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The Marcus–Hush–Chidsey (MHC) model is well known in electro-analytical chemistry as a successful
microscopic theory of outer-sphere electron transfer at metal electrodes, but it is unfamiliar and rarely
used in electrochemical engineering. One reason may be the difficulty of evaluating the MHC reaction
rate, which is defined as an improper integral of the Marcus rate over the Fermi distribution of electron
energies. Here, we report a simple analytical approximation of the MHC integral that interpolates
between exact asymptotic limits for large overpotentials, as well as for large or small reorganization
energies, and exhibits less than 5% relative error for all reasonable parameter values. This result enables
the MHC model to be considered as a practical alternative to the ubiquitous Butler–Volmer equation for
improved understanding and engineering of electrochemical systems.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The microscopic theory of electron transfer [3,17] has been
developed and tested in electroanalytical chemistry for almost sev-
enty years since the pioneering work of Marcus [21–23]. Although
much of the early work focused on homogeneous electron transfer
in solution, the theory was also extended to heterogeneous elec-
tron transfer at electrodes [15,20,22] and found to accurately pre-
dict Faradaic reaction kinetics for both liquid [11,15,25] and, more
recently, solid [2] electrolytes. For metal electrodes, however, the
theory is complicated by the need to integrate the Marcus rate over
the Fermi–Dirac distribution of electrons. This integral cannot be
evaluated in closed form in terms of elementary functions and
has only been approximated (in certain limits) by relatively cum-
bersome series expansions [25,26,30].

Partly for this reason, despite its successes, the theory is rarely
used and poorly known in engineering. Instead, standard mathe-
matical models are based on the phenomenological Butler–Volmer
(BV) equation [7,28], which has the appeal of a simple analytical
formula that fits many experimental measurements, even though
it lacks a clear physical basis. The goal of this work is to derive
an equally simple formula for the microscopic theory.
2. Background

For the simple redox reaction, R$ O + e�, the BV reductive and
oxidative reaction rates, are expressed as,

kBV
redðg;aÞ ¼ kBV

0 exp
�aeg
kBT

� �
;

kBV
ox ðg;aÞ ¼ kBV

0 exp
ð1� aÞeg

kBT

� �
;

ð1Þ

where kBV
0 is the rate constant, a the charge transfer coefficient, e

the elementary charge, g the applied overpotential, kB Boltzmann’s
constant and T the temperature. The net reduction current is pro-
portional to the difference in forward and backward rates,
I / kred � kox, in the standard form of the BV equation. The ratio of
forward and backward rates satisfies the de Donder relation,

kred

kox
¼ exp � eg

kBT

� �
ð2Þ

which is a general constraint from statistical thermodynamics for
thermally activated chemical kinetics [4,32]. The BV model asserts
that the reaction rate in either direction follows the Tafel relation-
ship, in which the thermodynamic driving force is a constant frac-
tion of the applied overpotential. This dependence is empirical
but can be justified by various phenomenological models [3,7],
where the electrostatic energy of the (ill-defined) transition state
of the reaction is an average of that in the reduced and oxidized
states, weighted by the charge transfer coefficient [4].
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In contrast, the microscopic theory of outer-sphere electron
transfer focuses on solvent reorganization prior to iso-energetic
electron transfer [3,17,22]. In the simplest form of the theory, the
free energy of the reduced and oxidized states has the same
harmonic dependence on a reaction coordinate for solvent
reorganization (such as local dielectric constant of the solvation
shell), before and after electron transfer. For the same redox reac-
tion above, the reaction rates take the form [4,11,33],

kM
red=oxðDGÞ ¼ kM

0 exp �ðDG� kÞ2

4kkBT

 !
; ð3Þ

where DG is the free energy change upon reduction, and k is the
reorganization energy, i.e. the free energy required to completely
reorganize the local atomic configuration of one state to the other
state without charge transfer.

If the redox reaction occurs at an electrode, electrons in the
metal electrode occupying different energy levels around the
Fermi level may all participate in the reaction, which results in
multiple intersections between two families of parabolae [20].
Although this principle was first identified decades ago, the
importance of incorporating the Fermi–Dirac distribution of
electrons/holes into the classical Marcus theory was not widely
recognized until Chidsey found perfect agreement between the
modified rate equation and the curved Tafel plot obtained from
his seminal experiments on redox active self-assembled monolay-
ers (SAMs) [11]. The rate equation implemented by Chidsey, now
known as the Marcus–Hush–Chidsey (MHC) [15] or Marcus-DOS
model [12], can be written as,

kMHC
ox=redðgÞ ¼ A

Z 1

�1
exp �ðx� k� egÞ2

4kkBT

 !
dx

1þ expðx=kBTÞ ; ð4Þ

where A is the pre-exponential factor, accounting for the electronic
coupling strength and the electronic density of states (DOS) of the
electrode. The first term in the integrand is the classical Marcus rate
for the transfer of an electron of energy x relative to the Fermi level,
and the second factor is the Fermi–Dirac distribution assuming a
uniform DOS. The reductive and oxidative reaction rates satisfy
Fig. 1. Dimensionless Tafel plots of Butler–Volmer kinetics (BV) with charge
transfer coefficient a ¼ 1

