PHYSICAL REVIEW LETTERS 124, 060201 (2020)

Editors' Suggestion

Learning the Physics of Pattern Formation from Images

Hongbo Zhao ,1 Brian D. Storey,z’3 Richard D. Braatz ,1 and Martin Z. Bazant

1.4

'Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue,
Cambridge, Massachusetts 02139, USA
2Toyota Research Institute, Cambridge, Massachusetts 02139, USA
30lin College, Needham, Massachusetts 02492, USA
4Deparlment of Mathematics, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

® (Received 24 September 2019; revised manuscript received 9 December 2019;
accepted 21 January 2020; published 14 February 2020)

Using a framework of partial differential equation-constrained optimization, we demonstrate that
multiple constitutive relations can be extracted simultaneously from a small set of images of pattern
formation. Examples include state-dependent properties in phase-field models, such as the diffusivity,
kinetic prefactor, free energy, and direct correlation function, given only the general form of the Cahn-
Hilliard equation, Allen-Cahn equation, or dynamical density functional theory (phase-field crystal model).
Constraints can be added based on physical arguments to accelerate convergence and avoid spurious
results. Reconstruction of the free energy functional, which contains nonlinear dependence on the state
variable and differential or convolutional operators, opens the possibility of learning nonequilibrium
thermodynamics from only a few snapshots of the dynamics.
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Pattern formation is widely observed in physical, chemi-
cal, and biological systems. One category of pattern-
forming partial differential equations (PDEs) are those
driven by gradients of a nonconvex energy landscape
[1]. This category includes the well-known Allen-Cahn
equation, Cahn-Hilliard equation [2,3], and Swift-
Hohenberg equation [4], which have been extended and
found wide applications in phase-field [5], phase-field-
crystal [6], and nonequilibrium chemical thermodynamic
[7,8] models. These PDEs homogenize the details of
molecular degrees of freedom [9] and depend on para-
metrized constitutive relations such as free energy land-
scape, transport properties, and/or reaction kinetics, which
encode spatiotemporal dynamics at the relevant time and
length scales [10].

Existing methods to obtain constitutive relations face
several challenges. Bottom-up approaches, such as semi-
empirical microscopic models [11] and first-principles
calculations [12—14], have difficulty spanning length and
timescales, although recent scale-bridging methods [15—
17] have shown promise. Top-down approaches based on
fitting emergent properties, such as open-circuit voltage
[18], are often infeasible or obscured by thermodynamic
instabilities [19,20]. Empirical models fit to phase diagrams
[21,22] may not be able to predict the dynamics far from
equilibrium.

In this Letter we demonstrate the possibility of learning
constitutive relations directly from experimental images,
which has become increasingly relevant with the growing
volume and quality of in situ and in operando images
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[23-27]. Our approach extends the inversion problem
based on still images [28-30] and low-dimensional repre-
sentation of images [31,32] and makes use of all the pixels
in 2D video data to infer the physics of pattern formation.

In the literature of PDE discovery, the model either
comes from prior physical knowledge or is represented by a
library of operators, identified using sparsity-promoting,
nonparametric, and other techniques of dynamical systems
identification [33-37]. The model is then trained by
minimizing the residual of the PDE [31,32,34,38-41],
the error of model prediction [42,43], or both [37,44-48].

In contrast to this literature, we constrain the form of the
governing PDEs for physical interpretability, while
allowing maximum flexibility by incorporating differential
or convolutional operators and nonlinearity in the con-
stitutive relationship. The methods above, which directly
relate operators, rely on high resolution images for per-
forming spatial and temporal derivatives, while it is often
unknown a priori whether the given resolution is sufficient
for taking the derivative due to the nonlinear nature of the
PDE. Additionally, quantitative matching of the patterns is
not guaranteed. To overcome these difficulties, we start
from the given initial condition and evaluate the model on a
sufficiently fine grid through adaptive time stepping and
minimize the norm of the pixelwise error. The approach
relies on the well-developed methods in PDE-constrained
optimization [49-51].

