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Motivated by the effect of electroautocatalysis (explicit concentration dependence) on the stability of
electrochemically driven phase-separating single particles, we apply the Fokker-Planck equation to describe the
population dynamics of a general ensemble of chemically reactive particles. For phase-separating ensembles, we
show that mosaic instability (from a homogeneous initial state to a multimodal probability distribution) may be
suppressed or enhanced by autoinhibitory or autocatalytic reactions, respectively. In some cases, autocatalysis
may induce two distinct populations in thermodynamically stable single-phase ensembles. Asymmetric reaction
kinetics also results in qualitatively different population dynamics upon reversing the reaction direction. In the
limit of negligible fluctuations, we use the method of characteristics and linearization to study the evolution
of the concentration variance as well as the condition for mosaic instability, in good agreement with the full
numerical solution. Applications include Li-ion batteries characterized by in sifu x-ray diffraction.
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I. INTRODUCTION

Population dynamics has been studied widely in particulate
systems, such as crystallization, aerosol dynamics, emulsion,
cell culture, etc. [1,2]. A common feature of many of these
systems is the existence of intrinsic instability, either ther-
modynamic or kinetic in origin, that drives the evolution
of the probability distribution. Examples of thermodynamic
instability include Ostwald ripening [3], bistable systems
such as certain Li-ion battery materials and interconnected
rubber balloons [4,5], and viscoelastic crystal lattice models
of plasticity [6], where population dynamics can be described
by a probability distribution, e.g., in terms of a droplet or
balloon size, or the lithium fraction. Examples of kinetic
instability in population dynamics include autocatalytic cell
growth [7], bistable gene regulatory processes [8], and CO ox-
idation [9-12], where coupled microelectrodes are activated
sequentially upon current ramping due to negative differential
resistance.

Our work is motivated by recent predictions of the con-
trol of thermodynamic instabilities by nonlinearities in the
reaction kinetics, especially electroautocatalysis in driven
electrochemical systems [13]. The autocatalytic effects come
from an explicitly concentration-dependent prefactor on the
reaction rate, which results from collective effects on the
transition state of the reaction in concentrated solutions and
solids [14]. In contrast, prior analyses of stochastic population
dynamics using the Fokker-Planck equation, pioneered by
Dreyer and co-workers [15—17] for battery materials, assume
that the reaction rate is linearly proportional to the driving
force, in which case the Duhem-Jougeut theorem states that
thermodynamic stability is unaffected by reactions [13].

When driven far from equilibrium, the kinetic stability
landscape of the system can be altered by an autocatalytic
reaction kinetics, showing the suppression of thermodynamic
instability in one direction and enhancement in the other, or
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the creation of instability in thermodynamically stable sys-
tems. This is validated in single-particle imaging experiments
of lithium iron phosphate (LFP) [18,19], where lithium extrac-
tion results in a higher level of concentration heterogeneity
than lithium insertion. In addition, asymmetry between the
charge and discharge dynamics of lithium ion batteries is also
observed in chronoamperometric experiments [20], which
cannot be described by a symmetric linear kinetics. Implicit in
the discussion of a concentration-dependent prefactor is that
the species concentration, hence the stability, depends on the
extent of reaction. This is related to, but distinct from, other
state-dependent kinetics, such as velocity-dependent or space-
dependent chemotaxis and van der Pol oscillation [21], as well
as temporally and spatially dependent friction in activated rate
processes [22-27].

In addition to instability, another aspect of interest is the
collective behavior in population dynamics. Herrmann et al.
[28,29] studied a phase transition based on Dreyer’s model in
the case of constant total current. The coupling of particles
through the constraint of total current gives rise to a variety of
regimes ranging from the Kramers-type transition and oscil-
latory bimodal distribution to the unimodal distribution with
increasing total current. Other examples of emergent behavior
have also been observed through a nonlocal interaction via
moments of distribution [30] or globally coupling mean field
parameters such as those in the synchronization of Kuramoto
coupled oscillators [31]. Concerted behaviors observed in
crowd and biological synchrony [32,33] and recently electro-
chemical oscillations in Li-ion batteries [34] motivate further
theoretical modeling.

The population dynamics of phase-separating electrochem-
ical systems such as LFP and graphite has also been studied
through discrete particle simulations, described by multi-
phase porous electrode theory (MPET) [35-38]. Multiphase
porous electrode theory simulates particles of random sizes
in a porous electrode and resolves the spatial dependence
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including the phase separation within the particles through
the Allen-Cahn or Cahn-Hilliard reaction model [14]. The
model also incorporates ion transport in the electrolyte.
For phase-separating materials, at low current, particles are
filled stochastically in a mosaic pattern. The results of
the MPET model have been validated experimentally in a
direct observation of lithium concentration in an ensemble
of LFP nanoparticles [18]. Statistical models have also been
applied to explain the chronoamperometric response [20]
and scanning transmission x-ray microscopy images [39] of
LFP electrodes. However, the population is categorized into
untransformed, active, and transformed particles, instead of
a continuous probability distribution in terms of the lithium
fraction. Multiphase porous electrode theory includes all rel-
evant physics and has shown predictive power in realistic
systems but lacks an accurate statistical description as it is
limited by the number of particles used in the simulation. Our
theory eliminates any spatial dependence and is capable of
solving for the probability distribution directly in the reaction-
controlled limit.