2 compared with Marcus (M) and Marcus–Hush–Chidsey
(MHC) kinetics with reorganization energy k (scaled to the thermal energy kBT). The
absolute value of the current jIj scaled to the exchange current I0 is plotted on a
logarithmic scale versus the overpotential g scaled to the thermal voltage, kBT=e.
The M and MHC curves assume a typical value [11,2] of the dimensionless
reorganization energy, k ¼ 10 scaled to kBT.
the de Donder relationship, Eq. (2), as well as a ‘‘reciprocity rela-

tionship’’ noted by Oldham and Myland [30], kMHC
ox ð�gÞ ¼ kMHC

red ðgÞ.
The three models are compared on a Tafel plot in Fig. 1, which

highlights dramatic differences in the predicted rate for large over-
potentials. While the BV rate increases exponentially without
bound along a traditional ‘‘Tafel line’’, the Marcus rate reaches a
maximum at the reorganization voltage (g ¼ k=e) and then
decreases rapidly (as a Gaussian) along an inverted parabola. The
latter is the famous ‘‘inverted region’’ predicted by Marcus for
homogeneous electron transfer [22]. The MHC model predicts a
curved Tafel plot that neither diverges nor decays, but instead
approaches a constant reaction-limited current.

The disappearance of the inverted region originates from the
distribution of electrons in the metal electrode, as shown in
Fig. 2. When a positive free-energy barrier is formed in the inverted
region in response to the large overpotential, electrons below the
Fermi level (le) with roughly unity Fermi factor follow a lower-
energy parabola that enables a barrier-less transfer, which domi-
nates the overall reduction rate and leads to a constant, non-zero
limiting current [29,13,31]. More detailed comparisons between
BV and MHC kinetics can be found in Appleby and Zagal [1], Chen
and Liu [9], and the enlightening review of Henstridge et al. [15].

Evidence is mounting that MHC kinetics are essential for the
understanding and engineering of important electrochemical
interfaces. The MHC model has been extensively used in the micro-
scopic analysis of electron transfer at SAMs [11,15] and electro-
chemical molecular junctions [25]. It could also be important for
nano-electrochemical systems working at large overpotentials,
such as resistive-switching memory [36] or integrated circuits
with ultrathin gate dielectrics, where the BV model predicts
(b)

e

Fig. 2. Physical interpretation of MHC kinetics for the Faradaic reaction,
Oþ e� ! R, at a metal electrode. In each panel, a parabola for the free energy (or
more precisely, excess electrochemical potential [4]) of the reduced state (R, right)
versus reorganization reaction coordinate intersects a family of parabolae for the
free energy of the oxidized state plus the free electron (O + e�, left), sampled from
the Fermi–Dirac distribution with electron energies, e, shown. (a) Exchange process
at zero overpotential, dominated by electrons near the Fermi level following Marcus
kinetics. (b) Reaction-limited current at large negative overpotential, dominated by
lower-energy electrons below the Fermi level undergoing barrier-less transitions.
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unrealistically large reaction rates [27]. Recent Tafel analysis of Li-
ion battery porous electrodes consisting of carbon-coated LiFePO4

particles has further verified MHC kinetics for electron transfer at
the carbon-LiFePO4 (solid–solid) interface [2], contrary to all exist-
ing battery models, which assume BV kinetics. For simple outer-
sphere reactions, the symmetric MHC model (considered here)
provides an excellent fit of the measured reaction rates [11,2]. In
other situations (with negligible double-layer Frumkin effects
[8,5,6]), the asymmetric MH model is required with different reor-
ganization energies for the forward and backward reactions
[18,35,34], due to different inner-sphere (non-electrostatic, vibra-
tional) [14,16] or outer-sphere (nonlinear solvation) [24,19] force
constants for the reduced and oxidized states.