Our canonical example is the Cahn-Hilliard equation,
describing phase separation driven by chemical potential
gradients [2,3],
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where c(x, ) is a conserved concentration field, D(c) is the
diffusivity, and 6F /éc is the diffusive chemical potential or
variational derivative of the free energy [7]. We also
consider the Allen-Cahn equation for nonconservative
order parameters with a state-dependent kinetic prefactor

Ry(c),

e —RO(C)g» (2)

which is the linearized form of the general Allen-Cahn
reaction model [7,8], where the reaction rate has a nonlinear
dependence on the thermodynamic driving force (or
chemical affinity). For both equations, the chemical poten-
tial is defined by

F
o = e ~xve, 3)
where p,(c) is the homogeneous part of the chemical
potential and —xV?c is the gradient correction to the
chemical potential and gives rise to a diffuse interface
between phases.

We seek to infer the chemical potential function over
the entire range of composition, including within the
spinodal region [u)(c) < 0, where prime denotes differ-
entiation], from concentration profiles recorded far from
equilibrium, since the spinodal region is unstable at
equilibrium. Within the mean field approximation, a
two-component mixture has an enthalpy of mixing with
quadratic dependence on concentration [2]. More gener-
ally, the enthalpy can be expressed in terms of higher
order polynomials [22]. If the concentration is normalized
by its maximum value, the following numerically well-
conditioned parametrization,

p(e) =log =+ > a, P, c). )
n=1

uses the ideal entropy of mixing to bound the concentration
(0 <c¢ < 1), where the P, are Legendre polynomials
defined on the interval [0,1], and a, are the coefficients
to be determined. We also represent log D(c¢) and log Ry(c)
in a basis of Legendre polynomials.

The inverse problem is defined by the minimization with
respect to parameters p of the objective function, defined
by the L, norm of the difference between the data and the
model prediction,

L) =5 [ drleltyrip) - cantr) (5)
i=1

constrained by the PDE, where the integral is taken over the
position r of the entire image; M is the total number of
the training images taken at different time #;; cg,, 1S the
concentration field converted from the gray values of
the image pixels through calibration; and c¢(z,r;p) is the
concentration field predicted by the PDE.

The gradient-based optimization of L can be performed
with two approaches [52], forward sensitivity analysis
(FSA), which computes the model sensitivity dc/dp along
with the model evaluation, and adjoint sensitivity analysis
(ASA), which obtains the gradient L/0p by solving the
adjoint linearized PDE [53-55]. FSA can also provide the
Gauss-Newton approximation of the Hessian of the objec-
tive function [56], which becomes increasingly accurate as
p approaches the truth,

5 M
Sx) [arg st (6)
i=1

op;0py ap; Opi

See the Supplemental Material [57] for the derivation of the
algorithm. In our examples, we find that optimizing the
three quantities simultaneously using the approximated
Hessian [Eq. (6)] and trust-region algorithm [56] via
FSA is faster.

To test this approach, we generate simulated data for the
evolution of the Cahn-Hilliard and Allen-Cahn equations,
for which the true model parameters are known, with the
boundary conditions of zero normal gradient for both and
zero flux for the former [7]. From the full simulation we
take 5 high-resolution snapshots of the relaxation process
and apply our method to learn the constitutive law. For all 4
cases (a)—(d) shown in Fig. 1, the enthalpic part of y,(c),
log Ry(c), and log D(c) are represented by 10 Legendre
polynomials, while the known truths are pu,(c)=
logc(l —c¢)™' +3(1 = 2¢), Ry(c)=c(1—c), and D(c) =
1 — c. While the true Ry(c) and D(c) cannot be exactly
recovered, they satisfy the thermodynamic constraint that
they are positive [8,9]. The gradient energy coefficient « is
free to change in the optimization. The form of the
equations shows that the constitutive quantities that
uniquely determine the PDE can be obtained through
proper scaling, that is, Ddu;,/dInc, or kuj(c) sets the

timescale, while /k/uj,(c) sets the length scale.

We use the first image as the initial condition for the
simulation. The images used in case (b) are those for case
(a) with 10% added Gaussian noise. The image at t = 0 is
too noisy to be useful as the initial condition so we start
from r = 0.015 for case (b). For case (a)—(c), we impose the
known boundary conditions while for case (d) where only a
part of the data within a larger domain is captured, the value
¢ and the normal gradient n - V¢ at the boundaries of the
images are smoothly interpolated in time and directly
imposed as the time dependent boundary conditions of
the Cahn-Hilliard model. Starting from a non-pattern-
forming initial guess for the parameters, qualitative
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Learning phase-field models from images. (a) Inversion of chemical potential x, (¢) and diffusivity D(c) for the Cahn-Hilliard

equation. At the top row are the 5 images provided for training. The following rows show 4, (c) and D(c) and the model prediction at
each iteration of the optimization. Iteration 0 is the initial guess. (b) Inversion of u,(c) and D(c¢) for the Cahn-Hilliard equation using 4
noisy images shown. (c) Inversion of chemical potential and kinetic prefactor R(c) for the Allen-Cahn equation. (c) Inversion of y,(c)
and D(c) for the Cahn-Hilliard equation based on images taken from a part of a larger domain. Except for iteration 0, the functions
shown at other iterations are scaled such that x is the same as the known truth for comparison.