In Sec. II we begin by connecting single-particle dynamics
with population dynamics through the concept of autocataly-
sis in Sec. IT A. Based on the thermodynamics of an ensemble
of particles described in Sec. II B, we formulate the theory of
population dynamics based on the generalized Fokker-Planck
equation and the Langevin equation in Sec. II C. In Sec. ITE
we compute numerically and approximate analytically the
condition for mosaic instability and observe its strong depen-
dence on the reaction kinetics. Section III applies the theory
to Li-ion batteries and a model system at the critical point.

II. THEORY

A. From single-particle dynamics to population dynamics

We begin by considering a particle that undergoes reactions
when it is out of chemical equilibrium with its surroundings,

Mres > M, (D

where the single component of interest M reacts with a
reservoir with species M;.s. The dynamics is described by the
change in the concentration of M in the particle,

dc
E = R(C’ M, /J'res)v (2)

where R is the reaction rate as a function of concentration
¢ and the chemical potential of M in the particle p and of
M in the reservoir (.. The reaction rate is zero at chemical
equilibrium p = fes.

Following Bazant [13], we define the total autocatalytic
rate of the reaction to be

oR oR oR\ dn
s=—=\—) +(— ) —, 3)

ac ac /, ou ). dc
which determines whether the concentration profile is linearly
stable (s < 0) or unstable (s > 0) to infinitesimal perturba-
tions. (See Ref. [13] for a general stability theorem for multi-
component driven reactive mixtures in terms of the chemical
diffusivity and autocatalytic rate tensors.) In most classical

theories, the reaction rate is linear in the thermodynamic
driving force or affinity of the reaction [40]. More generally,

if the reaction rate is linearized near equilibrium R = RyApu,
for small thermodynamic driving force Ap = pires — (0 With
constant prefactor Ry, the autocatalytic rate is given by s =
—Rodp/dc. In this case of near-equilibrium reactions, we
arrive at the Duhem-Jougeut theorem [40], which states that
kinetic stability (s < 0) is equivalent to thermodynamic sta-
bility (du/dc > 0).

Far from equilibrium, the situation is very different, and
kinetic stability is altered by the explicit dependence of the
reaction rate on concentration or chemical potential [13]. The
concentration profile tends to be destabilized by a positive
solo autocatalytic rate (0R/dc), > O or, in the case of a
thermodynamically stable system du/dc > 0, by a negative
differential reaction resistance (dR/du). < 0 (as in the case
of Marcus kinetics for electron transfer reactions [14]).

The analysis of kinetic stability described here is applica-
ble to lithium intercalation reaction in LFP, a phase-separating
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FIG. 1. Evolution of the probability distribution f(c,t) in time
(Dy = 1073), shown by the red curves. The system undergoes a
reaction at (a) constant external reservoir chemical potential and
(b) constant total reaction rate with time-dependent reservoir chem-
ical potential. The gray curves on the horizontal plane are charac-
teristics of, or solutions to, the deterministic reaction rate equation
dc/dt = R starting from different initial conditions. The distribution
widens where characteristics diverge due to autocatalysis and it
sharpens where characteristics converge due to autoinhibition.
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electrode material. Bazant and co-workers [14,41,42] showed
a linearly stable regime in the spinodal region at large enough
reaction rate, leading to the suppression of phase separation.
The reaction kinetics has been coupled with phase field and
mechanical models to predict the spatial pattern of lithium
concentration within nanoparticles [35,41-44].

In the limit of vanishing spatial gradient within particles,
the models above for lithium intercalation reduce to Eq. (2). In
the limit of an infinite number of reaction-controlled particles
that are small enough to assume intraparticle homogeneity, we
switch from a Lagrangian description of the discrete particle
dynamics to an Eulerian description in terms of a probability
distribution

af [ (fR) _
ot dc

where f(z, ¢) is the probability distribution function (PDF).

The characteristics of the linear advection equation in the
c-t space is given by the reaction kinetics in Eq. (2) [1].
When the reaction is autocatalytic dR/dc > 0, characteristics
diverge and the distribution expands, whereas when dR/dc <
0, characteristics converge and the distribution forms a shock.
Figure 1 illustrates the effect of autocatalysis on the evolution
of f(t, c¢) for two cases where a unimodal distribution evolves
into a bimodal distribution over time. The evolution of f(z, ¢)
follows the characteristics, or the gray curves, which are
solutions to Eq. (2). Due to autocatalysis, particles ahead of
others in the reaction direction accelerate and form another
peak in the PDF around a concentration removed from the
original peak.

0, “4)

B. Thermodynamics of a particle ensemble

The model above assumes a deterministic reaction rate.
Now we seek a statistical mechanical description for an
ensemble of particles, where thermodynamic fluctuations are
important. For simplicity, we consider single-component sys-
tems. In the canonical ensemble, the number of M in the
system is fixed to be N. In the grand canonical ensemble,
the system is in a chemical reservoir of M, with chemical
potential ftres. In Table I we define thermodynamic quantities
in canonical and grand canonical ensembles as a function
of the probability distribution [45]: p, is the probability of
a particular microstate v, p,, = p(v|N) is the conditional

probability of a microstate given N molecules, and py is the
marginal probability of having N molecules. The probability
distribution can be generally in or out of equilibrium. For
the canonical ensemble, the subscripts N in the free energy
Ay, average energy (E)y, and entropy Sy denote the number
of molecules specified for the ensemble. We are particularly
interested in how the thermodynamic quantities in the grand
canonical ensemble are associated with those in the canonical
ensemble. For example, using the property of conditional
probability p, = p,, pn, the grand canonical entropy S, the
canonical entropy Sy, and the entropy due to chemical fluctu-
ations S’ are related by

§=S5"4(Sn), (&)

where (Sy) = Dy pvSy = —kg D, py In p,,, is the canonical
entropy averaged over N and is also known as conditional
entropy in information theory.

