped into Ij, namely

ki;j ¼
lðIi \M�1ðIjÞÞ

lðIiÞ
for i; j 2 f0; . . .; P� 1g ð2Þ

where lð�Þ is the usual interval measure. For mixing or

exact PWAM maps, K can also be interpreted as the

transition matrix of a Markov chain describing the coarse

dynamics of the system, as observed through a partition-

induced quantization function qð�Þ. Clearly, the unique left
eigenvector e of K with unitary eigenvalue, normalized so

that
PP�1

i¼0 ei ¼ 1, provides the probabilities of finding the

system state xn in I0; . . .; IP�1 via its entries e0; . . .; eP�1.

Among exact PWAM maps, so-called shift maps can be

particularly appealing for RNGs. These are based on

expressions such as xnþ1 ¼ axn mod 1 where a 2 N and

a� 2. Here, the Markov partition is obtained by the mere

subdivision of [0,1] in a equally sized sub-intervals. In

practice, coarse modeling through a Markov chain can also

be done with maps that are a slight generalization of the

above, as in

xnþ1 ¼ ðaxn þ bÞmod 1; ð3Þ

where b is an arbitrary quantity. Furthermore, one can use

any partitioning of ½0; 1� in a equally sized ‘‘wrapped’’

intervals such as

Ii ¼ fx : x 2 ½0; 1� ^ aððx� pÞmod 1Þb c ¼ ig ð4Þ

with i ¼ 0; . . .a� 1 and p 2 R, as it can be easily verified by

substituting a circle on a plane for the set ½0; 1� so that intervals
naturally wrap around. In this case, one gets a uniform �qð�Þ
and an a� a matrix K whose entries are all 1=a. Figure 3

shows an example with a ¼ 3.With the conditions above, the

coarse dynamics is modeled by a chain equivalent to that

describing the cast of an ideal die with a faces. Thus, the

suitability of the model for a TRNG is obvious.

Interestingly, a map Mð�Þ as in Eq. (3) can easily be

obtained out of an ADC, as exemplified in Fig. 4. Let

fADCð�Þ and fDACð�Þ be used to indicate the static input-

output relationships of the ADC and the DAC, respectively.

For an N bit unipolar rounding-down2 ADC, within the

conversion range one should ideally have

fADCðVÞ ¼
2N

Vref

V

� �

; ð5Þ

where Vref is the reference voltage (approximately equal to

the full scale) and the quantization step is Vref=2
N . For the

complementary N bit DAC one has

fDACðmÞ ¼ m
Vref

2N
: ð6Þ

so that the quantization error, derived as in the figure, is

Verr ¼ Vin � fDACðfADCðVinÞÞ ¼ Vin �
Vref

2N
2N

Vref

Vin

� �

¼

Vref

2N
2N

Vref

Vin �
2N

Vref

Vin

� �� �

¼ Vref

2N
2N

Vref

Vin mod 1

� �

:

ð7Þ

2 Similar results can be obtained with any other converter type.
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Now, let a further block, as shown in Fig. 4(b), deliver

Vout ¼ kðVerr þ VBÞ. One gets

Vout ¼
kVref

2N
2N

Vref

Vin mod 1

� �

þ kVB ð8Þ

so that

2N

kVref

Vout � kVBð Þ ¼

k
2N

kVref

ðVin � kVBÞ þ k
2N

Vref

VB

� �

mod 1:

ð9Þ

By introducing the ðV; xÞ transform pair

x ¼ 2N

kVref

ðV � kVBÞ V ¼ kVref

2N
xþ kVB ð10Þ

it is trivial to see that Eq. (9) defines the map Mð�Þ, with
a � k and b � k2NVB=Vref . To achieve a recurrence rela-

tion such as Eq. (1), it is then sufficient to feed back Vout

into Vin through an analog register, as in Fig. 4(c) which

employs two (T/H) blocks in a master–slave arrangement.

The resulting chaotic map can be as illustrated in Fig. 5, as

long as the parameters obey some obvious constraints,

namely 2	 k	 2N (with k 2 N), VB � 0 and

kðVB þ Vref=2
NÞ	Vref , i.e., VB 	Vref=k � Vref=2

N .