One possible reason MHC kinetics have been overlooked is the
complexity of the rate expression Eq. (4) as an improper integral
that cannot be evaluated in terms of elementary functions, like
the BV equation. In order to avoid numerical quadrature, there
have been several attempts to derive simpler analytical approxi-
mations. Oldham and Myland [30] recently obtained an exact solu-
tion involving sums of a function that is a product of an
exponential function and a complementary error function, which
leads to some convenient alternatives for limited ranges of the
parameters. Migliore and Nitzan derived another series solution
by an expansion of the Fermi function [25], which is mathemati-
cally equivalent to Oldham’s solution [26]. As with any series
expansion, however, accuracy is lost upon truncation, and the
approximations are not uniformly valid across the range of possi-
ble reorganization energies and overpotentials.

In this paper, we derive a simple formula by asymptotic match-
ing that accurately approximates the MHC integral over the entire
realistic parameter range. In the following sections, we first per-
form asymptotic analysis of Eq. (4) for positive (oxidation) and
negative (reduction) overpotentials, then unify both cases by
asymptotic matching in a closed-form approximation, and finally
demonstrate the accuracy of our formula compared to numerical
quadrature and the recent series solutions. Complete asymptotic
series are derived in the appendices for large and small reorganiza-
tion energies, but only the leading-order terms are used in the
main text to obtain our uniformly valid formula.
3. Oxidation rate for positive overpotentials

Without loss of generality, we neglect the prefactor A and begin
by restricting g > 0 for the oxidation rate. Eq. (4) can then be
rewritten as,

kðk;gÞ ¼
Z þ1

�1
gðx; k;gÞ f ðxÞdx; ð5Þ

where the original integrand is separated to a Gaussian function g
and the Fermi distribution f,

gðx; k;gÞ ¼ exp �ðx� kþ gÞ2

4k

 !
;

f ðxÞ ¼ 1
1þ expðxÞ :

ð6Þ

For mathematical convenience, all quantities starting from Eq. (5)
will be dimensionless: x and k are scaled to kBT and g to kBT=e.

3.1. Small reorganization energies, k� 1

When k� 1, the Gaussian function g has a narrow peak at
x ¼ k� g. We will apply the Laplace method [10], where we
expand the function g around the point x ¼ k� g by Taylor expan-
sion, and then integrate all the terms separately. Derivations and
the full series solution can be found in Appendix A. Here, we use
the leading asymptotic term of the integral,

kðk;gÞ � 2
ffiffiffiffiffiffi
pk
p

1þ expðk� gÞ ; ð7Þ

as our asymptotic approximation for cases of small k.

3.2. Large reorganization energies, k� 1

For an outer-sphere reaction, k is usually larger than 1, and the
series solution given in Eq. (A3) may converge slowly. A more accu-
rate approximation for the integral in Eq. (5) in this limit is based
on the observation,

lim
a!þ1

1
1þ expðaxÞ ¼ 1� HðxÞ; ð8Þ

where HðxÞ is the Heaviside step function defined to be HðxÞ ¼ 0 for
x < 0 and, HðxÞ ¼ 1

2 for x ¼ 0 and HðxÞ ¼ 1 elsewhere. This corre-
sponds to the zero temperature limit of the Fermi–Dirac distribu-
tion, which enables an accurate approximation to the original
integral [13],

kðk;gÞ �
Z þ1

�1
gðx; k;gÞ 1� HðxÞð Þdx ¼

ffiffiffiffiffiffi
pk
p

erfc
k� g
2
ffiffiffi
k
p

� �
; ð9Þ

where erfcð�Þ is the complementary error function. The derivation of
the correction series to this approximation is available in Appendix
B.

4. Oxidation rate for negative overpotentials

Combining the de Donder relation and reciprocity relations for
MHC kinetics [30], we obtain a symmetry condition

kðk;gÞ
kðk;�gÞ ¼ expðgÞ; ð10Þ

which directly yields the leading-order approximation for g < 0.
When k� 1, by using Eqs. (7) and (10), we have,

kðk;gÞ ¼ expðgÞkðk;�gÞ � 2
ffiffiffiffiffiffi
pk
p

expðgÞ
1þ expðkþ gÞ : ð11Þ

And for the case of k� 1, by using Eqs. (9) and (10), we obtain

kðk;gÞ �
ffiffiffiffiffiffi
pk
p

expðgÞ erfc
kþ g
2
ffiffiffi
k
p

� �
: ð12Þ

We thus obtain asymptotic approximations of the integral (5) for all
g, in the limit k� 1,

kðk;gÞ �
2
ffiffiffiffi
pk
p

1þexpðk�gÞ for g P 0 and k� 1;
2
ffiffiffiffi
pk
p

expðgÞ
1þexpðkþgÞ for g < 0 and k� 1

8<
: ð13Þ

and the limit k� 1,

kðk;gÞ �

ffiffiffiffiffiffi
pk
p

erfc k�g
2
ffiffi
k
p

� �
for g P 0 and k� 1;ffiffiffiffiffiffi

pk
p

expðgÞ erfc kþg
2
ffiffi
k
p

� �
for g < 0 and k� 1:

8><
>: ð14Þ
5. Uniformly valid approximation

In order to get a closed form expression valid for all g, we mul-
tiply the g P 0 approximation by a function MðgÞ that interpolates
between the asymptotic limits, MðgÞ ! 1 for g!1 and MðgÞ � eg

for g! �1. In order to make the expression differentiable, we also
introduce a function NðgÞ to continuously approximate the abso-
lute value function,
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Fig. 3. Numerical evaluations of reaction rates kðk;gÞ according to three asymptotic approximations Eq. (13) (blue square), Eq. (14) (black circle) and Eq. (17) (green
diamond), together with the direct numerical quadrature of the MHC integral (5) (red cross) for k ¼ 0:1;1;10 and 30 and jgj < 20. Each comparison is shown in both log scale
(top) and linear scale (bottom). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

80 Y. Zeng et al. / Journal of Electroanalytical Chemistry 735 (2014) 77–83
kðk;gÞ �
ffiffiffiffiffiffi
pk
p

MðgÞ erfc
k� NðgÞ

2
ffiffiffi
k
p

� �
: ð15Þ

Although it is possible to also construct a uniformly valid approxi-
mation for all k in a similar way, we consider only the k� 1 approx-
imation, which turns out to be accurate even down to k � 0:1 and
covers the physically relevant range for outer sphere reactions.
Below such small values of the reorganization energy, the barrier
to charge transfer is too small to justify the use of transition state
theory, and MHC kinetics break down.

For smooth MðgÞ and NðgÞ, the uniformly valid approximation
removes the discontinuous derivative at g ¼ 0 that would arise
by naively patching the two asymptotic approximations for g > 0
and g < 0. The de Donder relation can also be satisfied exactly if
we require MðgÞ ¼ egMð�gÞ. These properties are satisfied by the
following simple choices for the interpolating functions

MðgÞ ¼ 1
1þ expð�gÞ ;

NðgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ g2

p
;

ð16Þ

where a is an arbitrary constant, yielding the uniformly valid
approximation
kðk;gÞ �
ffiffiffiffiffiffi
pk
p

1þ expð�gÞ erfc
k�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ g2

p
2
ffiffiffi
k
p

 !
: ð17Þ

A comparison between different approximations (small k limit,
large k limit, and uniform approximation) and the direct numerical
integration of MHC for various k values are shown in Fig. 3. Remark-
ably, we find that Eq. (17) with a ¼ 1þ

ffiffiffi
k
p

provides very accurate
approximation to the MHC integral (Eq. (5)) across the full range
of physical parameter values. The numerical results almost overlap
everywhere, as shown in Fig. 3.

Numerical evaluations of the relative errors of our simple for-
mula (17) under different choices of k are shown in Fig. 4, including
a comparison with the series solution by Oldham and Myland [30]
for k ¼ 10. It is clearly seen that our approximation exhibits <10%
relative error even in the most extreme cases. For more relevant
cases for outer sphere reactions (e.g. k � 10) [2,11], the relative
error is less than 5% for small overpotentials and vanishingly small
at large positive or negative overpotentials.

Finally, we arrive at our main result. By subtracting the oxida-
tion rate from the reduction rate, Iðk;gÞ ¼ kð�g; kÞ � kðg; kÞ, we
obtain a simple, accurate, formula for the net reduction current
(up to a constant pre-factor):
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Iðk;gÞ �
ffiffiffiffiffiffi
pk
p

tanh
g
2

� �
erfc

k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffi
k
p
þ g2

q
2
ffiffiffi
k
p

0
@

1
A: ð18Þ

This expression is almost as simple and efficient to evaluate as the
BV equation, while accurately approximating the MHC integral over
the entire physical parameter range. For example, on a dual-core
processor using Python with Scipy, the evaluation of Eq. (18) is only
about four times slower than that of the BV equation, but about
1500 times faster than an efficient numerical quadrature of the
MHC integral using a subroutine from the Fortran QUADPACK
library (with k ¼ 10).