The free energies of the two ensembles are also related as
shown in Table I. In particular, if all degrees of freedom except
for N are at equilibrium, the grand canonical ensemble free
energy is

V= ZPN(A?\? — UresN + kT IHPN)- (6)
N

This may describe the free energy of an ensemble of parti-
cles that have reached equilibrium within themselves but not
necessarily with the reservoir.

For convenience, we use A = Af\? to denote the canonical
ensemble free energy at equilibrium. From thermodynamics,
the system is stable when 3?A/dN? > 0, if N is treated as a
continuous variable. An example of instability, which leads
to phase separation, can arise in the lattice model discussed
in Sec. IIE. Since the chemical potential of M within the
particle is defined as u = dA /9N, the stability criterion can
also be written as du/dN > 0. This is not to be confused with
the fact that, at equilibrium, 9*W®1/du2, = —3(N)®/0 ttres =
—kBTaﬁ < 0, where 0,\2, is the variance of N. Therefore, at
equilibrium, the average number of M in a grand canonical
ensemble always increases with reservoir chemical potential
regardless of A. Note that o at equilibrium is constructed
naturally as a result of the entropy S’ associated with chemical
fluctuations.

TABLE 1. Definitions of thermodynamic quantities. Angular brackets denote averaging over states in the summation that comes

immediately before its appearance. Here 8 = 1/kgT .

Ensemble type

Free energy

Entropy

canonical
=(E)y — TSy

AN = Z"N Doy (EVN + kBT In va)

Sy = —kp Z”N Puy In pyy

V= Zv pv(Ev - I\Lrest +kBT1npv)

= (E) - /~’Lres<N> - TS
= ZN pN(AN - I/LresN‘i‘kBT]npN)

grand canonical

S = _kB Zv Pv lnpv
S" = —kg )y pvInpy

= (AN) - Mres<N> -Ts

Ensemble type Equilibrium distribution
canonical Py = exp[=B(E,, +AP)]
grand canonical p?;q = eXP[_,B(Ev + Mrest + \Ijeq)]’ P;? = eXp [_.B(Aje\? + /eresN + \Ijeq)]
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At equilibrium, the probability distribution satisfies the
Boltzmann distribution and minimizes the free energy. There-
fore, we define a Lyapunov function below in Eq. (7). It is
always greater than or equal to zero and, as will be shown
later, monotonically decreases for systems with a constant
HUres- The Lyapunov function is called relative entropy, or
Kullback-Leibler divergence, which originates in information
theory to measure the difference between two probability
distributions

L=Wv—v9=kT Y p,ln 2 > 0. 7
—

C. Dynamics

In the classical limit, we use a general continuous variable
x that maps the microstate of the system v to R” and use p to
denote the probability density function. In the grand canonical
ensemble, equilibrium corresponds to W /6p = E — N +
ksT In p being a constant subject to the normalization condi-
tion for p. Based on Wasserstein gradient flow [28,46,47] that
drives the probability distribution toward minimum energy,
we obtain the Fokker-Planck equation

ap
a +Vv.J=0, ®)
where
s p
J=—KpV— = —KkgTpVIn —, )]
sp p

with K the mobility tensor.
The following second law of thermodynamics is well
known in stochastic thermodynamics [30,48-53],
dv J'KJ d
—=— d —(E — presN)dx, (10
dt - D X+Lpd[( MresV)dX (10

where the first term is the entropy production rate —7'S; and
the second term is the work of external driving force W;.
When the system is driven chemically,

Wd = _/:Lres<N>- (11)

The second law of thermodynamics requires that $; > 0, or
equivalently that K be positive definite. When the system is
nondriven, W — W® decreases monotonically, hence it is a
Lyapunov function.

If the relaxation of its internal degrees of freedom vy to
equilibrium is much faster than the exchange of matter with
the reservoir, we assume all internal degrees of freedom are
at equilibrium, that is, p, = p;. py. In this case, the marginal
probability py follows

dpy  dJn
24 E 0, 12
ot + oN (12)
where
o (¥
JN——(K)NNPN— — (13)
Spn
SW eq
(Sp —A — UresN + kgT In py. (14)
As discussed in Refs. [54-56], the chemical

Langevin equation and the corresponding Fokker-Planck

equation can be derived from the chemical master equation
in the length scale and timescale we are interested in for
an ensemble of mesoscopic particles. This justifies the
switching from discrete to continuous N. We show below that
the chemical Fokker-Planck equation derived here satisfies
detailed balance.

