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The Marcus–Hush theory of electron transfer has seen increasing use as a predictive alternative to the
phenomenological Butler–Volmer (BV) equation for Faradaic reactions kinetics. Here, we analyze and
simplify the asymmetric Marcus–Hush (AMH) model, first proposed by Marcus and recently used by
Compton’s group to fit experimental data that exhibit two different reorganization energies, depending
on the sign of the overpotential. The AMH model has a single reorganization energy and an asymmetry
parameter to account for different inner sphere force constants, but its practical use is hindered by the
need to numerically evaluate the improper integral over the electronic Fermi distribution. Moreover,
the domain of integration must be arbitrarily truncated to avoid divergence, due to some ambiguities
in the derivation, which also limits the validity of the AMH model to weakly curved Tafel plots.
Nevertheless, by defining a region over which the formula applies, we derive a simple formula to replace
the Fermi integral by exploiting similarities with our recent approximation of the symmetric limit of the
Marcus–Hush–Chidsey (MHC) model. These results enable the AMH model to approach the same ease of
use as both the MHC and BV models and highlight the need to develop a more comprehensive theory of
asymmetric charge transfer.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

The microscopic electron transfer theory [13], pioneered by
Marcus [19,20] and Hush [11,12], has achieved great success in
predicting reaction rates for both homogeneous bulk reactions
and heterogeneous electrode reactions [21] that exhibit curved
Tafel plots, which cannot be described by the phenomenological
Butler–Volmer (BV) equation [2]. The fundamental assumption of
Marcus–Hush (MH) theory is a quadratic dependence of the
(excess) free energy of the reactant and product along a configura-
tional reaction coordinate mainly associated with solvent reorgani-
zation, where electron transfer occurs iso-energetically at a
transition state defined by the intersection of these parabolae.
The forward and backward rates vary with overpotential, as the
parabolae are shifted vertically (in energy) relative to each other.

For Faradaic reactions at electrodes the theory must further be
augmented by integrating over all electron energy levels according
to the Fermi distribution, which leads to so-called Marcus–Hush–
Chidsey (MHC) kinetics [5,17]. Chidsey first applied the MHC model
to liquid–solid charge transfer mediated by self-assembled mono-
layers [5]. Recently, the MHC model has also been shown to predict
solid–solid charge transfer in Li-ion batteries [1], thus opening the
possibility of improving BV-based engineering models [23]. The
expression for MHC kinetics involves an improper integral over
the electron Fermi distribution that requires numerical evaluation,
which has led to the development of a number of approximations to
facilitate its implementation [4,22,24,28], including both very accu-
rate [4] and very simple [28] analytical approaches.

All these studies have examined the ‘‘symmetric’’ MHC model
[8] in which the reactant and product free-energy parabolae have
equal curvatures, controlled by a single outer-sphere reorganiza-
tion energy, but ‘‘asymmetric’’ kinetics have been observed in
many recent experiments [6,9,10,14,16,25,27], in which the MHC
theory requires different reorganization energies to fit the curved
Tafel plot of the high-rate cathodic and anodic reactions separately.
Drawing from early work of Marcus [18], Compton and co-workers
implemented and popularized the asymmetric Marcus–Hush
(AMH) model, which has a single reorganization energy but intro-
duces an asymmetry parameter to describe different inner-sphere
force constants [7,14,15]. The BV, MHC, and AMH models are com-
pared in Fig. 1 in a Tafel plot for moderately large overpotentials.

Unlike the symmetric MHC model, there are some ambiguities
in the original derivation of the AMH model [18], related to the fact
that two non-tangent parabolae of different curvatures have either
two or zero intersections, rather than one in the symmetric case.
Additional assumptions are thus required to calculate the reduc-
tion and oxidation rates. In the case of the AMH model, this leads
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Fig. 1. Comparison of Butler–Volmer (BV), symmetric Marcus–Hush–Chidsey
(MHC), and asymmetric-Marcus–Hush (AMH) kinetics as a function of applied
overpotential. Note that at small overpotentials, the AMH rates are well captured by
BV with a – 1

2. However, for large overpotentials, BV significantly over-predicts the
rate.
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to restrictions on the allowable overpotentials and truncation of
the range of electron energy levels [15], in order to avoid the diver-
gence of the improper integral over the Fermi distribution.

Despite these and other difficulties in developing theories of
asymmetric inner-sphere charge transfer [13], we focus here on
describing the mathematical properties of the AMH model and
deriving a simple formula to approximate the Fermi integral.
Unlike the symmetric MHC model, we are not aware of any simpli-
fying expressions or algorithms for the AMH model, so this result
should facilitate experimental comparisons and engineering
applications.