The ADC can also provide the Markov partition and the

corresponding quantization function qð�Þ. In fact, while x

spans ½0; 1�, the voltages Vin and Vout span ½kVB; kðVB þ
Vref=2

NÞ� which is exactly as wide as k quantization

intervals. Thus, one can define a partition based on the

ADC output value m, by simply taking p ¼ �ð2NVB=VrefÞ,
which assures that the condition x 2 Ii can be read from m

by verifying if mmod k ¼ i. With this, the quantization

function becomes

qðxÞ ¼ mmod k: ð11Þ

4 Practical implementation on a microcontroller

The concepts illustrated so far can be translated into a lC
based architecture, taking advantage of the fact that most

lCs embed at least an ADC. Figure 6 shows a possible

implementation corresponding to the prototype in Fig. 1.

This assumes no DAC on board, and further simplifications

are possible otherwise. The proposed design implements

the ADC-DAC connection in Fig. 4(a) via the lC SPI

output. The difference block on the right hand side of

Fig. 4(a) is obtained together with the processing block in

Fig. 4(b) by a difference amplifier, so that its resistors (RA

to RF in the schematic) allow k and VB to be controlled.

The analog register in Fig. 4(c) is obtained via the cascade

of two (T/H) blocks implemented by capacitively loaded

operational amplifiers with a high-impedance (shutdown)

output mode. Clock signals for the register (2-phases) and

the DAC are provided by the lC via 3 digital output lines.

For correct operation, a voltage reference shared between

the ADC and the DAC is desirable. In the figure, a dedi-

cated component is employed, but simplifications are

possible if the lCs can output an adequate Vref .

Obviously, many variants with respect to the prototype

implementation are possible (such as the use of a different

lC, a different or a lC-embedded DAC, a different gain-

and-offset stage or analog register, etc.). In fact, two

alternative design targets can be considered:

– a standalone unit, namely an item that the final user can

retrofit on an existing system;

– a design augmentation, namely an incremental sche-

matic change that an equipment manufacturer can

apply during the revision of a product.

For the first case, a design similar to the proposed prototype

can be adopted, possibly with some of the above mentioned

(a) (b) (c)

Fig. 3 Sample shift map with a ¼ 3 (a), together with a Markov

partition (b) and the corresponding Markov chain (c). For the specific

case, b ¼ 3=40 and p ¼ �1=12

(a)

(b)

(c)

Fig. 4 Derivation of ADC quantization error via a cascaded DAC (a);

its processing (b); and the closing of the loop to create a chaotic

recurrent model (c)
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changes. A key aspect is to use a lC supporting the desired

communication standards. For instance, the availability of

an on-board USB subsystem may be desirable. Based on

the prototype bill of materials, costs can be contained

below 10$. In the second case, the key aspect is to have as

little disruption of the existing schematic as possible. If a

lC is available in the original design with a spare ADC

channel and spare computation capacity, the incremental

change can be restricted to the addition of signal processing

chain at the bottom of Fig. 6(b). By saving the lC and a

dedicated printed circuit board (PCB), costs can be lowered

below 5$.

4.1 Implementation requirements and parameter

setting

Notwithstanding the apparent simplicity of the implemen-

tation, care is required to assure correct operation and

robustness in presence of uncertainties, noise and inter-

ference. In fact, ADCs embedded in lCs can easily deliver

outputs where the least significant bits (lsbs) are erratic,

due to noise from digital lines and the dirtying of the power

supply caused by the switching operation of large logic

blocks. Unless specific arrangements are adopted (ground

planes, bypass capacitors, shields, band-limiting filters), the

effective number of bits (ENOB) can be much lower than

the nominal resolution. The point is that none of these

arrangements is desirable or even practicable for the pro-

posed application. On one hand, items such as ground

planes, shields or filters should be avoided to contain costs.

On the other hand, targeting retrofitting or design aug-

mentation, one has to deal with what is originally available

in the retrofitted/augmented unit in terms of power supply

quality, PCB arrangements, etc. In other words, setups that

are tolerant to a poor ENOB and to relatively large amounts

of noise and interference are a necessity.

The issue is addressed by assuming from the very start

an ADC resolution N̂ lower than the ENOB with some

clearance. If the ADC has N̂ bits output words and the

DAC has M̂ bits input words, the arrangement in

Fig. 4(a) can be obtained by taking N\minðN̂; M̂Þ. This is
practiced by passing to the DAC the value m̂ 
 2N�N̂

j k



2M̂�N at each cycle, where m̂ is the ADC output. Inside the

lC, this operation reduces to:

(i) pre-computing the binary word Bmask ¼ �ð2N̂�NÞ
where the negative sign is rendered by two-

complement notation (i.e., one has all ones, but

for the N̂ � N lsbs at zero);

(ii) passing at each cycle ðm̂&BmaskÞ � ðN̂ � M̂Þ to

the DAC, where the operator & indicates a bitwise

AND, and � indicates a right bit shift.