For concentrated solutions, it is convenient to nondimen-
sionalize the number of molecules N in the system by the its
maximum N;. Assuming that N, is fixed, the equation can be
nondimensionalized via the mole fraction ¢ = N/N,, the PDF
in terms of ¢, f = PyN,, and the prefactor k = (K)y n/N;. In
contrast to linear kinetics, k can be a function of ¢, u, and e
and we do not make any assumption about the functional form
other than k > 0,

Of | 0l — kY] Jﬂi(ﬁ), (1)
ar T dc N e de

where . = dA!/0N. Alternatively,

af
ot + 8c =0. (16)
where the flux j is
kT 0
J = ((Hvres - — k= )f = kkp Tfeq <f{q>
7)

where f°9 is the equilibrium distribution, given by Eq. (19).
Defining the maximum number of molecules N, restricts the
fraction ¢ € [0, 1]. Therefore, we impose the no-flux bound-
ary condition j =0 at ¢ =0 and 1. To be compatible, we
require the chemical potential 4 — co as ¢ — 1 and u© —
—oo as ¢ — 0 and it is undefined outside (0,1).

Following the nondimensionalization, we define the free

energy
1

w= [ (a-
0

where a = A/N,. Following the analysis of the general case
(8), W, is the Lyapunov function for Eq. (15). Therefore, if not
chemically driven, or at constant fi.s, the system is Lyapunov
stable. In fact, it can also be shown that the eigenvalues of the
operator (fres — L)k — kkp TN,’la /dc are non-negative, and
f¢4 corresponds to the zero eigenvalue [46]. In other words,
the equilibrium distribution corresponds to 9 j/dc = 0, or j =
0, based on the boundary condition

>fdc (18)

feq(c) — e_ﬁNl(a_Mresc_"prenq)’ (19)

where W, is the potential defined in Eq. (18) when at equi-
librium and is the constant that satisfies the normalization
condition for f.

By comparing Eqgs. (4) and (15), we find that the reaction
rate is R = (s — (k. In the limit of large systems N, — oo,
Fokker-Planck equation (15) reduces to Eq. (4). The reaction
rate defined here naturally follows detailed balance. Now we
are able to correlate chemical fluctuations with the diffusive
term in the Fokker-Planck equation and extend the deter-
ministic reaction rate, or Eq. (2), to the equivalent Langevin
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equation

dc kBTk
o =R+2 é() (20)

where the Langevin noise £(¢) has zero average (£(¢)) =0
and is uncorrelated in time (£(¢)£(¢")) = 8(t — t’). Equation
(15) can also be written as

of L AUR) _ a( af)

= = 21
ot ac dc\ Oc

where D = kgTk/N, is an expression of the Einstein relation
or fluctuation-dissipation theorem for concentration fluctua-
tions across the particle ensemble. The noise intensity de-

creases as the size of the particle increases.

D. Evolution of the concentration variance

In Sec. I A we mentioned that when dR/dc > 0, char-
acteristics diverge and the probability distribution spreads.
This statement can be made more quantitative in the case
of non-negligible fluctuations by considering the evolution
of the concentration variance. Herrmann et al. [28] analyzed
the spreading in the unstable region where du/dc < 0 by
linearizing the reaction R with respect to ¢, which specifically
entails linearizing the chemical potential u since the prefactor
k is assumed to be constant. Therefore, in this case, the widen-
ing of the distribution is determined by du/dc. The analysis
requires that the distribution be sharply peaked. With the same
assumption, we extend the analysis to a general reaction rate
expression and approximate the evolution of the concentration
variance ocz = fol (¢ — co)*f(c)dc. The distribution ft,c)
satisfies Eq. (16) with j = fR — ks TN,”'kd f/dc. We define
the mean ¢y = (c¢), and the evolution of the concentration
variance is

2 1
d;; = i( / (c—co>2fdc)

/ (c — ¢p)? —dc = / jlc —co)dc. (22)
0

We expand the current j about ¢y and use the superscript (m)
to define the mth derivative with respect to c,

)
RO ey =" —2 )
(,,;

therefore,

do? ((c = co)™t)
c (m)
dr ZZ_ R (o) m!

+2 kBTZk"”m“«c—cO)'@ (24)
m=0

If f is concentrated around cj, higher-order moments in

the expression (24) decay very quickly and are negligible.

Therefore, we retain only moments up to ((c — cp)*) = 0.

In the limit of the sharply peaked distribution, kg7 /N, and o
are both small and we arrive at the key result

do? dR k T
o

dt ac

where ko = k(cg) and ¢y = (c) is the average mole fraction.
Autoinhibitory reactions (JR/dc < 0) decrease the spread in
particle concentration. Autocatalytic reactions lead to greater
heterogeneity.

If the equilibrium distribution is unimodal with a sharp
peak, it can be approximated by a normal distribution by
expanding the free energy a in terms of ¢ to second order,

(25)

Fo(c) A PN @)e—c0/2 =N [atco)—neorea—wi] @6

where s = (co) and acz = kgT /N, /' (co). The same con-
clusion is obtained by setting Eq. (25) to zero, since dR/dc =
—kodp/9c + (thres — )3k /dc. When the system is thermo-
dynamically stable (du/dc > 0), the variance can become
greater or smaller than the equilibrium variance when there
is a net reaction, depending on the sign of dk/dc and the
direction of the net reaction. The next section describes how
different k(c) models result in different population dynamics
behavior.