agreement for the images is achieved within only a few
iterations, and convergence to the known truth is achieved
within tens of iterations. For instance, for case (a), from the
20th iteration onward, the solver makes minor adjustments
to up(c) and D(c) near ¢ =0 and ¢ = 1, which only
changes the near-zero objective function slightly as shown
in Fig. S3 of the Supplemental Material [57].

Figure 1(b) is an example of inversion based on noisy
images. To obtain the result, we added regularization [52]
to suppress the high-frequency oscillation that would
otherwise appear in the overfitted u,(c) and log D(c).
Despite the penalty on higher order polynomials, y(c) in
the spinodal region is captured, while the less sensitive
D(c) has a dampened variation in c. See Fig. S7 [57] for
how the result depends on the level of noise and the
regularization parameter. As shown in Figs. 1(a), 1(b),
and 1(d), despite some discrepancies between the inferred
and true model, the objective function is effectively zero.
The model is insensitive to D(c) and R((c) near ¢ = 0 and
¢ =1, where the system is too close to equilibrium to
reveal its dynamic properties. The sensitivity analysis in the
Supplemental Material [57] also confirms that the spinodal
pattern are mainly determined by dy,,/dc in the spinodal
region.

Since real images may be noisy, incomplete, or low
resolution, we more fully analyze the robustness and
scaling of the inversion method in the Supplemental

Material [57]. It is found that constitutive laws can still
be obtained even when only the initial and final frames or
severely down-sampled images are provided as train-
ing data.

Next we apply the inversion method to a more general,
nonlocal form for the free energy functional with long-
range interactions, which is used in dynamical density
functional theory (DDFT) to describe crystallization at the
atomic scale [6]. For small variations around a uniform
concentration c¢,, we neglect the state-dependent mobility
and expand the free energy functional in terms of the
normalized order parameter n = c/cy— 1 to arrive at
On/ot = MN?(5F /&), where the chemical potential in
dimensionless form is

=) - [ dECe =@, (0
where C,(|r —F|) is the direct correlation function. The
ideal entropy (or its Taylor expansion) is typically used for
un(n), but we keep a general form for the purpose of
extracting it through inversion. A uniform field becomes
linearly unstable to perturbations when 6 = —M k| (u},(c)—
Co(|k|)) > 0, where C,(k) is the Fourier transform
of C,(r). The lowest order, isotropic, and analytic
form that satisfies this condition and C,(c0) <0 is
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Cy(k) = h —[1 = (|k|/ky)?]?, where h is a positive con-
stant and k, is the characteristic wave number. The resulting
form is mathematically equivalent to the Swift-Hohenberg
free energy [4]. To capture the evolution of an isotropic
pattern (e.g., in crystallization or Rayleigh-Bénard insta-
bility) from an unknown direct correlation function, we use
the quartic approximation,

Co(k) = by + by [k + by |K[*, (8)

with b, < 0, which corresponds to by, — b, V> + b,V* in
real space. This approximation is also known as the phase
field crystal model.

Figure 2(a) shows the inversion of the free energy [y, ()

and C,(k) simultaneously] from a nucleation event with
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FIG. 2. Learning dynamic density functional theory (DDFT)
from images. (a) Five images of the nucleation event used as
training data. (b) Inversion of u,(n) and C,(|k|). C,(|k|) is
represented by a quartic approximation [Eq. (8). p,(n) is
represented by up to third order polynomials. The linear term
in p,(n7) and the constant term in C,(|k|) are indistinguishable.
Hence, they are adjusted such that x}, (0) = 1 for comparison with
the known truth. (c) The model prediction at the final iteration in
(b) using the quartic approximation. The last two images are
anaglyphs that highlight their difference with the data. Magenta
indicates the model value is greater than data while green means
the opposite. (d) Inversion of C,(|k|) using Eq. (9). The shaded
region in the last image shows the estimated error of C,(|k|)
inferred by adding e >_; d? to the objective function normalize by
area, where € = 0.01, using 100 Hermite functions.