This arrangement lets one have Verr always resolved with

sufficiently good relative accuracy. Furthermore, it makes

the computation of m from m̂ as easy as the computation of

m̂ � ðN̂ � NÞ. To appreciate what suitable N values can

be, consider that conventional ADCs working inside (or

alongside) lCs can easily get ENOB values as low as 5-6

bits in absence of noise-limiting measures [35]. Thus, good

N values can be in the 3–4 bit range.

Taking N so much lower than N̂ (that can easily fall in

the 8–12 bit range), may at first appear penalizing because

it translates in a data-rate limitation. In fact, it implies the

use of small k values, which cause the random symbol

Fig. 5 Sample map obtained from the quantization error of an ADC.

For the sake of representation, N is set at 3. Furthermore, k ¼ 4,

Vref ¼ 10V, VB ¼ 0:4V

(a)

(b)

Fig. 6 lC based architecture implementing the proposed true-RNG.

Block diagram (a) and signal processing chain added to the lC (b)

160 Analog Integr Circ Sig Process (2016) 87:155–167

123



generated at each cycle to be defined on a more restricted

alphabet (so carrying less information). Yet, it must be

observed that some bounding of k to relatively low values

would anyway be required, because the proposed archi-

tectures ends up amplifying by k not just the useful signal,

but also all the errors. Furthermore, the choice of N\N̂

also comes with advantages. Notably, it increases testa-

bility (as shown in Sect. 4.2). Moreover, it provides greater

flexibility in the choice of the quantization function (as

shown in Sect. 5).

For what regards the particular choice of k, it is con-

venient to set it at a power of 2. With this, the symbol

generated at each cycle can be perfectly encoded in Nc ¼
log2ðkÞ bits, so that, under ideal conditions, the system

generates Nc random bits per cycle. If k is a power of 2,

under the partition and quantization scheme illustrated in

Sect. 3, the DAS number generated at each cycle can be

extracted from m̂ as

wn ¼ ðm̂n � ðN̂ � NÞÞ& ðk � 1Þ: ð12Þ

In the above, note that the bitwise AND operation is

equivalent to the modulus operation in Eq. (11). The pre-

vious considerations highlight once more that, once con-

straints on k are put in place to assure k\2N and robust

operation, k should be taken as large as possible within

them. For this reason, particularly good N, k couples can

be those where k ¼ 2N�1 as in N ¼ 4; k ¼ 8, or N ¼
3; k ¼ 4.

Finally, for what concerns VB, the discussion in Sect. 3

indicates that its accurate setting is not particularly impor-

tant. It is anyway advisable to pick a VB value so that the

voltage span ½kVB; kðVB þ Vref=2
NÞ� is sufficiently centered

within the ADC range. This can be useful to prevent noise

and interference from bringing the ADC into saturation.

4.2 Operation example, robustness and testability

Figure 7 shows the actual map obtained from the proto-

type. The nominal ADC resolution is N̂ ¼ 10. Two cases

are considered: in plot (a), k ¼ 4, N ¼ 3, while in plot (b),

k ¼ 8, N ¼ 4. The effects of implementation inaccuracies

are evident in the plots, including a small slope error and,

most important, a relatively large noise level causing a

dispersion of the experimental points around the ideal

trace. In fact, N ¼ 4, k ¼ 8 are limit values for safe oper-

ation at the observed noise levels and, in plot (b), the

dispersion is already large enough for the experimental

map to get more branches than expected (11 branches

instead of 9). Nonetheless, the quantization function in

Eqs. (11) and (12), can deal with this, being capable to

deliver a sensible output even when the analog variables

falls outside its nominal range. This is confirmed by the

probability distribution of the symbols b generated at each

cycle, which is always sufficiently uniform, as illustrated in

Fig. 8. The histograms are not completely flat, but one

should recall that the item under exam is a raw entropy

source, not a full TRNG. In other words, under the

schematization in Fig. 2, what is being observed are the

DAS random numbers before any entropy distillation, not

the internal/external random numbers.