In the limit of negligible fluctuations N, — oo, Eq. (25)
gives the evolution of variance over time,

o2(t) = o2(t = 0)exp (2 / a—Rdt). (27)
0 dc

In the same limit, with the initial condition f(co,t = 0) =
fo(co), using the method of characteristics, the solution to the
Fokker-Planck equation without the diffusive term (4) is [1]

" AR
flc(t, co). 1) = folco) exp (/ _E(C(t,co)at)dt)’ (28)
0

where c(t, co) follows the characteristics and is the solution to
Eq. (2) with the initial condition c(t) = ¢. We see that, in the
limit of a sharply peaked distribution, by taking the variance
on both sides of Eq. (28), Eq. (27) is recovered. If the reaction
rate does not explicitly depend on 7, then

R
= fo(%)ﬁ- (29)

fle(t, co), t) R(c(t, c), t)

E. Electrochemical reactions

As a benchmark for the population dynamics model, in
this section we focus on the effect of reaction kinetics in the
context of electrochemical reactions. We impose a constant
total reaction rate, or constant current,

d{c L9 1
Rmml:%: /0 ca—fd - /0 jde.  (30)

In the limit of a sharply peaked distribution, the center of the
peak cq is equal to the average concentration (c) and shifts
linearly in time. The total reaction rate is equal to the reaction
rate at ¢, that is, dco/dt = R(cp). Therefore, the evolution of
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variance in Eq. (25) can also be written as

do? kT 1
% =z<i o2 + — —) (31)
dCO R Co Nt Mres — U

In the limit of negligible fluctuation or infinitely large reaction
rate, when the thermodynamic driving force | — | is
large, the growth of the standard deviation of the distribution

is given by
K =1In ("—) =f 2 de. 32)
Oc « R

In this section, we consider the simple reaction kinetics

R = Ro(c)g(fhres — 1), (33)

where g(0) = 0, which includes important cases of electro-
chemical reactions [13,14]. The corresponding autocatalytic
rate is

__0R

R/
s=——=Rog—Rogu' = R(—O - gu’)- (34)
dc Ry g

With this particular form of reaction kinetics, we have

c
K = InRylg, —/ g,u’dc. (35)
[&0]

Here we focus on the explicit dependence of the reaction
rate on concentration, in particular how the exchange current
Ro(c) affects the stability of the particle ensemble by auto-
catalysis [13]. Hence we discuss the case of positive differ-
ential resistance g’ > 0, that is, the reaction rate increases
with the driving force, which preserves the contribution of
the thermodynamic stability to the overall stability. Although
not the focus of the paper, the Marcus theory for outer-sphere
electron transfer, for example, exhibits an inverted region, or
negative differential resistance [13,14], which can destabilize
a thermodynamically stable system and make the reaction
autocatalytic. Reaction kinetics of this form can be derived
from transition state theory. For example, the famous Butler-
Volmer equation has the form above [14,57], where Ry is
called the exchange current and

gx) = ™ — 77X, (36)

where o is the charge transfer coefficient. In the case
of symmetric Butler-Volmer kinetics, « = 0.5 and ¢ =
V/(g/2)? + 1. The standard deviation grows in regions where
s >0, or (InRy) > /1/4 + (Ro/R)*u'sgn(R), as shown by
Bazant in Ref. [13]. With Butler-Volmer kinetics, when the
driving force |prs — p| is small, g(x) — x and the reaction
rate is slow. Therefore, the second term in Eq. (32) dominates
and whether the standard deviation increases or decreases is

mainly determined by the thermodynamic stability

1 c
K~ _ﬁf Rop'dc. (37)

0

At high total reaction rate, both the exchange current and ther-
modynamics determine the evolution of standard deviation.

ifR>0
if R <O.

aplg

38
—(I = a)ulg %)

K= lnR0|§O — {

The exchange current of the reaction kinetics is crucial in
determining the stability of the system [13,19]. The asymme-
try in exchange current leads to asymmetric behavior between
forward and backward reactions. In the case of LFP, a skewed
exchange current results in more uniform concentration pro-
files during intercalation and greater inhomogeneity during
deintercalation. To illustrate how the exchange current affects
the stability, we choose the regular solution as the thermody-
namic model

I c
Wl In T + Q1 — 2¢), (39)
where the first term arises from the entropy of mixing and
the second term comes from the enthalpic interaction. When
Q > 2, the system phase separates into two phases with low
and high concentrations.

Table II lists, in the case of symmetric Butler-Volmer
kinetics (¢ = 0.5), the maximum standard deviation ratio at
an infinitely fast reaction rate for three types of exchange
current, which is attained in the interval [c, c2] in which
dR/dc > 0. The starting and ending concentrations ¢; and
c; are also listed in the table. See Sec. III A below for a
plot and discussion of the region of instability dR/dc > 0 at
arbitrary reaction rates. The first two exchange currents are
symmetric and thus exhibit symmetric behavior for forward
and backward reactions. A constant exchange current does
not alter the stability: The unstable region (s > 0) is exactly
the spinodal region (du/dc > 0), which exists when Q > 2.
Figure 2 shows the evolution of the standard deviation at an
infinitely large reaction rate. The third row of the figure shows
that the evolution for the constant exchange current follows
the trend of the chemical potential. For the second exchange
current «/c(1 — ¢), which is frequently used in electrochem-
istry, the standard deviation grows within [0, 1 — 1/] for
the forward reaction and [1/€2, 1] for the backward reaction.
The unstable region exists when € > 1. Since at low enough
reaction rate the system always follows thermodynamic sta-
bility, when 1 < € < 2 it only becomes linearly unstable at a
high reaction rate. As shown in the second row of Fig. 2, the
second exchange current results in a larger maximum standard

TABLE II. Maximum standard deviation ratio with the starting and ending average fractions for three different exchange currents.