periodic boundary condition. The true model [58] that is
known to give rise to hexagonal lattice is wu,(n) =n—
/2+n3/3 and C,(k) = 0.95exp [—(|k| — ko)?/2a?],
where a/ky = 0.5. Despite the large difference between
the true C,(k) and the quartic approximation shown in
Fig. 2(b), especially at high wave numbers, the dynamics
and hexagonal pattern are retained. The early-stage pattern
is nearly identical. The late-stage pattern is more diffuse
than the data [as shown by the colored difference in the last
two image of Fig. 2(c)] because high wave number
components decay faster in the quartic approximation.

Since the early-stage pattern grows exponentially at e,
previous findings [59,60] and the result above show that
Cy(k) is described sufficiently well around the peak
by ko, Cs(ko), and C5(ky). The sensitivity analysis in
the Supplemental Material [57] confirms that C, (k) cannot
be identified at large |k|, since high wave number compo-
nents decay rapidly in time due to the Laplacian operator in
the PDE. Therefore, we emphasize that finding C, (k) over
the entire range of k is an ill-posed problem.

From liquid state theory [61], the structure factor S(k)
approaches 1 and C,(k) approaches zero as |k| — oo,
where 1/8(k) = 1 — C,(k). Since C,(k) at large |k| is
not informed by data, we include the prior knowledge
by choosing basis functions that approach zero as
k| = oo [62],

(k) = zN:dn(2”n!ﬁ)‘l/ZE“k‘z/zﬂn(lkl), ©)

n=0

where H, is the Hermite polynomial. For a faster con-
vergence, k is scaled by the wave number k&, which can be
measured from the pattern. Figure 2(d) shows that using
Eq. (9) (N = 10), converges more quickly to the correct (fz
[Here we fix u,(n). See Fig. S9 [57] for solving for yu(n)
and C, simultaneously using Eq. (9) and the corresponding
model prediction]. In comparison, b, and b, are highly
coupled in the quartic approximation, and the convergence
is very slow. Il posedness is resolved here using a limited
number of the basis functions. The shaded region in
Fig. 2(d), or the estimated uncertainty in C,(k) confirms
high sensitivity around k, and high uncertainty at large |Kk|.

Equation (7) is a generic form for the gradient of a
Lyapunov function. Our method could be applied to
learning a wide variety of other physical models, such as
the nonlocal Cahn-Hilliard equation [63], the Hopfield
model [64], and the BSK model of electrostatic correlations
[65-68]. In the strain-induced anisotropic spinodal decom-
position [20,69], while the displacement field is not directly
observed, it is known to be coupled to the concentration
field through mechanical equilibrium. The inversion tech-
nique used in this Letter can be extended to finding these
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hidden variables, as well as models with generalized
nonlocal constitutive relations [70].

We envision that the inversion method can be used to
infer thermodynamic and kinetic properties from in oper-
ando images of phase-separating materials [71]. In situ
measurement of crystallization in reciprocal space [72,73],
together with phase information [74], also provides valu-
able information about the intermolecular interaction in
conjunction with the DDFT model. With experimental
data, Bayesian inference through Monte Carlo methods
can quantify the uncertainty[75,76]. As shown in the
Supplemental Material [57], the inversion result may be
influenced by noise, initial conditions, resolution and
whether the particular frames are informative, so to avoid
suboptimal solutions, a global or stochastic optimization
scheme may also be considered.

In summary, we have demonstrated that multiple con-
stitutive relations embedded in pattern-forming PDE mod-
els can be extracted from a small set of images. Compared
to other methods of learning PDEs, physics can be learned
from fewer low-resolution and noisy images; quantitative
matching of the patterns can be achieved; and the PDEs
can include nonlinear or nonlocal constitutive relationships.
By inverting image data to obtain the kernel of a con-
volution, we show that the learning of differential operators
can also be extended to general integrodifferential oper-
ators. The ill posedness of learning integral operators can
be regularized by symmetry, convolution, or isotropy via
physical arguments.

This work was supported by Toyota Research Institute
through the D3BATT Center on Data-Driven-Design of
Rechargeable Batteries.
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