Clearly, the probability distribution of symbols is not a

sufficient indicator to characterize the entropy source and

more data is provided in Sect. 6. Nonetheless, Figs. 7 and 8

are quite useful to introduce the topic of testability. Until

recent, there was no assessment criterion specifically dedi-

cated to TRNGs and statistical test suites designed for

PRNGs, such as [36, 37] were customarily used. Under the

schematization in Fig. 2, this resulted in checking only the

external (or at best internal) random numbers, because PRNG

tests are too strict for DAS numbers. Furthermore, it pushed

designers to hide DAS numbers inside opaque TRNGs

structures. Recently, the inadequacy of this approach has been

understood [24] andmore appropriate testing techniques have

been formalized in a standard [25]. The major problem that

has been evidenced is that the post-processing block in Fig. 2

can be remarkably similar to a PRNG. Consequently, it can

often provide statistically excellent outputs even if there is a

failure in the entropy source. In this case, tests succeed even if

unpredictability is lost. Conversely, testing on the internal

numbers alone should be acceptable only if the distiller is

particularly simple, involving no long-termmemory, because

only in this case up-hill issues can be evidenced. Similar

distillers can only be used if the correlations in the DAS

numbers are already extremely small. It can be anticipated

that proposed source copes quite well with this condition and

can be coupledwith an extremely lightweight post-processing

(see Sect. 6). Still, it is always preferable to performdedicated

tests at the DAS random numbers. The proposed source, not

being enclosed into an opaque TRNG package, makes DAS

numbers fully accessible for testing, as the histograms in

Fig. 8 testify.

In fact, the proposed design goes well beyond this

requirement. Thanks to the choice of N\N̂, at each cycle

the analog variable Vin gets acquired at a much higher

resolution than that strictly needed for operation. This

brings full introspection abilities to the system. In other

words, the chaotic entropy source is capable of observing

its own analog state (i.e., the main raw noise quantity) at a

fine resolution (with N̂ � N levels in each branch of the

chaotic map). This is well proved by the experimental

diagrams in Fig. 7 that have been obtained with no

recourse to bench instruments. Such feature is quite

important because modern standards indicate that TRNGs
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should be able to perform startup, total failure, and online

tests [25]. Comprehensive statistical test suites would cer-

tainly work, but are often too computationally intensive for

being built-in. Conversely, access to the system analog vari-

ables can be an enabler for much simpler functional tests.

5 Alternative quantization functions

Some chaos based TRNGs can rely on strong mathematical

proofs about the correctness of their design [21, 34]. These

let one formally state the ability to generate independent,

equidistributed symbols in nominal conditions. Indeed, this

is the case for the proposed source, as sketched in Sect. 3.

Unfortunately, real world operating conditions are always

different from nominal ones. As a consequence, one

observes correlation and bias. The best indicator to sum-

marize such defects is entropy or more precisely the

entropy per output bit [27, 30]. For a truly random source,

this is 1, while for any real-world source this is a bound

that can only be approached.

Following Shannon, the entropy H associated to a dis-

crete random variable U with possible values f/1; . . .;/lg
and probability mass function Pð/Þ is

HðUÞ ¼ E½� log2ðPðUÞÞ�, where E½�� indicates expectation,

so that HðUÞ ¼ �
Pl

i¼1 PðxiÞ log2ðPðxiÞÞ [5]. In the current

discussion, one is particularly interested in conditional

entropy. Namely, for two events U and W taking values in

f/ig and fwjg, one is interested in HðUjWÞ ¼
P

i;j Pð/i;wjÞ log2ððPðwjÞ=Pð/i;/jÞÞ, which indicates the

amount of randomness in U, whenW is known. Let U be the

last bit Bn generated by the entropy source and W the

sequence of the previous bits Bn�1 ¼ ðBn�1;Bn�2; . . .;B0Þ.
With this, HðBnjBn�1Þ measures the amount of additional

entropy (randomness) brought by the current bit when the

previous n bits are known. What counts is obviously the

asymptotic value

HB ¼ lim
n!1

HðBnjBn�1Þ ð13Þ

that indicates the average entropy carried by a bit, when

infinitely many previous bits are known, or the average

entropy per bit, for short. Such quantity can also be com-

puted as limn!1ð1=nÞHðBnÞ. Given that the proposed

design generates multiple bits per cycle, one can alterna-

tively introduce the quantity HW ¼ limn!1 HðWnjWn�1Þ
which is referred to DAS numbers w instead of output bits

b. Ideally, HW should be equal to Nc. Entropy per bit or per

word are quite important qualifiers, being linked to the

difficulty by which random quantities used in cryptography

can be guessed (see [38] and references therein).