Exchange current 1(Q2>2) Jed=o)(Q>1) (1 —c)e"? (2> 1)
maxe, c, % :% exp(Q4/1—2/Q2) éeﬂfl %62971

C1 L‘/l{% Oorl 1

c 7&‘/12_% 1—Lord =
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deviation ratio as well as region of instability than the constant
exchange current.

As Bazant has shown [13], the third exchange current is
predominantly autocatalytic in the backward direction due
to the asymmetrically increasing exchange current in that
direction. When the direction is reversed, the autoinhibition
results in greater homogeneity for the forward reaction. In
particular, at an infinitely large backward reaction rate, the
system is kinetically unstable within the concentration range
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FIG. 2. Evolution of the standard deviation of the distribution
at infinitely large negative reaction rate and zero fluctuation. The
colored solid curves plot the analytical expression (38). Squares
represent simulations at sufficiently large negative currents. The
location of maximum standard deviation is marked by dashed lines
and is predicted in Table II. Each row corresponds to a different
exchange current shown in gray solid curves. The regular solution
is used as the thermodynamic model. The left column corresponds to
Q2 = 3, a phase-separating system. The right column corresponds to
Q = 2, which is at the critical point. The arrows indicate the direction
of reaction as well as the autocatalytic effect in the case of increasing
standard deviation.

[1/2€2, 1], which exists when € > 1/2. At an infinitely large
forward reaction rate, the system remains stable regardless
of the value of €2, behaving entirely differently from the
symmetric exchange currents. Figure 2 shows that, in the
backward direction, the amplification of standard deviation
and the width of the instability interval increases in the
order of constant, symmetric +/c(l —c), and asymmetric
(1 — ¢)e"? exchange current, the reason for the latter being
1/2Q2 < (1 — /1 —2/R)/2 < 1/2. Figure 2 also shows the
agreement between the analytical expression for the evolution
of standard deviation from Eq. (38) and numerical simulation
for the same exchange currents. The approximation captures
the magnitude of maximum standard deviation and where
maximum standard deviation is attained.

When the variance acz is large, the assumption of a sharply
peaked distribution no longer holds. For example, when the
system is driven toward a high concentration, an autocatalytic
effect may cause some particles to accelerate to much higher
concentration than average. However, the highest concen-
tration a particle can reach is the equilibrium concentration
corresponding to . The stabilizing effect of thermodynam-
ics when the concentration is near equilibrium (dR/dc > 0)
causes those particles to form another peak in the distribution.
We define the resulting bimodal distribution to be mosaic
instability.

The key result of this work is to show that mosaic instabil-
ity can arise as a result of both kinetic and thermodynamic
effects, and mathematically it is a result of diverging and
converging characteristics. Based on the analysis, we may
approximate the initiation of mosaic instability as when the
estimated variance o, = O’COEK exceeds a certain threshold,
where o, can be taken at the inception of linear instability
or the initial condition, when, as explained previously, the
magnitude of standard deviation is proportional to the strength
of the random fluctuation, that is, o, o +/D. In the case of
linear kinetics with constant exchange current, that is, R =
Ro(itres — 1), where Ry is a constant, we have K = [u(c) —
(co)]Ro/R. Thus, we obtain the following critical current R,
above which a thermodynamically phase-separating system
is kinetically stabilized, consistent with the conclusion of
Herrmann et al. [28]:

R. 1

e 40
Ry o(1111/«/5 @0

II1. APPLICATIONS

A. Li-ion battery porous electrodes

We first look at the example of lithium iron phosphate, one
of the most well-studied phase-separating solid-state lithium
intercalation materials. The lithiation reaction is Li* + e~ +
FePO4, — LiFePO, and the reverse reaction is called delithi-
ation. The chemical potential of lithium in the solid can be
modeled by the regular solution model given by Eq. (39) as a
function of the lithium fraction in the solid, with ¢ = 0 being
FePO4 and ¢ = 1 being LiFePO,. We model the population
dynamics using (a) a classical exchange current «/c(1 — ¢),
(b) exchange current derived from transition state theory (1 —
c)et/?, and (c) an experimentally measured exchange current
[19], all with Butler-Volmer kinetics.
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FIG. 3. Population dynamics applied to a lithium iron phosphate electrode. The main plots show the degree of mosaic instability as a
function of the current applied and average fraction. The prominence of the second peak in f(t, c¢) is equal to or greater than 1 for the most
intense gray color and O for white. The plots below show the evolution of the probability distribution in time at a certain constant current
whose trajectory is denoted by the same color in the main plot. The value f(¢, c¢) is equal to or greater than 10 at the greatest intensity and O for
white. The thermodynamics is modeled by the regular solution model ( = 3.4 and Dy = 2 x 10~*). Insets show the exchange current Ry(c).
Within the solid black curves, the system is linearly unstable dR/dc > 0. Dashed lines encircle the predicted region of mosaic instability using

Eq. (41).