2. Theory

2.1. Marcus–Hush–Chidsey kinetics

The symmetric Marcus–Hush–Chidsey (MHC) model for elec-
trode kinetics assumes equal force constants for reactants and
products, and results in the following expression for the reduction
and oxidation rate constants [5,17]:

kred=ox;sðk;gÞ ¼ A
Z þ1

�1
exp �DGred=ox;sðxÞ

� � 1
1þ expð�xÞdx;

DGred=ox;sðxÞ ¼
k
4

1� xþ g
k

� �2

;

ð1Þ

where A is a pre-exponential constant factor, k is the dimensionless
reorganization energy, g is the dimensionless overpotential, x is the
dimensionless integration variable, and DGred=ox;s is the activation
energy. When two signs are present, the top refers to reduction
and the bottom to oxidation. Especially for concentrated solutions
and solids [1,3], it is important to note that this overpotential is
defined as the departure of the electrode potential (interfacial volt-
age difference between electrons and ions) from the formal poten-
tial (including logarithmic concentration terms), often used in
chemistry for studies of electrode kinetics, rather than from the
equilibrium potential (given by the Nernst equation), which is the
standard definition used in chemical engineering [3,23].

2.2. Asymmetric Marcus–Hush kinetics

The AMH model for electron-transfer kinetics takes into
account unequal inner-sphere reorganization energies by
introducing an asymmetry parameter, c, which describes the dif-
ference between inner-shell force constants of oxidized and
reduced species in a Faradaic reaction. The AMH model is defined
as follows:

kred=ox;aðk;g; cÞ ¼ A
Z þ1

�1
exp �DGred=ox;aðxÞ

� � 1
1þ expð�xÞdx;

DGred=ox;aðxÞ ¼
k
4

1� xþ g
k

� �2

þ c
gþ x

4

� �
1� gþ x

k

� �2� �
þ c2 k

16
;

ð2Þ

Note that when c ¼ 0, this asymmetric formula reduces to the sym-
metric MHC model. Importantly, Eq. (2) is restricted in applicability
based on the truncation of the approximating series by which it was
derived [15]. Although the restrictions in relevant parameter ranges
vary system to system, conservative estimates require
jcj < 0:35; k� 1, and jgjK 10 [14]. Nevertheless, k� 1 is typical
for a variety of asymmetric reactions [15].

For the remainder of the analysis, we will focus only on the oxi-
dation rate constant and free energy, as the results are easily
repeated for reduction. For ease of notation, we refer to the oxida-
tion rate constant and free energy barrier as simply ka and DGa.

2.3. Clarification of the AMH model

This AMH formula has already demonstrated good
agreement with experimental data in numerous studies [9,15,26]
and is becoming increasingly important in understanding electro-
chemical systems, whenever symmetric MHC kinetics fails.
Mathematically, however, the model is not well posed. In particu-
lar, the improper integral in Eq. (2) does not converge. Therefore,
we must modify the original formula, in agreement with observa-
tions made by Compton et al. [14]. This change does not affect the
results of previous studies and may enable better understanding of
this asymmetric kinetic theory.

As has been previously noted, the integrand in Eq. (2) is a func-
tion with a peak similar to a Gaussian for small x, and numerical
evaluation of the integral must be done within some finite x range,
typically ±50 [7]. This integration limit is not solely for computa-
tional speed; we will show that the integrand diverges as x goes
to either positive or negative infinity unless c is exactly zero (the
symmetric MHC case).

The cause of the divergence of the integrand is that the nondi-
mensional Gibbs free energy barrier, DGaðxÞ, is a cubic function of
x when c is non-zero. Depending on the sign of c;DGaðxÞmust tend
to negative infinity at either x ¼ 1 or x ¼ �1 with a speed of

O jxj3
� �

. The second part of the integrand, 1þ expðxÞð Þ�1, which is

related to the Fermi distribution, decays no faster than
O expð�jxjÞð Þ. Thus, the integrand diverges at a rate of O expðx3Þ

� �
,

and the integral in Eq. (2) must diverge for any c – 0. A numerical
demonstration is provided in Fig. 2. For x within ±50, the integrand
is nearly a Gaussian function with a peak close to zero. However,
when x > 300, it grows quickly and dominates the peak around zero.

In order to avoid the divergence in Eq. (2), instead of integrating
over the entire real axis, we have to restrict the integral within a
certain domain D, such that the integrand has a peak within this
domain, but takes small enough values on both boundaries. Thus,
we rewrite the AMH formula as,

kaðk;g; cÞ ¼ A
Z
D

exp �DGaðxÞð Þ 1
1þ expðxÞdx;

DGaðxÞ ¼
ðx� kþ gÞ2

4k
þ c

gþ x
4

� �
1� gþ x

k

� �2� �
þ c2 k

16
;

ð3Þ

Unfortunately, the domain D has to be specified case by
case according to the parameter choices. In general,
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Fig. 2. Numerical evaluation of the integrand in Eq. (2) with k ¼ 60; c ¼ 0:3 and g ¼ 0. We see on the right that for x� 50, the integrand is dominated by the growing cubic
term, which results from series truncation in the derivation of Eq. (2).
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D ¼ fx 2 Rj � 50 6 x 6 50g is a very good choice as suggested by
Compton’s group [14], but a check of the validity of this integral
region needs to be done for any new parameter choices.