It has recently been observed that implementation errors

degrade HB and HW because of two combined effects. The

first one is related to the metric entropy hlðMÞ of the

chaotic map Mð�Þ [32]. Loosely speaking, such quantity

indicates the highest possible entropy rate that can be

obtained from the chaotic system using the best possible

quantization function and represents a bound for HW .

Implementation errors affect the map shape and conse-

quently are likely to reduce hlðMÞ. The second effect has

to do with the quantization function. Implementation errors

reduce the adaptation of qð�Þ to Mð�Þ, degrading the ability

to reach the hlðMÞ bound. Obviously, there is nothing that

can be done about the first phenomenon. Yet, the second

one (that is often more relevant) can partially be addressed

by picking a different quantization function.

In [27], systems capable of generating 1 bit per cycle are

considered, defining a sequence of quantization functions

q̂iðxÞ ¼ ixb cmod 2. As i ! 1, HB tends to minðhlðMÞ; 1Þ,
regardless of the specific M. In other words, q̂ið�Þ asymp-

totically provides a universal quantization function giving

the best HB, whatever the map. The discussion can be

generalized to systems generating k bit per cycle by taking

q̂iðxÞ ¼ ixb cmod k: ð14Þ

Unfortunately, the asymptotic q̂1ð�Þ has little practical

value, being impossible to implement. However, a similar

(a) (b)

Fig. 7 Experimental behavior of the prototype, with two different

settings: in plot (a), k ¼ 4, N ¼ 3; in plot (b), k ¼ 8, N ¼ 4. The ADC

resolution is N̂ ¼ 10 bits. Measured behavior is shown in blue (dark),

and expected behavior is superimposed in orange (bright) (Color

figure online)

(a) (b)

Fig. 8 Probability distribution of the symbols generated at each cycle

by the prototype system for the setups used in Fig. 7(a) in (a) and

7(b) in (b). Estimation based on 32� 106 cycles
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behavior can be approximated. To this aim, it is

important to notice that the key properties of the func-

tions q̂ið�Þ consist in: (i) having counter images corre-

sponding to the possible outputs that always have

measure 1=k; (ii) being periodic with a spatial frequency

that increases with i.

Interestingly, the proposed architecture is capable to

compute

qjðxÞ ¼ ðm̂[ [ ðN̂ � N � jÞÞ& ðk � 1Þ ð15Þ

with j ¼ 0; . . .; N̂ � N. For j ¼ 0, qjð�Þ � qð�Þ. Further-

more, the family qjð�Þ satisfies the two properties above.

Specifically, qjð�Þ has the same spatial frequency as q̂k�2jð�Þ.
Thus, the function family qjð�Þ shares the same properties

as the family q̂ið�Þ. If it could be extended to infinitely large
j values, it would provide the best possible quantization

function in terms of robustness to variations in the chaotic

map. Since j is cannot exceed N̂ � N in the proposed

architecture, a further consideration is necessary. Conver-

gence of q̂ð�Þ to the universal quantization function is not

necessarily monotonic. In other words, some q̂i1ð�Þ can

behave worse than q̂i2ð�Þ for finite i1 [ i2. Therefore, there

is in principle no guarantee that qjð�Þ can get better and

better as j is increased, particularly at relatively low j

values. In practice, all the qjð�Þ end up being perfect

quantization functions for the nominal chaotic map in

Eq. (9). Namely, in absence of implementation errors, they

are all equivalent to qð�Þ in the ability to deliver equidis-

tributed and independent symbols. This is a rather inter-

esting property that shall be discussed in better depth

elsewhere. What is relevant here is that, together with the

rapid (in fact exponential) increase in the spatial frequency

with j, such property can make one relatively confident in a

regular convergence.

From the discussion carried on so far, one may get the

feeling that the best qjð�Þ is the one with the largest possible
j. Jumping to such a conclusion would unfortunately be

wrong. In fact, as j is increased, implementation errors

have a larger impact on qjð�Þ itself. This is easily seen by

considering that for j ¼ N̂ � N, the function qjðxÞ returns

the Nc lsbs of the ADC output, that can be quite erratic.