In this section we focus on the population dynamics of an
ensemble of LFP particles under constant current. Figure 3
shows the dynamic phase diagram of the LFP model as a
function of current and average Li fraction and the evolution
of the probability distribution function in time at select cur-
rents. With a positive current (reaction rate), the average Li
fraction increases, which corresponds to going horizontally
from left to right in the main figure and vice versa for a
negative current. In the preceding section we defined mosaic
instability to be when the PDF is bimodal. This is shown
by the gray area in the main plot. The color indicates the
prominence of the second largest peak, which qualitatively
measures the degree of mosaic instability. To clearly mark
the mosaic instability region, the color is saturated when
the value is greater than 1. The point of exit from mosaic
instability is oscillatory with respect to the total reaction
rate. This is due to the varying frequency observed in the
regime of oscillatory phase transition, which was previously
addressed extensively and is beyond the scope of this work
[15,28,29].

At low currents, regardless of the exchange current, ther-
modynamics drives the particle ensemble to separate into
Li-poor and Li-rich populations, which correspond to growing
and shrinking peaks seen at i/ip = 107>, As shown in the
dynamic phase diagram, at low currents (but not R — 0, as
explained below), the mosaic instability initiates at around the
nearest spinodal point.

As mentioned above, Herrmann and co-workers [15,28,29]
performed extensive analysis on the various regimes of the
population dynamics at different currents for the simple

kinetics R = RyAu. Our more general model approaches it
asymptotically as R — 0. In Kramer’s regime, the reaction
rate is proportional to exp(—b/D), where b is the free-energy
barrier, or the difference between the local maximum and
minimum of @ — psc. Since the reaction rate is equal to the
rate of phase transformation in this regime, as b/D increases,
the rate of nucleation decreases exponentially. To reach the
quasistationary limit, that is, for the phase-separating region to
span between the two thermodynamic phases (binodal points),
the rate must be smaller than Kramer’s rate at the largest pos-
sible free-energy barrier (i = 0), which is around 10~4*
for the particular set of parameters chosen (2 =3.4 and
Dy = 2 x 107%); therefore, the dynamic phase diagram shown
is effectively only for current at or above Kramer’s regime
and the system must at least reach the spinodal point for the
nucleation to occur.

The solid curves denote the boundary of linear instability,
s = 0. In between the two curves, s > 0. At zero current,
the region of linear instability is also the spinodal region.
The region of mosaic instability does not follow the shape of
the region of linear instability. In fact, nucleation is delayed
with increasing current. We seek an approximation for the
region of mosaic instability. When mosaic instability occurs,
the newly formed phase is close to ¢ =1 for R > 0 and
close to ¢ =0 for R < 0. Therefore, we approximate the
single-phase behavior to be when the spread of the distribution
(which is approximately one standard deviation o, = o,eX) is
within [0,1],

O<cto, <1. 41)
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For a qualitative understanding, we choose an order-of-
magnitude estimate for the initial variance o, = +/D. Here
co is the first point where s = 0 or the initial average concen-
tration used in the simulation (0.05 or 0.95), whichever comes
later in the direction of the reaction. The predicted region of
mosaic instability is bounded by the dashed lines. This simple
approximation captures the general feature of the boundary
of mosaic instability. The form of reaction kinetics, in par-
ticular the autocatalytic rate dR/dc, is the dominant factor in
determining the mosaic instability region. It also indicates that
the delayed nucleation is mainly due to decreasing s/R with
increasing reaction rate.

The regimes studied by Herrmann and co-workers at higher
current no longer hold for certain exchange currents. For
the simple kinetics, the distribution stays unimodal above a
certain current (around 0.1). The qualitative trend remains true
for the exchange current (a). Further, since exchange current
(a) is symmetric with respect to ¢ = 0.5, the phase behavior is
also symmetric between lithiation and delithiation. However,
the asymmetric exchange currents (b) and (c) induce an auto-
catalytic effect during delithiation and cause a larger degree
of mosaic instability than lithiation while still suppressing the
mosaic instability above a certain lithiation current. In fact,
both (b) and (c) predict that the mosaic instability persists at
large negative current.

Following Lim et al. [19], we define the uniformity co-
efficient 1 — o,./+/c(1 — ¢), which is 1 when P(c = (c)) =1
and 0 when o, is at its maximum, that is, P(c = 0) =1 — {(c¢)
and P(c = 1) = (c). Figure 4 shows that the experimental
exchange current (c) results in increasing uniformity with
increasing total current and that, due to the skewed exchange
current and reasons stated above, lithiation results in a more
uniform distribution than delithiation. The result is in qualita-
tive agreement with the experimental result from Lim et al.
[19]. The theory overpredicts the uniformity for lithiation.
This can be attributed to additional noise unaccounted for,

1
g [ P
[}
&
5}
8
2067 1
i
£
=
S 0.4 1
/ ——Lithiation
1 Delithiation
0.2 ‘ ‘ ‘ ‘
0 0.5 1 1.5 2 2.5

Total current i/

FIG. 4. Uniformity coefficient from the model (solid curves)
and experiment [19] (squares with error bars). The model uses the
experimental exchange current given in the same reference, Ry =

3(1 —¢)a/e(1 —c).

such as particle size distribution and spatial inhomogeneity
of the reaction kinetics. The asymmetry was also observed
in another study by Li et al. [18], where the active particle
fraction increases as a function of current and is higher for
lithiation than for delithiation. This is consistent with the
asymmetric exchange current since a smaller active particle
fraction indicates a higher degree of heterogeneity and a lower
uniformity coefficient.