In addition, for small values of the nondimensional reorganiza-
tion energy, k, the peak domain D is not well separated from the
‘‘blow up region’’. A typical example is shown in Fig. 3. In this case,
the integral domain D cannot be clearly defined, and the AMH
model in Eq. (3) is out of its valid range. In the remainder of the
paper, we will always restrict our discussions to the cases in which
the integral domain D can be consistently defined.

2.4. Derivation of the AMH formula

Based on this discussion, it is clear that the AMH model is
incomplete and could be modified in various ways to more accu-
rately capture inner-sphere effects on electron transfer kinetics.
It is beyond the scope of this paper to examine the theoretical basis
for the AMH model or propose any alternatives, but we briefly
draw attention to a key step in the original derivation that we
are not able to reproduce. In his classic 1965 paper [18], Marcus
considered the possibility of free-energy parabolae with different
curvatures (force constants) for the reduced and oxidized states
and proposed the first asymmetric theory in Appendix IV. With
the aid of numerical estimates, he concluded that, for cases of
relatively small driving forces, the asymmetric factors in his Eq.
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Fig. 3. Numerical evaluation of the integrand in Eq. (3) with parameters
k ¼ 1; c ¼ 0:3 and g ¼ 0.
(A13) can be neglected, while for relatively large driving forces,
Eq. (A13) should be replaced by his Eq. (A14a). In this step, both

the k2
i h‘si2=16k term and the kT term from Eq. (A13) were

neglected, but a cubic term kih‘siðDFo0
R =kÞ

3
=4 was added, which

we are not able to derive systematically from Eq. (A13). As noted
above, this cubic term is responsible for the divergence of the
Fermi integral over all election energy levels and causes the need
to arbitrarily truncate the domain of integration.

The AMH model corresponds to the electrochemical variant of

Marcus’ Eq. (A14a) plus the k2
i h‘si2=16k term. The resulting expres-

sion has been successfully used to fit experimental data with
asymmetric curved Tafel plots [7,14,15], despite the ambiguities
in both its derivation and implementation. As such, we proceed
to approximate the AMH model so as to eliminate the cumbersome
Fermi integral.

3. Results

3.1. Approximation of the AMH integral

In this section, we present a closed-form analytical approxima-
tion for the domain-restricted AMH formula, Eq. (3), based on some
empirical observations of the integrand. A mathematical reasoning
on the validity of such an approximation is also discussed. Because
Eq. (3) already relies on an empirical restriction of parameter val-
ues, the focus of this work is on providing a useful approximation
formula for the applicable parameter ranges rather than formally
deriving a uniformly valid approximation.

Compared to the symmetric MHC theory, the asymmetric for-
mula only differs by the cubic term in DGa. Since the integral
domain D normally consists of only a small range of x, we may
make some observations of the quadratic term and the cubic term
within this range.

Typically, the cubic term varies considerably less than the quad-
ratic term within the peak region of the integrand. Two examples
are shown in Fig. 4. Therefore, one possible choice for approximat-
ing Eq. (3) is to treat the cubic term as independent of x over the
integral domain D. This is mathematically equivalent to taking
only the first term of the Maclaurin series of the cubic term, and
neglecting all higher order terms. Then we get,

DGaðxÞ ¼
ðx� kþ gÞ2

4k
þ c

gþ x
4

� �
1� gþ x

k

� �2� �
þ c2 k

16

� DGsðxÞ þ c
g
4

� �
1� g

k

� �2
� �

þ c2 k
16

;

ð4Þ
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Fig. 4. Comparisons of the quadratic term and the cubic term in Eq. (3) within the integral domain Dwith parameters k ¼ 60; c ¼ 0:3. The nondimensional overpotential g is
chosen to be 40 (left) and �40 (right).
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where DGs is the corresponding free energy function of the symmet-
ric MHC theory in Eq. (1). Since the cubic term is independent of x, it
can be moved out of the integral. Then we obtain the approximated
reaction rate,

kaðk;g; cÞ � A exp �c
g
4

� �
1� g

k

� �2
� �

� c2 k
16

� 	

�
Z
D

exp �DGsðxÞð Þ 1
1þ expðxÞdx

¼ exp �c
g
4

� �
1� g

k

� �2
� �

� c2 k
16

� 	
ksðk;gÞ;

ð5Þ

where ksðk;gÞ is the corresponding reaction rate of the symmetric
MHC kinetics, which can be approximated a number of ways as dis-
cussed above. For simplicity, we apply our previous approximation
for the symmetric MHC kinetics formula here and finally obtain a
closed form approximation for the AMH theory [28],

kred=ox;aðk;g; cÞ � A exp �c
g
4

� �
1� g

k

� �2
� �

� c2 k
16

� 	

�
ffiffiffiffiffiffi
pk
p

1þ expð�gÞ erfc
k�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffi
k
p
þ g2

q
2
ffiffiffi
k
p

0
@

1
A: ð6Þ

where the double sign corresponds to reduction (above) and oxida-
tion (below). The reduction and oxidation formulas differ only in
the substitution of the reduction/oxidation symmetric rate constant
for ks.