Consequently, one can expect HW to increase when

adopting quantization functions qjð�Þ with a larger j, but

only up to a certain point. Then, one can presume HW to

decrease as errors on the quantization function become

dominant. As this happens, one can also foresee the system

to become less tolerant to external interference, since the

output gets more directly derived from the lsbs of the

converter. The best quantization function is thus the result

of a compromise, and one can expect the best j values to be

at least a couple of units below N̂ � N.

6 Experimental results

All the data presented in this section has been collected

from the prototype system shown in Figs. 1 and 6, oper-

ating at approximately 15�103cycles/s for about 32� 106

cycles.

6.1 Empirical entropy based tests

As mentioned in the previous sections, the best indicator

for evaluating the quality of an entropy source is HB. An

experimental estimation ~HB, has here been obtained by first

computing ~HB;n ¼ ð1=nÞ ~HðBnÞ, where ~HðBnÞ is the

empirical entropy corresponding to HðBnÞ, for n values

1; 2; . . .;N. Then, ~HB has been determined as minðf ~HB;ngÞ.
Because the effort required to compute ~HðBnÞ grows

rapidly with n and so do the requirements on the length of

the bit sequence used for the estimation, N has been limited

to 12, which is enough for the present analysis. Table 1

shows ~HB;n both for the map with N ¼ 4, k ¼ 8 and for the

map with N ¼ 3, k ¼ 4. ~HB is marked in bold. For each

map the behavior is reported both for the quantization

function q0ð�Þ and for the best qjð�Þ. From the tabled data,

the following observations can be made:

(i) the two maps (corresponding to the two N, k

parameter sets under test) perform almost equiv-

alently, even if the one with k ¼ 8 provides a

higher bit rate;

(ii) the achieved ~HB is always extremely high;

(iii) there is an evident advantage in using quantization

functions designed as in Sect. 5;

(iv) when using q0ð�Þ, lower values of ĤB;n are

encountered at n values multiple of Nc.

The last point suggest that the main factor negatively

affecting entropy is bias in symbols generated at each cycle

rather than correlation among them. Indeed, bias is what

the advanced quantization functions can improve. For what

regards the choice of j in qjð�Þ, Fig. 9, shows the depen-

dence of ~HB on it, confirming the expectation expressed in

the previous section that the best j must fall a few units

below N̂ � N.

6.2 NIST 800-22 tests and post-processing strategies

Tests from the US National Institute of Standards and

Technology (NIST) 800-22 suite [37] have also been run to

assess the suitability of the entropy source for a TRNG,

basing them on 50 streams with 106 bits each. The quality

of the DAS numbers is so high that a surprisingly large
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number of individual tests, about 76 % for the map with

N ¼ 4, k ¼ 8 and quantization function q4ð�Þ, is already

passed without any post-processing at all.

This means that the suite can be passed as a whole with

just an extremely lightweight, finite-memory processing.

For instance, it is enough to collect bits at the output of the

entropy source in small packets and to extract from each of

them a slightly smaller output packet by a discard-per-

mute-and-XOR mixing, as shown in Fig. 10. Here, two 16-

bit words DA and DB are obtained from an 18-bit input

packet ðd0; . . .; d17Þ accumulated from DAS numbers, by

discarding some bits and scrambling the others. The output

is then generated by the bitwise XOR of DA and DB. The

rate reduction ratio is 9 : 8, that is 1.125 bits from the DAS

words are required for each output bit. The proposed post-

processing is particularly well suited for the map with

k ¼ 8, since the latter generates Nc ¼ 3 bits per cycle.

Hence, an input packet is obtained in exactly 6 cycles

during which the words DA and DB can be assembled. In

the same 6 cycles, an output packet is generated that can be

exactly delivered in a 2-byte word. This is just conve-

nience, though, and the same scheme can also be applied

while extracting DA and DB in other ways or based on other

packet lengths. What is important is that: (i) is sufficiently

long; (ii) the bit ordering in DA and DB is sufficiently

different; and (iii) the number of bits discarded in building

DA and DB from the input packet is sufficiently large.

Condition (i) is indispensable to assure that the post-pro-

cessing is sufficiently extended in time to be able to affect

all the residual correlations in the DAS numbers. Since the

chaotic model used in the source assures exponentially

vanishing correlation profiles [34], relatively short packets

are sufficient. Still, the input packet needs to be at least as

long as Nc times the number of cycles required for the

correlations to become negligible (5–6 cycles represent a

safe value in the prototype implementation). Condition (ii)

has to do with the quality of mixing used to destroy the

correlations. Finally, condition (iii) refers to the rate

reduction being practiced by the post-processor. From

theory, the latter must be no less than 1=HB, otherwise it is

not possible to get equidistributed, independent bits [30].