B. Driven phase separation at the critical point

In this section we present an example of a thermodynam-
ically single-phase system that undergoes mosaic instability
in certain reaction conditions. We choose the regular solu-
tion model with 2 = 2 so that the system is at the critical
point. As mentioned earlier, dR/dc = —kodp/dc + (Jres —
)k /dc. At the critical point ¢g, ' (co) = 0and dR/dc(cp) =
[1eres — (co)]0k/dc(cp); whether the reaction is autocatalytic
or autoinhibitory is solely determined by the explicit de-
pendence of the reaction rate on concentration k(c) and the
direction of the reaction.

For illustration purposes, we choose Butler-Volmer kinet-
ics with the exchange current Ry = (1 — c)?e* [14]. In a
lattice model, the exponent 2 indicates that the transition state
excludes two empty sites [14]. The quadratic dependence on
1 — c enhances the autocatalysis and accelerates the backward
reaction as ¢ decreases. Figure 1 is a simulation with such
thermodynamic and kinetic models, at u.s = —0.2 and total
reaction rate —0.1. It illustrates the diverging characteristics
during the backward reaction.

Figure 5 shows the kinetic phase diagram of the system.
Instability and a bimodal distribution occur at very low back-
ward reaction rates. Unlike LFP, increasing the backward
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FIG. 5. Population dynamics applied to a system at the critical
point (2 = 2 and Dy = x107%). The exchange current is shown in
the inset. The gray area is the region of mosaic instability. The
colormap is the same as that of Fig. 3. The system is linearly unstable
below the gray solid curve.
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reaction rate leads to the expansion of the mosaic instability
region. During the backward reaction, the distribution di-
verges so much that the population separates into two distinct
“fictitious phases” while the forward reaction shows stable
single-phase behavior. The region of mosaic instability is even
more asymmetric than LFP with the asymmetric exchange
current due to the second-order dependence on 1 — c. The mo-
saic instability region is contained within the linearly unstable
region, which is below the solid gray curve. We do not give
the approximated mosaic instability region like the one above
for LFP, because when the second peak in the PDF appears,
the peak position is not always close to 0 or 1.

This leads to important applications in the interpretation of
in situ and operando x-ray diffraction (XRD) experiments of
electrodes, which measure the population density as a function
of lattice parameters and thus the state of charge of the
particles [58—61]. One should be cautious in deriving phases
of a material from the XRD in a time-dependent experiment
such as charge and discharge, as the XRD peaks may arise as
a result of kinetic effects.

The mosaic instability defined for a particle ensemble can
also inform us about the initiation of phase separation due
to spinodal decomposition or nucleation within particles. In
particular, the example presented here suggests that pattern
formation may also arise when driven away from equilibrium
through autocatalytic reactions even though the reactive mix-
ture is thermodynamically stable. This could have implica-
tions in understanding and engineering phase separation in
a variety of systems and patterns driven by electron transfer
reactions. Negative differential resistance (dR/dAu < 0) is
not studied here in the context of population dynamics but can
also lead to such fictitious phase separation.

IV. SUMMARY

We presented a theory of describing the equilibrium and
dynamics of an ensemble of spatially homogeneous reactive
particles that undergo reaction with the reservoir. The theory
extends beyond the discrete particle simulation or the simpli-
fied reaction kinetics that was studied previously. Under the
reaction-controlled condition, reaction kinetics determines the
characteristics of the governing equation for the probability
distribution of the particle ensemble. By introducing chemical
fluctuation for any generalized reaction kinetics in a thermo-
dynamically consistent way, the corresponding Fokker-Planck
equation obeys detailed balance.

Through analytical approximation and numerical analysis
of several model systems, we studied how reaction kinetics of
the system affects the population dynamics and in some cases
transforms the entire landscape of phase behavior for sys-
tems with the same thermodynamic properties. Suppression
of phase separation or the induction thereof in single-phased
systems has been observed. The analytical approximation for
the boundary of mosaic instability based on the integral of the
autocatalytic rate shows good agreement with numerical sim-
ulation. This reinforces our understanding that autocatalytic
effects lie at the core of such phase separation behavior.

Therefore, knowledge of the reaction kinetics is cru-
cial in understanding the dynamics of reaction-controlled
systems. One can also envision engineering reactive sur-
faces to achieve desirable kinetic properties. The emer-
gent phenomena observed here motivate us to further ex-
plore kinetically controlled phase separation in experiments
using in situ analysis such as the aforementioned x-ray
diffraction.

Although we did not address any possible spatial correla-
tion or dependence in this paper, the theory can be extended
to incorporate the external environment that the particles are
subjected to by defining probability in the particle state space
and physical space. For example, we can introduce other
fields such as mass, temperature, and electric potential to
consider transport phenomena, as well as the particle en-
semble’s interaction with the external fields. Particles in a
porous medium can also be influenced by its highly localized
environment. Any intrinsically variable property or such local
variability that follows certain probability measures can also
be incorporated in the theory. The population dynamics can
also shed light on the spatially dependent behavior within
the particles. For example, population dynamics offers a
spatially agnostic statistical description of the concentration
field such as its mean and variance for as long as it maintains
isotropy and before patterns with sharp concentration gradient
take over.
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