From Eq. (18), the exchange current (up to the same constant) is
the forward or backward rate in equilibrium,

I0ðkÞ ¼ kðk;0Þ �
ffiffiffiffiffiffi
pk
p

2
erfc

k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffi
k
pp

2
ffiffiffi
k
p

 !
; ð19Þ

which decays exponentially for large reorganization energies,

I0 � exp � k
4

� �
; k� 1: ð20Þ

As shown in Fig. 4, the greatest error in our formula occurs at small
over-potentials, but as shown in Fig. 5, the accuracy is quite satis-
factory even at g ¼ 0 for a wide range of reorganization energies.
6. Conclusion

In order to facilitate the application of the MHC kinetics in
electrochemical engineering, we derive a simple approximation
by asymptotic matching that serves as a practical alternative to
the BV equation for electrochemical engineering. Our formula
improves upon classical asymptotic approximations [29,13,31]
and recent series expansions [30,25,26] and provides the first uni-
formly valid approximation for all reasonable choices of the reor-
ganization energy and overpotential with less than 5% error at
small overpotentials and vanishing error at large overpotentials.
A natural next step would be to extend our formula for the
general asymmetric Marcus–Hush model with different reorgani-
zation energies for the reduced and oxidized states [18]. These
results could be conveniently used in classical battery models
[28] or new models based on non-equilibrium thermodynamics
[4] for electrode phase transformations limited by Faradaic reac-
tions [2]. Switching from Butler–Volmer to Marcus–Hush kinetics
could have dramatic implications for the understanding and
optimization of electrochemical systems working at high
overpotentials.
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Appendix A. Small k limit

The Taylor series of the Fermi distribution function f defined in
Eq. (6) around x ¼ k� g is,

f ðxÞ ¼
X1
n¼0

ðx� kþ gÞn

n!
f ðnÞðk� gÞ: ðA1Þ

If we put this expression back to Eq. (5), we get,
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kðk;gÞ ¼ 2
ffiffiffiffiffiffi
pk
p X1

n¼0

f ðnÞðk� gÞ
n!

Z þ1

�1

1
2
ffiffiffiffiffiffi
pk
p ðx� kþ gÞn

	 exp �ðx� k� gÞ2

4k

 !
dx: ðA2Þ

For each n, the integral is exactly the n-th central moment of a
normal distribution with variance r2 ¼ 2k, then the value for such
an integration is,Z þ1

�1

1
2
ffiffiffiffiffiffi
pk
p ðx� kþ gÞn exp �ðx� k� gÞ2

4k

 !
dx

¼
1 for n ¼ 0;
0 for n is odd;
ð2kÞ

n
2ðn� 1Þ!! for n > 0 iseven:

8><
>:

Therefore, the series for kðk;gÞ is,

kðk;gÞ ¼ 2
ffiffiffiffiffiffi
pk
p X1

n¼0

kn

n!
f ð2nÞðk� gÞ: ðA3Þ
Appendix B. Large k limit

For large k, we first rewrite Eq. (5) as,

kðk;gÞ ¼
Z þ1

�1
gðx; k;gÞ 1� HðxÞð Þdx

þ
Z þ1

�1
gðx; k;gÞ f ðxÞ � 1þ HðxÞð Þdx: ðB1Þ

The first term on the right hand side of Eq. (B1) can be exactly
solved as shown in Eq. (9), while the second half can be simplified
to,Z þ1

�1
gðx; k;gÞ f ðxÞ � 1þ HðxÞð Þdx

¼ �2 exp �ðk� gÞ2

4k

 !Z þ1

0
exp � x2

4k

� �
sinh ðk�gÞx

2k

1þ expðxÞdx: ðB2Þ

If we define a new function h as,

hðxÞ ¼
sinh ðk�gÞx

2k

1þ expðxÞ ; ðB3Þ

since hðx ¼ 0Þ ¼ 0, its Maclaurin series is,

hðxÞ ¼
X1
n¼1

xn

n!
hðnÞð0Þ: ðB4Þ

We substitute this back to Eq. (B2) and obtain,Z þ1

�1
gðx; k;gÞ f ðxÞ � 1þ HðxÞð Þdx

¼ �2 exp �ðk� gÞ2

4k

 !X1
n¼1

hðnÞð0Þ
n!

Z þ1

0
xn exp � x2

4k

� �
dx

¼ �2 exp �ðk� gÞ2

4k

 !X1
n¼1

hðnÞð0Þ2
n

n!
k

nþ1
2 C

nþ 1
2

� �
; ðB5Þ

where Cð�Þ is the gamma function. Thus, the MHC integral in Eq. (5)
can be expanded asymptotically as,

kðk;gÞ ¼
ffiffiffiffiffiffi
pk
p

erfc
k� g
2
ffiffiffi
k
p

� �
� 2 exp �ðk� gÞ2

4k

 !X1
n¼1

hðnÞð0Þ

	 2n

n!
k

nþ1
2 C

nþ 1
2
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