The approximation formula in Eq. (6) works well when
jcj < 0:35, in agreement with the valid region suggested by
Compton and coworkers [14]. In addition, this requires k� 1
because of the integral domain validation requirement. However,
k� 1 is typical for an asymmetric reaction [15]. It is critical that
the absolute value of the nondimensional overpotential g should
not exceed the value of nondimensional reorganization energy
k; jgj < k, as also previously noted [14].

Finally, we consider the choice of the approximation for ks. We
note that the approximation for symmetric MHC kinetics as used in
Eq. (6) is less accurate for large k and g � 0 [28]. However, over the
entire relevant parameter space, small errors in g ([15 mV) corre-
spond to the same magnitude of error as introduced by using the
chosen uniformly valid approximation. Thus, it is unlikely that
practical applications will require more accuracy for the symmetric
part. Nevertheless, more accurate computational methods to
evaluate ks can be implemented instead [4].
3.2. Numerical study

In Fig. 5, we compare our approximate formula Eq. (6) to the
numerical integration of the original AMH formula in Eq. (3) with
different choices of c and g, under the same conditions considered
in recent experiments [6,9,10,14,16,25,27] in which the curvature
of the Tafel plot is relatively weak, corresponding to large
reorganization energy k� 1. For the case k ¼ 60 (roughly 1.5 eV
at room temperature), even though the reaction rate varies by
about 20 orders of magnitude over this parameter range, the
approximations show good agreement with the numerical results.
The asymmetry caused by nonzero values of c is also accurately
captured.

As expected from our analysis above, the numerical results
show that the approximation loses significant accuracy only when
jgj gets larger than k. A numerical demonstration in Fig. 6 shows
that when jgj > k� 1, the approximation can be several orders
off from the true value. Therefore, the application of approximate
formula in Eq. (3) should be limited to the range jgj < k.
Nevertheless, the original AMH formula is generally only accurate
for jgj < k [14], so this restriction does not further limit the use of
the approximation. This only highlights the need to develop a more
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comprehensive model of asymmetric charge transfer for a broader
range of overpotentials and reorganization energies.
4. Conclusion

We have derived a simple closed-form approximation for AMH
kinetics, Eq. (6), which eliminates the need to evaluate the diver-
gent Fermi integral in Eq. (2). The new approximation relies on
the observation that the integrand in the original expression can
be approximated as having a nearly-constant factor over relevant
parameter regions and associated integration limits, so that the
remaining improper integral can be approximated by our previ-
ously derived simple formula for MHC kinetics [28]. As previously
noted [14], for small overpotentials, jgjK 1, the AMH model is sim-
ilar to the asymmetric Butler–Volmer equation with a – 1

2, which
provides an alternative to the formula presented here. At larger
overpotentials, the BV equation neglects all curvature in the Tafel
plot, which becomes significant even at moderate overpotentials
(Fig. 1) and corresponds to orders of magnitude differences in
the predicted reaction rates.

Our mathematical study also clarifies the range of validity of the
AMH model itself. The original model and our simple approxima-
tion are both only valid for large reorganization energies k� 1
(scaled to kBT) and moderate overpotentials, jgj � k. With these
parameter constraints, the curvature of the Tafel plot is relatively
small (on a logarithmic scale), although significant differences with
BV kinetics by orders of magnitude at large overpotentials are still
captured by the model. This regime is consistent with the observed
rates for a variety of liquid–solid Faradaic reactions recently fitted
to the AMH model [6,9,10,14,16,25,27], and in such cases, the pre-
sent approximation would be a useful mathematical simplification
for data fitting or engineering models.

On the other hand, the AMH model cannot be applied to other
reactions with smaller reorganization energies (k < 10) and more
strongly curved Tafel plots approaching a constant limiting rate,
which have been observed experimentally for both liquid–solid
[5] and solid–solid [1] interfaces. These studies have not detected
any significant asymmetry in the overpotential dependence, but
in principle some Faradaic reactions with low reorganization
energies will have significant asymmetry from inner sphere
force-constant variations that cannot not be captured by the orig-
inal AMH model. Therefore, there remains a need to develop more
comprehensive, but still simple, models of asymmetric charge
transfer at electrodes.
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