With a post-processor as simple as the proposed one, such

bound must obviously be exceeded with some clearance.

During the validation of the prototype, it has also been

verified that it succeeds in the NIST tests with other post-

processors. For instance, the test suite is passed when the

DAS numbers are treated by the (rather heavyweight)

distiller in [39], or when the DAS numbers are processed

through a PRNG, even if the latter is a modest (LFSR) as in

Fig. 11 (as long as the register is sufficiently long, e.g.,

more than 12 bits for the proposed prototype).

Note that these two latter distillers are not theoretically

correct since they practice no rate reduction and as such

cannot enhance the average entropy per bit. Yet, they can

trade long-term correlations for short-term ones at a sufficient

level to satisfy the requirement of the 800-22 suite. Finally,

NIST tests are obviously passed when the DAS numbers are

used to fill the entropy pool of an operating system that pro-

vides its own entropy distiller, such as Linux [40].

Table 1 Average entropy in bit aggregates from the DAS numbers

for the prototype in various configurations. Estimations based on 32�
106 map cycles

~HB;n

Map with N ¼ 3, k ¼ 4 Map with N ¼ 4, k ¼ 8

n with q0ð�Þ with q5ð�Þ with q0ð�Þ with q4ð�Þ

1 0.9999 0.9997 0.9999 0.9999

2 0.9983 0.9996 0.9996 0.9999

3 0.9987 0.9997 0.9979 0.9997

4 0.9911 0.9996 0.9995 0.9999

5 0.9964 0.9997 0.9992 0.9999

6 0.9859 0.9996 0.9948 0.9997

7 0.9944 0.9996 0.9984 0.9999

8 0.9821 0.9995 0.9980 0.9999

9 0.9927 0.9996 0.9916 0.9997

10 0.9796 0.9995 0.9973 0.9999

11 0.9913 0.9996 0.9970 0.9998

12 0.9777 0.9995 0.9884 0.9996

Fig. 9 Dependency of ~HB on the particular quantization function

qjð�Þ, for the map with N ¼ 3, k ¼ 4 (blue, dark trace) and for the

map with N ¼ 4, k ¼ 8 (orange, bright trace) (Color figure online)

Fig. 10 Sample discard-permute-and-XOR post-processing based on

18 bit input packets and 16 bits output packets
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To summarize, even if the NIST suite bears only a

modest relevance when validating an entropy source (given

that it is always possible to find a post-processing strategy

that let all tests be passed), experimenting against the

800-22 suite is important in the present context to support

two points. The first one is that the entropy source can

operate with extremely lightweight distillers. In fact, the

simpler the distiller (and the shorter the dependence of its

current output on previous inputs), the lower its opacity and

the better the TRNG testability, as it gets easier to see

defects in the entropy source from the internal random

numbers. In this sense the post-processor in Fig. 10 is

much better than those in [39] or Fig. 11, because it assures

that each bit in the internal numbers depends at most on 18

bits in DAS numbers. The second point is that the entropy

source is suitable for direct coupling with entropy distil-

lation solutions that can be found ready available on

existing systems. This is important in view of retrofitting or

design augmentation.

7 Conclusions

A novel architecture for a lC based entropy source

exploiting chaotic dynamics has been proposed, prototyped

and validated. The design has some unique features. First of

all, it can be used either to implement standalone units

suitable for an end user as a retrofit on existing systems or as

an incremental schematic change that a manufacturer can

apply during the revision of a product. In either case, costs

can be low enough not to discourage adoption. Secondly, it

follows recent testability guidelines for this kind of objects.

In the third place, it is the first design of this sort flexible

enough to let one test multiple quantization functions in the

delivery of a digital output from the analog state of the

internal chaotic systems. This is an important property both

because it allows the best performance to be obtained and

because it provides the opportunity to validate recent theo-

retical results in real world system. Finally, the proposed

design has excellent (and probably unprecedented) good

performance for this class of devices. Specifically: it can

generate multiple bits at each iteration of the chaotic system;

it delivers more than 0.999 bits of entropy per output bit; it

can be transformed into a TRNG passing the NIST 800-22

test suite with the cascading of extremely light-weight post

processing units, with minimal data rate loss.
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